第五章线性参数最小二乘法
第五章 最小二乘法
第二节 正规方程
第五章 线性参数的最小二乘法
正规方程:将误差方程按最小二乘法原理转化得到的
有确定解的代数方程组。
一、等精度测量线性参数最小二乘处理的正规方程
v1 l1 (a11 x1 a12 x2 a1 t xt ) v 2 l 2 (a21 x1 a22 x2 a2 t xt ) v l (a x a x a x ) n n1 1 n2 2 nt t n
2
ln (an1 x1 an 2 x2 ant xt )
vi x1
2
2
2a11 l1 (a11 x1 a12 x2 a1t xt ) 2a21 l2 (a21 x1 a22 x2 a2 t xt ) 2an1 ln (an1 x1 an 2 x2 ant xt ) 0
a
i1 i
a
i1
ai 2 x2
a
it
a it x t 0
2 2 vi 2 a i1a i1 0 2 x1
说明存在极小值
正规方程 (t个)
n n n n ai 1 l i ai 1ai 1 x1 ai 1ai 2 x2 ai 1ait x t i 1 i 1 i 1 i 1 n n n n ai 2 l i ai 2 ai 1 x1 ai 2 ai 2 x2 ai 2 ait x t i 1 i 1 i 1 i 1 n n n n ait l i ait ai 1 x1 ait ai 2 x2 ait ait x t i 1 i 1 i 1 i 1
误差理论与数据处理版课后习题答案完整版
《误差理论与数据处理》(第六版)完整版第一章 绪论1-5 测得某三角块的三个角度之和为180o00’02”,试求测量的绝对误差和相对误差 解:绝对误差等于: 相对误差等于:1-8在测量某一长度时,读数值为2.31m ,其最大绝对误差为20m μ,试求其最大相对误差。
%108.66 %1002.311020 100%maxmax 4-6-⨯=⨯⨯=⨯=测得值绝对误差相对误差1-10检定2.5级(即引用误差为2.5%)的全量程为100V 的电压表,发现50V 刻度点的示值误差2V 为最大误差,问该电压表是否合格?%5.22%100%1002100%<=⨯=⨯=测量范围上限某量程最大示值误差最大引用误差该电压表合格1-12用两种方法分别测量L1=50mm ,L2=80mm 。
测得值各为50.004mm ,80.006mm 。
试评定两种方法测量精度的高低。
相对误差L 1:50mm 0.008%100%5050004.501=⨯-=IL 2:80mm 0.0075%100%8080006.802=⨯-=I 21I I > 所以L 2=80mm 方法测量精度高。
21802000180''=-'''o o %000031.010*********.00648002066018021802≈=''''''⨯⨯''=''=o1-13 多级弹导火箭的射程为10000km 时,其射击偏离预定点不超过0.lkm ,优秀射手能在距离50m 远处准确地射中直径为2cm 的靶心,试评述哪一个射击精度高? 解:射手的相对误差为:多级火箭的射击精度高。
1-14若用两种测量方法测量某零件的长度L1=110mm ,其测量误差分别为m μ11±和m μ9±;而用第三种测量方法测量另一零件的长度L2=150mm 。
第五章 线性参数最小二乘法处理(1)
光电效应
1 E = hν = m υ0 2 + A 2
1 eU 0 = m υ0 2 2
h A U0 = ν e e
2
光电效应
频率νi(×1014Hz) 8.214 7.408 6.879 5.490 5.196 截止电压U0i(V) 1.790 1.436 1.242 0.688 0.560
3
光电效应
SLOPE函数
频率ν i(Hz) 8.214E+14 7.408E+14 6.879E+14 5.490E+14 5.196E+14 截止电压U0i(V) 1.790E+00 1.436E+00 1.242E+00 6.880E-01 5.600E-01
