(推荐)高中数学必修4第一章复习总结及典型例题

合集下载

高一数学必修4(第一章)

高一数学必修4(第一章)
解 ⑴ 图中以 OB 为终边的角看成 π ,以 OA 为终边的角看成 点评 此类问题需要注意的是阴影部分的边界所表示的角是互相联系的.按逆时针方向选定 前者为区域的起始边界,后者为终止边界,若起始边所表示的角为 α ,由起始边旋转至终
3
止边所旋转的最小正角为 θ ,则终止边所表示的角 β = α + θ .本题还需要注意两点,一是 弧度制的正确使用;二是旋转边为直线的表示方法. 例 4. 一扇形 AOB 的面积是 1cm2,它的周长是 4cm,求扇形的半径及圆心角∠AOB. 分析 根据弧长及扇形面积计算公式列出方程组求解即可. 解 设扇形的半径为 r cm,圆心角∠AOB 为 α rad,
π π , k ∈ z },B ={ x | x = 2kπ + , k ∈ z },试判断集合 A 2 2
21.已知 A = { α | 2kπ ≤ α ≤ 2kπ + π , k ∈ z },B = { α | −4 ≤ α ≤ 4 },求 A∩B.
四、拓展视野
欧拉与弧度制
18 世纪以前,人们一直是用线段的长来定义三角函数的.瑞士数学家欧拉(Leonhardo Eulero,1707 年~1783 年) ,在他于 1748 年出版的一部划时代的著作《无穷小分析概论》 中,提出三角函数是对应的三角函数线与圆半径的比值,并令圆的半径为 1,使得对三角函

2
⑷ 不正确.如负角都是小于 90°的角,但都不是锐角. 点评 本题考查了关于各类角的定义及范围,要求学生概念清晰,并善于用举反例的方法进 行概念辨析. 并指出上述集合中介于 −180 和 180 之 例 2. 试写出终边在直线 y = x 上的所有角的集合, 间的角. 分析 先找出终边在直线 y = x 上且在 (0 , 360 ) 内的角,再写出与其终边相同的角的集合, 最后再考虑形式上的合并,然后给 k 赋值得出介于 −180 和 180 之间的角 解 终边在直线 y = x 上且在 (0 , 360 ) 内的角为 45 和 225 , 所以终边与其相同的角的集合

(完整word)高中数学必修四第一章知识点梳理-1,推荐文档

(完整word)高中数学必修四第一章知识点梳理-1,推荐文档

高中数学必修四第一章知识点梳理一、角的概念的推广•任意角的概念角可以看成平面内一条射线绕着端点从一个位置转到另一个位置所成的图形。

•正角、负角、零角按逆时针方向旋转成的角叫做正角,按顺时针方向旋转所成的角叫做负角,一条射线没有作任何旋转所成的叫做零角。

可见,正确理解正角、负角和零角的概、关键是看射线旋转的方向是逆时针、顺时针还是没有转动。

•象限角、轴线角当角的顶点与坐标原点重合,角的始边与x轴的非负半轴重合时,那么角的终边在第几象限(终边的端点除外),就说这个角是第几象限角。

当角的顶点与坐标原点重合,角的始边与x轴的非负半轴重合时,终边落在坐标轴上的角叫做轴线角。

•终边相同角所有与角a终边相同的角,连同角a在内,可构成集合S={ 3 | 3 =a +k?360° ,k € Z},即任一与角a终边相同的角,都可以表示成角a与整数个周角的和。

二、弧度制•角度定义制1规定周角的—为一度的角,记做1 °,360这种用度作为单位来度量角的单位制叫做角度制,角度制为60进制。

•弧度制定义1 、长度等于半径的弧度所对的圆心角叫做1弧度的角。

用弧度作为单位来度量角的单位制叫做弧度制。

1弧度记做1rad。

2、根据圆心角定理,对于任意一个圆心角a,它所对的弧长与半径的比与半径的大小无关,而是一个仅与角a有关的常数,故可以取为度量标准。

•弧度数一般地,正角的弧度数是一个正数,负角的弧度数是一个负数,零角的弧度数是0.如果半径为r的圆的圆心角a所对的弧的长为I,那么,角a的弧度数的绝对值是|a | -。

ra的正负由角a的终边的旋转方向决定,逆时针方向为正,顺时针方向为负。

三、任意角的三角函数•任意角的三角函数的定义设a是一个任意大小的角,a的终边上任意点P的坐标是(x,y),它与原点的距离r(r J X2~y20),那么1、比值-叫做a的正弦,记做sin ,即sin 上。

r r2、比值-叫做a 的余弦,记做COS ,即COS r3、比值—叫做a 的正切,记做tan ,即tanxx另外,我们把比值 一叫做a 的余切,记做COt ,即COtyrrr;把比值一叫做a 的余割,记做 CSC ,即CSC x yy对于一个确定的角 a ,上述的比值是唯一确定的, 它们都可以看成从一个角的集合到一个 比值的集合的映射,是以角为自变量,以比值为函数值的函数,我们把它们统称为三角函数。

高一数学必修4知识点及习题

高一数学必修4知识点及习题

必修4第一章三角函数与角终边相同的角的集合} {|ββ=,特殊角的弧度与角度换算角度3004506009001201350150018002100225024002703000315033003600弧度弧长公式:、扇形面积公式:三角函数值在各象限的符号(画出坐标图表示、写出口诀)正弦:余弦:正切:同角三角函数的关系式平方关系: 2. 商数关系:诱导公式——口诀:正弦余弦正切必做题:1、tan(600)-=,sin225︒=。

2、α的终边与6π的终边关于直线xy=对称,则α=_____。

3、已知扇形AOB的周长是6cm,该圆心角是1弧度,则扇形的面积= 。

4、设a<0,角α的终边经过点P(-3a,4a),那么sinα+2cosα的值等于。

5、函数2cos1y x=-的定义域是_____。

61150-︒2sin的结果是。

必做题:1、集合{2ππ4ππ|+≤≤+k k αα,∈k Z}中的角所表示的范围(阴影部分)是( )D )2、已知0tan ,0sin ><θθ,那么θ是 。

3.已知α是第二象限角,那么2α是 ( )A .第一象限角 B. 第二象限角 C. 第二或第四象限角 D .第一或第三象限角4、若cos 0,tan 0αα<>5、已知角α终边上一点P (-4,3),求:)29sin()211cos()sin()2cos(απαπαπαπ+---+6、已知1sin ,cos 3θθθθ=⋅是第二象限角,求tan 的值。

