对数运算及对数函数习题课
对数及对数运算(1)
知识探究(一):对数函数的概念
思考1:在上面的问题中,若要使残留的 1 污垢为原来的 ,则要漂洗几次? 64
4
思考2:在关系式 y log 1 x中,取 x a (a 0) 对应的y的值存在吗?怎样计算?
思考3:函数 y log 1 x 称为对数函数,
4
一般地,什么叫对数函数?
思考4:为什么在对数函数中要求a>0, 且a≠l?
理论迁移
例1
用logax,logay,logaz表示下列 各式: 2 xy x y (1) log a ; (2) log a 3 . z z
例2
求下列各式的值:
(1) log2(47×25); (2) lg5
31log3 2
100
;
(3) log318 -log32 ;
(4)
3
1 log 3 2
2.2.2 第一课时
对数函数及其性质 对数函数的概念与图象
问题提出
1 5730 p 2
t
1.用清水漂洗含1个单位质量污垢的 衣服,若每次能洗去污垢的四分之三, 试写出漂洗次数y与残留污垢x的关系式.
2. y log 1 x (x>0)是函数吗?若
4
是,这是什么类型的函数?
a N x 指数式ax=N 指数的底数 幂 幂指数 对数式x= 对数的底数 真数 对数 logaN
思考4:根据对数定义,logal和logaa和 logaan(a>0,a≠1)的值分别是多少?
设loga1=x, 则ax=1, 所以x=0,得loga1=0 设logaa=x, 则ax=a, 所以x=1,得logaa=1
作业: P68练习:1, 2,3. P74习题2.2A组:3,4,5.
新教材高中数学第4章对数运算与对数函数2 1对数的运算性质巩固练习含解析北师大版必修第一册
2.1对数的运算性质课后训练·巩固提升1.log242+log243+log244等于()A.1B.2C.24D.12242+log243+log244=log24(2×3×4)=log2424=1.故选A.2.化简12log612-2log6√2的结果为()A.6√2B.12√2C.log6√3D.12=log6√12-log62=log6√122=log6√3.故选C.3.方程(lg x)2+(lg 2+lg 3)lg x+lg 2lg 3=0的两根的积x1x2等于()A.lg 2+lg 3B.lg 2lg 3C.16D.-6lg x1+lg x2=-(lg2+lg3),∴lg(x1x2)=-lg6=lg6-1=lg16,∴x1x2=16.故选C.4.21+12log25的值等于()A.2+√5B.2√5C.2+√52D.1+√521+12log25=2×212log25=2×2log2√5=2√5,选B.5.已知a=log32,那么log38-2log36用a表示为()A.a-2B.5a-2+a)2 D.3a-a2-1log38-2log36=3log32-2(log32+log33)=3a-2(a+1)=a-2.6.已知a 23=49(a>0),则lo g23a=.a 23=49,∴a2=64729,∴a=827=(23)3,∴lo g23a=lo g23(23)3=3.7.计算(lg 14-lg25)÷100-12= .14-lg25)÷100-12=(lg 1100)÷10-1=-2×10=-20.208.lg 0.01+log 216的值是 ..01+log 216=lg 1100+log 224=-2+4=2.(lg x )2+lg x 5-6=0.(lg x )2+5lg x-6=0,即(lg x+6)(lg x-1)=0,所以lg x=-6或lg x=1,解得x=10-6或x=10.经检验x=10-6和x=10都是原方程的解,所以原方程的解为x=10-6或x=10.1.计算log 3√2743+lg 25+lg 4+7log 72的值为( ) A.-14B.4C.-154D.154=log 3√274-log 33+lg52+lg22+2=14log 333-1+2lg5+2lg2+2=34-1+2+2=154.2.已知函数f (x )满足:当x ≥4时,f (x )=(12)x ;当x<4时,f (x )=f (x+1),则f (2+log 23)=( ) A.124 B.112 C.18 D.382+log 23<2+log 24=4,3+log 23>3+log 22=4,故f (2+log 23)=f (2+log 23+1)=f (3+log 23)=(12)3+log 23=(12)3·12log 23=18×13=124.3.若lg a ,lg b 是方程2x 2-4x+1=0的两个实根,则(lg a b )2的值为( ) A.2B.12C.4D.14a b )2=(lg a-lg b )2=(lg a+lg b )2-4lg a lg b=22-4×12=2.4.若lg 2=a ,lg 3=b ,则用a ,b 表示lg √45= .√45=12lg45=12lg(5×9)=12lg5+12lg9=12(1-lg2)+lg3=-12lg2+lg3+12=-12a+b+12. -12a+b+125.已知2x =9,log 283=y ,则x+2y 的值为 .2x =9,得log 29=x ,所以x+2y=log 29+2log 283=log 29+log 2649=log 264=6.6.求下列各式的值:(1)log 535+2log 5√2-log 515-log 514; (2)〖(1-log 63)2+log 62·log 618〗÷log 64;(3)lg 5(lg 8+lg 1 000)+(lg 2√3)2+lg 0.06+lg 16.原式=log 535+log 52-log 515-log 514=log 535×215×14=log 535014=log 525=2. (2)原式=[(log 663)2+log 62·log 6362]÷log 64=〖(log 62)2+log 62(log 636-log 62)〗÷log 64=〖(log 62)2+2log 62-(log 62)2〗÷log 64=2log 62÷log 64=log 64÷log 64=1.