4.02964E-15
2.000E+00 1.800E+00 1.600E+00
1
i 2
e
i 2 ( 2 i 2 )
di
( i 1, 2,
, n)
由概率论可知,各测量数据同时出现在相应区域的概率
为ቤተ መጻሕፍቲ ባይዱ
P Pi
i 1
n
1
1 2 n
2
e n
i 1
n
i 2 (2 i 2 )
d 1d 2
d n
12
第一节 最小二乘原理
1.400E+00
y = 4E-15x - 1.5314
1.200E+00 1.000E+00 8.000E-01 6.000E-01
4.000E-01
2.000E-01 0.000E+00 0.000E+00 5.000E+14 1.000E+15
误差理论与数据处理课第六版后答案5
例3-2 已知 x x 2.0 0.1,y y 3.0 0.2 ,相关系数 xy 0 试求 x3 y 的值及其标准差。
解: 0 x3 y 2.03 3.0 13.86
a12
2 x
a22
2 y
a1
f x
3x2
y
20.78
a2
f y
x3
1 2y
2.31
20.782 0.12 2.312 0.22 2.13
三、微小误差取舍原则
Di ai i
y D12 D22 Dn2
D1 D2 Dn y
n
i
y
n
1 ai
i
y
n
1 ai
1
10
y
Dk
1
3
y
四、 最佳测量方案的确定
1. 选择最佳函数误差公式 2.使误差传递函数 f / x或i 为0 最小
10
例3-1 求长方体体积V,直接测量各边长 a 161.6 , b 44.5 , c 11.2 已知测量的系统误差为 a 1.2, b 0.8 c 0.5 测量的极限误差 为 a 0.8, b 0.5, c 0.5 求立方体体积及其极限误差。
2)判断
2
若nx 、ny≤10,则由秩和检验表2-10查得T- 、T+
T 14 T 30 T T
故怀疑存在系统误差
8
第三章 误差的合成与分配
一、函数系统误差计算
1. 一般函数形式 y f ( x1 , x2 ,, xn )
y
f x1
x1
f x2
x2
f xn
xn
二、函数随机误差计算
令
f xi
g
线性参数的最小二乘法处理
W1、 +1″, +10″, +1″, +12″,
W2、 +6″, +4″,
W3、
W4„
Wn
+2″ , -3″ , +4″ +12″, +4″ +3″, +4″
+12″, +12″, +12″
W12
2
12
W22
2 2
W32
32
最小值
3
即 ∑(PW2)=(P1W21)+(P2W22)+(P3W32)
的测量结果 yi 最接近真值,最为可靠,即: yi=∠i+Wi 由于改正数 Wi 的二次方之和为最小,因此称为最小二乘法。 二 最小二乘法理 现在我们来证明一下,最小二乘法和概率论中最大似然方法(算术平均值方法) 是一致的。 (一)等精度测量时 (1)最大似然方法 设 x1,x2„xn 为某量 x 的等精度测量列,且服从正态分布,现以最大似然法和最小 二乘法分别求其最或是值(未知量的最佳估计量) 在概率论的大数定律与中心极限定理那一章我们讲过,随着测量次数的增加,测 量值的算术平均值也稳定于一个常数,即
2 i 1
n
曾给出: vi2
i 1
n
n n 1 n 2 ,由此可知 x vi2 / i2 为最小,这就是最小二乘法的基本 i n i 1 i 1
含义。引入权的符号 P ,最小二乘法可以写成下列形式:
Pv
i 1
n
2 i i
最小
在等精度测量中, 1 2 ... , P1 P2 ... Pn 即: 最小二乘法可以写成下列形式:
第5章最小二乘法
(5-37) 这正是不等精度测量时加权算术平均值原理所给出的结果。
对于等精度测量有
则由最小二乘法所确定的估计量为
此式与等精度测量时算术平均值原理给出的结果相同。 由此可见,最小二乘法原理与算术平均值原理
是一致的,算术平均值原理可以看做是最小二乘 法原理的特例。
第三节 精度估计
用矩阵表示的正规方程与等精度测量情况类似,可表示为
即
(5-27)