()()()()()()sin +sin -cos +cos -=tan +tan -αβαβαβαβαβαβ=⎧⎪=⎪⎪=⎪⎪⎪⎨⎪⎪=⎪⎪⎪=⎪⎩sin 2cos 2==tan 2ααα=⎧⎪=⎪⎪⎨⎪⎪=⎪⎩必做题:1、已知)2,23(,1312cos ππαα∈=,则=+)4(cos πα 。

2、若均βα,为锐角,==+=ββααcos ,53)(sin ,552sin 则 。

高中数学必修4第一章

高中数学必修4第一章

3 1 ,2 2 3 1 , 2 2
=
3 . 2
专题一
专题二
专题三
专题四
变式训练 1 若点 P(3,y)是角 α 终边上的一点,且满足 y< 0,cos α= 5,
则 tan α=( A.3 4
3
)
B.
解析:由已知
3 4 3
C.
3 5
4 3
D.-
4 3
32 +������2
= ,∴y=±4. D.
考点一
考点二
考点三
考点四
解析:由 f(x)=(1-cos x)sin x 知其为奇函数 .可排除 B.当 x∈ 时,f(x)>0,排除 A. 当 答案:C
3π 3π x= 时,f 4 4
π 0, 2
=
3π 1-cos 4
3π sin 4
=
2+1 >1,排除 2
D.
考点一
考点二
考点三
考点四
考点二
π 2
π π π 2 6 2 π π kπ- ≤x≤kπ+ (k∈ Z), 6 3
(k∈ Z) .
所以当 x=0 时 ,f(x)取得最小值 . 即 2sin π 6
+a=-2,故 a=-1.
考点一
考点二
考点三
考点四
考点一 三角函数图象的判定 1.(2013· 课标全国Ⅰ高考)函数f(x)=(1-cos x)sin x在[-π,π]的图象大 致为( )
即 tan θ=1, 于是 sin2θ+3sin θcos θ+2cos2θ
sin2 ������+3sin������cos������+2cos2������ = sin2 ������+cos2 ������

必修四第一章三角函数知识点、例题、练习

必修四第一章三角函数知识点、例题、练习
2 2
在 2 k , 2 k k 上是增函数;在
在 k , k
2 2
调 k 上是增函 性 数;在
2 k , 2 k
k 上是减函数.
k 上是增函
数.
9
3 2 k , 2 k 2 2
10、三角函数线: sin , cos , tan A . 11、同角三角函数的基本关系式:
1 sin 2 cos 2 1 sin 2 1 cos 2 , cos 2 1 sin 2 ; 2
sin sin tan cos , cos . tan
180 o 6、弧度制与角度制的换算公式: 2 360 , 1 ,1 5

o
. 7、若扇形的圆心角为 为弧度制 ,半径为 r ,弧长为 l ,周长为 C ,面积为 S ,则 l r , C 2r l , S lr r 2 . 例 2、 已知扇形的圆心角是 ,所在圆的半径是 R . (1)若 60 , R 10cm, 求扇形的弧长及该弧所在的弓形的面 积。 (2)若扇形的周长是一定值 C (C 0), 当 为多少弧度时,该扇形 有最大面积?
ymax 1 ;当 x 2k
R
时, ymax 1 ;当
x 2 k

2
k 时, ymin 1 .
既无最大值也无最 小值
k 时, ymin 1

周 期 奇 偶 单
2
2

奇函数
偶函数
奇函数
在 2 k , 2 k

高一数学必修4第一章知识点+测试题(含答案)

高一数学必修4第一章知识点+测试题(含答案)