(3)原式=lg5(3lg2+3)+3(lg2)2+lg 6100-lg6=lg5(3lg2+3)+3(lg2)2+lg6-2-lg6=3·lg5·lg2+3lg5+3·(lg2)2-2=3lg2(lg2+lg5)+3lg5-2=3lg2+3lg5-2=3(lg2+lg5)-2=3-2=1. f (x )=x 2+(lg a+2)x+lg b ,f (-1)=-2,方程f (x )=2x 至多有一个实根,求实数a ,b 的值.f (-1)=-2得,1-(lg a+2)+lg b=-2,所以lg b a =-1=lg 110,所以b a =110,即a=10b.又因为方程f (x )=2x 至多有一个实根,即方程x 2+(lg a )x+lg b=0至多有一个实根,所以(lg a )2-4lg b ≤0,即〖lg(10b )〗2-4lg b ≤0,所以(1-lg b )2≤0,所以lg b=1,b=10,从而a=100. 故实数a ,b 的值分别为100,10.a>1,若对于任意的x ∈〖a ,2a 〗,都有y ∈〖a ,a 2〗满足方程log a x+log a y=3,求a 的取值范围.log a x+log a y=3,∴log a (xy )=3.∴xy=a 3.∴y=a 3x . ∵函数y=a 3x (a>1)在(0,+∞)上是减函数,又当x=a 时,y=a 2,当x=2a 时,y=a 32a =a 22,∴[a 22,a 2]⊆〖a ,a 2〗.∴a 22≥a.又a>1,∴a ≥2.∴a的取值范围为〖2,+∞).。
对数的运算及对数函数
§2.2.1 对数与对数运算(一)¤知识要点:1. 定义:一般地,如果x a N =(0,1)a a >≠,那么数 x 叫做以a 为底 N 的对数(logarithm ).记作 log a x N =,其中a 叫做对数的底数,N 叫做真数2. 我们通常将以10为底的对数叫做常用对数(common logarithm ),并把常用对数10log N 简记为lg N 在科学技术中常使用以无理数e=2.71828……为底的对数,以e 为底的对数叫自然对数,并把自然对数log e N 简记作ln N3. 根据对数的定义,得到对数与指数间的互化关系:当0,1a a >≠时,log b a N b a N =⇔=.4. 负数与零没有对数;log 10a =, log 1a a = ,log a a N N = ¤例题精讲:【例1】将下列指数式化为对数式,对数式化为指数式:(1)712128-=; (2)327a =; (3)1100.1-=; (4)12log 325=-; (5)lg0.0013=-; (6)ln100=4.606.【例2】计算下列各式的值:(1)lg 0.001; (2)4log 8; (3)第14练 §2.2.1 对数与对数运算(一)※基础达标1.log (0,1,0)b N a b b N =>≠>对应的指数式是( ). A. b a N = B. a b N = C. N a b = D. N b a = 2.下列指数式与对数式互化不正确的一组是( ). A. 01ln10e ==与 B. 1()381118log 223-==-与 C. 123log 9293==与 D. 17log 7177==与 3.设lg 525x =,则x 的值等于( ).A. 10B. 0.01C. 100D. 10004.设13log 82x=,则底数x 的值等于( ). A. 2 B. 12 C. 4 D. 145.已知432log [log (log )]0x =,那么12x -等于( ).A.13 B. C. D. 6.若21log 3x =,则x = ; 若log 32x =-,则x = .7.计算:= ; 6l g 0.1= . ※能力提高8.求下列各式的值:(1)8; (2)9log9.求下列各式中x 的取值范围:(1)1log (3)x x -+; (2)12log (32)x x -+.※探究创新10.(1)设log 2a m =,log 3a n =,求2m n a +的值.(2)设{0,1,2}A =,{log 1,log 2,}a a B a =,且A B =,求a 的值.第15讲 §2.2.1 对数与对数运算(二)¤知识要点:1. 对数的运算法则:log ()log log a a a M N M N =+,log log log aa a MM N N=-,log log n a a M n M =,其中0,1a a >≠且,0,0,M N n R >>∈. 三条法则是有力的解题工具,能化简与求值复杂的对数式.2. 对数的换底公式log log log b a b N N a =. 如果令b =N ,则得到了对数的倒数公式1log log a b b a=. 同样,也可以推导出一些对数恒等式,如log log n n a a N N =,log log m n a a nN N m=,log log log 1a b c b c a =等. ¤例题精讲:【例2】若2510a b ==,则11a b+= .【例4】(1)化简:532111log 7log 7log 7++; (2)设23420052006log 3log 4log 5log 2006log 4m ⋅⋅⋅=,求实数m 的值.第15练 §2.2.1 对数与对数运算(二)※基础达标 1.). A. 1B. -1C. 2D. -2 2.25log ()a -(a ≠0)化简得结果是( ).A. -aB. a 2C. |a |D. a3.化简3log 1的结果是( ). A.12B. 1C. 24.已知32()log f x x =, 则(8)f 的值等于( ). A. 1 B. 2 C. 8 D. 125.化简3458log 4log 5log 8log 9⋅⋅⋅的结果是 ( ).A .1 B.32C. 2D.3 6.