风洞试验
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A.风洞实验的基本原理是相对性原理和相似性原理。根据相对性原理,飞机在静止风洞实验
空气中飞行所受到的空气动力,与飞机静止不动、空气以同样的速度反方向吹来,两者的作用是一样的。但飞机迎风面积比较大,如机翼翼展小的几米、十几米,大的几十米(波音747是60米),使迎风面积如此大的气流以相当于飞行的速度吹过来,其动力消耗将是惊人的。根据相似性原理,可以将飞机做成几何相似的小尺度模型,气流速度在一定范围内也可以低于飞行速度,其试验结果可以推算出其实飞行时作用于飞机的空气动力。[1]
B.风洞实验原理及实验仪器
一、实验目的
通过参观,让学生了解风洞实验装置的构造、作用,常用的风洞实验仪器及作用,风洞实验的过程和风洞实验的原理。
二、风洞系统简介
风洞作为一套完整的空气动力实验装备,其构造是较为复杂的。按风洞实验段气流速度的大小,一般可分为:低速风洞(M≤0.3),高亚音速风洞(0.3≤M≤0.8),跨音速风洞(0.8≤M≤1.5)。超音速风洞(1.5≤M≤4.5)。高超音速风动(4.5≤M≤10),极高速风洞(M>10)。
1.以805实验室HG-4号超音速风洞为例,它主要由以下几部分组成:
l 气源系统:由大型空气压缩机提供清洁干燥的高压空气;
l 风洞本体:由高压管道、紧闭阀、快速阀、调压阀、稳定段、喷管、试验段、攻角机构、可调节超音速扩散、亚音速扩散段等组成;
l 控制系统:控制系统及模型状态等;
l 测量系统:测量系统系数、模型空气动力及模型转速,并作为纹影显示及摄影等,
l 消音系统:降低噪音。
实验过程:空气压缩机把压缩空气打进储气瓶储存起来,压缩空气经管道流向风洞。实验时,预给调压阀一开度,开启紧闭阀至完全打开后,开启快速阀,压缩空气经稳定段至喷管,到达试验段时已获得所需超音速流场,待稳定后测量系统工作。最后气流经扩压段扩压向出口消音塔排去。
2.低速风洞构造、作用:低速风洞的动力由风机提供、风速可通过调整风机的转速来调节。低速风洞有稳定段、实验段和扩压段,没有喷管。为了节约能源和降低噪音,低速风洞常做成环流式的。
3.常用仪器:风洞的常用仪器有压力传感器和天平,测温传感器、压力传感器和温度传感器是监测风洞流场必不可少的仪器。而天平则是用来测量实验模型在风洞中受力情况的一种多元传感器,它是通过受力产生形变,给出形变电信号经换算求出受力的一种精密仪器。
三、思考题
1.超音速流动是如何建立的?
2.超音速流场建立的条件如何?
3.风洞实验是如何测得模型气动力的?
C.优点
风洞实验尽管有局限性,但有如下四个优点:①能比较准确地控制实验条风洞实验
件,如气流的速度、压力、温度等;②实验在室内进行,受气候条件和时间的影响小,模型和测试仪器的安装、操作、使用比较方便;③实验项目和内容多种多样,实验结果的精确度较高;④实验比较安全,而且效率高、成本低。因此,风洞实验在空气动力学的研究、各种飞行器的研制方面,以及在工业空气动力学和其他同气流或风有关的领域中,都有广泛应用。
编辑本段要求
模型的设计和制造是风洞实验的一个关键。模型应满足如下要求:形状同实风洞实验模拟技术
物几何相似或符合所研究问题的需要(如内部流动的模拟等);大小能保证在模型周围获得所需的气流条件;表面状态(如光洁或粗糙程度、温度、人工边界层过渡措施等)与所研究的问题相适应;有足够的强度和刚度,支撑模型的方式对实验结果的影响可忽略或可作修正;能满足使用测试仪器的要求;便于组装和拆卸。此外,某些实验还对刚度、质量分布有特殊要求。模型的材料在低速风洞中一般是高强度木材或增强塑料,在高速和高超声速风洞中常用碳钢、合金钢或高强度铝合金。有些实验根据需要还采用其他材料。模型通常都是缩尺的,也有全尺寸的,有时还可以按一定要求局部放大。对于几何对称的实物,还可以利用其对称性做成模拟半个实物的模型。对风洞实验结果通常须进行处理和分析。其主要内容是:将测量值换算成所需的空气动力学特性数据;分析综合各个实验环节可能引入的误差;对实验结果作出物理解释和数学说明;根据模型流动和实物流动的差别,修正实验结果。模型流动和实物流动的差别主要有:由风洞和模型造成的模拟失真,如雷诺数的差别、进气和喷流的模拟失真等;其次是风洞洞壁和模型支架的干扰影响;还有风洞流场的非均匀性、湍流度和噪声影响等。其中有些可以通过计算或者实验进行修正,更重要的是要注意积累使用风洞实验结果的经验。
编辑本段分类