第一章 三角函数(初等函数二)⎧⎪⎨⎪⎩正角:按逆时针方向旋转形成的角1、任意角负角:按顺时针方向旋转形成的角零角:不作任何旋转形成的角2、角α的顶点与原点重合,角的始边与x 轴的非负半轴重合,终边落在第几象限,则称α为第几象限角.第一象限角的集合为{}36036090,k k k αα⋅<<⋅+∈Z 第二象限角的集合为{}36090360180,k k k α⋅+<⋅+∈Z第三象限角的集合为{}360180360270,k k k αα⋅+<<⋅+∈Z 第四象限角的集合为{}360270360360,k k k αα⋅+<<⋅+∈Z 终边在x 轴上的角的集合为{}180,k k αα=⋅∈Z终边在y 轴上的角的集合为{}18090,k k αα=⋅+∈Z 终边在坐标轴上的角的集合为{}90,k k αα=⋅∈Z3、与角α终边相同的角的集合为{}360,k k ββα=⋅+∈Z4、已知α是第几象限角,确定()*n nα∈N 所在象限的方法:先把各象限均分n 等份,再从x 轴的正半轴的上方起,依次将各区域标上一、二、三、四,则α原来是第几象限对应的标号即为nα终边所落在的区域.5、长度等于半径长的弧所对的圆心角叫做1弧度.6、半径为r 的圆的圆心角α所对弧的长为l ,则角α的弧度数的绝对值是lr α=.7、弧度制与角度制的换算公式:2360π=,1180π=,180157.3π⎛⎫=≈ ⎪⎝⎭. 8、若扇形的圆心角为()αα为弧度制,半径为r ,弧长为l ,周长为C ,面积为S ,则l r α=,2C r l =+,21122S lr r α==.9、设α是一个任意大小的角,α的终边上任意一点P 的坐标是(),x y ,它与原点的距离是()0r r =>,则sin y r α=,cos x r α=,()tan 0yx xα=≠. 10、三角函数在各象限的符号:第一象限全为正,第二象限正弦为正,第三象限正切为正,第四象限余弦为正.11、三角函数线:sin α=MP ,cos α=OM ,tan α=AT . 12、同角三角函数的基本关系:()221sin cos 1αα+=()2222sin 1cos ,cos 1sin αααα=-=-;()sin 2tan cos ααα= sin sin tan cos ,cos tan αααααα⎛⎫== ⎪⎝⎭.13、三角函数的诱导公式:()()1sin 2sin k παα+=,()cos 2cos k παα+=,()()tan 2tan k k παα+=∈Z . ()()2sin sin παα+=-,()cos cos παα+=-,()tan tan παα+=. ()()3sin sin αα-=-,()cos cos αα-=,()tan tan αα-=-. ()()4sin sin παα-=,()cos cos παα-=-,()tan tan παα-=-.口诀:函数名称不变,符号看象限.()5sin cos 2παα⎛⎫-=⎪⎝⎭,cos sin 2παα⎛⎫-= ⎪⎝⎭. ()6sin cos 2παα⎛⎫+=⎪⎝⎭,cos sin 2παα⎛⎫+=- ⎪⎝⎭. 口诀:正弦与余弦互换,符号看象限.14、函数sin y x =的图象上所有点向左(右)平移ϕ个单位长度,得到函数()sin y x ϕ=+的图象;再将函数()sin y x ϕ=+的图象上所有点的横坐标伸长(缩短)到原来的1ω倍(纵坐标不变),得到函数()sin y x ωϕ=+的图象;再将函数()sin y x ωϕ=+的图象上所有点的纵坐标伸长(缩短)到原来的A 倍(横坐标不变),得到函数()sin y x ωϕ=A +的图象.函数sin y x =的图象上所有点的横坐标伸长(缩短)到原来的1ω倍(纵坐标不变),得到函数sin y x ω=的图象;再将函数sin y x ω=的图象上所有点向左(右)平移ϕω个单位长度,得到函数()sin y x ωϕ=+的图象;再将函数()sin y x ωϕ=+的图象上所有点的纵坐标伸长(缩短)到原来的A 倍(横坐标不变),得到函数()sin y x ωϕ=A +的图象.函数()()sin 0,0y x ωϕω=A +A >>的性质: ①振幅:A ;②周期:2πωT =;③频率:12f ωπ==T ;④相位:x ωϕ+;⑤初相:ϕ. 函数()sin y x ωϕ=A ++B ,当1x x =时,取得最小值为min y ;当2x x =时,取得最大值为max y ,则()max min 12y y A =-,()max min 12y y B =+,()21122x x x x T=-<. sin y x = cos y x = tan y x = 图象定义域 RR,2x x k k ππ⎧⎫≠+∈Z ⎨⎬⎩⎭值域[]1,1-[]1,1-R最值当22x k ππ=+()k ∈Z 时,max 1y =;当22x k ππ=-()k ∈Z 时,min 1y =-.当()2x k k π=∈Z 时,max 1y =;当2x k ππ=+()k ∈Z 时,min 1y =-.既无最大值也无最小值周期性 2π2ππ奇偶性奇函数 偶函数 奇函数单调性在2,222k k ππππ⎡⎤-+⎢⎥⎣⎦ ()k ∈Z 上是增函数;在 32,222k k ππππ⎡⎤++⎢⎥⎣⎦ 在[]()2,2k k k πππ-∈Z 上是增函数;在[]2,2k k πππ+()k ∈Z 上是减函数. 在,22k k ππππ⎛⎫-+ ⎪⎝⎭()k ∈Z 上是增函数.函 数 性质第一单元本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分(时间:90分钟.总分150分)第Ⅰ卷(选择题 共60分)一、选择题:本答题共12小题,每小题5分,共60分。

数学必修4知识点归纳总结

数学必修4知识点归纳总结

数学必修4知识点归纳总结第一章 三角函数周期现象与周期函数周期函数定义的理解要掌握三个条件,即存在不为0的常数T ;x 必须是定义域内的任意值; f(x +T)=f(x)。

练习:(1)已知函数f(x)对定义域内的任意x 满足:存在非零常数T ,使得f(x +T)=f(x)恒成立。

求:f(x +2T) ,f(x +3T)解:f(x +2T)=f[(x +T)+T]=f(x +T)=f(x), f(x +3T)=f[(x +2T)+T]=f(x +2T)=f(x)(2)已知函数f(x)是R 上的周期为5的周期函数,且f(1)=2005,求f(11) 解:f(11)=f(6+5)=f(6)=f(1+5)=f(1)=2005(3)已知函数f(x)是R 上的奇函数,且f(1)=2,f(x +3)=f(x),求f(8) 解:f(8)=f(2+2×3)=f(2)=f(-1+3)=f(-1)=-f(1)=-2 角的概念的推广1、正角、负角、零角的概念一条射线由原来的位置OA ,绕着它的端点O 按逆时针方向(或顺时针方向)旋转到终止位置OB ,就形成角α.旋转开始时的射线OA 叫做角的始边,OB 叫终边,射线的端点O 叫做叫α的顶点。

规定:按逆时针方向旋转形成的角叫做正角;按顺时针方向旋转形成的角叫做负角;如果一条射线没有作任何旋转,我们认为这时它也形成了一个角,并把这个角叫做零角,如果α是零角,那么α=0°;钟表的时针和分针在旋转时所形成的角总是负角。

过去我们研究了0°~360°(00360α≤<)范围的角。

如果我们将角α=030的终边OB 继续按逆时针方向旋转一周、两周……而形成的角分别得到390°,750°……的角。

角的概念经过这样的推广以后就成为任意角,任意角包括正角、负角和零角. 2.象限角、坐标轴上的角的概念.由于角是一个平面图形,所以今后我们常在直角坐标系内讨论角,我们使角的顶点与原点重合,角的始边与x 轴的非负半轴(包括原点)重合,那么角的终边(除端点外)落在第几象限,我们就说这个角是第几象限角. 300°、-60°角都是第四象限角;585°角是第三象限角。

高中数学必修4(人教B版)第一章基本初等函数(2)1.2知识点总结含同步练习题及答案

高中数学必修4(人教B版)第一章基本初等函数(2)1.2知识点总结含同步练习题及答案
诱导公式的记忆方法 奇变偶不变,符号看象限.
tan [α + (2k + 1)π] = tan α
例题: 求下列各三角函数值:(1)sin 19π ;(2)cos(−1755∘ );(3)tan 13π .
3 19π π π √3 解:(1)sin ; = sin(6π + ) = sin = 3 3 3 2
(3)tan
3
(2)cos(−1755∘ ) == cos(45∘ − 5 × 360 ∘ ) = cos 45∘ =
13π π π = tan(4π + ) = tan = √3; 3 3 3
√2 ; 2
π 13π );(2)cos(−420 ∘ );(3)tan(− ). 4 6 π π √2 解:(1)sin(− ) = − sin( ) = − ; 4 4 2 1 (2)cos(−420 ∘ ) = cos(420 ∘ ) = cos(60∘ + 360 ∘ ) = cos 60∘ = ; 2 13π 13π π π √3 (3)tan(− . ) = − tan = − tan( + 2π) = − tan = − 6 6 6 6 3
叫做 α 的正弦,记作 sin α ,即 sin α = 数、正弦函数和正切函数. 三角函数在各象限的符号 第一象限 第二象限 第三象限 第四象限
y r x r y x x y
sin cos tan
+ + +
+ − −
− − +
− + −
特殊角的三角函数值
角α 弧度 正弦 余弦 正切
0∘ 0 0 1 0
180 ∘ π 0 −1 0
270 ∘ 3π 2 −1 0

