三年级奥数 简单的等差数列
(完整)三年级奥数简单的等差数列

1.3 简单的等差数列新知导航在加减法的混合计算中,存在一种情况:多个加数(或减数)按照固定的规律依次排列,并且这些数中任意两个相邻的数的差相同,这就是数学王国中最著名的故事“高斯求和”——等差数列求和。
一、等差数列的认识【基础过关】热身题:智慧老人觉得龟兔都是可造之才,所以邀请它们来到家里继续学习新的知识。
智慧老人给它们讲了数学王子高斯小时候的故事,随后在黑板上写下了这样的一个题:1+2+3+4+5+6+7+8+9+10的结果是多少?分析:观察发现:本题中的数按从小到大的顺序依次排列,可以使用首尾对应求和的方式变加法为乘法计算。
1+2+3+4+5+6+7+8+9+10=(1+10)+(2+9)+(3+8)+(4+7)+(5+6)=11+11+11+11+11=11×5=55老师点睛当一组数字按照从小到大(或者从大到小)顺次排列且任意两个相邻的数的差相同,这组数被称之为“等差数列”。
若求这组等差数列的和,可以按照首尾对应相加的方式使用乘法计算。
二、等差数列的求和计算【综合提升】例题1:10+11+12+13+…+19分析:通过观察可得这是一组等差数列的求和计算,可以采用前面的首尾对应求和的方法。
10+11+12+13+…+19=(10+19)+(11+18)+…+(14+15)=29+29+29+…+29=29×(10÷2)=29×10÷2=290÷2=145老师点睛在连续自然数组成的等差数列求和计算中,可以将加法改为乘法计算:和=(第一个数+最后一个数)×数的个数÷2。
但首先要找到这组等差数列中数的个数,才能完成计算。
【巩固训练】(1)1+2+3+…+20(2)3+4+5+…+12(3)1+2+3+…+40(4)5+6+7+…+24例题2:3+6+9+…+60分析:通过观察可得:这组等差数列的数都是第一个数的倍数,因此在找数的个数时,可以借用倍数的特殊性。
(完整word)三年级奥数等差数列求和习题及答案

计算(三)等差数列求和知识精讲一、定义:一个数列的前n 项的和为这个数列的和。
二、表达方式:常用n S 来表示 。
三:求和公式:和=(首项+末项)⨯项数2÷,1()2n n s a a n =+⨯÷。
对于这个公式的得到可以从两个方面入手:(思路1)1239899100++++++L11002993985051=++++++++L 1444444442444444443共50个101()()()() 101505050=⨯= (思路2)这道题目,还可以这样理解:23498991001009998973212101101101101101101101+++++++=+++++++=+++++++L L L 和=1+和倍和即,和 (1001)100 2 10150 5050=+⨯÷=⨯=。
四、中项定理:对于任意一个项数为奇数的等差数列,中间一项的值等于所有项的平均数,也等于首项与末项和的一半;或者换句话说,各项和等于中间项乘以项数。
譬如:① 48123236436922091800+++++=+⨯÷=⨯=L (),题中的等差数列有9项,中间一项即第5项的值是20,而和恰等于209⨯; ② 65636153116533233331089++++++=+⨯÷=⨯=L (),题中的等差数列有33项,中间一项即第17项的值是33,而和恰等于3333⨯。
例题精讲:例1:求和:(1)1+2+3+4+5+6 = (2)1+4+7+11+13=(3)1+4+7+11+13+ (85)分析:弄清楚一个数列的首项,末项和公差,从而先根据项数公式求项数,再根据求和公式求和。
例如(3)式项数=(85-1)÷3+1=29和=(1+85)×29÷2=1247答案:(1)21 (2)36 (3)1247例2:求下列各等差数列的和。
(1)1+2+3+4+…+199(2)2+4+6+…+78(3)3+7+11+15+…+207分析:弄清楚一个数列的首项,末项和公差,从而先根据项数公式求项数,再根据求和公式求和。
高斯小学奥数含答案三年级(上)第22讲等差数列应用

☆7 O求解的方法在等差数列的问题中非常常见项和105CD这4个等著数列 之间有什么相同 的地方少练习1那么中间数=和十项数•也就是说,可以通过项数与和求出一个等差数列的中间数•这种通过公式反向 例题10 2N 25 分析:前7项的和是105,根据公式可以求出第几项呢?/0, 2 4fig 第:项 中间数都是16 •其实只要项数与和相同, 中间数就自然相同了,因为我们学过公式:和=中间数x 项数 8D 这几个等差数列虽然都不一样, 但它们的项数、和与中间数都是相同的: 项数都是7,和都是112 20P Sflo 28一个等差数列的第1项是3,前11项之和为198,这个数列的第20项是多少?第骑第2项 一个等差数列的第 1项是21,前7项的和为105,这个数列的第10项是多少?第二十二讲等差数列应用9个连续自然数的和是126,其中最小的数是多少?分析:这9个数是等差数列吗?如果是的话,公差是几?练习27个连续奇数之和为91,其中最小的数是多少?当然,要使用公式:和=中间数X项数来解题的话,这个数列的项数必须是奇数.例题3已知一个等差数列的前15项之和为450,前21项之和为819,请问:这个数列的公差是多少?首项是多少?和为819分析:如果知道任何两项具体的数值,就能算出公差.能不能找到这样的两项呢?练习3已知一个等差数列的前13项之和为533,前15项之和为690.请问:这个等差数列的首项是多少?但并不是所有的等差数列的项数都是奇数•当项数是偶数时,只能根据公式:和=(首项+末项)X项数吃,算出首项与末项的和.如果再能求出首项与末项的差,便能求出首项与末项的具体数值了.第亡项和为450'."第项☆4是多少?少?(7^例题6例题5分析:首项与末项的和是多少?差是多少?表示成8个连续偶数的和,其中最大的偶数是多少?分析:思考下一共有几个人?改分前小高是第几个,改分后小高是第几个?在一次考试中,第一组同学的分数恰好构成了公差为分析:通过“前15项之和为450”这个条件除了能知道“中间数”之外,还能知道其他一些信息吗? 已知一个等差数列的前 15项之和为450,前20项之和为750.请问:这个数列的公差是多少?首项 3的等差数列,总分为 609.小高发现自己的 练习4把115表示成10个连续自然数之和,其中最小的数是几?分数算少了,找老师更正后,加了 21分,这时他们的成绩还是一个等差数列.请问小高正确的分数是多等比数列小故事作业1. 已知一个等差数列的首项是17,前7项之和为161,这个数列的第11项是多少?2. 7个连续偶数之和为112,其中最小的那个数是多少?4. 325表示成10个连续自然数之和,其中最小的数是多少?5.已知一个等差数列的前11项之和为451,前19项之和为1235,这个数列的首项是多少?答案:3详解:先求出第4项:105 7 15,所以公差为:21 15 4 1 2,第10项为:21 2 10 1 3 .2.例题2答案:10详解:9个连续自然数是一个公差为1的等差数列,第5项为:126 9 14,所以最小的数为:14 4 10 .3.例题3答案:3 ;9详解:先根据前15项之和,求出第8项为:450 15 30 •再根据21项之和,求出第11项为:819 21 39 .所以公差是:39 30 11 8 3,首项为:30 3 8 1 9 .4.例题4答案:38详解:8个连续偶数构成的是公差为2的一个等差数列,最大数应该比最小数大2 7 14,再算出最小数与最大数的和:248 2 8 62,所以最大数为:62 14 2 38 .5.例题5答案:3 ;9详解:“前15项之和为450”,所以第1项与第15项之和为:450 2 15 60 .同样地,算出第 1 项与第20项之和为75,都含有第1项,所以第20项比第15项大了75 60 15,公差为:15 5 3,第15项比首项大3 14 42,所以首项为:60 42 2 9 .6.例题6答案:99分详解:原来是最低的,加了21分之后应该变成最高的,公差是3,所以小组里共有7人.原来中间的数为609 7 87分,所以最后小高是99分.7.练习1答案:60简答:第6项为:198 11 18,公差为:18 3 6 1 3,第20项为:3 3 19 60.8.练习2答案:7简答:第4个是:91 7 13,最小数为7.9.练习3答案:11简答:第7项为:533 13 41,第8项为:690 15 46,公差为5,则首项为:41 5 6 11 .10.练习4答案:7简答:最小数比最大数小9,且最小数与最大数之和为:115 2 10 23,则最小数为7.答案:10简答:中间项即第4个数为112 7 16,则最小的是10.13.作业3答案:7末项比首项大简答:(首项末项)8 2 112,所以首项末项28,而对于8个连续奇数,2 714,则首项为7.14.作业4答案:28简答:这10个连续自然数构成一个公差为1的等差数列,(首项末项)10 2 325,所以首项末项65,而首项又比末项小9,则首项为28.15.作业5答案:11简答:第6项为4511141,第10项为12351965,则公差为(6541)(106)6,首项为41 (6 1) 6 11 .。
小学三年级奥数专项训练题《等差数列(一)》