上述正规方程又可写成 (5-28)
该方程的解,即参数的最小二乘法处理为 (5-29)
令
则有
(5-30)
例5—2
• 某测量过程有误差方程式及相应的标准差如下:
试求x1,x2的最小二乘法处理正规方程的解。 解: (1)首先确定各式的权
(2)用表格计算给出正规方程常数项和系数
三、线性参数最小二乘法的正规方程
为了获得更可取的结果,测量次数n总要多于未 知参数的数目t,即所得误差方程式的数目总是要 多于未知数的数目。因而直接用一般解代数方程 的方法是无法求解这些未知参数的。
最小二乘法则可以将误差方程转化为有确定解 的代数方程组(其方程式数目正好等于未知数的个 数),从而可求解出这些未知参数。这个有确定解 的代数方程组称为最小二乘法估计的正规方程(或 称为法方程)。
将ti,li,值代人上式,可得残余误差为
(二)不等精度测量数据的精度估计
不等精度测量数据的精度估计与等精度测量数据的精 度估计相似,只是公式中的残余误差平方和变为加权的 残余误差平方和,测量数据的单位权方差的无偏估计为
(5-44) 通常习惯写成
测量数据的单位权标准差为
(5-45)
(5-46)
二、最小二乘估计量的精度估计
1.线性参数的最小二乘法处理的基 本程序
第五章线性参数的最小二乘法处理01
第五章线性函数的最小二乘处理最小二乘原理应用时的条件是:函数关系确定已知、等精度、误差独立、无偏估计得到满足,在众多的N个测量方程中利用最小二乘原理求得t个(t</N)参数的最佳估计值。
如前所叙,在随机因素作用下,测量次数较多时,计算的结果就会更精密,测量次数往往大于待求未知量的个数,因而出现N>t的现象就成为自然而然的事情了。
众所周知,当N=t时可由线性代数知识求得一组唯一正确解。
当N>t时,代数解法则无能为力了。
也许读者会提出另外一个问题:既然N>t,可由N中取出t个方程来求解,而把(N-t)个方程弃掉,问题不就解决了吗?答案是不行的。
这样求解后的结果不是最佳值,有时会与最佳值离歧很大。
最小二乘法是一种数学原理,高斯于1809年在他的名著《天体沿圆锥截面绕太阳运动的理论》一书中,发表了他发现的最小二乘原理并应用于测量之后,在许多科学领域及技术领域中得到越来越多地应用。
5.1 函数为直接测量值得线性组合5.1.1 测量方程式函数中可能存在着多个待定参数,根据该函数关系可列出多个测量后的方程式,该方程式称作测量方程式。
设含有t个待求参数Xj(j=1,2,…,t)的函数关系已知,表现为线性组合,即Xj是待定系数的真值,aj是在某具体测量条件下获得的直接测量值,经N次测量(N>t)后,理应得到N个函数真关系式。
为了表达更简洁,可将各方程中系数用aij(i=1,2, …,N;j=1,2, …,t)表示,上述方程可简写成量值Y经N次测量后的测量值用Mi表示,则上述方程变为测量方程式,又称测量条件方程,式中,aij及Mi是在某具体测量条件下的直接测量值,Mi含有误差,即Mi≠Yi。
5.1.2 剩余误差方程式若用同直接测量时一样,可将称作剩余误差。
由此便可得到N个剩余误差方程式可以看出,剩余误差是各最可信赖值的函数,即5.1.3 正规方程组现在以三个待求量x1,x2,x3为例,说明建立正规方程组的过程,该计算方法和过程及结论,可推广到t个待求量中去。
第5章-1 曲线拟合(线性最小二乘法)讲解
求所需系数,得到方程: 29.139a+17.9b=29.7076 17.9a+11b=18.25
通过全选主元高斯消去求得:
a=0.912605
b=0.174034
所以线性拟合曲线函数为: y=0.912605x+0.174034
练习2
根据下列数据求拟合曲线函数: y=ax2+b
x 19 25 31 38 44 y 19.0 32.3 49.0 73.3 97.8
∑xi4 a + ∑xi2 b = ∑xi 2yi
∑xi2 a + n b = ∑yi
7277699a+5327b=369321.5 5327a+5b=271.4
曲线拟合的最小二乘法
1.曲线拟合的意思
Y
.
.
.
