对数的换底公式

合集下载

log 换底公式

log 换底公式

log 换底公式
log 换底公式是指:若 a > 0 且 a ≠ 1,则对于任意的正实数 b 和 c,有以下等式成立:
log a b = log c b / log c a
其中,a 被称为“底数”,b 被称为“真数”,log a b 被称为“以 a 为底 b 的对数”。

使用 log 换底公式可以简化计算,特别是在计算复杂对数时非常有用。

例如,要计算以 2 为底 5 的对数,可以使用 log 换底公式将其转化为以任意底数 c 为底的对数:
log 2 5 = log c 5 / log c 2
选择 c = 10 时,可以得到:
log 2 5 ≈ 2.3219
因此,以 2 为底 5 的对数约为 2.3219。

除了以 10 为底的常用对数和以自然数 e 为底的自然对数外,log 换底公式还可以用于计算其他底数的对数。

对数函数换底公式的推导过程

对数函数换底公式的推导过程

对数函数换底公式的推导过程假设我们要推导的换底公式为:logₐb = logₓb / logₓa其中logₐb表示以a为底b的对数,而logₓb表示以x为底b的对数,logₓa表示以x为底a的对数。

首先,我们回顾一下对数的定义和性质。

对数的定义:对于任意正数a和b,其中a≠1,b>0,记作 logₐb,它满足以下等式:a的x次方等于b,即a^x=b对数的性质:1. logₐa = 12. logₐ1 = 03. logₐ(a^x) = x4. logₐb + logₐc = logₐ(bc)5. logₐ(x^m) = mlogₐx6. logₐ(1/x) = -logₐx首先,我们考虑一个中间结果,即把logₐb的底换成x,记作logₓb。

现在我们求以x为底b的对数,即x的y次方等于b,即x^y = b。

假设logₐb的值为z,即a的z次方等于b,即a^z = b。

那么我们可以得到以下等式:a^z=b(1)x^y=b(2)由于等式(1)和(2)都表示x的y次方等于b,所以它们可以相等,即:a^z=x^y取两边的对数,以a为底,得到:logₐ(a^z) = logₐ(x^y)根据对数的性质(3):zlogₐa = ylogₐx由于logₐa = 1,所以上式可以简化为:z = ylogₐx现在我们来使用换底公式,将logₐb的底从a换成x。

根据换底公式,将logₓb表示为以x为底a的对数和以x为底b的对数的比值:logₓb = logₐb / logₐx我们已经得到中间结果z = ylogₐx,所以将它代入上式:logₓb = logₐb / logₐx= z / logₐx= ylogₐx / logₐx=y所以我们有:logₓb = y因此,我们得到了对数函数换底公式:logₐb = logₓb / logₓa这个公式表示以a为底b的对数可以表示为以x为底b和以x为底a 的对数的比值。

对数的换底公式及其推论(含参考答案)

对数的换底公式及其推论(含参考答案)
对数的换底公式及其推论
一、复习引入: 对数的运算法则 如果 a>0,a 1,M>0, N>0有:
二、新授内容: 1. 对数换底公式 : log a N log m N (a>0,a 1, m>0,m 1,N>0) log m a
证明 :设 log a N=x,则 a x =N
两边取以 m为底的对数: log m a x log m N
2
3=a,则
1 a
log3 2 , 又∵ log 3 7=b,
∴ log 42 56 log 356 log 3 7 3 log 3 2
ab 3
log 3 42 log 3 7 log 3 2 1 ab b 1
5 例 2 计算:① 1 log 0.2 3 ② log 4 3 log 9 2 log 1 4 32
1.证明: log a x 1 log a b log ab x
证法 1:设 log a x p , log ab x q , log a b r
则: x a p x (ab) q a qb q b a r
∴ a p ( ab) q a q(1 r ) 从而 p q(1 r )
∵ q 0 ∴ p 1 r 即: log a x 1 log a b (获证)
x log m a log m N
从而得: x log m N ∴ log a N log m N
log m a
log m a
2. 两个常用的推论 :
① log a b log b a 1, log a b log b c log c a 1
② log am b n
n m
log
a
b
(a,b>0