计算2(lg5)lg2lg50+⋅= .7.若3a =2,则log 38-2log 36= .第16讲 §2.2.2 对数函数及其性质(一)¤知识要点:1. 定义:一般地,当a >0且a ≠1时,函数a y=log x 叫做对数函数(logarithmic function). 自变量是x ; 函数的定义域是(0,+∞).2. 由2log y x =与12log y x =的图象,可以归纳出对数函数的性质:定义域为(0,)+∞,值域为R ;当1x =时,0y =,即图象过定点(1,0);当01a <<时,在(0,)+∞上递减,当1a >时,在(0,)+∞上递增.¤例题精讲:【例1】比较大小:(1)0.9log 0.8,0.9log 0.7,0.8log 0.9; (2)3log 2,2log 3,41log 3.【例2】求下列函数的定义域:(1)y (2)y【例4】求不等式log (27)log (41)(0,1)a a x x a a +>->≠且中x 的取值范围.第16练 §2.2.2 对数函数及其性质(一)※基础达标1.下列各式错误的是( ).A. 0.80.733>B. 0.10.10.750.75-<C. 0..50..5log 0.4log 0.6>D. lg1.6lg1.4>.2.当01a <<时,在同一坐标系中,函数log x a y a y x -==与的图象是( ).AC3.下列函数中哪个与函数y =x 是同一个函数( )A.log (0,1)a xy a a a =>≠ B. y =2x xC. log (0,1)x a y a a a =>≠D. y4.函数y ).A. (1,)+∞B. (,2)-∞C. (2,)+∞D. (1,2]5.若log 9log 90m n <<,那么,m n 满足的条件是( ).A. 1 m n >>B. 1n m >>C. 01n m <<<D. 01m n <<<6.函数y = . (用区间表示)7.比较两个对数值的大小:ln 7 ln12 ; 0.5log 0.7 0.5log 0.8. ※能力提高8.求下列函数的定义域:(1) ()()3log 1f x x =++; (2)y9.已知函数2()3log ,[1,4]f x x x =+∈,22()()[()]g x f x f x =-,求: (1)()f x 的值域; (2)()g x 的最大值及相应x 的值.第17讲 §2.2.2 对数函数及其性质(二)¤知识要点:1. 当一个函数是一一映射时, 可以把这个函数的因变量作为一个新函数的自变量, 而把这个函数的自变量新的函数的因变量. 我们称这两个函数为反函数(inverse function ). 互为反函数的两个函数的图象关于直线y x =对称.2. 函数(0,1)x y a a a =>≠与对数函数log (0,1)a y x a a =>≠互为反函数.3. 复合函数(())y f x ϕ=的单调性研究,口诀是“同增异减”,即两个函数同增或同减,复合后结果为增函数;若两个函数一增一减,则复合后结果为减函数. 研究复合函数单调性的具体步骤是:(i )求定义域;(ii )拆分函数;(iii )分别求(),()y f u u x ϕ==的单调性;(iv )按“同增异减”得出复合函数的单调性.¤例题精讲:【例1】讨论函数0.3log (32)y x =-的单调性.【例2】(05年山东卷.文2)下列大小关系正确的是( ). A. 30.440.43log 0.3<< B. 30.440.4log 0.33<< C. 30.44log 0.30.43<< D. 0.434log 0.330.4<<第17练 §2.2.2 对数函数及其性质(二)※基础达标 1.函数1lg1xy x+=-的图象关于( ). A. y 轴对称 B. x 轴对称 C. 原点对称D. 直线y =x 对称2.函数212log (617)y x x =-+的值域是( ).A. RB. [8,)+∞C. (,3]-∞-D. [3,)+∞3.(07年全国卷.文理8)设1a >,函数()log a f x x =在区间[]2a a ,上的最大值与最小值之差为12,则a =( ).A.B. 2C.D. 44.图中的曲线是log a y x =的图象,已知a的值为43,310,15,则相应曲线1234,,,C C C C 的a 依次为( ).A.43,15,310B. 43,310,15C. 15,310,43D. 43,310,155.下列函数中,在(0,2)上为增函数的是( ). A. 12log (1)y x =+B. 2log y = C. 21log y x= D.20.2log (4)y x =-6.函数())f x x =是 函数. (填“奇”、“偶”或“非奇非偶”)7.函数x y a =的反函数的图象过点(9,2),则a 的值为 . ※能力提高8.已知6()log ,(0,1)a f x a a x b=>≠-,讨论()f x 的单调性.0 x C 1C 2C 4C 3 1y第18讲 §2.3 幂函数¤学习目标:通过实例,了解幂函数的概念;结合函数y=x, y=x 2, y=x 3, y =1/x , y=x 1/2 的图像,了解它们的变化情况.知识要点:1. 幂函数的基本形式是y x α=,其中x 是自变量,α是常数. 要求掌握y x =,2y x =,3y x =,1/2y x =,1y x -=这五个常用幂函数的图象. 2. 观察出幂函数的共性,总结如下:(1)当0α>时,图象过定点(0,0),(1,1);在(0,)+∞上是增函数.(2)当0α<时,图象过定点(1,1);在(0,)+∞上是减函数;在第一象限内,图象向上及向右都与坐标轴无限趋近.3. 幂函数y x α=的图象,在第一象限内,直线1x =的右侧,图象由下至上,指数α由小到大. y 轴和直线1x =之间,图象由上至下,指数α由小到大.¤例题精讲:【例1】已知幂函数()y f x =的图象过点(27,3),试讨论其单调性. 