.
y=ax+b y=ax2+bx+c
X
y=ax+b y=ax2+bx+c 就是未知函数的拟合曲线。
2最小二乘法原理
观测值与拟合曲线值误差的平方和为最小。
yi y0 y1 y2 y3 y4…… 观测值 y^i y^0 y^1 y^2 y^3 y^4…… 拟合曲线值
拟合曲线为: y=(-11x2-117x+56)/84
x
yHale Waihona Puke 1.61 1.641.63 1.66
1.6 1.63
1.67 1.7
1.64 1.67
1.63 1.66
1.61 1.64
1.66 1.69
1.59 1.62
(完整版)5线性参数的最小二乘法处理(精)
一、等精度测量线性参数的LSM处理的正规方 程。
❖ 线性参数的误差方程式为:
l1 a11x1 a12 x2 ... a1t xt v1
l2 a21x1 a22 x2 ... a2t xt v2
……
ln an1x1 an2 x2 ... ant xt vn
v2
第三节 精度估计
❖ 一、测量数据的精度估计
❖ (一)等精度测量数据的精度估计
❖ 对包含t个未知数的线性参数方程,进行n次独立的 等精度测量。
❖ 可以证明
❖
[V V ] ~ 2 n t
2
E[V V
2
]
n
t
❖取
s 2 v v
nt
s
v
2 i
nt
❖ V1=3-(1.28×1+0.418×2)=0.884 ❖ V2=5-(1.28×1+0.418×10)=-0.46 ❖ V3=8-(1.28×1+0.418×20)=-1.64 ❖ V4=15-(1.28×1+0.418×30)=1.18 ❖ V5=18-(1.28×1+0.418×40)=0
L
8
15
18
AT A 1052 3100024 AT L 134698
( AT
A)1
1 4616
3004 102
1502
X
( AT A)1 AT L
1 4616
3004 102
1502134698 01..42188
❖ 正规方程为: ❖ 5x+102y=49 ❖ 102x+3004y=1386 ❖ 解该方程得到 ❖ x=1.28 ❖ y=0.418
i
第五章OLS估计量的大样本性质
第五章OLS估计量的大样本性质OLS(最小二乘法)估计是一种常用的线性回归方法,通过最小化观测值残差的平方和来估计参数。
在大样本情况下,OLS估计量具有以下几个重要的性质。
一、一致性:OLS估计量在大样本情况下是一致的。
也就是说,当样本容量趋于无穷大时,OLS估计量会以概率1收敛于真实参数值。
证明一致性的一种常用方法是将OLS估计量写为样本均值的形式,并应用大样本理论方法,如中心极限定理或大数定律。
二、渐进正态性:OLS估计量在大样本情况下服从正态分布。
也就是说,当样本容量趋于无穷大时,OLS估计量的分布接近于一个正态分布。
这个性质在大样本下的推论非常重要,它使得我们可以使用正态分布的性质来进行参数估计的推断,如置信区间和假设检验。
三、渐进有效性:OLS估计量在大样本情况下是渐进有效的。
也就是说,在满足一定条件下,OLS估计量的方差趋近于零,且比其他一些估计量的方差更小。
这个性质使得OLS估计量成为一种较为理想的估计方法,因为它具有较小的方差,可以提供较准确的估计结果。
四、渐进偏差:OLS估计量在大样本情况下存在偏差。
也就是说,当样本容量趋于无穷大时,OLS估计量的期望值与真实参数值之间存在一定的差距。
这个性质说明,在大样本下,OLS估计量可能并不能完全准确地估计出真实的参数值,但由于一致性的性质,它依然可以提供较为可靠的估计结果。
总结起来,OLS估计量在大样本情况下具有一致性、渐进正态性、渐进有效性和渐进偏差等性质。
这些性质使得OLS成为常用的估计方法,并为进行参数估计的推断提供了理论依据。
然而,这些性质的成立都要求满足一定的条件,如误差项的独立性、同方差性和正态性等。
因此,在实际应用中,我们需要对数据进行必要的检验和验证,以确保这些条件的成立,从而保证OLS估计量的有效性和准确性。
《误差理论与数据处理》费业泰 习题答案
《误差理论与数据处理》(第七版)习题及参考答案第一章 绪论1-5 测得某三角块的三个角度之和为180o00’02”,试求测量的绝对误差和相对误差 解:绝对误差等于: 相对误差等于:1-8在测量某一长度时,读数值为2.31m ,其最大绝对误差为20m μ,试求其最大相对误差。
%108.66 %1002.311020 100%maxmax 4-6-⨯=⨯⨯=⨯=测得值绝对误差相对误差1-10检定2.5级(即引用误差为2。
5%)的全量程为100V 的电压表,发现50V 刻度点的示值误差2V 为最大误差,问该电压表是否合格?%5.22%100%1002100%<=⨯=⨯=测量范围上限某量程最大示值误差最大引用误差该电压表合格1-12用两种方法分别测量L1=50mm ,L2=80mm 。
测得值各为50。
004m m,80.006mm.试评定两种方法测量精度的高低。
相对误差L 1:50mm 0.008%100%5050004.501=⨯-=IL 2:80mm 0.0075%100%8080006.802=⨯-=I 21I I > 所以L 2=80mm 方法测量精度高。