对数换底公式推导

对数换底公式推导

对数换底公式推导对数换底公式,也称作变底公式,是数学中比较常用的一种公式。

它可以用来换算一个底数的对数。

简而言之,对数换底公式就是一种便捷的计算方法,实现对数从一个底数转换到另一个底数的操作。

对数换底公式是一个有用的数学工具,它可以用来解决现实中的各种问题。

比如,它可以用来求解数字的增加或减少的百分比,以及数字的乘法或除法问题。

借助这个公式,用户还可以轻松的计算出不同的数字的对数之差。

二、对数换底公式的推导对数换底公式的推导可以简单地总结为:公式:loga b = rlog c b其中,a,b,c分别表示底数、被求对数数值和新底数。

现在我们来推导这个公式。

我们要从一个简单的例子入手。

假设有一个数值n,其对数以2为底。

这个数值的对数可以表示为:log2 n,其中n表示被求对数数值,2表示底数。

现在我们要求n以4为底的对数,可以在等式右边替换底数,即:log4 n = ?此时我们可以把等式右边的部分变形:log4 n = log2 n 2于是,等式可以变形为:loga b = rlog c b其中a、b、c表示底数,r表示log2 n的值。

我们可以继续用范例来说明这个公式的推导过程。

假设有一个数值n,其对数以4为底。

这个数值的对数可以表示为:log4 n,既然要求n以2为底的对数,则可以使用上述公式推导:log2 n = log4 n即:log2 n = (1/2)log4 n以上就是对数换底公式的推导过程,简而言之,它的形式就是:loga b = rlog c b三、数换底公式的应用对数换底公式是一个非常有用的数学工具,它可以用来解决现实中的各种问题。

比如,它可以用来求解数字的增加或减少的百分比,以及数字的乘法或除法问题。

借助这个公式,用户还可以轻松的计算出不同的数字的对数之差。

另外,对数换底公式在推导几何级数和统计学方面也有广泛的应用。

例如,在推导几何级数中,对数换底公式可以帮助计算复杂的公式,从而求出结果。

对数 换底公式(一)

对数 换底公式(一)

对数换底公式(一)
对数换底公式
什么是对数换底公式?
对数换底公式是指将一个对数的底换成另一个底的公式,用于简化和计算对数运算。

对数换底公式的基本形式
若a>0且a≠1,b>0且b≠1,c>0,且c≠1,则对数换底公式的基本形式为: logab = logcb / logca
对数换底公式的推导
对数换底公式的推导基于对数的定义和指数法则。

对数的定义
对数的定义是:如果ax=b,则称x为以a为底b的对数,记为logab. 这里的a被称为对数的底,b为对数的真数。

指数法则
指数法则是一组用于简化指数运算的公式。

- ax * ay = ax+y (乘法法则) - (ax)y = axy (幂法则) - a0 = 1 (零指数法则)等等
对数换底公式的例子
下面是一些对数换底公式的实际例子。

•log28 = log108 / log102:将底换成10,可以使用常用的对数计算。

•log39 = loge9 / loge3:将底换成自然对数e,适用于计算自然对数的场景。

•log525 = log725 / log75:将底换成任意不同的数值,适用于任意对数计算。

通过对数换底公式,我们可以轻松地将一个对数的底换成另一个底,简化对数运算,并根据不同的场景选择合适的底数进行计算。

希望以上对数换底公式的介绍能对你有所帮助!。

对数换底公式例题

对数换底公式例题

对数换底公式例题
摘要:
1.对数换底公式的定义与意义
2.例题分析
3.解题步骤与方法
4.公式的应用场景
正文:
【1.对数换底公式的定义与意义】
对数换底公式,是数学中一种重要的公式,主要用于将对数的底数进行转换。