流体力学方面的风洞实验的主要分类有测力实验、测压实验、传热实验、动态模型实验和流态观测实验等。测力和测压实验是测定作用于模型或模型部件(如飞行器模型中的一个机翼等)的气动力及表面压强分布,多用于为飞行器设计提供气动特性数据。传热实验主要用于研究超声速或高超声速飞行器上的气动加热现象。动态模型实验包括颤振、抖振和动稳定性实验等,要求模型除满足几何相似外还能模拟实物的结构刚度、质量分布和变形。流态观测实验广泛用于研究流动的基本现象和机理。计算机在风洞实验中的应用极大地提高了实验的自动化、高效率和高精度的水平。测力实验利用风洞天平(见风洞测试仪器)测量作用在模型上的空气动力和力矩的风洞实验。它是风洞实验中最重要的实验项目之一。测力实验主要有:全模型和部件的纵向和横向测力实验、喷流实验、静气动弹性实验、外挂物测力和投放轨迹实验等。全模型和部件的纵向和横向测力实验测量沿模型上三个互相垂直轴的力和绕三个轴的力矩的实验。其中无测滑的实验为纵向实
验,有测滑的为横向实验。为研究各部件的贡献和干扰,除采用全模和部件组拆实验外,更精确的方法是在模型内安装多台天平,同时测量全机和部件的气动力。对于有对称面的飞行器,在绕流对称的条件下,可以洞壁或反射平板为对称面,取模型的一半做实验。这种实验称为半模实验,其优点是模型可做得大些,雷诺数可以高些,无尾支杆干扰,制造方便和经济。缺点是存在洞壁边界层和缝隙的影响以及仅能进行纵向实验。喷流实验测量飞行器发动机喷流对飞行器机体气动特性影响的实验。在风洞中要精确模拟喷流是很困难的。除模拟自由流马赫数∞、比热比γ和喷管几何形状外,还要模拟出口与自由流静压比pj/p∞、出口马赫数j、喷流比热比γj、普适气体常数与热力学温度乘积比(RT)j/(RT)∞等相似参数。通常只能有选择地模拟其中一些项目,例如,一般当喷口处于飞行器底部时,可用冷空气模拟喷流。当喷口处于飞行器底部上游时,还应模拟γj和(RT)j/(RT)∞。火箭发动机喷流模拟以用缩尺火箭发动机为宜。喷流实验的关键在于研制高精度天平、小干扰的支架和不传力的输气密封系统。静气动弹性实验测量模型刚度对气动特性影响的实验。通常风洞实验中的模型都是用强度和刚度较大的金属制作的,而真实飞行器的刚度比模型低得多。因此,需制造一种由金属作骨架、用轻木或塑料作填料、能模拟飞行器各部件弯曲和扭转刚度的弹性模型,把它放在风洞中作模拟飞行条件的高动压实验,测量对模型刚度的影响,修正刚体模型实验的数据。外挂物测力和投放轨迹实验测量飞行器外挂油箱、炸弹或其他物体的气动力和外挂物投放轨迹的实验。由于风洞尺寸的限制,风洞中外挂物模型很小,测量很困难。早期的实验是设计专门的外挂物天平。天平可以放在外挂物模型或者它的挂架内直接测量。外挂物投放轨迹是用高速摄影或多次曝光技术对自由投放的模型进行照相记录。图3是在低速风洞中用多次曝光法拍摄的外挂物投放轨迹照片。这种方法简便、直观,但要模拟弗劳德数,所以模型设计和调整很困难。20世纪60年代以来,发展出一种双天平测量系统,母机模型和外挂物分别支撑在各自的天平上。实验时首先测量外挂物和母机的气动力,输入计算机,由运动方程和给定的时间间隔算出外挂物在气动力作用下运动的下一个位置,然后操纵外挂物运动到计算位置再进行测量。一直到所要求的轨迹测出为止。这时,母机和外挂物所有瞬间的气动力也同时测出。这种方法不要求模型动力相似,模型可多次使用。同时,这套装置也可以用于其他双体实验或大攻角失速后运动轨迹测量等。缺点是精度要求较高,制造费用大。除上述实验外,还有一些专门的测力实验,如铰链力矩测量、摩阻测量、进气道阻力测量、马格纳斯力和力矩(见马格纳斯效应)测量等,这些都要有专门设计的天平。测压实验风洞洞壁、模型表面上各点和气流中各点的当地压力参数测量。对应于流场的每一点,有一个总压p0和一个静压p∞。总压是假想气流等熵绝热地滞止,最后流速降为零时所能达到的压力。静压是气流内部相互作用的流层之间的法向力。在不可压缩流体中,总压和静压之差,即该流动点上由于气流动力效应引起的压力增高(p0-p∞),称为动压或速压q∞。气流压力的测量,是空气动力实验中最基本的测量项目之一。1738年,丹尼尔第一·伯努利就确立了无粘性不可压缩流体中压力与速度之间的关系,后称为伯努利定理。这个定理后来被推广到可压缩流体。因为测量气流压力比较容易,故风洞实验中常借助测量气流的压力来推求速度。物体表面某一点(如第i点)的压力pi,常以无量纲形式的压力系数Cρii表示。如果p∞和q∞分别代表远前方未扰动气流的静压和动压,则Cρii是该点的剩余压力(pi-q∞)与动压q∞之比。风洞中最常见的测压实验是模型表面压力分布测量。模型表面上直接开有测压孔。