解:设y x α=,代入点(27,3),得327α=,解得13α=, 所以13y x =,在R 上单调递增.【例2】已知幂函数6()m y x m Z -=∈与2()m y x m Z -=∈的图象都与x 、y 轴都没有公共点,且2()m y x m Z -=∈的图象关于y 轴对称,求m 的值.解:∵ 幂函数图象与x 、y 轴都没有公共点,∴{6020m m -<-<,解得26m <<.又 ∵ 2()m y x m Z -=∈的图象关于y 轴对称, ∴ 2m -为偶数,即得4m =. 【例3】幂函数m y x =与n y x =在第一象限内的图象如图所示,则( ). A .101n m -<<<< B .1,01n m <-<<C .10,1n m -<<>D .1,1n m <->解:由幂函数图象在第一象限内的分布规律,观察第一象限内直线1x =的右侧,图象由下至上,依次是n y x =,1y x -=,0y x =,m y x =,1y x =,所以有101n m <-<<<. 选B.点评:观察第一象限内直线1x =的右侧,结合所记忆的分布规律. 注意比较两个隐含的图象1y x =与0y x =.【例4】本市某区大力开展民心工程,近几年来对全区2a m 的老房子进行平改坡(“平改坡”是指在建筑结构许可条件下,将多层住宅平屋面改建成坡屋顶,并对外墙面进行整修粉饰,达到改善住宅性能和建筑物外观视觉效果的房屋修缮行为),且每年平改坡面积的百分比相等. 若改造到面积的一半时,所用时间需10年. 已. (1)求每年平改坡的百分比;(2)问到今年为止,该平改坡工程已进行了多少年?(3)若通过技术创新,至少保留24am 的老房子开辟新的改造途径. 今后最多还需平改坡多少年?解:(1)设每年平改坡的百分比为(01)x x <<,则101(1)2a x a -=,即11011()2x -=,解得11011()0.0670 6.702x =-≈=%.(2)设到今年为止,该工程已经进行了n 年,则(1)na x -=,即110211()()22n =,解得n =5. 所以,到今年为止,该工程已经进行了5年.(3)设今后最多还需平改坡m 年,则 51(1)4m a x a +-=,即521011()()22m +=,解得m =15. 所以,今后最多还需平改坡15年.点评:以房屋改造为背景,从中抽象出函数模型,结合两组改造数据及要求,通过三个等式求得具有实际意义的底数或指数.第※基础达标1.如果幂函数()f x x α=的图象经过点 A. 16 B. 2 C. 116 2.下列函数在区间(0,3) A. 1y x= B. 12y x = C. y 3.设120.7a =,120.8b =,c 3log 0.7= A. c <b <a B. c <a <b C. a <b 4.如图的曲线是幂函数n y x =4c 相应的n 依次为( ).A .112,,,222-- B. 12,,2- C. 11,2,2,22-- D. 12,2--5.下列幂函数中过点(0,0),(1,1) A.12y x = B. 4y x = C. y =6.幂函数()y f x =的图象过点1(4,)27.比较下列各组数的大小: 32(2)a + 32a ; 223(5)a -+ 235-; 0.50.4 0.40.5.※能力提高8.幂函数273235()(1)t t f x t t x +-=-+是偶函数,且在(0,)+∞上为增函数,求函数解析式.9.1992年底世界人口达到54.8亿,若人口的平均增长率为x %,2008年底世界人口数为y (亿).(1)写出1993年底、1994年底、2000年底的世界人口数; (2)求2008年底的世界人口数y 与x 的函数解析式. 如果要使2008年的人口数不超过66.8亿,试求人口的年平均增长率应控制在多少以内?※探究创新10.请把相应的幂函数图象代号填入表格.① 23y x =; ② 2y x -=;③ 12y x =; ④ 1y x -=; ⑤ 13y x =;⑥ 43y x =;⑦ 12y x -=;⑧ 53y x =. 第19讲 第二章 基本初等函数(Ⅰ) 复习¤学习目标:理解掌握指数函数、对数函数和幂函数的性质、图象及运算性质. 突出联系与转化、分类与讨论、数与形结合等重要的数学思想、能力. 通过对指数函数、对数函数等具体函数的研究,加深对函数概念的理解.¤例题精讲:【例1】若()(0,1)x f x a a a =>≠且,则1212()()()22x x f x f x f ++≤. 证明:121212122()()()222x x x x f x f x x x a a f a ++++-=-0==≥. ∴ 1212()()()22x x f x f x f ++≤. (注:此性质为函数的凹凸性) 【例2】已知函数2()(0,0)1bxf x b a ax =≠>+.(1)判断()f x 的奇偶性; (2)若3211(1),log (4)log 422f a b =-=,求a ,b 的值.解:(1)()f x 定义域为R ,2()()1bxf x f x ax --==-+,故()f x 是奇函数.(2)由1(1)12b f a ==+,则210a b -+=.又log 3(4a -b )=1,即4a -b =3.由{21043a b a b -+=-=得a =1,b =1.【例3】(01天津卷.19)设a >0, ()x x e af x a e=+是R 上的偶函数.(1)求a 的值; (2)证明()f x 在(0,)+∞上是增函数.解:(1)∵ ()x x e af x a e=+是R 上的偶函数,∴ ()()0f x f x --=.∴ 110()()x x x x x x e a e a a e a e a e a e a a---+--=⇒-+-10()()0x x a e e a -=⇒--=.e x -e -x 不可能恒为“0”, ∴ 当1a-a =0时等式恒成立, ∴a =1.