1-13 多级弹导火箭的射程为10000km 时,其射击偏离预定点不超过0.lkm,优秀射手能在距离50m远处准确地射中直径为2c m的靶心,试评述21802000180''=-'''o o %000031.010*********.00648002066018021802≈=''''''⨯⨯''=''=o哪一个射击精度高? 解:射手的相对误差为:多级火箭的射击精度高。
1—14若用两种测量方法测量某零件的长度L1=110mm ,其测量误差分别为m μ11±和m μ9±;而用第三种测量方法测量另一零件的长度L2=150mm 。
误差理论误差线性参数的最小二乘法
第五章 线性参数的最小二乘法例 题例1 已知某一铜棒的电阻-温度的函数关系为R a bt =+,通过试验,得到在七种不同温度t 下的电阻值如下:序号 1 2 3 4 5 6 7 t/C 。
19.1 25.0 30.136.040.045.1 50.0R/Ω76.3077.8079.7580.8082.3583.9085.10试求公式中的a (单位Ω)和b (单位Ω/C 。
)。
解:测量数值方程为19.176.30a b += 40.082.35a b += 25.077.80a b += 45.183.90a b += 30.179.75a b += 50.085.10a b += 36.080.80a b += 建立正规方程[1×1]=1×1+1×1+……+1×1=7[1×i t ]=1×1t +1×2t +……+1×7t =245.3 [i t ×i t ]=1t ×1t +2t ×2t +……+7t ×7t =9325.83 [1×i R ]=1×1R +1×2R +……+1×7R =566.0 [i t ×i R ]=1t ×1R +2t ×2R +……+7t ×7R =20044.5则正规方程为7245.3566.0a b += 245.39325.820044.5a b +=解正规方程得a =70.76Ωb =0.288Ω/C 。
因此,铜棒的电阻-温度数值关系为70.760.288R t =+例2 试由下列测量方程组,求x 、y 、z 的最可信赖值及其权。
x=0 权 1P =85 y=0 2P =108 z=0 3P =49x-y=0.92 4P =165 z -y =1.35 5P =78 z -x =1.00 6P =60解:求正规方程组各系数,如下表所示。
第五章线性参数的最小二乘法处理
5-1
最小二乘法(least square method)
1805年,勒让德(Legendre)应用“最小二乘法”, 确定了慧星的轨道和地球子午线段。 1809年,高斯(Gauss)论证其解的最佳性。
经典最小二乘法(即代数最小二乘法)
现代最小二乘法(即矩阵最小二乘法)
(n=t)
正规方程:误差方程按最小二乘法原理转化得到的 有确定解的代数方程组。
5-18
第二节、正规方程
一、等精度测量线性参数最小二乘法的正规方程 二、不等精度测量线性参数最小二乘法的正规方程 三、非线性参数最小二乘法处理的正规方程(略) 四二节
正规方程
一、等精度测量线性参数最小二乘处理的正规方程
误差方程
a11 , a12 , , a1t a , a ,, a 2t A 21 22 a n1 , a n 2 , , a nt
系数矩阵
误差方程
v1 l1 (a11 x1 a12 x 2 a1t xt ) v 2 l 2 (a 21 x1 a 22 x 2 a 2t xt ) v n l n (a n1 x1 a n 2 x 2 a nt xt )
相应的估计值
y1 a11 x1 a12 x 2 a1t xt y 2 a 21 x1 a 22 x 2 a 2t xt y n a n1 x1 a n 2 x 2 a nt xt
其误差方程:
v1 l1 (a11 x1 a12 x 2 a1t xt ) v 2 l 2 (a 21 x1 a 22 x 2 a 2t xt ) v n l n (a n1 x1 a n 2 x 2 a nt xt )
(完整版)5线性参数的最小二乘法处理(精)
一、等精度测量线性参数的LSM处理的正规方 程。
❖ 线性参数的误差方程式为:
l1 a11x1 a12 x2 ... a1t xt v1
l2 a21x1 a22 x2 ... a2t xt v2
……
ln an1x1 an2 x2 ... ant xt vn
v2
AT L A X 0
( AT A) X AT L
❖ 解上面方程组得
X AT A 1 AT L Nhomakorabea❖ 可以证明最小二乘估计值是无偏估计。
❖ 测量方程为:
❖
x+2y=3
❖
x+10y=5
❖
x+20y=8
❖
x+30y=15
❖
x+40y=18
1 2
1 10
A 1
20
1 30
1
40
3 5
ank [ln (an1 x1 an2 x2 ... ant xt )] 0 k 1,2, ,t
记
[ai ai ] a1i a1i a2i a2i ... ani ani i 1,2 ,t [ai a j ] a1i a1 j a2i a2 j ani anj (i, j 1,2, ,t) [ai L] a1il1 a2il2 ... aniln i 1,2 ,t
' i
.........