其公式为:loga(N) = logc(N) / logc(a)。

在这个公式中,a 和c 是两个不同的底数,N 是一个正数。

对数换底公式的应用,可以简化对数的计算过程,使计算更加方便。

【2.例题分析】
例题:如果log2(8) = 3,那么log16(8) 等于多少?
在这个例题中,我们需要用到对数换底公式,将log2(8) 转换为
log16(8)。

首先,我们知道log2(8) = 3,那么我们可以将这个对数转换为以16 为底的对数,即log16(8) = log2(8) * log16(2)。

因为log16(2) = 1/4,所以log16(8) = 3 * 1/4 = 3/4。

所以,log16(8)等于3/4。

【3.解题步骤与方法】
(1) 确定题目中给出的对数,以及需要转换的底数。

(2) 使用对数换底公式,将对数转换为新的底数。

(3) 将转换后的对数进行计算,得出结果。

【4.公式的应用场景】
对数换底公式在实际应用中非常广泛,特别是在计算机科学和工程领域。

例如,在编程中,常常需要对大数据进行处理,对数换底公式可以帮助我们更快地计算出数据的对数,从而提高计算效率。

对数的运算法则及公式换底

对数的运算法则及公式换底

对数的运算法则及公式换底
对数是数学中常用的一种运算方式,它可以将一个较大的数转化为较小的数,从而使计算更方便。

对数的运算法则和公式换底是对数运算中最基本的内容之一,下面我们来详细了解一下。

一、对数的运算法则
1、乘法法则
若a>0,b>0,则有loga (b×c) =loga b +loga c
2、除法法则
若a>0,b>0,则有loga (b/c) =loga b -loga c
3、幂次法则
若a>0,b>0,则有loga (b^n) =nloga b
二、对数的公式换底
在对数运算中,有时候需要将一个对数的底数换成另一个底数,这就是对数的公式换底。

公式换底有两种常用的方式,分别是常用对数和自然对数。

1、常用对数
常用对数的底数是10,因此我们可以将任意一个对数转化为以10为底数的对数。

公式如下:
loga b =log10 b/log10 a
其中a和b都是正数,且a≠1。

2、自然对数
自然对数的底数是e,因此我们可以将任意一个对数转化为以e
为底数的对数。

公式如下:
loga b =ln b/ln a
其中a和b都是正数,且a≠1。

总之,掌握对数的运算法则和公式换底对于学习高等数学、物理等学科是非常重要的。

ln换底公式

ln换底公式

ln换底公式
ln换底公式是指在对数运算中,不同底数下的对数可以通过公式进行转化。

具体而言,设a>0且a≠1,b>0且b≠1,那么有以下ln换底公式:
lnb/logb(a) = lna/lna(b)
其中ln表示以e为底的自然对数,log表示以10为底的常用对数。

换底公式的意义在于,当我们需要计算一个数在不同底数下的对数时,可以通过公式进行转化,从而简化计算。

例如,假设我们需要计算log2(5),但是我们只知道log10(5)的值,此时我们就可以使用ln换底公式进行转化,得到log2(5) = ln(5)/ln(2),进而计算出log2(5)的值。

需要注意的是,ln换底公式只适用于自然对数和常用对数之间的转化,对于其他底数的对数转化需要使用不同的公式。

- 1 -。

对数的运算法则及公式是什么

对数的运算法则及公式是什么

对数的运算法则及公式是什么对数是数学中比较重要的知识点之一,那么对数都有哪些公式呢?下面是由编辑为大家整理的“对数的运算法则及公式是什么”,仅供参考,欢迎大家阅读本文。

运算法则loga(MN)=logaM+logaN;loga(M/N)=logaM-logaN;logaNn=nlogaN;(n,M,N∈R);如果a=em,则m为数a的自然对数,即lna=m,e=2.718281828…为自然对数的底,其为无限不循环小数。