人教B版高中数学必修四《第一章 基本初等函数(Ⅱ) 本章小结》_1

人教B版高中数学必修四《第一章 基本初等函数(Ⅱ) 本章小结》_1

三角函数的图像与性质一、知识要点二、例题讲解 例1.已知函数f(x)=2sin(2x-π3)+1,则函数f(x)的值域_____________;周期____________;单调递增区间___________________;单调递减区间___________.若例1中x ∈(π3,5π6),则f(x)的值域_________________单调递增区间________________例2.已知函数f(x)=2sin ωx cos ωx +cos2ωx (ω>0)的最小正周期为π,1) 求ω的值2) 求f(x)的单调递增区间;例3.已知ω>0,函数f(x)=sin(ωx +π4)在(π2,π)单调递减,则ω的取值范围是( )A.[12,54] B [12,34] C.(0,12] D.(0,2]思考题:1. 已知函数f(x)=asinωx +cos(ωx −π6)(a >0,ω>0),对于任意的x 1,x 2∈R ,都有f (x 1)+f (x 2)−2√3≤0,若f(x)在[0,π]上的值域为[√32,√3],则实数ω的取值范围为A. [13,12]B. [13,23]C. [14,23]D. [14,12]2. 已知函数f(x)=-2sin(2ωx +π4)+6sin ωxcos ωx -2cos 2ωx +1,x ∈R.若f(x)的最小正周期为π,求f(x)在区间⎣⎡⎦⎤0,π2上单调递增区间、最大值和最小值.3.已知函数f(x)=sin ωx +cosωx (ω>0),若函数f (x )在(−ω,ω)内 单调递增,且函数y=f(x)的图象关于直线x=ω对称,则ω的值为______________.。

高中数学必修4(人教A版)第一章三角函数1.1知识点总结含同步练习及答案

高中数学必修4(人教A版)第一章三角函数1.1知识点总结含同步练习及答案

描述:例题:高中数学必修4(人教A版)知识点总结含同步练习题及答案
第一章 三角函数 1.1 任意角和弧度制
一、学习任务
1. 了解任意角的概念,了解终边相同的角的意义.
2. 了解弧度制的意义,并能进行弧度与角度的互化.
二、知识清单
任意角的概念 弧度制
三、知识讲解
1.任意角的概念
任意角角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形.如图,一条射线的端点是 ,它从起始位置 按逆时针方向旋转到终止位置 ,形成一个角 ,射线 称为角的始边,射线 称为角的终边.
角的分类
正角(positive angle) 按逆时针方向旋转形成的角.
负角(negative angle) 按顺时针方向旋转形成的角.
零角(zero angle) 如果一条射线没有作任何旋转,我们称它形成了一个零角.象限角与轴线角
在直角坐标系内,使角的顶点与原点重合,角的始边与 轴的非负半轴重合,那么,角的终边在第几象限,就说这个角是第几象限角(quadrant angle).如果角的终边在坐标轴上,就认为这个角不属于任何一个象限,称这样的角为轴线角.
终边相同的角
所有与角 终边相同的角,连同角 在内,可以构成一个集合
,即任一与角 终边相同的角,都可以表示成角 与整数个周角的和.
O OA OB αOA OB x ααS ={β| β=α+k ⋅,k ∈Z }360∘αα在下列说法中:
①时钟经过两个小时,时针转过的角是
;②钝角一定大于锐角;③射线 绕端点 按逆时针旋转一周所成的角是 ;
60∘OA O 0∘
高考不提分,赔付1万元,关注快乐学了解详情。