小学三年级奥数专项训练题《等差数列(一)》等差数列是指从第二项开始,每一项与前一项的差都相等的数列。
其特点是相邻两项差值相等,且要么递增,要么递减。
其中公差、首项、末项和项数是等差数列的重要概念。
下面我们来看一些例题。
例1:请观察下面的数列,找规律填数字。
①5,9,13,17,21,_____;②7,11,15,19,_____,27,_____,35;③200,180,160,140,_____;④102,92,82,72,____,52.例2:一个等差数列共有15项,每一项都比它的前一项大3,它的首项是4,那么末项是多少?又一个等差数列共有13项,每一项都比它的前一项小5,它的第1项是121,那么它的末项是多少?例3:一个等差数列的首项是12,第20项等于392,那么这个等差数列的公差是多少?第19项是多少?212是这个数列的第几项?例4:计算下面的数列和:3+7+11+15+19+23+27+31=______。
例5:计算下列各题⑴1+2+3+4+…+23+24+25=_____;⑵1+5+9+13+…+33+37+41=_____。
例6:计算下面数列的和。
2+4+6+8+10+12+14+16+18=______。
例7:把边长为1的小正方形叠成“金字塔形”图,其中黑白相间染色.如果最底层有15个正方形,问其中有多少个染白色的正方形,有多少个染黑色的正方形?例8:计算下面各个数列的和。
⑴1+2+3+4+5+6+7+8+9+10=______;⑵1+2+3+4+…+98+99+100=______;⑶1+2+3+4+…+999+1000=______。
例9(超常大挑战):求下列数表的和=______。
xxxxxxxxxxxxxxxxxxxxxxx2xxxxxxxx13xxxxxxxx314xxxxxxxx1415以上是等差数列的基本知识及例题。
需要注意的是,等差数列的公式包括第n项、项数和和数公式,其中第n项公式为首项加上(n-1)倍的公差,项数公式为末项减去首项再除以公差再加上1,和数公式为首项加末项再乘以项数再除以2.此外,小兔子跳台阶和首尾配对思想也是解题时的常用技巧。
三年级奥数等差数列

三年级奥数等差数列引言本文档旨在介绍三年级学生应了解的奥数等差数列的概念和基本计算方法。
什么是等差数列?等差数列是由一系列数按照相等的差值依次排列而成的数列。
每个数与它前一个数的差值都是相等的。
等差数列的特点1. 公差:等差数列中相邻两项之间的差值称为公差。
用字母"d"表示。
2. 首项:等差数列的第一项称为首项。
用字母"a"表示。
3. 通项公式:按照公差依次递增的等差数列的第n项可以表示为:an = a + (n-1)d。
等差数列的计算方法计算首项- 已知公差d和第n项an,首项可以通过公式a = an - (n-1)d来计算。
- 已知公差d和前一项an-1,首项可以通过公式a = an-1 + d来计算。
计算公差- 已知首项a和第n项an,公差可以通过公式d = (an - a) / (n-1)来计算。
- 已知前一项an-1和第n项an,公差可以通过公式d = an - an-1来计算。
计算第n项- 已知首项a和公差d,第n项可以通过公式an = a + (n-1)d来计算。
- 已知前一项an-1和公差d,第n项可以通过公式an = an-1 + d 来计算。
例子请考虑一个等差数列的实例:首项a=2,公差d=3。
我们来计算该等差数列的第5项。
根据通项公式:an = a + (n-1)d,我们计算得到:a5 = 2 + (5-1)*3 = 14。
结论通过本文档,我们了解了三年级奥数中关于等差数列的概念,以及计算等差数列中首项、公差和第n项的方法。
掌握了这些基础知识,学生可以更好地理解和解决与等差数列相关的问题。
三年级奥数等差数列求和