定义:若an=b(a>0,a≠1)则n=logab。

换底公式logMN=logaM/logaN;换底公式导出:logMN=-logNM。

推导公式log(1/a)(1/b)=log(a^-1)(b^-1)=-1logab/-1=loga(b);loga(b)*logb(a)=1;loge(x)=ln(x);lg(x)=log10(x)。

拓展阅读:学好数学的几条建议1、要有学习数学的兴趣。

“兴趣是最好的老师”。

做任何事情,只要有兴趣,就会积极、主动去做,就会想方设法把它做好。

但培养数学兴趣的关键是必须先掌握好数学基础知识和基本技能。

有的同学老想做难题,看到别人上数奥班,自己也要去。

如果这些同学连课内的基础知识都掌握不好,在里面学习只能滥竽充数,对学习并没有帮助,反而使自己失去学习数学的信心。

建议同学们可以看一些数学名人小故事、趣味数学等知识来增强学习的自信心。

2、要有端正的学习态度。

首先,要明确学习是为了自己,而不是为了老师和父母。

因此,上课要专心、积极思考并勇于发言。

其次,回家后要认真完成作业,及时地把当天学习的知识进行复习,再把明天要学的内容做一下预习,这样,学起来会轻松,理解得更加深刻些。

3、要有“持之以恒”的精神。

要使学习成绩提高,不能着急,要一步一步地进行,不要指望一夜之间什么都学会了。

即使进步慢一点,只要坚持不懈,也一定能在数学的学习道路上获得成功!还要有“不耻下问”的精神,不要怕丢面子。

对数的换底公式推导

对数的换底公式推导

对数的换底公式推导
对数的换底公式是数学中一个很重要的公式,它可以用来计算不同对数之间的关系,成为科学研究中不可缺少的一部分。

本文将通过证明换底公式来帮助读者理解其中的原理。

首先,我们要明确一下关于对数的概念,以及换底公式的定义。

对数(log)是一个抽象概念,它表示两个数字之间的关系。

换底公式(logab = logcb / logca)指的是两个对数(logab logcb)之间的关系,即logab于logcb以logca商。

接下来,我们来证明换底公式。

设有两个数ab,其中ab0。

由于logab = logcb / logca,我们可以认为:
b = c^(logca logcb )
下一步,我们可以将b两边同时乘以a:
ab = c^(logca logcb ) a
我们知道,ab于cn幂。

我们可以进一步将上式简化为:
ab = c^(logca + logcb )
以上就是换底公式的证明。

换底公式的应用不仅限于简单的计算,它也可以用于更深层次的研究。

比如,由于logar = logbr + logcr,因此可以用换底公式推导出ab 之间的指数表达式。

此外,换底公式还可以用于方程解等数学问题。

比如,在一个简单的方程中,如果已知ab对数,则可以通过换底公式求解方程。

综上所述,换底公式是一个重要的数学公式,它不仅可以用于简
单的计算,还可以用于更深层次的研究,从而为科学研究带来更多可能性。

对数换底公式的作用

对数换底公式的作用

对数换底公式的作用对数换底公式是数学中的一个重要公式,它可以将两个不同底数的对数转换为同一底数的对数,从而使得对数的运算更加方便。

我们回顾一下对数换底公式的形式。

对于任意两个正实数a和b(a>0,b>0),对数换底公式可以表示为:log_b(N)=log_a(N) / log_a(b)这个公式告诉我们,如果我们知道一个数的以a为底的对数log_a(N)和以b为底的换底公式log_b(N),我们可以通过这个公式计算出以b为底的对数log_b(N)。