(2)在(0,)+∞上任取x 1<x 2,1212121212111()()()()x x x x x x x x e f x f x e e e a e e e e -=+--=-+-12121()(1)x x x x e e e e =-- ∵ e >1,x 1<x 2, ∴ 121x x e e >>, ∴12x x e e >1,121212()(1)x x x x x x e e e e e e --<0,∴ 12()()0f x f x -<, ∴ ()f x 是在(0,)+∞上的增函数.点评:本题主要考查了函数的奇偶性以及单调性的基础知识.此题中的函数,也可以看成指数函数xy a =与x a y a x =+的复合,可以进一步变式探讨x ay a x=+的单调性. 【例4】已知1992年底世界人口达到54.8亿.(1)若人口的平均增长率为1.2%,写出经过t 年后的世界人口数y (亿)与t 的函数解析式;(2)若人口的平均增长率为x %,写出2010年底世界人口数为y (亿)与x 的函数解析式. 如果要使2010年的人口数不超过66.8亿,试求人口的年平均增长率应控制在多少以内?解:(1)经过t 年后的世界人口数为 *54.8(1 1.2)54.8 1.012,t t y t N =⨯+%=⨯∈.(2)2010年底的世界人口数y 与x 的函数解析式为 1854.8(1)y x =⨯+%.由1854.8(1)y x =⨯+%≤66.8,解得1001) 1.1x ≤⨯≈. 所以,人口的年平均增长率应控制在1.1%以内.点评:解应用题应先建立数学模型,再用数学知识解决,然后回到实际问题,给出答案. 此题由增长率的知识,可以得到指数型或幂型函数,并得到关于增长率的简单不等式,解决实际中增长率控制问题.第19练 第二章 基本初等函数(Ⅰ) 复习※基础达标 1.(06年全国卷II.文2理1)已知集合{}2{|3},|log 1M x x N x x =<=>,则M N =( ).A. ∅B. {}|03x x <<C. {}|13x x <<D. {}|23x x << 2.(08年北京卷.文2)若372log πlog 6log 0.8a b c ===,,,则( ). A. a b c >> B. b a c >> C. c a b >> D. b c a >>3.(05年福建卷)函数()x b f x a -=的图象如图,其中a 、b 为常数,则下列结论正确的是( ). A. 1,0a b >< B. 1,0a b >> C. 01,0a b <<> D. 01,0a b <<<4.(06年广东卷)函数2()lg(31)f x x =++的定义域是( ). A.1(,)3-+∞ B. 1(,1)3- C. 11(,)33- D. 1(,)3-∞-5.(06年陕西卷)设函数()log ()(0,1)a f x x b a a =+>≠的图像过点(2,1),其反函数的图像过点(2,8),则a b +等于( ).A. 3B. 4C. 5D. 66.(06年辽宁卷.文14理13)设,0(),0x e x g x lnx x ⎧≤=⎨>⎩,则1(())2g g = .7.如图所示,曲线是幂函数y x α=在第一象限内的图象,已知α分别取11,1,,22-四个值,则相应图象依次为 .※能力提高8.已知定义域为R 的函数12()2x x bf x a+-+=+是奇函数. 求,a b 的值.9.已知函数y =24log log 42x x(2≤x ≤4).(1)求输入x =234时对应的y 值; (2)令2log t x =,求y 关于t 的函数关系式及t 的范围.※探究创新10.设121()log 1axf x x -=-为奇函数,a 为常数.(1)求a 的值; (2)证明()f x 在区间(1,+∞)内单调递增;1 () 2x m恒成立,求实数m的取值范围.(3)若对于区间[3,4]上的每一个x值,不等式()f x>。
对数函数的性质及其应用.习题课2.2
2
5
如图所示,在(1,+∞)内,前者在后者的下方,
∴ log 1 3 log 1 3 .
2
5
(3)由对数函数的性质知,log 1 0.3 >0, log20.8 <0,
3
∴ log 1 0.3 > log2 0.8 .
3
【评析】比较两个对数值的大小,常用方法:
(1)当底数相同,真数不同时,用函数的单调性来比 较;
• 2.对数函数的图象与底数大小的比较 • 如图,作直线y=1,则该直线与四个函 数图象交点的横坐标为相应的底数. • 故 0<c<d<1<a<b. • 由此我们可得到以下规律: • 在第一象限内从左到右底数逐渐增大. • 底大图低
学点一 比较大小
比较大小:
(1)log 1
2
4
5 ,log 1 2
当0<x<1时,y>0; 当x>1时,_y_<_0_
在(0,+∞)上为增__函__数__ 在(0,+∞)上为_减__函__数__
【常用结论】 1.换底公式的两个重要结论 (1)logab=log1ba; (2)logambn=mn logab. 其中 a>0,且 a≠1,b>0,且 b≠1,m,n∈R.
6 7
;
(2)log 1 3,
log 3; 1
2
5
(3)log 1 0.3, log 2 0.8 .
3
【分析】从对数函数单调性及图象变化规律入手.
【解析】(1)∵函数y= log 1 x
在(0,+∞)上递减,又∵ 4 6
2
,
57
∴
log 1
03-4.2 对数与对数函数-4.2.1 对数运算 4.2.2 对数运算法则高中必修第二册人教B版
(2)[多选题](2024·山东省淄博市期末)若,,都是正数,且 ,则( )
BCD
A. B. C. D.
【解析】设,则,, ,,,,所以 ,A错误,B正确.,因为,所以 ,则等号不成立,所以,则 ,C正确.因为,所以 ,D正确.
(3)已知,,,则 的值为___.
(2)(全国Ⅰ卷)设,则 ( )
B
A. B. C. D.
【解析】 因为,所以 ,
则有,所以 .
因为,所以,所以 ,所以 .
因为,所以,所以 ,两边同时平方得,所以 .
(1) ;
【解析】 .
(2) ;
【解析】 .
(3) .