i
L* A* X V *
最小 ❖
V *V
(L*
A*
^
X )T(L*
A*
^
X)
第二节 正规方程
❖ 为了得到可靠的测量结果,测量次数n总是要 多于未知数的数目t。因而直接用一般解代数 方程的方法求解这些未知数是不可能的。最 小二乘法可以将误差方程转化为有确定解的 代数方程,而且方程个数正好等于未知数的 个数,从而可求解这些未知数。
第五章参数的最小二乘法估计
第二节 线性参数的最小二乘法
a1 j a2 j aj a nj
y1 y2 y y n
第二节 线性参数的最小二乘法
[al ak ] 和 [a j y ]分别为如下两列向量的内积:
如为精密测定1号、2号和3号电容器的电容量
x1 x2 x3
待求量 测得值
为了获得更可靠 的结果,测量次 数总要多于未知 参数的数目
y1
y3 y2
0.3 ( y1 )
y4
待解的数学模型
x1 x2 x1
0.4 ( y2 )
x3 0.5 ( y3 ) x2 x3 0.3 ( y4 )
• (1)最小绝对残差和法: • (2)最小最大残差法: • (3)最小广义极差法:
v
i
Min
max vi Min
maxvi minvi Min
主要内容
• 最小二乘法原理 • 线性测量方程组中参数的最小 二乘法 • 非线性测量方程组中参数的最 小二乘法 • 组合测量
第二节 线性参数的最小二乘法
v1 v2 V vn
l1 l2 L= ln
和n×t阶矩阵
第二节 线性参数的最小二乘法
a11a12 a1t A a21a22 a2t a a a nt n1 n 2
第二节 线性参数的最小二乘法
测量方程组系数与正规方程组系数
y1 a11 x1 a12 x2 a1t xt y2 a21 x1 a22 x2 a2t xt yn an1 x1 an 2 x2 ant xt
系统辨识第5章 线性动态模型参数辨识 最小二乘法
度函数
,则称uS(uk()为) “持续激励”信号。
● 定义4 一个具有谱密度 Fn (为z 1的) 平f1z稳1 信f2号z 2u(k)称fn为z nn 阶
“持续激励”Fn信(e号j ),2 S若u (对) 一0 切形如 Fn (e j ) 0
的滤波器,关系式
,意味着
。
● 定理2 设输入信号u(kR)u是(0)平稳R随u (1机) 信号,Ru (如n 果1)相关函数矩阵
式中
zL H L nL
nzHLLL[[zn(h(hh11TT)T),((,(zL12n())()22)),,,,znz(((LzLzL)(()]10]))1)
z(1 na ) z(2 na )
z(L na )
u(0) u(1)
u(L 1)
u(1 nb )
u(2
nb
)
u(L nb )
5.2 最小二乘法的基本概念
● 两种算法形式
① 批处理算法:利用一批观测数据,一次计算或经反复迭代,
以获得模型参数的估计值。
②
递推算法:在上次模型参数估计值
ˆ
(k
1)的基础上,根据当
前获得的数据提出修正,进而获得本次模型参数估计值ˆ (k ),
广泛采用的递推算法形式为
(k ) (k 1) K (k )h(k d )~z (k )
z(k ) h (k ) n(k )
式中z(k)为模型输出变量,h(k)为输入数据向量, 为模型参
数向量,n(k)为零均值随机噪声。为了求此模型的参数估计值, 可以利用上述最小二乘原理。根据观测到的已知数据序列
和{z(k)} ,{h极(k小)} 化下列准则函数
L
J ( ) [z(k ) h (k ) ]2
《误差理论与数据处理》作业答案
1.若舍去部分的数值,大于保留部分末位的半个单位,则末位数加1。
2.若舍去部分的数值,小于保留部分末位的半个单位,则末位数不变。