对数换底公式可以简化不同底数对数的计算。

在数学、物理、工程等领域中,常常需要计算或转换不同底数的对数。

例如,在计算机科学中,经常使用以2为底的对数(log2)和以10为底的对数(log10)来进行信息编码和处理。

如果我们需要计算两个以不同底数的对数的比值,就需要先使用对数换底公式将两个对数转换为同一底数的对数,再进行计算。

这样可以避免复杂的换底计算,简化计算过程。

对数换底公式可以用于解决一些实际应用问题。

例如,在化学和生物领域中,经常使用对数来描述化学反应的速率或生物种群的增长率。

在这些情况下,我们需要使用不同底数的对数来描述不同的反应或生长条件。

通过对数换底公式,我们可以将不同的对数转换为同一底数的对数,从而方便地比较和分析这些反应或生长条件。

需要注意的是,对数换底公式在使用时需要注意一些限制条件。

例如,对于负数和零的对数,公式不成立。

此外,对于某些实数a和b,log_a(b)可能无意义或无法计算。

因此,在使用对数换底公式时,需要确保所使用的底数和换底公式是有效的,并且注意处理特殊情况。

对数换底公式在数学和实际应用领域中具有重要的作用。

它可以方便地转换不同底数的对数,简化计算过程,并解决一些实际应用问题。

然而,需要注意使用时的限制条件和特殊情况处理。

对数的运算换底公式

对数的运算换底公式
对数运算可以简化大数的乘、除 、乘方和开方等运算,提高计算 效率。
应用于科学计算
在科学计算中,对数运算被广泛 应用于工程、物理、生物和医学 等领域。
金融和投资领域
在金融和投资领域,对数函数被 用来计算复利、折现等价值计算 问题。
换底公式的地位和作用
将不同底数的对数进行转换
01
换底公式可以将不同底数的对数进行转换,使得对数的计算更
推广到其他数学分支中的对数运算
离散数学
将对数运算推广到离散数学中,可以处理在离散数学中的计数、组合等问题 ,例如使用对数方法求解排列组合问题。
概率统计
在概率统计中,对数运算有着广泛的应用,例如使用对数变换将非线性问题 转换为线性问题,方便进行统计分析。
05
换底公式的实际应用
在金融领域中的应用
利率转换
在物理领域中的应用
声速计算
在物理学中,声速c与绝对温度T的关系为 c=331.3+0.6T,其中T是绝对温度的十进对数。使用 换底公式可以方便地计算出不同温度下的声速。
电阻计算
在电路分析中,电阻R的数值可以通过欧姆定律计算 得出,其中电流I的单位是安培(A),电压U的单位 是伏特(V),长度l的单位是米(m),电阻率ρ的单 位是欧·米(Ω·m),截面积S的单位是平方米(m²) 。公式为R=ρl/S,使用换底公式可以将电阻率的单位 转换为欧姆·米(Ω·m)或欧姆²/米(Ω²/m)。
任意精度
通过定义任意精度的对数函数,可以实现任意精度的数学计算,为高精度计算提 供了更大的灵活性。
推广到复数域的对数运算
复数域的对数
将对数运算推广到复数域,可以处理在复 数域中的数学计算问题,例如求解复数方 程等。
VS

对数函数的换底公式

对数函数的换底公式
举例来说,如果要计算以 10 为底数的对数 log₁₀2,可以使用换底公式将其转换为以 e 为底数的对数:
log₁₀2 = logₑ2 / logₑ10
由于 logₑ10 的值可以用常用的对数来表示,即 logₑ10 ≈ 0.4343,我们可以使用这个近似值进行计算。
因此,log₁₀2 ≈ logₑ2 / 0.4343
换底公式使得我们可以在不同底数之间进行对数运算,方便进行计算和比较。
对数函数的换底公式是指将对数的底数进行转换的公式,常用的换底公式如下:
对数函数的换底公式: logₐb = logₓb / logₓa
其中,logₐb 表示以 a 为底数的 b 的对数,logₓb 表示以任意底数 x 的 b 的对数,logₓa 表示以任意底数 x 的 a 的对数。
换底公式的使用可以将对数的底数转换为其他常用的底数,例如将以 10 为底数的对数转换为以 e(自然对数