等差数列求和数列的第一个数(第一项)叫首项,最后一个数(最后一项)叫末项,如果一个数列从第二项起,每一项与前一项的差是一个不变的数,这样的数列叫做等差数列,这个不变的数则称为这个数列的公差。
一、公差为1例1:1+2+3+4+5+6+7+8+9+10例2:1+2+3+4+5+……+20练习1:1+2+3+4+……+99+100练习2:21+22+23+24+……+100二、公差不为1例1:21+23+25+27+29+31例2:312+315+318+321+324练习1:48+50+52+54+56+58+60+62练习2:108+128+148+168+188三、等差数列的项数、末项例1:有一个等差数列 1,4,7,10,…,25,这个数列共有多少项?例2:在公差为5的等差数列中,最大的数是50,最小的数是20,那么这个等差数列有多少项?练习1:这个等差数列的首项是3,公差是4,末项是39,这个等差数列有多少项?练习2:有一个数列4,6,8,10…40,这个数列共有多少项?例3:这个等差数列的首项是1,公差是5,项数是 40,第40项是?例4:等差数列4,7,10,13,16,19…第30项是?练习3:等差数列3,5,7,9,…,第20项是?练习4:一组数:1,5,9,13,17,…,这个数列的第100个数是多少?四、等差数列应用题例1:计算1000-11-89-12-88-13-87-14-86-15-85-16-84-17-83-18-82-19-81例2:计算1000-1-9-2-8-3-7-4-6-5-5-6-4-7-3-8-2-9-1练习1:1000-81-11-82-12-83-13-84-14-85-15-86-16-87-17-88-18-89-19练习2:2001-1+2-3+4-5+6-7+8-9+10-11+12-13+14-15+16例3:有一堆木材叠堆在一起,一共是10层,第1层有16根,第2层有17根,下面每层比上层多一根,这堆木材共有多少根?例4:体育馆的东区共有30排座位,呈梯形,第1排有10个座位,第2排有11个座位,这个体育馆东区共有多少个座位?练习3:有一串数,第1个数是10,以后每个数比前一个数大4,最后一个数是90,这串数连加的和是多少?练习4:有一堆粗细均匀的圆木,堆成如图的形状.已知最上面一层有6根,共堆了25层.请问:这堆圆木共有多少根?练习5:小青蛙沿着台阶往上跳,每跳一次都比上一次升高4厘米。
小学奥数等差数列公式

【导语】世间最可宝贵的就是今天,最易丧失的也是今天;愿你在未来的⼀年中,⽆限珍惜这每⼀个今天。
以下是®⽆忧考⽹为⼤家整理的《⼩学奥数等差数列公式》供您查阅。
公式1:求和公式:等差数列求和=(⾸项+末项)×项数÷2,即:Sn=(a1+an)×n÷2; 公式2:通项公式:第n项=⾸项+(n-1)×公差,即:an=a1+(n-1)×d; 公式3:项数公式:项数=(末项-⾸项)÷公差+1,即n=(an-a1)÷d+1。
上述三个公式必须掌握 此外,还有⼀个中项定理,也掌握: 中项定理:对于作意⼀个项数为奇数的等差数列来说,中间⼀项的值等于所有项的平均数,也等于⾸项与末项和的⼀半;或者换句话说,各项和等于中间项乘以项数。
例1:建筑⼯地有⼀批砖,码成如右图形状,最上层两块砖,第2层6块砖,第3层10块砖…,依次每层都⽐其上⾯⼀层多4块砖,已知最下层2106块砖,问中间⼀层多少块砖?这堆砖共有多少块? 解:如果我们把每层砖的块数依次记下来,2,6,10,14,…容易知道,这是⼀个等差数列. ⽅法1: a1=2,d=4,利⽤公式求出an=2106, 则:n=(an-a1)÷d+1=527 这堆砖共有则中间⼀项为a264=a1+(264-1)×4=1054. ⽅法2:(a1+an)×n÷2=(2+2106)×527÷2=555458(块). 则中间⼀项为(a1+an)÷2=1054 a1=2,d=4,an=2106, 这堆砖共有1054×527=555458(块). 此题利⽤中项定理和等差数列公式均可解! 例2:求从1到2000的⾃然数中,所有偶数之和与所有奇数之和的差. 解:根据题意可列出算式: (2+4+6+8+...+2000)-(1+3+5+ (1999) 解法1:可以看出,2,4,6,…,2000是⼀个公差为2的等差数列,1,3,5,…,1999也是⼀个公差为2的等差数列,且项数均为1000,所以: 原式=(2+2000)×1000÷2-(1+1999)×1000÷2 =1000. 解法2:注意到这两个等差数列的项数相等,公差相等,且对应项差1,所以1000项就差了1000个1,即 原式=1000×1=1000. 例3:100个连续⾃然数(按从⼩到⼤的顺序排列)的和是8450,取出其中第1个,第3个…第99个,再把剩下的50个数相加,得多少? 解: ⽅法1:要求和,我们可以先把这50个数算出来. 100个连续⾃然数构成等差数列,且和为8450,则: 由题可知:(⾸项+末项)×100÷2=8450,求出:(⾸项+末项)=169。
三年级奥数题及参考答案-等差数列

三年级奥数题及参考答案-等差数列
编者小语:“题海无边,题型有限”。学习数学必须要有扎实的基本功,有了扎实的基本功再进行“奥数”的学习就显得水到渠成了。为大家准备了小学三年级奥数题,希望小编整理奥数题等差数列问题,可以帮助到你们,助您快速通往高分之路!!
1、在10和40之间插入四个数,使得这六个数构成一个等差数列。那么应插入哪些数?
2、一个等差数列的首项是6,第源自项是55,公差是( )。解答1:d=(40-10)÷(4+1)=6,插入的数是:16、22、28、34。
解答2:d=(55-6)÷(8-1)=7
小学三年级奥数练习题(等差数列)

小学三年级奥数练习题(等差数列)小学三年级奥数练习题(等差数列)篇一1、一个递增(后项比前项大)的等差数列公差是5, 第55项比第37项________(多或少)______。
2、一个递增(后项比前项大)的等差数列公差是6, 第55项比第83项________(多或少)______。
3、一个递增(后项比前项大)的等差数列公差是7, 第28项比第73项________(多或少)______。
4、一个递增(后项比前项大)的等差数列公差是8, 第90项比第73项________(多或少)______。
5、一个递增(后项比前项大)的等差数列公差是8, 首项比第73项________(多或少)______。
6、一个递增(后项比前项大)的等差数列公差是4, 首项比第26项________(多或少)______。
7、一个递减(后项比前项小)的等差数列公差是9, 第18项比第32项________(多或少)______。
8、一个递减(后项比前项小)的等差数列公差是4, 第32项比第18项________(多或少)______。
9、一个递减(后项比前项小)的等差数列公差是3, 第74项比第26项________(多或少)______。
10、一个递减(后项比前项小)的等差数列公差是7, 第74项比第91项________(多或少)______。
11、一个递减(后项比前项小)的等差数列公差是8, 第29项比第86项________(多或少)______。
12、一个递减(后项比前项小)的等差数列公差是9, 第123项比第86项________(多或少)______。
13、一个递减(后项比前项小)的等差数列公差是9, 第23项比首项________(多或少)______。
14、一个递减(后项比前项小)的等差数列公差是6, 第46项比首项________(多或少)______。
15、一个递增(后项比前项大)的等差数列公差是3, 有一项比第34项大57, 这一项比第34项________(多或少)________个公差, 这一项是第________项。
三年级奥数教程第7讲等差数列