3.若舍去部分的数值,等于保留部分末位的半个单位,则末位凑成偶数,即当末位为偶数时则末位不变,当末位是奇数时则末位加1。
(3)求圆球的体积的测量不确定度
圆球体积为:
其标准不确定度应为:
确定包含因子。查t分布表t0.01(9)=3.25,及K=3.25
最后确定的圆球的体积的测量不确定度为
U=Kuc=3.25×0.616=2.002cm3
4-2
解:
的不确定度分量:
的不确定度分量:
因此,望远镜的放大率D的合成标准不确定度为:
代入数据得
解得
将x、y代入误差方程式
测量数据的标准差为
求解不定乘数
解得
x、y的精度分别为
方法二:
按矩阵形式计算,由误差方程 ,
上式可以表示为:
可得:
式中:
所以:
将x、y代入误差方程式
测量数据的标准差为
,故
x、y的精度分别为
5-3:
解:按矩阵形式计算,误差方程为
可以表示为:
可得:
式中:
所以:
将 代入误差方程式
合成标准不确定度:
自由度为:
取置信概率P=0.99,查t分布表包含因子 ,则展伸不确定度为:
不确定度修约:
3.不确定度报告
漏电电流为 。其展伸不确定度 ,是由合成标准不确定度 及包含因子 确定的,对应的置信概率P=0.99,自由度 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
v 1
v2
v
n
v2
最小
v
n
V T V 最小
或:
(L A X ˆ)T(L A X ˆ) 最小
第五章线性参数最小二乘法
§5-2 正 规 方 程
线性参数的最小二乘法处理程序:
1. 根据具体问题列出误差方程式; 2. 按最小二乘法原理,利用极值的方法
将误差方 程转换为正规方程; 3. 求解正规方程,得到待求的估计量; 4. 精度估计
可知,要使P最大,应满足:
12 1222 22n2 n2最小
第五章线性参数最小二乘法
引入权的符号 p,即:
p 1 v 1 2p 2 v22 p n vn2 最小
等精度测量中:ຫໍສະໝຸດ v12v22 vn2最小二、以矩阵方式表示:
l1
L
l
2
l
n
x1
Xˆ
x
2
V
v1
v
2
x
t
v
n
测量结果 估计值 第五章线性参数最小二乘法
1 45
估计值: Xˆ
a
b
X ˆ a b 第五 章线性参数(最小A 二乘法 TA)1ATL
X ˆ
a b
1 0.9 09 3.9 65 74
y0a19.9m 9 7 m
b0.036504.0000/℃18
a 199.997
第五章线性参数最小二乘法
例:为研究 20mm轴的几何形状误差,
则等精度测量的线性参数最小二乘法 处理的正规方程为:
a1a1x1a1a2x2a1atxt a1l
a2a1x1a2a2x2
a2at xt
a2l
ata1x1ata2x2atatxt atl
第五章线性参数最小二乘法
正规方程有如下特点:
① 沿主对角线分布着平方项系数 a1a1 , a2a2 ,…,atat 都为正数;
v1 l1 f1 ( x1 , x2 ,, xt )
v
2
l2
f2 ( x1 , x2 ,, xt )
vn
ln
f ( x , x ,, x ) 第五章线性参数最小二乘法
n
1
2
t
若数据 l1, l2,, ln的测量误差是无偏
的(无系统误差)、相互独立的,且服从正
态分布,并设其标准差为1,2,,n,则
在 40mm长度内选5个断面测得直径偏
差 d 如下表,试确定沿长度方向形状
误差的规律。
被测断面距端面距离
L i / mm
第五章 线 性 参 数 的 最小二乘法处理
西安工业大学光电学院
第五章线性参数最小二乘法
目录
一. 最小二乘法原理 二. 正规方程 三. 精度估计 四. 组合测量的最小二乘法处理
第五章线性参数最小二乘法