对数换底公式推导

对数换底公式推导

对数换底公式推导对数换底公式是一种有用的数学公式,可以快速从一种底数(如2)更改为另一种底数,以便解决复杂的数学问题。

对数换底公式可以起到辅助解决这些问题的作用,也可以用于各种复杂的数学演算。

本文将结合实例来加深对换底公式的理解,并讨论推导过程。

对数换底公式的推导首先,给出对数换底公式的通式:logaX = logbX/logbA其中,“logaX”表示以a为底的X的对数,“logbX”表示以b为底的X的对数,“logbA”表示以b为底的A的对数。

这个公式可以用来换算出任意一种底数下的任意一个数的对数。

要推导出这个公式,需要考虑两个步骤:第一步:以a为底,将X的对数表示为幂函数,即:X = A^(logaX)第二步:以b为底,将X的对数表示为幂函数,即:X = B^(logbX)结合上面两个步骤,得到:A^(logaX) = B^(logbX)将A和B都取以b为底的对数,得到:logbA^(logaX) = logbB^(logbX)化简得到:logbA * logaX = logbB * logbX从而得到:logaX = logbX/logbA实例验证下面利用实例来加深对换底公式的理解。

假设现在有个数为1024,以2为底的对数是10,问它以8为底的对数(log81024)是多少?解:根据换底公式,log81024=log210/log28=10/3=3.33得出结论:log81024=3.33结论本文介绍了对数换底公式的推导过程,并利用实例加深了读者对该公式的理解。

由于换底公式可以方便地从一种底数(如2)更改为另一种底数(如8),因此在解决各种复杂的数学问题时,可以起到辅助解决这些问题的作用。

换底公式

换底公式

换底公式1.对数的换底公式b N N a a b log log log =(a ,b >0,且a ,b ≠1,N >0). 2、利用对数换底公式可得到如下等式: ①a b b a log 1log =,即1log log =⋅a b b a (a >0,a ≠1,b >0,b ≠1). ②b n m ba m a n log log =(a >0,a ≠1,b >0,m ∈R ,n ≠0). 特例:b n b a a n log 1log = b b a n a n log log = b n b a n a l o g l o g = 课堂巩固练习1、21log log 9log 7log 44923=a ,则=a __22__________ 2、若x 3log 2log 23=,则=x ( C )A 、1-B 、1C 、23)2(logD 、22)3(log3、=+51log 5log 3333_556____________ 4、(2012安徽文科)(2l o g 9)·(3log 4)=( D ) (A ) 14 (B )12(C ) 2 (D )4 解:利用ab b a log 1log =,即1log log =⋅a b b a 5、(2010辽宁文科)设2b =5b =m ,且11a b+=2,则m=( A )(A) (B)10 (C)20 (D)100 解:利用ab b a log 1log =,即1log log =⋅a b b a 6、log 916·log 881的值为( )A .18 B.118 C.83 D.38解析:log 916·log 881=lg 16lg 9·lg 81lg 8=4lg 22lg 3·4lg 33lg 2=83.答案:C7、若log 34·log 48·log 8m =log 416,则m =( )A.12 B .9 C .18 D .27解析:∵log 34·log 48·log 8m =log 416,∴lg 4lg 3·lg 8lg 4·lg m lg 8=log 442, 化简得lg m =2lg 3,即lg m =lg 9,∴m =9.