三年级奥数教程第7讲等差数列(一)数列的第一项叫首项,最后~项叫末项.如果一个数列,从第2项起,每一项与前一项的差是一个固定数,这样的数列叫做等差数列,这个差叫做这个数列的公差.本讲主要讲如何求等差数列的和.例1、求和:1+2 +3 + 4+5+6 +7+8=?分析本题只有8个数相加,可以逐步地求出结果,但我们现在不用这种方法.仔细观察一下就会知道,数列1,2,3,…,8,是一个首项是1、公差也是1的等差数列,而且1 + 8=9,2 + 7=9.3 + 6=9.4 + 5=9.把1到8采用上述方式两两配对相加,共配成4对,每一对的和都是9,从而可以得到要求的结果.-解 1+2 +3 + 4+5+6 +7+8==9×4=36.-随堂练习1 用上面的方法求出1+2 +3 + 4 +…+35+36.例2、计算:1+2+3+…+98+99 + 100.分析我们仍可模仿例l的方法来求和.1+100=101,2+99=101,3+98=101,………………50+51=101.把1到100用上述方法两两配对,共可以配成50对.解 1+2+…+99+100=101×50=5 050.上面两例中所用的方法,就是高斯小时候的做法.两例中所出现的两列数,都是等差数列.对于等差数列的和,我们都可以用这样的配对方法来求.随堂练习2 计算:2+4+6+8+…+200例3、求和(1)8+9+10+11+12+13;(2)2+5+8+11+14+17+20.分析与解 (1)原式=(8+13)+(9+12)+(10+11)=21×3=63.(2)如果仍用上面的方法配对,那么就会剩下11没有数与它相配.但我们可以将上面的做法稍稍修改一下,将每个数都重写一遍,这样就可以配成7对,即2与20,5与17,8与14,11与11,14与8,17与5,20与2,每对的和都是22.从而原式=22×7÷2=77.随堂练习3求和:(1)4+6+8+10+12+14+16;(2)2+3+4+5+6+7+8.例3仍用配对的方法来求等差数列的和,只不过将例2的方法稍作了改进.实际上,用这种方法可以得到,对任何等差数列,我们有等差数列的和=(首项+末项)×项数÷2例4、求出下面各数列的和:(1)9,13,17,21,25,29;(2)1,3,5,7,…,95,97,99.分析与解 (1)这是首项为9、末项为29、项数为6的等差数列,所以这个等差数列的和为(9+29)×6÷2=114.(2)这是首项是1、末项是99、公差是2的等差数列.如果能知道项数是多少,那么就很容易求出和来.下面我们设法求项数.这个数列的第2项比第1项多2,第3项比第1项多2×2=4,第4项比第l项多3×2=6,……从而我们可以得到末项=首项+(项数一1)×公差.由上式可以得到项数=(末项一首项)÷公差+1.所以这个等差数列的项数为(99—1)÷2+1=98÷2+1=50,从而等差数列的和为(1+99)×50÷2=100×50÷2=2 500.随堂练习4 求出从0到100之内所有3的倍数的和.例5、小红读一本长篇小说,第一天读了3。
等差数列三年级奥数题

等差数列三年级奥数题摘要:1.等差数列的概念和基本性质2.等差数列求和公式及其应用3.三年级奥数等差数列求和习题及答案4.提高等差数列求和题目的解题技巧正文:一、等差数列的概念和基本性质等差数列是指一个数列,其中任意两个相邻的项之间的差都相等。
等差数列的基本性质包括:1.等差数列中任意两项之差是一定的;2.等差数列中任意两项的比是一定的;3.等差数列中任何一项的值都可以通过首项和项数表示。
二、等差数列求和公式及其应用等差数列求和公式是指将一个等差数列的所有项相加得到的总和的计算公式。
等差数列求和公式为:S = n * (a1 + an) / 2其中,S 表示等差数列的总和,n 表示等差数列的项数,a1 表示等差数列的首项,an 表示等差数列的末项。
在解决实际问题中,我们可以通过等差数列求和公式来计算等差数列的总和,进而求解相关问题。
三、三年级奥数等差数列求和习题及答案以下是一些三年级奥数等差数列求和的习题及标准答案:1.习题:一个等差数列的首项是3,公差是2,求这个等差数列的前10 项和。
解答:根据等差数列求和公式,S = 10 * (3 + (3 + 9 * 2)) / 2 = 10 * (3 + 21) / 2 = 130。
2.习题:一个等差数列的首项是1,公差是3,求这个等差数列的前5 项和。
解答:根据等差数列求和公式,S = 5 * (1 + (1 + 4 * 3)) / 2 = 5 * (1 + 13) / 2 = 35。
3.习题:一个等差数列的首项是2,公差是4,求这个等差数列的前8 项和。
解答:根据等差数列求和公式,S = 8 * (2 + (2 + 7 * 4)) / 2 = 8 * (2 + 30) / 2 = 128。
四、提高等差数列求和题目的解题技巧在解决等差数列求和题目时,可以采用以下技巧来提高解题效率:1.熟练掌握等差数列求和公式;2.注意观察题目中给出的首项、公差和项数,并灵活运用公式;3.在计算过程中,可以先化简计算,如将公差与项数相乘,再与首项相加,以简化计算过程。
(完整版)三年级奥数-等差数列

小学三年级奥数专项练题《等差数列(一)》【课前】(★)请观察下面的数列,找规律填数字。
①5,9,13,17,21,_____;②7,11,15,19,_____,27,_____,35;③200,180,160,140,_____;④102,92,82,72,____,52。
【知识要点屋】1.定义:如果一个数列从第二项起,每一项与它的前一项的差等于同一个数,这个数列就叫做等差数列。
2.特点:①相邻两项差值相等;②要么递增,要么递减。
3.名词:公差,首项,末项,项数5 ,9,13,17,21,25(★★★)⑴一个等差数列共有15项,每一项都比它的前一项大3,它的首项是4,那么末项是______;⑵一个等差数列共有13项,每一项都比它的前一项小5,它的第1项是121,那么它的末项是_______。
(★★★)一个等差数列的首项是12,第20项等于392,那么这个等差数列的公差=_____;第19项=______,212是这个数列的第_____项。
【铺垫】(★★)计算下面的数列和:3+7+11+15+19+23+27+31=_____。
(★★★)计算下列各题⑴1+2+3+4+…+23+24+25=_____;⑵1+5+9+13+…+33+37+41=_____。
1、在10和40之间插入四个数,使得这六个数构成一个等差数列。
那么应插入哪些数?2、一个等差数列的首项是6,第8项是55,公差是()。
1、在10和40之间插入四个数,使得这六个数构成一个等差数列。
那么应插入哪些数?解答:d=(40-10)÷(4+1)=6,插入的数是:16、22、28、34。
2、一个等差数列的首项是6,第8项是55,公差是()。
解答:d=(55-6)÷(8-1)=7(1)2、4、6、8、……、28、30这个等差数列有( )项。
(2)2、8、14、20、……62这个数列共有()项。
(1)2、4、6、8、……、28、30这个等差数列有( )项。
三年级奥数等差数列求和问题练习