【解析】 .
例1-3 将下列对数式改写成指数式:
(1) ;
【解析】 .
(2) ;
【解析】 .
(3) .
【解析】 .
例1-4 [多选题](2024·辽宁省大连八中期中)下列式子中正确的是( )
AB
A. B. C.若,则 D.若,则
知识点3 换底公式
例3-6 [教材改编P24 T1] 的值为__.
【解析】 .(【巧解】利用推论三求解: )
例3-7 (2024·河北省唐山市期中)计算: ( )
B
A. B. C.1 D.2
【解析】原式 .
方法帮丨关键能力构建
题型1 对数的简单运算
例8 化简下列各式:
(1) ;
【解析】原式 .
B
A. B. C. D.
【解析】由对数运算法则可得 .
3.(2024·浙江省杭州市期中)若,则 ( )
C
A. B. C.1 D.
【解析】因为,所以,,所以, ,则 .
对数及其运算练习题含答案
对数及其运算练习题含答案学校:__________ 班级:__________ 姓名:__________ 考号:__________1. 已知2x=3y=m,且1x +1y=2,则m的值为( )A.√2B.√6C.√22D.62. lg25−2lg12+log2(log2256)=( )A.3B.4C.5D.63. 计算lg2−lg15−e ln2−(14)−12+√(−2)2的值为()A.−1B.−5C.32D.−524. 函数f(x)=lg(x2−1)−lg(x−1)在[2,9]上的最大值为()A.0B.1C.2D.35. 若函数f(x)=|ln x|满足f(a)=f(b),且0<a<b,则4a2+b2−44a+2b的最小值是( )A.0B.1C.32D.2√26. 已知函数f(x)={2x,x≥4,f(x+1),x<4,则f(2+log23)的值为()A.8B.12C.16D.247. 《九章算术》中有如下问题:今有蒲生一日,长三尺,莞生一日,长1尺.蒲生日自半,莞生日自倍.问几何日而长等?意思是:今有蒲第一天长高3尺,莞第一天长高1尺,以后蒲每天长高前一天的一半,莞每天长高前一天的2倍.若蒲、莞长度相等,则所需时间为( )(结果精确到0.1.参考数据:lg2≈0.3010,lg3≈0.4771.)A.2.6天B.2.2天C.2.4天D.2.8天8. 碳14是碳的一种具有放射性的同位素,它常用于确定生物体的死亡年代,即放射性碳定年法.在活的生物体内碳14的含量与自然界中碳14的含量一样且保持稳定,一旦生物死亡,碳14摄入停止,机体内原有的碳14含量每年会按确定的比例衰减(称为衰减期),大约每经过5730年衰减为原来的一半,这个时间称为“半衰期”.1972年7月30日,湖南长沙马王堆汉墓女尸出土,该女尸为世界考古史上前所未见的不腐湿尸,女尸身份解读:辛追,生于公元前217年,是长沙国丞相利苍的妻子,死于公元前168年.至今,女尸碳14的残余量约占原始含量的(参考数据:log 20.7719≈−0.3735,log 20.7674≈−0.3820,log 20.7628≈−0.3906)( ) A.75.42% B.76.28% C.76.74% D.77.19%9. 意大利数学家斐波那契以兔子繁殖数量为例,引入数列:1,1,2,3,5,8,⋯,该数列从第三项起,每一项都等于前两项之和,即a n+2=a n+1+a n (n ∈N ∗)故此数列称为斐波那契数列,又称“兔子数列”,其通项公式为a n =√5[(1+√52)n−(1−√52)n].设n是不等式log √2[(1+√5)x −(1−√5)x ]>2x +11的正整数解,则n 的最小值为( ) A.11 B.10 C.9 D.810. 若b >a >1且3log a b +6log b a =11,则a 3+2b−1的最小值为________.11. 计算: log 26−log 23−3log 312+(14)12=________.12. 若函数f(x)=1+|x|+cos x x ,则f(lg 2)+f (lg 12)+f(lg 5)+f (lg 15)=_______.13. 正数x ,y 满足x +4y =2,则log 2x +log 2y 的最大值是________.14. 已知b >a >1,若log a b −log b a =32,且a b =b a ,则a −b =_______.15. 计算:e ln 12+π0−4−12+lg 4+lg 25=_________.16. 已知函数f(x)=log 2(3+x)+log 2(3−x). (1)当x =1时,求函数f(x)的值;(2)判断函数f(x)的奇偶性,并加以证明;(3)若f(x)<0,求实数x 的取值范围.17.(1)化简:4x 14(−3x 14y −13)÷(−6x −12y −23)3;(2)计算:(log 43+log 83)(log 32+log 92).18. 计算下列各题.(1)log 2√748+log 212−12log 242−21+log 23 ;(2)4×(1649)−12−√24×80.25+(−2010)0;(3)已知log 23=a ,3b =7,求log 1256.19. 已知函数f (x )=log a (1−x )+log a (x +3)(0<a <1). (1)求函数f (x )的定义域;(2)若函数f (x )的最小值为−2,求a 的值.20. 已知函数f (x )=lg (2x−1+a) ,a ∈R . (1)若函数f (x )是奇函数,求实数a 的值;(2)在(1)的条件下,判断函数y =f (x )与函数y =lg (2x )的图像的公共点的个数,并说明理由;(3)当x ∈[1,2)时,函数y =f (2x )的图像始终在函数y =lg (4−2x )的图象上方,求实数a 的取值范围.21. 