答案:B8、已知2x=3,log 483=y ,则x +2y 的值为( ) A .3 B .8 C .4 D .log 48解析:x =log 23,x +2y =log 23+2log 483=log 23+2·log 283log 24=log 23+log 283=log 28=3.答案:A9、已知log 95=a ,log 37=b ,则log 359=________.解析:∵a =log 95=log 35log 39=log 352,∴log 35=2a ,∴log 359=log 39log 35+log 37=22a +b. 答案:22a +b10、计算:(1)log 1627·log 8132;(2)(log 32+log 92)(log 43+log 83).解:(1)log 1627·log 8132=lg 27lg 16×lg 32lg 81=lg 33lg 24×lg 25lg 34=3lg 34lg 2×5lg 24lg 3=1516.(2)(log 32+log 92)(log 43+log 83)=⎝ ⎛⎭⎪⎫log 32+log 32log 39⎝ ⎛⎭⎪⎫log 23log 24+log 23log 28 =⎝ ⎛⎭⎪⎫log 32+12log 32⎝ ⎛⎭⎪⎫12log 23+13log 23 =32log 32×56log 23=54×lg 2lg 3×lg 3lg 2=54.11、若a 、b 是方程2(lg x )2-lg x 4+1=0的两个实根,求lg (ab )·(log a b +log b a )的值.解:原方程可化为2(lg x )2-4lg x +1=0.设t =lg x ,则方程化为2t 2-4t +1=0,∴t 1+t 2=2,t 1·t 2=12.又∵a 、b 是方程2(lg x )2-lg x 4+1=0的两个实根,∴t 1=lg a ,t 2=lg b ,即lg a +lg b =2,lg a ·lg b =12.∴lg (ab )·(log a b +log b a )=(lg a +lg b )·⎝ ⎛⎭⎪⎫lg b lg a +lg a lg b =(lg a +lg b )·(lg b )2+(lg a )2lg a ·lg b=(lg a +lg b )·(lg a +lg b )2-2lg a ·lg b lg a ·lg b=2×22-2×1212=12, 即lg (ab )·(log a b +log b a )=12.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第21课时 2.3.2 对数的换底公式
【学习目标】
能够运用换底公式将一般的对数化为常用对数或自然对数,并能进行一些简单的化简和证明.
【老师有话说】
本课的重点是换底公式的应用;难点是换底公式的灵活运用.利用换底公式“化异为同”是解决有关对数问题的基本思想方法,它在求值或恒等变形中起着重要作用,在解题过程中应注意:(1)针对具体问题,选择恰当的底数;(2)注意换底公式与对数运算性质结合使用;(3)换底公式的正用与逆用.
【自学指导】
结合实例探究换底公式,并通过换底公式的应用,体会化归与转化的数学思想.
【温故而知新】
1. 同伴相互回忆对数的运算性质
2.已知23
,,a m a n ==则2log log a a m n +=______________ 【自主学习、合作交流】
一、创设情境:
思考:已知4771.03lg ,3010.02lg ==,如何求3log 2的值;
二.探索新知
对数换底公式: a
N N c c a log log log = (1,0,0,1,0≠>>≠>c c N a a ) 合作探究1:证明换底公式。