三年级奥数等差数列求和问题练习三年级奥数第五讲:等差数列求和
例题1:计算2+5+8+11+17+20+23.
练:计算1+2+3+5+7+9+11+13+15+17+19.
例题2:计算8+10+12+14+16+18+20.
练:计算3+6+9+12+15+18+21.
例题3:计算5+6+7+8+9+10+9+8+7+6+5.
练:20+17+14+11+8+5+2.
例题4:计算9+11+13+15+17+19+22.
练:计算5+7+9+11+13+15+17+19+21+25.
例题5:计算8+9+10+11+12+13+15+17+19+21+23.
练:计算12+13+14+15+16+18+20+22+24+26.
例题6:XXX为了买课外书自己存钱,2003年元月存一
元钱,以后每月都比前一个月多存1元钱,那么2003年这一
年里一共可以存多少钱?
练:一辆双层公共汽车空车出发,第一站上一位乘客,第二站上两位,第三站上三位,以此类推,到第11站之后,公
汽上的作为刚好坐满。
求这两公汽共有多少个座位?
例题7:三年级数学培优班第1小组由8名同学,开学时,老师要求该组每人都握一次手,问共握多少次手?。
小学三年级奥数专项训练题《等差数列(二)》

等差数列(二)【知识要点屋】1.等差数列:①相邻两项差值相等;②要么递增,要么递减。
2.公式:项数=(末项-首项)÷公差+13.小兔子跳台阶,首尾配对思想。
4.熟记:1+2+3+4+5+6+7+8+9+10=______;1+2+3+4+……+98+99+100=______。
【铺垫】(★★★)请求出下面每组等差数列的平均数。
⑴1,2,3,4,5 的平均数=______。
⑵2,4,6,8,10的平均数=______。
⑶3,7,11,15,19的平均数=______。
(★★★)阳光小学三年级五个班的人数分别为31人,34人,28人,37人,40人。
那么,这五个班级的平均人数=____人。
(★★★)下面等差数列的平均数=_____。
3,7,11,15,19,23,27,31【知识要点屋】(★★★)5个连续的偶数的和是120,那么最大的偶数是_____。
【拓展】10个连续的偶数的和是230,那么最大的偶数是_____。
已知一个等差数列的前11项的和是231,前21项的和是756。
请问:这个数列的公差是_______,首项是______。
已知一个等差数列的前15项之和为450,前20项的和为750。
请问:这个数列的公差是____,首项是_____。
【超常大挑战】 在1~100这一百个自然数中,所有不能被9整除的数的和是多少?【知识大总结】等差数列1.关于平均数①平均数=(首+末)÷2②奇数项,平均数=中间数③平均数=总数÷个数2.首尾配对思想3.提公因数9+18+27+……+99=9×(1+2+3+ (11)(★★★) (★★★) (★★) (★★★)。
三年级数学 奥数讲座 等差数列

三年级奥数讲座等差数列1、下面是按规律排列的一串数,问其中的第1995项是多少?解答:2、5、8、11、14、……。
从规律看出:这是一个等差数列,且首项是2,公差是3,这样第1995项=2+3×(1995-1)=59842、在从1开始的自然数中,第100个不能被3除尽的数是多少?解答:我们发现:1、2、3、4、5、6、7、……中,从1开始每三个数一组,每组前2个不能被3除尽,2个一组,100个就有100÷2=50组,每组3个数,共有50×3=150,那么第100个不能被3除尽的数就是150-1=149。
3、把1988表示成28个连续偶数的和,那么其中最大的那个偶数是多少?解答:28个偶数成14组,对称的2个数是一组,即最小数和最大数是一组,每组和为:1988÷14=142,最小数与最大数相差28-1=27个公差,即相差2×27=54,这样转化为和差问题,最大数为(142+54)÷2=98。
4、在大于1000的整数中,找出所有被34除后商与余数相等的数,那么这些数的和是多少?解答:因为34×28+28=35×28=980<1000,所以只有以下几个数:34×29+29=35×2934×30+30=35×3034×31+31=35×3134×32+32=35×3234×33+33=35×33以上数的和为35×(29+30+31+32+33)=54255、盒子里装着分别写有1、2、3、……134、135的红色卡片各一张,从盒中任意摸出若干张卡片,并算出这若干张卡片上各数的和除以17的余数,再把这个余数写在另一张黄色的卡片上放回盒内,经过若干次这样的操作后,盒内还剩下两张红色卡片和一张黄色卡片,已知这两张红色的卡片上写的数分别是19和97,求那张黄色卡片上所写的数。
小学奥数 等差数列的认识与公式运用 精选练习例题 含答案解析(附知识点拨及考点)