已知f(x)=log a x ,g(x)=2log a (2x +t −2)(a >0, a ≠1, t ∈R). (1)若f(1)=g(2),求t 的值;(2)当t =4,x ∈[1, 2],且F(x)=g(x)−f(x)有最小值2时,求a 的值;(3)当0<a<1,x∈[1, 2]时,有f(x)≥g(x)恒成立,求实数t的取值范围.参考答案与试题解析对数及其运算练习题含答案一、选择题(本题共计 9 小题,每题 3 分,共计27分)1.【答案】B【考点】指数式与对数式的互化对数及其运算【解析】2x=3y=m>0,可得x=log2m,y=log3m.代入利用对数的运算法则即可得出.【解答】解:∵2x=3y=m>0,∴x=log2m,y=log3m.∴2=1x +1y=1log2m+1log3m=logm 2+logm3=logm 6,∴m2=6,解得m=√6.故选B.2.【答案】C【考点】对数及其运算【解析】本题考查对数式四则运算等基本知识,考查运算求解等数学能力.【解答】解:lg25−2lg12+log2(log2256)=lg100+log2(log228)=2+log28=5.故选C.3.【答案】A【考点】对数的运算性质对数及其运算【解析】利用指数,对数的性质和运算法则求解.【解答】解:原式=lg2+lg5−2−2+2 =lg10−2=1−2=−1.故选A.4.【答案】B【考点】对数函数的单调性与特殊点对数及其运算【解析】此题暂无解析【解答】解:因为f(x)=lg x 2−1x−1=lg(x+1)在[2,9]上单调递增,所以f(x)max=f(9)=lg10=1.故选B.5.【答案】A【考点】基本不等式在最值问题中的应用对数及其运算函数的最值及其几何意义【解析】利用对数函数的性质可知ab=1,进而目标式可转化为2a+b2−42a+b,通过换元令t=2a+b(t≥2√2),进一步转化为t2−4t,利用函数y=t2−4t在[2√2,+∞)上的单调性,即可求得最值.【解答】解:依题意,|ln a|=|ln b|,又0<a<b,∴ln a+ln b=0,即ab=1,且0<a<1<b,又4a 2+b2−44a+2b =(2a+b)2−8ab2(2a+b)=2a+b2−42a+b,令t=2a+b≥2√2ab=2√2,当且仅当“2a=b”时取等号,则4a 2+b2−44a+2b =t2−4t,又函数y=t2−4t在[2√2,+∞)上单调递增,故y min=2√222√2=0,即4a2+b2−44a+2b的最小值为0.故选A.6.【答案】 D【考点】指数式与对数式的互化 对数及其运算 函数的求值【解析】本题考查指数式、对数式的运算. 【解答】解:因为3<2+log 23<4,所以f(2+log 23)=f(3+log 23)=23+log 23=8×3=24. 故选D . 7.【答案】 A【考点】等比数列的前n 项和 数列的应用 对数及其运算 【解析】由题设蒲的长度组成等比数列{a n },其a 1=3,公比为12,其前n 项和为A n ,莞的长度组成等比数列{b n },其b 1=1,公比为2,其前n 项和为B n ,由题意可得:3(1−12n )1−12=2n −12−1,整理后求解即可.【解答】解:由题设蒲的长度组成等比数列{a n },其a 1=3,公比为12,其前n 项和为A n ,莞的长度组成等比数列{b n },其b 1=1,公比为2,其前n 项和为B n , 则A n =3(1−12n )1−12,B n =2n −12−1, 由题意可得:3(1−12n )1−12=2n −12−1,整理得(2n )2−7×2n +6=0, 即(2n −1)(2n −6)=0,解得n =0(舍去)或n =log 26, 故n =log 26=lg 6lg 2=lg 2+lg 3lg 2≈0.3010+0.47710.3010≈2.6,即蒲、莞长度相等,所需时间为2.6天. 故选A . 8. 【答案】 C【考点】对数及其运算指数式与对数式的互化【解析】 无【解答】解:∵ 每经过5730年衰减为原来的一半,∴ 生物体内碳14的含量y 与死亡年数t 之间的函数关系式为y =(12)t 5730.现在是2021年,所以女尸从死亡至今已有2021+168=2189年, 由题意可得,y =(12)21895730≈(12)0.3820=2−0.3820.因为log 20.7674≈−0.3820,所以y ≈2−0.3820≈0.7674=76.74%. 故选C . 9.【答案】 D【考点】 对数及其运算 数列的函数特性 数列与不等式的综合 【解析】首先对不等式进行化简得出a n >√2)11√5,即a n 2>2115,根据数列的单调性,求出满足不等式成立的n 的最小值即可. 【解答】解:∵ n 是不等式log √2[(1+√5)x−(1−√5)x]>2x +11的正整数解, ∴ log √2[(1+√5)n−(1−√5)n ]>2n +11, ∴ log √2[(1+√5)n−(1−√5)n]−2n >11, ∴ log √2[(1+√5)n−(1−√5)n]−log √2(√2)2n>11,∴ log √2[(1+√5)n−(1−√5)n]−log √22n >11, ∴ log √2[(1+√5)n−(1−√5)n2n]>11, ∴ log √2[(1+√52)n−(1−√52)n]>11,∴ (1+√52)n−(1−√52)n>(√2)11,∴√5[(1+√52)n −(1−√52)n]>√2)11√5.令a n=√5[(1+√52)n−(1−√52)n],则数列{a n}即为斐波那契数列,∴a n>√2)11√5,即a n2>2115.∵{a n}为递增数列,∴{a n2}也为递增数列.∵a7=13,a8=21,a72<2115,a82>2115,∴使得a n2>2115成立的n的最小值为8.