§5-1 最小二乘法原理
一种数据处理方法 用途:参数的最可信赖值估计
组合测量的数据处理 拟定经验公式 回归分析 分类:经典最小二乘法(代数法) 矩阵最小二乘法
即:
ATV 0
第五章线性参数最小二乘法
VLAX ˆ 所以正规方程又可表示为:
A T(LA X ˆ)0 即:
(ATA)X ˆ ATL 得正规方程的矩阵解为:
X ˆ (A TA )1A TL
第五章线性参数最小二乘法
例:在不同温度下,测定铜棒的长度如下
表,试估计0℃时的铜棒长度 y 0 和铜
的线膨胀系数 。
② 以主对角线为对称线,对称分布的各系
数彼此两两相等,如 a1a2与a2a1相等, a2at 与 ata2相等,…。
第五章线性参数最小二乘法
2 以矩阵形式表示
正规方程组可写为:
a11v1 a21v2 an1vn 0
a12v1
a22v2
an2vn
0
a1tv1 a2tv2 ant vn 0
各测量结果出现于相应真值附近d1,,dn
区域内的概率分别为:
1
P1 1 2
e d 1 2
(
2
2 1
)
1
1
Pn n 2
e d n 2
(
2
2 n
)
n
第五章线性参数最小二乘法
由概率乘法定理可知,各测量数 据同时出现在相应区域的概率应为:
PP1P2Pn
P 12 1 n (2)ne (1 21 2 2 22 2 n 2n 2 )/2 d1 d2 dn
第五章线性参数最小二乘法
根据线性代数的知识,考察下列方程组:
y1 f1 ( x1 , x2 , , xt )
y2
f2 ( x1 , x2 , , xt )
y n f n ( x1 , x 2 , , x t )
nt ❖当
时:方程有无穷多解
❖当 nt 时:方程有唯一解
nt ❖当
时:超定方程 第五章线性参数最小二乘法
第五章线性参数最小二乘法
一、等精度测量线性参数最小二乘法处理的 正规方程
v1 l1 (a11x1 a12x2 a1t xt )
v2
l2
(a21x1
a22x2
a2t
xt
)
vn ln (an1x1 an2x2 antxt )
利用求极值的方法来满足最小二乘法原理
第五章线性参数最小二乘法
1. 对残余误差的平方和 v 2 求导,并令 其为零。
则: li a b ti (i 1 ,2 , ,6 )
测量结果:
L
2000 第 五lll章162线性参数最小二乘2222法000000001100
. 36
. 72
. 80
. 07
. 48
2001 . 60
误差方程的系数矩阵:
1 10
1
20
1 25
A
1
30
1 40
残差
a11 a12 a1t
A
a
21
a
n1
a 22 an2
a2t
a nt
误差方程的 系数矩阵
则误差方程可表示为:
v1 l1 a11
v2
l2
a21
vn ln an1
a12 a22
an2
a1t x1 a2t x2
antxn
即:
VLAX ˆ 第五章线性参数最小二乘法
v1
i1
2
3
4
5
6
t i /℃ l i /℃
10
20
25
30
40
45
2000.36 2000.72 2000.80 2001.07 2001.48 2001.60
第五章线性参数最小二乘法
解:铜棒在温度 t i 下的长度:
li y 0 (1 ti)(i 1 ,2 , ,6 )
令: y0 a , y0 b
y
yi
vi
•4
2•
•3
•6
•5
yaxb
•1
xi
第五章线性参数最小二乘法
x
一、最小二乘法原理:测量结果的最可信赖
值是在残余误差平方和最小的条件下求出。 n v i 2 最小
i1
为 y设1,直y2接, 量,Y1y,nY,2而, 测,Y量n数的据估l计1,量l2,分别, ln
的残余误差应为:
组误 差 方 程