本讲知识点属于计算板块的部分,难度较三年级学到的该内容稍大,最突出一点就是把公式用字母表示。
要求学生熟记等差数列三个公式,并在公式中找出对应的各个量进行计算。
一、等差数列的定义⑴ 先介绍一下一些定义和表示方法定义:从第二项起,每一项都比前一项大(或小)一个常数(固定不变的数),这样的数列我们称它为等差数列.譬如:2、5、8、11、14、17、20、从第二项起,每一项比前一项大3 ,递增数列100、95、90、85、80、从第二项起,每一项比前一项小5 ,递减数列⑵ 首项:一个数列的第一项,通常用1a 表示末项:一个数列的最后一项,通常用n a 表示,它也可表示数列的第n 项。
项数:一个数列全部项的个数,通常用n 来表示;公差:等差数列每两项之间固定不变的差,通常用d 来表示; 和 :一个数列的前n 项的和,常用n S 来表示 .二、等差数列的相关公式(1)三个重要的公式① 通项公式:递增数列:末项=首项+(项数1-)⨯公差,11n a a n d =+-⨯() 递减数列:末项=首项-(项数1-)⨯公差,11n a a n d =--⨯() 回忆讲解这个公式的时候可以结合具体数列或者原来学的植树问题的思想,让学生明白 末项其知识点拨教学目标等差数列的认识与公式运用实就是首项加上(末项与首项的)间隔个公差个数,或者从找规律的情况入手.同时还可延伸出来这样一个有用的公式:n m a a n m d -=-⨯(),n m >()② 项数公式:项数=(末项-首项)÷公差+1由通项公式可以得到:11n n a a d =-÷+() (若1n a a >);11n n a a d =-÷+() (若1n a a >). 找项数还有一种配组的方法,其中运用的思想我们是常常用到的. 譬如:找找下面数列的项数:4、7、10、13、、40、43、46 ,分析:配组:(4、5、6)、(7、8、9)、(10、11、12)、(13、14、15)、、(46、47、48),注意等差是3 ,那么每组有3个数,我们数列中的数都在每组的第1位,所以46应在最后一组第1位,4到48有484145-+=项,每组3个数,所以共45315÷=组,原数列有15组. 当然还可以有其他的配组方法.③ 求和公式:和=(首项+末项)⨯项数÷2 对于这个公式的得到可以从两个方面入手: (思路1) 1239899100++++++11002993985051=++++++++共50个101()()()()101505050=⨯=(思路2)这道题目,还可以这样理解: 23498991001009998973212101101101101101101101+++++++=+++++++=+++++++和=1+和倍和即,和(1001=+⨯÷=⨯=(2) 中项定理:对于任意一个项数为奇数的等差数列,中间一项的值等于所有项的平均数,也等于首项与末项和的一半;或者换句话说,各项和等于中间项乘以项数.譬如:① 48123236436922091800+++++=+⨯÷=⨯=(),题中的等差数列有9项,中间一项即第5项的值是20,而和恰等于209⨯; ② 65636153116533233331089++++++=+⨯÷=⨯=(),题中的等差数列有33项,中间一项即第17项的值是33,而和恰等于3333⨯.例题精讲模块一、等差数列基本概念及公式的简单应用等差数列的基本认识【例 1】下面的数列中,哪些是等差数列?若是,请指明公差,若不是,则说明理由。
高斯小学奥数含答案三年级(上)第20讲等差数列初步