又 ,∴令 得 .
∵α∈(0,2π)k =1α=
π。

(完整版)人教高中数学必修四第一章三角函数知识点归纳

(完整版)人教高中数学必修四第一章三角函数知识点归纳

三角函数一、随意角、弧度制及随意角的三角函数1.随意角(1)角的观点的推行①按旋转方向不一样分为正角、负角、零角.正角 : 按逆时针方向旋转形成的角随意角 负角: 按顺时针方向旋转形成的角零角 : 不作任何旋转形成的角②按终边地点不一样分为象限角和轴线角.角 的极点与原点重合,角的始边与 x 轴的非负半轴重合,终边落在第几象限,则称 为第几象限角.第一象限角的会合为 k 360ok 360o 90o , k第二象限角的会合为 k 360o 90o k 360o 180o , k第三象限角的会合为 k 360o 180o k 360o 270o , k第四象限角的会合为k 360o 270ok 360o360o , k终边在 x 轴上的角的会合为 k 180o , k终边在 y 轴上的角的会合为 k 180o 90o , k终边在座标轴上的角的会合为k 90o ,k(2)终边与角 α同样的角可写成 α+ k ·360 °(k ∈ Z).终边与角 同样的角的会合为k 360o, k(3)弧度制① 1 弧度的角:把长度等于半径长的弧所对的圆心角叫做1 弧度的角.②弧度与角度的换算: 360°= 2π弧度; 180°= π弧度.③ 半径为 r 的圆的圆心角所对弧的长为 l ,则角的弧度数的绝对值是lr④ 若扇形的圆心角为 为弧度制 ,半径为 r ,弧长为 l ,周长为 C ,面积为 S ,则 lr,C2r l ,S1 lr 1 r2 . 222 .随意角的三角函数定义设 α是一个随意角,角 α的终边上随意一点P(x , y),它与原点的距离为 r rx 2 y 2 ,那么角 α的正弦、余弦、rrx(三角函数值在各象限的符号规律归纳为:一全正、二正弦、三正切分别是: sin α= y , cos α= x , tan α= y.正切、四余弦)3.特别角的三角函数值角度030456090120135150180270360函数角 a 的弧度0π /6π/4π /3π /22π /33π /45π/6π3π /22πsina01/2√ 2/2√ 3/21√ 3/2√ 2/21/20-10 cosa1√ 3/2√ 2/21/20-1/2-√ 2/2-√ 3/2-101 tana0√ 3/31√ 3-√ 3-1-√ 3/300二、同角三角函数的基本关系与引诱公式A.基础梳理1.同角三角函数的基本关系(1)平方关系: sin2α+ cos2α= 1;(在利用同角三角函数的平方关系时,若开方,要特别注意判断符号)sin α(2)商数关系:=tanα.(3)倒数关系:tan cot 1cos α2.引诱公式公式一: sin( α+ 2kπ)=sin α, cos(α+ 2kπ)=cos_α,tan(2k )tan此中 k∈Z .公式二: sin( π+α)=- sin_α, cos( π+α)=- cos_α, tan( π+α)= tan α.公式三: sin( π-α)= sin α, cos( π-α)=- cos_α,tan tan.公式四: sin( -α)=- sin_α, cos(-α)= cos_α,tan tan .ππ公式五: sin -α= cos_α, cos-α= sin α.22ππ公式六: sin 2+α= cos_α, cos2+α=- sin_α.π口诀:奇变偶不变,符号看象限.此中的奇、偶是指π引诱公式可归纳为 k· ±α的各三角函数值的化简公式.的奇数22倍和偶数倍,变与不变是指函数名称的变化.假如奇数倍,则函数名称要变( 正弦变余弦,余弦变正弦 ) ;假如偶数倍,则函数名称不变,符号看象限是指:把πα当作锐角时,依据 k· ±α在哪个象限判断原三角函数值的符号,最后作为结....2...果符号.B. 方法与重点一个口诀1、引诱公式的记忆口诀为:奇变偶不变,符号看象限.2、四种方法在求值与化简时,常用方法有:sin α(1)弦切互化法:主要利用公式tan α=化成正、余弦.cos α(2)和积变换法:利用 (sin θ±cos θ)2=1 ±2sin θcos θ的关系进行变形、转变.( sin cos、sin cos、sin cos三个式子知一可求二)(3)巧用 “1”的变换: 1= sin 2θ+ cos 2θ= sinπ=tan 42(4)齐次式化切法:已知 tank ,则 a sinbcos a tan b ak bm sinn cos m tan n mk n三、三角函数的图像与性质学习目标:1 会求三角函数的定义域、值域2 会求三角函数的周期 :定义法,公式法,图像法(如y sin x 与 y cosx 的周期是)。

高中数学必修4第一章知识点总结

高中数学必修4第一章知识点总结

高中数学必修4知识点总结 第一章 三角函数⎧⎪⎨⎪⎩正角:按逆时针方向旋转形成的角1、任意角负角:按顺时针方向旋转形成的角零角:不作任何旋转形成的角2、角α的顶点与原点重合,角的始边与x 轴的非负半轴重合,终边落在第几象限,则称α为第几象限角.第一象限角的集合为{}36036090,k k k αα⋅<<⋅+∈Z 第二象限角的集合为{}36090360180,k k k α⋅+<⋅+∈Z第三象限角的集合为{}360180360270,k k k αα⋅+<<⋅+∈Z第四象限角的集合为{}360270360360,k k k αα⋅+<<⋅+∈Z终边在x 轴上的角的集合为{}180,k k αα=⋅∈Z终边在y 轴上的角的集合为{}18090,k k αα=⋅+∈Z终边在坐标轴上的角的集合为{}90,k k αα=⋅∈Z3、与角α终边相同的角的集合为{}360,k k ββα=⋅+∈Z4、长度等于半径长的弧所对的圆心角叫做1弧度.5、半径为r 的圆的圆心角α所对弧的长为l ,则角α的弧度数的绝对值是lr α=.6、弧度制与角度制的换算公式:2360π=,1180π=,180157.3π⎛⎫=≈ ⎪⎝⎭.7、若扇形的圆心角为()αα为弧度制,半径为r ,弧长为l ,周长为C ,面积为S ,则l r α=,2C r l =+,21122S lr r α==.8、设α是一个任意大小的角,α的终边上任意一点P 的坐标是(),x y ,它与原点的距离是()r r =>,则sin y r α=,cos x r α=,()tan 0y x x α=≠.9、三角函数在各象限的符号:第一象限全为正,第二象限正弦为正,第三象限正切为正,第四象限余弦为正.10、三角函数线:sin α=MP ,cos α=OM ,tan α=AT . 11、角三角函数的基本关系:()221sin cos 1αα+=()2222sin 1cos ,cos 1sin αααα=-=-;()sin 2tan cos ααα=sin sin tan cos ,cos tan αααααα⎛⎫== ⎪⎝⎭. 12、函数的诱导公式:()()1sin 2sin k παα+=,()cos 2cos k παα+=,()()tan 2tan k k παα+=∈Z . ()()2sin sin παα+=-,()cos cos παα+=-,()tan tan παα+=. ()()3sin sin αα-=-,()cos cos αα-=,()tan tan αα-=-. ()()4sin sin παα-=,()cos cos παα-=-,()tan tan παα-=-.口诀:函数名称不变,符号看象限.()5sin cos 2παα⎛⎫-=⎪⎝⎭,cos sin 2παα⎛⎫-= ⎪⎝⎭.()6sin cos 2παα⎛⎫+=⎪⎝⎭,cos sin 2παα⎛⎫+=- ⎪⎝⎭.口诀:正弦与余弦互换,符号看象限. 13、①的图象上所有点向左(右)平移ϕ个单位长度,得到函数()sin y x ϕ=+的图象;再将函数()sin y x ϕ=+的图象上所有点的横坐标伸长(缩短)到原来的1ω倍(纵坐标不变),得到函数()sin y x ωϕ=+的图象;再将函数()sin y x ωϕ=+的图象上所有点的纵坐标伸长(缩短)到原来的A 倍(横坐标不变),得到函数()sin y x ωϕ=A +的图象.②数sin y x =的图象上所有点的横坐标伸长(缩短)到原来的1ω倍(纵坐标不变),得到函数sin y x ω=的图象;再将函数sin y x ω=的图象上所有点向左(右)平移ϕω个单位长度,得到函数()sin y x ωϕ=+的图象;再将函数()sin y x ωϕ=+的图象上所有点的纵坐标伸长(缩短)到原来的A 倍(横坐标不变),得到函数()sin y x ωϕ=A +的图象.14、函数()()sin 0,0y x ωϕω=A +A >>的性质:①振幅:A ;②周期:2πωT =;③频率:12f ωπ==T ;④相位:x ωϕ+;⑤初相:ϕ.函数()sin y x ωϕ=A ++B,当1x x =时,取得最小值为miny ;当2x x =时,取得最大值为maxy ,则()max min 12y y A =-,()max min 12y y B =+,()21122x x x x T=-<.sin y x= cos y x =tan y x =图象定义域 R R,2x x k k ππ⎧⎫≠+∈Z ⎨⎬⎩⎭值域[]1,1-[]1,1-R最值当22x k ππ=+()k ∈Z 时,max 1y =;当22x k ππ=-()k ∈Z 时,min 1y =-.当()2x k k π=∈Z 时,max 1y =;当2x k ππ=+()k ∈Z 时,min 1y =-.既无最大值也无最小值周期性2π 2ππ奇偶性奇函数 偶函数 奇函数函 数 性 质第二章 平面向量16、向量:既有大小,又有方向的量. 数量:只有大小,没有方向的量. 有向线段的三要素:起点、方向、长度. 零向量:长度为0的向量. 单位向量:长度等于1个单位的向量.平行向量(共线向量):方向相同或相反的非零向量.零向量与任一向量平行. 相等向量:长度相等且方向相同的向量.17、向量加法运算:⑴三角形法则的特点:首尾相连. ⑵平行四边形法则的特点:共起点. ⑶三角形不等式:a b a b a b-≤+≤+.⑷运算性质:①交换律:a b b a +=+;②结合律:()()a b c a b c ++=++;③00a a a +=+=.⑸坐标运算:设()11,a x y =,()22,b x y =,则()1212,a b x x y y +=++.18、向量减法运算:⑴三角形法则的特点:共起点,连终点,方向指向被减向量. ⑵坐标运算:设()11,a x y =,()22,b x y =,则()1212,a b x x y y -=--.设A 、B 两点的坐标分别为()11,x y ,()22,x y ,则()1212,x x y y AB =--.19、向量数乘运算:⑴实数λ与向量a 的积是一个向量的运算叫做向量的数乘,记作a λ. ①a aλλ=;②当0λ>时,a λ的方向与a 的方向相同;当0λ<时,a λ的方向与a 的方向相反;当0λ=时,0a λ=.⑵运算律:①()()a aλμλμ=;②()a a a λμλμ+=+;③()a b a b λλλ+=+.⑶坐标运算:设(),a x y =,则()(),,a x y x y λλλλ==.20、向量共线定理:向量()0a a ≠与b 共线,当且仅当有唯一一个实数λ,使b a λ=.设()11,a x y =,()22,b x y =,其中0b ≠,则当且仅当12210x y x y -=时,向量a 、()0b b ≠baCBAa b C C -=A -AB =B共线.21、平面向量基本定理:如果1e 、2e 是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数1λ、2λ,使1122a e e λλ=+.(不共线的向量1e 、2e 作为这一平面内所有向量的一组基底) 22、分点坐标公式:设点P 是线段12P P 上的一点,1P 、2P 的坐标分别是()11,x y ,()22,x y ,当12λP P =PP 时,点P 的坐标是1212,11x x y y λλλλ++⎛⎫⎪++⎝⎭.(当时,就为中点公式。