合作探究2: log a b ·log b c =_________ log a b ·log b a =___________
三.数学运用
1.求值(1)32log 9log 278⋅; (2)421
9432log 2log 3log -⋅
2.已知 2log 3 = a ,73=b
, 用 a , b 表示42log 56 3.设),0(,,+∞∈z y x 且z y x 643== ,求证
z
y x 1211=+. 【我还有什么问题没弄明白?】 在本节课的学习过程中,还有那些不太明白的地方,请向同伴、大组长、老师提出.
【总结提升】
【学习反思】(很重要哟!)
【知识链接】
费马大定理
300多年以前,法国数学家费马在一本书的空白处写下了一个定理:“设n是大于2的正整数,则不定方程x n+y n=z n没有非零整数解”。

费马宣称他发现了这个定理的一个真正奇妙的证明,但因书上空白太小,他写不下他的证明。

300多年过去了,不知有多少专业数学家和业余数学爱好者绞尽脑汁企图证明它,但不是无功而返就是进展甚微。

这就是纯数学中最著名的定理—费马大定理。

费马(1601年~1665年)是一位具有传奇色彩的数学家,他最初学习法律并以当律师谋生,后来成为议会议员,数学只不过是他的业余爱好,只能利用闲暇来研究。

虽然年近30才认真注意数学,但费马对数论和微积分做出了第一流的贡献。

他与笛卡儿几乎同时创立了解析几何,同时又是17世纪兴起的概率论的探索者之一。

费马特别爱好数论,提出了许多定理,但费马只对其中一个定理给出了证明要点,其他定理除一个被证明是错的,一个未被证明外,其余的陆续被后来的数学家所证实。

这唯一未被证明的定理就是上面所说的费马大定理,因为是最后一个未被证明对或错的定理,所以又称为费马最后定理。

1976年瓦格斯塔夫证明了对小于105的素数费马大定理都成立。

1983年一位年轻的德国数学家法尔廷斯证明了不定方程x n+y n=z只能有有限多组解,他的突出贡献使他在1986年获得了数学界的最高奖之一费尔兹奖。

经过三个半世纪的努力,这个世纪数论难题才由普林斯顿大学英国数学家安德鲁·怀尔斯
和他的学生理查·泰勒于1995年成功证明。

证明利用了很多新的数学,包括代数几何中的椭圆曲线和模形式,以及伽罗华理论和Hecke 代数等,令人怀疑费马是否真的找到了正确证明。

而安德鲁·怀尔斯(Andrew Wiles)由于成功证明此定理,获得了1998年的菲尔兹奖特别奖以及2005年度邵逸夫奖的数学奖。

心灵絮语:
居 安 思 危
洪水未到先筑堤,豺狼未来先磨刀。

一只野狼卧在草上勤奋地磨牙,狐狸看到了,就对它说:"天气这么好,大家在休息娱乐,你也加入我们队伍中吧!"野狼没有说话,继续磨牙,把它的牙齿磨得又尖又利。

狐狸奇怪地问道:"森林这么静,猎人和猎狗已经回家了,老虎也不在近处徘徊,又没有任何危险,你何必那么用劲磨牙呢?"野狼停下来回答说:"我磨牙并不是为了娱乐,你想想,如果有一天我被猎人或老虎追逐,到那时,我想磨牙也来不及了。

而平时我就把牙磨好,到那时就可以保护自己了。

"
温馨提示:做事应该未雨绸缪,居安思危,这样在危险突然降临时,才不至于手忙脚乱。

"书到用时方恨少",平常若不充实学问,临时抱佛脚是来不及的。

也有人抱怨没有机会,然而当升迁机会来临时,再叹自己平时没有积蓄足够的学识与能力,以致不能胜任,也只好后悔莫及。

第21课时 2.3.2 对数的换底公式
你完成本节导学案的情况为 ( )
A.很好
B.较好
C.一般
D.较差
【当堂检测】时间:5分钟,满分10分(3+3+4)。

计分:________
1.设lg2=a ,lg3=b ,则log 512=_____________________
2.计算235111log log log 2589
⋅⋅=________________
3.计算421
938432log )2log 2)(log 3log 3(log -++
【巩固一下】(每题均需写出过程)
一、填空题
1. 若log 32=a
a -1,则log 123=________. 2.若 2log log 8log 4log 4843=⋅⋅m ,则m=___________
3.已知3a =5b =A ,且b
a 11+=2,则A =_______________ 4.如果log 8a +log 4
b 2=5,log 8b +log 4a 2=7,那么log 2(ab )=___________
二、解答题
5. 求)8log 4log 2)(log 5log 25log 125(log 125255842++++的值.
6.已知log 23=a ,3b =7,试用a 、b 的式子表示log 1256.
7. 设a b c x y z ==且111a b c
+=,求证:z=xy. 【延伸拓展】(仅供学有余力的学生选用).............
第21课时 2.3.2 对数的换底公式
1. 《世纪金榜》素能综合检测(十七)
2. 已知a =27log 12,试用a 表示16log 6;
* *3. 设正整数a 、b 、c (a ≤b ≤c )和实数x 、y 、z 、ω满足:
ω30===z y x c b a ,ω
1111=++z y x ,求a 、b 、c 的值. 过来人语:
以解决自己的问题为目标,这是一个实实在在的道理,正视自己的问题,设法解决它,这是成功的捷径。

谁能沉下心来把目光凝集在一个个小漏洞、小障碍上,谁就先迈出了一大步。

相关文档
最新文档