o6 <依此类推 而相邻两项称为末项 首项 第5项 第17项比第9项大几个公差呢?第5项比第2项大几个公差呢?第7项比第1项大几个公差呢?在等差数列中,首先要寻找这四个关键量(即 最后1 liii 儿秋中北五事少离捱事少囁 j 蚤少載睛第少腿宪? /在上图中,你能看出第 3项比第1项大几个公差吗?项的的差则被称为公差首项、末项、项数和公差)之间的关系•请看下图 第二十讲等差数列初步大,要么每一项都比前一项小,不能出现既有后一项比前一项大,又有后一项比前一项小的情况在等差数列中,称第1个数为第1项,第一只Ittt-张瞬’两只眼睛四条腿卜 晋貝高吐两张嘴,四只駁睛八奈腿; 三只有吐三张HL 亢只眼睛十二衆胪 四只片魁四张喷,八貝臥隔I 人象亚2个数为第2项,第3个数为第3项 别要注意的是,类似于 1 , 2, 3, 2, 1, 2, 3, 2, 1,…和1, 0, 1 , 0, 1, 0,…的数列,虽然相邻两 个数的差都相等,但这样的数列不是等差数列, 因为在同一个等差数列中,必须要么每一项都比前一项 数列中所有数的个数称为 项数 在等差数列中,第n 项与第m 项之间相隔n m 个公差我们把等差数列第1项称为首项公差 末项 公差公差 公差 公差 第2项 第3项 第4项一 数列”就是一列数,也就是一些数排成一列.“等差”,就是差相等,也就是相邻两数的差都相等. 特就等于 项数1 •由此,我们就知道末项减去首项等于 项数1个公差的和,因此 末项首项 项数1 公差 由此可以得到等差数列的通项公式:末项首项 项数1 公差 同时我们还可以得到以下这些公式:首项 末项 项数 1公差公差 末项 首项项数1 项数 末项 首项 公差1在运用这些公式时, 有一个共同的关键点:某两项之间相差的公差的个数.抓住这个关键点,很多 问题便能迎刃而解.例题1(1) 一个等差数列共有 13项•每一项都比它的前一项大 2,并且首项为33,那么末项是多少?(2) 一个等差数列共有 13项•每一项都比它的前一项小 2,并且首项为33,那么末项是多少? 分析:本题中的首项和末项相差了几个公差?是首项大还是末项大呢?练习1一个等差数列共有10项•每一项都比它的前一项大 例题2分析:本题中的首项和末项相差了几个公差?是首项大还是末项大呢?更重要的是,首项其实就是第 1项,末项就是第“项数”项,那么首项和末项之间相隔的公差个数1,并且首项为21,那么末项是多少?(1) 一个等差数列共有 10项•每一项都比它的前一项大7,并且末项为 125,那么首项是多少? (2) —个等差数列共有 10项•每一项都比它的前一项小 7,并且末项为 125,那么首项是多少?一个等差数列共有12项•每一项都比它的前一项小4,并且末项为56,那么首项是多少? 例题3(1)一个等差数列首项为7,第10项为61,那么这个等差数列的公差等于多少?(2)—个等差数列第4项为7,第10项为61,那么这个等差数列的公差等于多少?分析:第1项与第10项之间相差几个公差?第4项与第10项之间相差几个公差?7又与61差了几?相当于几个公差?练习3一个等差数列第5项为25,第16项为91,那么这个等差数列的公差等于多少?例题4(1)一个等差数列首项为5,末项为93,公差为8,那么这个等差数列一共有多少项?(2)一个等差数列第3项为50,末项为130,公差为8,那么这个等差数列一共有多少项?分析:首项和末项之间差几?相当于几个公差?公差的数量和项数是什么关系?练习4已知等差数列2、9、16、23、30,……那么709是其中的第几项?例题5一个等差数列的首项为11,第10项为200,这个等差数列的公差等于多少?第19项等于多少?305是第几项?分析:第1项与第10项之间相差几个公差?与第19项呢?305又与200差了几?相当于几个公差?例题6下面的各算式是按规律排列的:1+ 1 , 2+ 3 , 3+ 5 , 1+ 7 , 2+ 9 , 3+ 11 , 1+ 13 , 2+ 15 ,3+ 17 ,……请写出其中所有结果为98的算式.分析:每个算式的第一个数有什么周期规律?第二个数是什么数列?分别求出第98个数是几?咼斯生平高斯,生于不伦瑞克,卒于哥廷根,德国著名数学家、物理学家、天文学家、大地测量学家.1799年高斯于黑尔姆施泰特大学因证明代数基本定理获博士学位.从1807年起担任格丁根大学教授兼格丁根天文台台长直至逝世•高斯和牛顿、阿基米德,被誉为有史以来的三大数学家•高斯是近代数学奠基者之一,在历史上影响之大,可以和阿基米德、牛顿、欧拉并列,有“数学王子”之称.18岁的高斯发现了质数分布定理和最小二乘法•通过对足够多的测量数据的处理后,可以得到一个新的、概率性质的测量结果•在这些基础之上,高斯随后专注于曲面与曲线的计算,并成功得到高斯钟形曲线(正态分布曲线) •其函数被命名为标准正态分布(或高斯分布),并在概率计算中大量使用.高斯的肖像已经被印在从1989年至2001年流通的10德国马克的纸币上.高斯(Johann Carl Friedrich Gauss) (1777 年4 月30 日- 1855年2 月23 日),生于不伦瑞克,卒于哥廷根,德国著名数学家、物理学家、天文学家、大地测量学家•高斯被认为是最重要的数学家,并拥有“数学王子”的美誉.1792年,15岁的高斯进入布伦瑞克(Braunschweig )学院.在那里,高斯开始对高等数学作研究.独立发现了二项式定理的一般形式、数论上的二次互反律” (Law of Quadratic Reciprocity)、质数分布定理 (prime number theorem)及算术几何平均(arithmetic-geometric mean).1795年高斯进入哥廷根大学.1796年,19岁的高斯得到了一个数学史上非常重要的结果,就是《正十七边形尺规作图之理论与方法》1855年2月23日清晨,高斯于睡梦中去世.作业一个等差数列共有10项•每一项都比它的前一项小2,并且末项为75,那么首项是几?1. 一个等差数列共有10项•每一项都比它的前一项大2,并且末项为75,那么首项是几?3. 一个等差数列首项为13,第9项为29,这个等差数列的公差为几?第20项为几?4. 一个等差数列的第5项为47,第15项为87,这个等差数列的公差等于几?63是第几项?1层有1块砖,第2层有5块砖,第3层有9 5. 如图所示,有一堆按规律摆放的砖•从上往下数,第(块砖,…….按照这个规律,第19层有多少块砖?188_ ,……, 125 差10 1 9 (个)公差 9 7 63 125 63 188 3. 例题3 答案:(1) 6; (2) 9 详解:如下:4. 例题4答案:(1) 12 ; (2) 13详解:如下: 总差: 93 5 88总差: 130 50 80 公差数: :88 8 11公差数: :80 8 10 项数: 11 1 12项数: 10 1 2 13 5. 例题5答案:21; 389; 15详解:如下图:详解:如下图:第二十讲等差数列初步33 , 35 ,37 ,①33, 31, 29, ① 差13 1 12个公差12 2 2433 24 57差13 1 12 (个)公差 12 2 24 33 24 9 _62_,… •…, 125① ⑩差10 1 9 (个)公差9 7 63总差:61 7 54总差:61 7 54 公差数:10 1 9 (个)公差数:10 4 6 (个) 公差:54 9 6公差:54 6 9 2.例题2答案:(1) 62 ; (2) 188详解:如下图:125 63 62第二十讲 等差数列初步 1. 例题 1答案: (1)57;(2)9详解: 如下图:33, 35, 37, …… , _57_ 33, 31, 29,… … , _9_① ①3. 例题 3答案:( 1 )6;( 2) 9 详解:如下:4. 例题 4 答案:(1)12;(2)13 详解:如下:总差: 93 5 88 总差: 130 50 80公差数 : 88 8 11 公差数 : 80 8 10项数: 11 1 12 项数: 10 1 2 135. 例题 5答案: 21;389;15详解:如下图:差13 1 12个公差 12 2 24 33 24 57 2. 例题 2 答案:(1)62;(2)188详解:如下图:_62_, …… , 125①⑩ 差10 1 9(个)公差9 7 63 125 63 62 差13 1 12(个)公差 12 2 2433 24 9188_, …… , 125①⑩差10 1 9(个)公差 9 7 63125 63 188总差: 61 7 54 总差: 61 7 54公差数: 10 1 9 (个) 公差数: 10 4 6 (个) 公差: 54 9 6 公差: 54 6 9第二十讲 等差数列初步 1. 例题 1答案: ( 1 ) 57 ;( 2) 9 详解: 如下图: 33, 35, 37, …… , _57_33, 31, 29,… … , _9_ ①① 3. 例题 3答案:(1) 6;(2) 9 详解:如下:4. 例题 4答案:(1) 12;(2) 13 详解:如下:总差: 93 5 88 总差: 130 50 80 公差数 : 88 8 11 公差数 : 80 8 10 项数: 11 1 12 项数: 10 1 2 13 5. 例题 5答案: 21;389;15 差 13 1 12 个公差 12 2 2433 24 572. 例题 2答案:(1) 62;(2) 188 详解:如下图:_62_,……,125①⑩差10 1 9(个)公差 9 7 63125 63 62差13 1 12(个)公差 12 2 24 33 24 9 188_, …… , 125 ①⑩ 差10 1 9(个)公差 9 7 63 125 63 188 总差: 61 7 54 总差: 61 7 54 公差数: 10 1 9 (个) 公差数: 10 4 6 (个) 公差: 54 9 6 公差: 54 6 9详解:如下图:。
三年级奥数-等差数列的计算(ABC级)