高一数学必修4第一章 总结

高一数学必修4第一章 总结

第一章 三角函数1、任意角的定义:正角,负角,零角2、象限角的定义:第一象限角的集合为______________________; 终边在x 轴上的角的集合为______________________; 终边在坐标轴上的角的集合为 ; 终边在直线y x =上的角的集合为 ; 3、与角α终边相同的角的集合为 4、已知α是第几象限角,确定()*n nα∈N 所在象限的方法: 5、弧度制与角度制的换算公式:=π , =o1 ;=rad 16、若扇形的圆心角为()αα为弧度制,半径为r ,弧长为l ,面积为S ,则__________=l ,________________________==S .7、设α是一个任意大小的角,α的终边上任意一点P 的坐标是(),x y ,它与原点的距离是()0r r =>,则___sin =α,___cos =α,)0___(tan ≠=x α.8、特殊角的三角函数值:9、三角函数在各象限的符号: 10、同角三角函数的基本关系:(1)平方关系: ;变形 (2)商数关系: ;变形 11、三角函数的诱导公式:口诀: ;()()1sin 2_________k πα+=,_______)2cos(=+απk ,_______)2tan(=+απk . ()()2sin _________πα+=,()cos _________πα+=,()tan ________πα+=. ()()3sin _________α-=,()cos ________α-=,()tan _________α-=.()()4sin __________πα-=,()cos __________πα-=,()tan _______πα-=.()5sin _________2πα⎛⎫-=⎪⎝⎭,cos _____2πα⎛⎫-= ⎪⎝⎭()6sin ______2πα⎛⎫+=⎪⎝⎭,cos _______2πα⎛⎫+= ⎪⎝⎭. 12正弦函数、余弦函数和正切函数的图象与性质:13. 函数)0()sin(>++=A B x A y ϕω振幅________ ;周期______ ; 最大值 _______;最小值_________; 初相 ______;相位______; 对称轴____________________________;对称中心____________________________; 14、函数图象的变换)sin()sin()sin(sin )1(ϕωϕωϕ+=−→−+=−→−+=−→−=x A y x y x y x y )sin()sin()sin(sin )2(ϕωϕωω+=−→−+=−→−=−→−=x A y x y x y x ysin y x =cos y x = tan y x =图象定义域 值域最值_____x =时,max ___y =;______x =时,min ___y =. _____x =时,max ___y =;______x =时,min ___y =.既无最大值也无最小值周期奇偶单调性在______________上是增函数; 在______________上是减函数. 在______________上是增函数;在______________上是减函数. 在__________上是增函数.对称性对称中心___________对称轴___________对称中心_________ 对称轴_________对称中心________ 无对称轴函 数 性 质简单计算化简1.与02002-终边相同的最小正角是______________;最大负角是_____________。

高中数学必修4知识点总结(精华实用版)

高中数学必修4知识点总结(精华实用版)