一、等差数列的定义(1) 先介绍一下一些定义和表示方法定义:从第二项起,每一项都比前一项大(或小)一个常数(固定不变的数),这样的数列我们称它为等差数列.譬如:2、5、8、11、14、17、20、从第二项起,每一项比前一项大3 ,递增数列100、95、90、85、80、从第二项起,每一项比前一项小5 ,递减数列(2) 首项:一个数列的第一项,通常用1a 表示末项:一个数列的最后一项,通常用n a 表示,它也可表示数列的第n 项。
项数:一个数列全部项的个数,通常用n 来表示;公差:等差数列每两项之间固定不变的差,通常用d 来表示; 和 :一个数列的前n 项的和,常用n S 来表示 .二、等差数列的相关公式(3) 三个重要的公式① 通项公式:递增数列:末项=首项+(项数1-)⨯公差,11n a a n d =+-⨯() 递减数列:末项=首项-(项数1-)⨯公差,11n a a n d =--⨯() 回忆讲解这个公式的时候可以结合具体数列或者原来学的植树问题的思想,让学生明白 末项其实就是首项加上(末项与首项的)间隔个公差个数,或者从找规律的情况入手.同时还可延伸出来这样一个有用的公式:n m a a n m d -=-⨯(),n m >()② 项数公式:项数=(末项-首项)÷公差+1由通项公式可以得到:11n n a a d =-÷+() (若1n a a >);11n n a a d =-÷+() (若1n a a >). 找项数还有一种配组的方法,其中运用的思想我们是常常用到的. 譬如:找找下面数列的项数:4、7、10、13、、40、43、46 ,分析:配组:(4、5、6)、(7、8、9)、(10、11、12)、(13、14、15)、、(46、47、48),注意等差是3 ,等差数列的基本概念及公式知识框架那么每组有3个数,我们数列中的数都在每组的第1位,所以46应在最后一组第1位,4到48有484145-+=项,每组3个数,所以共45315÷=组,原数列有15组. 当然还可以有其他的配组方法. ③ 求和公式:和=(首项+末项)⨯项数÷2 对于这个公式的得到可以从两个方面入手: (思路1) 1239899100++++++11002993985051=++++++++共50个101()()()()101505050=⨯=(思路2)这道题目,还可以这样理解: 23498991001009998973212101101101101101101101+++++++=+++++++=+++++++和=1+和倍和即,和 (1001)1002101505050=+⨯÷=⨯=(4) 中项定理:对于任意一个项数为奇数的等差数列,中间一项的值等于所有项的平均数,也等于首项与末项和的一半;或者换句话说,各项和等于中间项乘以项数. 譬如:①4+8+12+…+32+36=(4+36)×9÷2=20×9=180,题中的等差数列有9项,中间一项即第5项的值是20,而和恰等于209⨯; ② 65636153116533233331089++++++=+⨯÷=⨯=(),题中的等差数列有33项,中间一项即第17项的值是33,而和恰等于3333⨯.(1) 找出题目中首项、末项、公差、项数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.3 简单的等差数列
新知导航
在加减法的混合计算中,存在一种情况:多个加数(或减数)按照固定的规律依次排列,并且这些数中任意两个相邻的数的差相同,这就是数学王国中最著名的故事“高斯求和”——等差数列求和。
一、等差数列的认识
【基础过关】
热身题:智慧老人觉得龟兔都是可造之才,所以邀请它们来到家里继续学习新的知识。
智慧老人给它们讲了数学王子高斯小时候的故事,随后在黑板上写下了这样的一个题:1+2+3+4+5+6+7+8+9+10的结果是多少?
分析:观察发现:本题中的数按从小到大的顺序依次排列,可以使用首尾对应求和的方式变加法为乘法计算。
1+2+3+4+5+6+7+8+9+10
=(1+10)+(2+9)+(3+8)+(4+7)+(5+6)
=11+11+11+11+11
=11×5
=55
老师点睛
当一组数字按照从小到大(或者从大到小)顺次排列且任意两个相邻的数的差相同,这组数被称之为“等差数列”。
若求这组等差数列的和,可以按照首尾对应相加的方式使用乘法计算。
二、等差数列的求和计算
【综合提升】
例题1:10+11+12+13+…+19
分析:通过观察可得这是一组等差数列的求和计算,可以采用前面的首尾对应求和的方法。
10+11+12+13+…+19
=(10+19)+(11+18)+…+(14+15)
=29+29+29+…+29
=29×(10÷2)
=29×10÷2
=290÷2
=145
老师点睛
在连续自然数组成的等差数列求和计算中,可以将加法改为乘法计算:和
=(第一个数+最后一个数)×数的个数÷2。
但首先要找到这组等差数列中数的个数,才能完成计算。
【巩固训练】
(1)1+2+3+…+20(2)3+4+5+…+12
(3)1+2+3+…+40(4)5+6+7+…+24
例题2:3+6+9+…+60
分析:通过观察可得:这组等差数列的数都是第一个数的倍数,因此在找数的个数时,可以借用倍数的特殊性。
3+6+9+12+…+60
=3×1+3×2+3×3+3×4+…+3×20
=(3+60)×(20÷2)
=63×10
=630
老师点睛
由某个数的连续倍数构成的等差数列求和计算中,应通过借用这个数的倍数找这组数的个数。
【巩固训练】
(1)2+4+6+…+20(2)5+10+15+…+100
(3)4+8+12+…+40(4)100+90+80+…+10
例题3:2000-5-10-15-20-…-100
分析:通过观察可得:所有的减数一起构成等差数列,因此可以先利用等差数列求和的方法求出所有减数的和,再求差。
2000-5-10-15-20-…-100
=2000-(5+10+15+20+ (100)
=2000-(5×1+5×2+5×3+5×4+…+5×20)
=2000-(5+100)×(20÷2)
=2000-1050
=950
老师点睛
在一组减法算式中,若所有的减数组成一个等差数列,可以先求等差数列的和,再求差。
【巩固训练】
(1)200-1-2-3-4-...-18 (2)730-10-20-30-40-...-100 (3)3343-200-180-160-...-20 (4)(2+4+6+...+80)-(1+3+5+ (79)
例题4:小明想在20天内存够500元钱,他计划第一天存入4元,第二天存入8元,第三天存入12元,依次类推,直到第二十天存人80元。
那么小明达到目标了吗?
分析:根据题意可得:小明每天存入的钱构成一个等差数列,可以求等差数列的和来判定他是否达到目标。
4+8+12+…+80
=(4+80)×(20÷2)
=84×10
=840
840>500
答:小明达到了目标
老师点睛
应用题中出现一些数按照等差数列的特征排列,若求总数,则可以使用等差数列求和,但一定按照前面的方法找出等差数列中有多少个数。
【巩固训练】
1.光头强计划在60天内砍树500棵,他第一天砍了1棵,第二天砍了2棵, 第天砍了3棵,以此类推,最后一天砍了60棵。
光头强的目标达到了吗?
2.奶奶家外的公路边有一堆砖,兄弟两人一起计算这堆砖的总数,哥哥是一块块的数,弟弟发现这堆砖第一层有8块,第二层有16块,第三层有24块,以此类推,最后一层有72块。
小朋友们,你们能够快速计算出这堆砖的总数吗?
*3.小老鼠带上2000颗花生去旅游30个城市,它的计划是到达第一个城市就吃2颗,到达第二个城市就多吃4颗,到达第三个城市就再多吃4颗,以此类推,到达最后一个城市应该吃118颗。
那么小老鼠旅游结束后还剩下多少颗花生?
通过今天的学习,乌龟和兔子都学会了利用等差数列求和的方法,它们一起分享了自己今天的收获:
(1)通过数的排列规律认识等差数列的特征;
(2)利用首尾对应求和的方法变加法为乘法;
(3)先找等差数列中数的个数才能找到乘法中的另一个因数。