第一章 三角函数{1、任意角正角: 负角: 零角:2、象限角:角α的顶点与原点重合,角的始边与x 轴的非负半轴重合,终边落在第几象限,则称α为第几象限角. 如:-1350( )1350( )950( )-950( )-6300( )6300( )-7000( )7000( )第一象限角的集合为 第二象限角的集合为 第三象限角的集合为 第四象限角的集合为 终边在x 轴上的角的集合为 终边在y 轴上的角的集合为 终边在坐标轴上的角的集合为3、与角α终边相同的角的集合为 4 、1弧度的角:半径为r 的圆的圆心角α所对弧的长为l ,则角α的弧度数的绝对值是α= .5、弧度制与角度制的换算公式:π=( )0,180157.3π⎛⎫=≈ ⎪⎝⎭.1800= rad ,10= rad 如:150= rad, 512π= 06、若扇形的圆心角为()αα为弧度制,半径为r ,弧长为l ,周长为C ,面积为S ,则l = ,2C r l =+,S = = .7、设α是一个任意大小的角,α的终边上任意一点P 的坐标是(),x y ,它与原点的距离是()r r =>,则sin α= ,cos α= ,()tan 0x α=≠ .8、三角函数在各象限的符号:9、同角三角函数的基本关系:()221sin cos 1αα+=(变式: , );()sin 2tan cos ααα=.(变式: , )10、三角函数的诱导公式:(口诀:函数名称不变,符号看象限.)()()1sin 2k πα+= ,()cos 2k πα+= ,()tan 2k πα+= . ()()2sin πα+= ,()cos πα+= ,()tan πα+= . ()()3sin α-= ,()cos α-= ,()tan α-= . ()()4sin πα-= ,()cos πα-= ,()tan πα-= .()5sin 2πα⎛⎫-=⎪⎝⎭ ,cos 2πα⎛⎫-= ⎪⎝⎭ .()6sin 2πα⎛⎫+= ⎪⎝⎭ ,cos 2πα⎛⎫+= ⎪⎝⎭ .1112、(课本52页第二段)关于ωϕA 、、对()()sin 0,0y x ωϕω=A +A >>的影响 函数()()sin 0,0y x ωϕω=A +A >>的性质: ①振幅A ;②周期2πωT =;③频率12f ωπ==T;④相位:x ωϕ+;⑤初相:ϕ.函数()sin y x ωϕ=A ++B ,当1x x =时,取得最小值为m in y ;当2x x =时,取得最大值为max y ,则()m ax m in 12y y A =-,()m axm in12y y B =+,()21122x x x x T =-<第二章 平面向量1、向量: 数量:只有大小,没有方向的量.有向线段的三要素:起点、方向、长度.如:A B 记作零向量:长度为 的向量.记作 单位向量:长度等于1个单位的向量. 平行向量(共线向量): 的非零向量.零向量与任一向量 .记作 相等向量: . 2、向量加法运算:⑴三角形法则的特点:首尾相连.首尾连⑵平行四边形法则的特点:共起点.共起点之对角线⑶三角形不等式: a b a b a b -≤+≤+r r r r r r⑷运算性质:①交换律: a b b a +=+r r r r ;②结合律: ()()a b c a b c ++=++r r r r rr ;③00a a a +=+=r r r r r⑸坐标运算:设()11,a x y =r ,()22,b x y =r ,则a b +=rr ( ).3、向量减法运算:⑴减去一个向量相当于加上这个向量的相反向量。

高中数学必修4(人教B版)第一章基本初等函数(2)1.3知识点总结含同步练习题及答案

高中数学必修4(人教B版)第一章基本初等函数(2)1.3知识点总结含同步练习题及答案
象. (2)将 y = 的图象.
1 sin x 图象上所有点的纵坐标伸长为原来的 2 倍(横坐标不变),从而得到 y = sin x 2 1 ,从而得到 y = sin 2x 的图 2
(3)将 y = sin x 图象上所有点的纵坐标不变,横坐标缩短为原来的 象. 函数 y = 2 sin(
1 π x + ) 的图象是由函数 y = sin x 的图象怎样变换得到的? 3 4 π π π 解:变换一:将 y = sin x 的图象向左平移 个单位,得到 y = sin(x + ),再将 y = sin(x + ) 4 4 4 1 π 的纵坐标不变,横坐标变为原来的 3 倍得,y = sin( x + ),然后横坐标不变,纵坐标变为原来的 2 3 4 1 π 倍,得 y = 2 sin( x + ) ; 3 4 1 1 变换二:将 y = sin x 的纵坐标不变,横坐标变为原来的 3 倍,得 y = sin( x),再将 y = sin( x) 3 3 3π 1 3π 1 π 的图象向左平移 ,得 y = sin[ (x + )],即 y = sin( x + ) ,然后将纵坐标变为原来的 2 4 3 4 3 4 1 π 倍,得 y = 2 sin( x + ) . 3 4
8
2π = π; 2 π π π π 5π ② 当 − + 2kπ ≤ 2x − ≤ + 2kπ,即 − + kπ ≤ x ≤ + kπ(k ∈ Z) 时,f (x) 的单调 2 3 2 12 12 π 5π 递增区间是 [− + kπ, + kπ](k ∈ Z); 12 12 π π 3π 5π 11π 当 + 2kπ ≤ 2x − ≤ + 2kπ ,即 + kπ ≤ x ≤ + kπ 时,f (x) 的单调递减区间是 2 3 2 12 12 5π 11π [ + kπ, + kπ ](k ∈ Z); 12 12 π π 5π kπ 5π kπ ③ 当 2x − 时,f (x) 的对称轴是 x = = + kπ,即 x = + + , k ∈ Z; 3 2 12 2 12 2 π π kπ π k ④ 当 2x − ,所以 f (x) 的对称中心是 ( + π, 0 ), k ∈ Z. = kπ,即 x = + 3 6 2 6 2 π ) 的定义域、值域,并指出它的最小正周期、奇偶性、单调性、对称中心. 3 π π 5 kπ 解:由已知 3x − ≠ + kπ,解得 x ≠ π+ , k ∈ Z ,所以,函数的定义域为 3 2 18 3 5 kπ π {x|x ≠ π+ , k ∈ Z} ,函数的值域为 (−∞, +∞) ,最小正周期为 T = .因为函数的定义域不 18 3 3

数学:第一章复习与小结 (北师大版必修4)

数学:第一章复习与小结  (北师大版必修4)

第一章复习与小结一、教学目标1、知识与技能(1)了解本章的知识结构体系,在整体上有一个初步的认识;(2)加深对任意角、弧度及三角函数的理解;(3)掌握三角函数的图像与性质,能利用性质进行解题;(4)掌握一定的解题方法,形成较好的能力。

2、过程与方法三角函数是一种重要的函数,通过整理本章的各知识点以及它们之间的联系,帮助学生系统地认识本章内容,从而对本章内容有全面的认识,上升到更高一个水平;启发学生将本章内容与数学1、数学2的横向联系,形成知识的网络化。

3、情感态度与价值观通过本节的复习,使同学们对三角函数有一个全面的认识;以辩证唯物主义的观点看待任何事,养成一种科学的态度;帮助学生树立正确的世界观和人生观,树立远大理想,立志为国争光,为洋浦的开发建设贡献力量。

二、教学重、难点重点: 三角函数定义,以及三角函数的图像与性质难点: 本章内容的系统掌握与灵活运用三、学法与教法师生共同整理本章的知识结构体系,从角到角的度量,从三角函数的定义到它们之间的关系,再到三角函数的图像与性质;整理本章出现的各种题目,从中理顺它们的关系,将它们适当归类,提炼其中的方法,争取做到举一反三、触类旁通。

教法:探析归纳,讲练结合。

四、教学过程(一)、知识的初步整合(二)、知识的概括与引申1.角是由射线的旋转所产生的,那么就有旋转量与旋转方向的问题,所以必须推广到任意正角、负角和零角。

为了使弧长公式在形式上变得简单,引进了弧度制,这一度量单位不仅使弧长公式、扇形面积公式得以简化,也为定义任意角的三角函数作好了准备。

2.同角三角函数的基本关系的作用是:已知某任意角的一种三角函数值,就能求出另一种三角函数值。

3.诱导公式的作用是:把求任意角的三角函数值转化为求锐角三角函数值。

4.三角函数的图像和性质是本章的重要内容,是三角函数应用的基础。

(三)、例题探析例1.求图中公路弯道处弧AB 的长l (精确到1m )图中长度单位为:m解: ∵ 360π=ο ∴ )(471514.3453m R l ≈⨯≈⨯=⋅=πα例2、已知是第三象限角且02cos <ϑ,问2ϑ是第几象限角? 解:∵2)12()12(ππϑπ++<<+k k )(Z k ∈ ∴4322ππθππ+<<+k k )(Z k ∈ 则2ϑ是第二或第四象限角 又∵02cos<ϑ 则2ϑ是第二或第三象限角 ∴2ϑ必为第二象限角 例3.已知α=αcos 2sin ,求的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

必修四 第一章 复习 第一:任意角的三角函数
一:角的概念:角的定义,角的三要素,角的分类(正角、负角、零角和象限角),正确理解角,与角终边相同的角的集合}{|2,k k z ββπα=+∈ ,弧度制,弧度与角度的换算,
弧长l
r α
=、扇形面积211
22
s lr r α==,
二:任意角的三角函数定义:任意角α的终边上任意取一点p 的坐标是(x ,y ),它与原点的距离是22r x y =+(r>0),那么角α的正弦r y a =
sin 、余弦r
x
a =cos 、正切x
y
a =
tan ,它们都是以角为自变量,以比值为函数值的函数。

三:同角三角函数的关系式与诱导公式: 1.平方关系:2
2sin
cos 1
αα+=
2. 商数关系:
sin tan cos α
αα
=
3.诱导公式——口诀:奇变偶不变,符号看象限。

正弦
余弦
正切
第二、三角函数图象和性质 基础知识:1、三角函数图像和性质
2、熟练求函数sin()y A x ωϕ=+的值域,最值,周期,单调区间,对称轴、对称中心等 ,会用五点法作sin()y A x ωϕ=+简图:五点分别为:
、 、 、 、 。

3、图象的基本变换:相位变换:sin sin()y x y x ϕ=⇒=+
周期变换:sin()sin()y x y x ϕωϕ=+⇒=+ 振幅变换:sin()sin()y x y A x ωϕωϕ=+⇒=+ 4、求函数sin()y A x ωϕ=+的解析式:即求A 由最值确定,ω有周期确定,φ有特殊点确定。

基础练习:
1、tan(600)-= . sin 225︒= 。

2、已知扇形AOB 的周长是6cm ,该圆心角是1弧度,则扇形的面积= cm 2.
3、设a <0,角α的终边经过点P (-3a ,4a ),那么sin α+2cos α的值等于 4
、函数y =_____ __ 5、
的结果是 。

6、函数x y 2sin 3=的图象可以看成是将函数)3
x 2sin(3y π-=的图象-------( ) (A )向左平移个6
π单位 (B )向右平移个6
π单位(C )向左平移个3
π单位 (D )向右平移个3
π单位
7、已知0tan ,0sin ><θθ,那么θ是 。

8.已知点P (tan α,cos α)在第三象限,则角α的终边在 9、下列函数中,最小正周期为π,且图象关于直线3
π
=x 对称的是( ) A .sin(2)3π=-y x B.sin(2)6π=-y x C.sin(2)6π=+y x D.sin()23
π=+x y 10、下列函数中,周期为π的偶函数是( )
A.cos y x =
B.sin 2y x =
C. tan y x =
D. sin(2)2
y x π
=+
解答题解答题应写出文字说明、演算步骤或证明过程.
第一类型:1、已知角α终边上一点P (-4,3),求)
2
9sin()211cos()
sin()2cos(απαπαπαπ
+---+的值 2.已知α是第二象限角,sin()tan()
()sin()cos(2)tan()
f πααπαπαπαα---=
+--.
(1)化简()f α; (2)若31sin()2
3
πα-=-,求()f α的值.
3.已知tan 3α=,求下列各式的值: (1)
4sin cos 3sin 5cos αααα
-+ ;(2)
21
2sin cos cos ααα
+.
第二类型: 1.已知函数sin()y A x B ωϕ=++的一部分图象 如右图所示,如果0,0,||2
A π
ωϕ>><,
(1)求此函数的周期及最大值和最小值 (2)求这个函数函数解析式
第三类型:1.已知函数4
5)6
2sin(2
1++=π
x y
(1)求函数的单调递增区间;
(2)求出函数的对称中心和对称轴方程.
(3) 写出y=sinx 图象如何变换到15sin(2)2
6
4
y x π
=++的图象
(注:文档可能无法思考全面,请浏览后下载,供参考。

可复制、编制,期待你的好评与关注!)。

相关文档
最新文档