故选D.二、填空题(本题共计 6 小题,每题 3 分,共计18分)10.【答案】2√2+1【考点】基本不等式在最值问题中的应用对数及其运算【解析】本题考查对数的运算、基本不等式的应用.【解答】解:由b>a>1,得logab>1,b−1>0,又∵logb a=1log a b,∴3loga b+6log a b=11,解得loga b=3或logab=23(舍去),则a3=b,a3+2b−1=b+2b−1=(b−1)+2b−1+1≥2√2+1(当且仅当b−1=√2,即b=√2+1时,取等号),故a3+2b−1的最小值为2√2+1.故答案为:2√2+1.11.【答案】1【考点】有理数指数幂的化简求值对数及其运算【解析】无【解答】解:原式=1+log23−log23−12+12=1.故答案为:1.12.【答案】6【考点】对数及其运算函数的求值【解析】此题暂无解析【解答】解:∵ f(x)=1+|x|+cos xx,∴ f(−x)+f(x)=2+2|x|,∵lg12=−lg2,lg15=−lg5,∴ f(lg2)+f(lg 12)+f(lg5)+f(lg15)=2×2+2(lg2+lg5)=6,故答案为:6.13.【答案】−2【考点】基本不等式在最值问题中的应用对数及其运算【解析】此题暂无解析【解答】解:因为log2x+log2y=log2x+log2y+2−2=log2x+log2y+log24−2=log2(4xy)−2,因为x+4y=2,所以log2(4xy)−2≤log2(x+4y2)2−2=−2,当且仅当x=4y,即x=1,y=14时取等号,故log2x+log2y的最大值是−2.故答案为:−2.14.【答案】−2【考点】对数及其运算 【解析】 无【解答】解: 令log a b =t ,则log b a =1t .∵ b >a >1,则t >0,∴ t −1t =32,解得t =2,或t =−12(舍去), ∴ log b a =12,即b =a 2.∵ a b =b a ,∴ a a 2=(a 2)a ,即a 2=2a , ∴ a =2,b =4, ∴ a −b =−2. 故答案为:−2. 15.【答案】 3【考点】对数的运算性质 对数及其运算【解析】(1)根据题目所给信息进行解题即可. 【解答】解:e ln 12+π0−4−12+lg 4+lg 25 =12+1−12+lg (4×25)=1+2=3 .故答案为:3.三、 解答题 (本题共计 6 小题 ,每题 10 分 ,共计60分 ) 16.【答案】解:(1)f(1)=log 2(3+1)+log 2(3−1)=3; (2)由{3+x >03−x >0,解得:−3<x <3,定义域关于原点对称,而f(−x)=log 2(3−x)+log 2(3+x)=f(x), 故函数f(x)是偶函数; (3)若f(x)<0,则log 2(3+x)+log 2(3−x) =log 2(3+x)(3−x)<0, 即0<9−x 2<1,解得:−3<x <−2√2或2√2<x <3. 【考点】对数函数的图象与性质对数值大小的比较 对数及其运算 函数奇偶性的判断【解析】(1)将x =1的值带入f(x),求出f(1)的值即可; (2)根据函数奇偶性的定义判断即可;(3)根据对数函数的性质,问题转化为0<9−x 2<1,解出即可. 【解答】解:(1)f(1)=log 2(3+1)+log 2(3−1)=3; (2)由{3+x >03−x >0,解得:−3<x <3,定义域关于原点对称,而f(−x)=log 2(3−x)+log 2(3+x)=f(x), 故函数f(x)是偶函数; (3)若f(x)<0,则log 2(3+x)+log 2(3−x) =log 2(3+x)(3−x)<0, 即0<9−x 2<1,解得:−3<x <−2√2或2√2<x <3. 17. 【答案】 解:(1)原式=−12x 12y −13−216x−32y−2=x 12y −1318x−32y−2=x 12y −1318(x −2y −53)x 12y −13=118x −2y −53=1181x 21y 53=x 2y 5318.(2)原式=(lg 32lg 2+lg 33lg 2)(lg 2lg 3+lg 22lg 3) =12+14+13+16=54.【考点】 对数及其运算 分数指数幂【解析】(1)利用指数幂的运算性质即可得出.(2)利用换底公式、对数的运算性质即可得出. 【解答】解:(1)原式=−12x 12y −13−216x−32y−2=x 12y−1318x −32y −2=x 12y −1318(x −2y −53)x 12y −13=118x −2y −53=1181x 21y 53=x 2y 5318.(2)原式=(lg 32lg 2+lg 33lg 2)(lg 2lg 3+lg 22lg 3) =12+14+13+16=54. 18. 【答案】解:(1)log 2√748+log 212−12log 242−21+log 23 =log 2√748+log 212−log 2√42−2⋅2log 23=log √748×12√42−2×3=log 22−12−6=−12−6=−132.(2)4×(1649)−12−√24×80.25+(−2010)0=4×(47)−1−214×234+1=7−2+1 =6.(3)∵ log 23=a ,3b =7, ∴ log 32=1a , b =log 37,∴ log 1256=log 356log312=log 3(23×7)log 3(22×3)=3log 32+log 372log 32+1=3a +b 2a+1=3+ab 2+a.【考点】对数的运算性质根式与分数指数幂的互化及其化简运算 有理数指数幂的化简求值对数及其运算【解析】(1)利用对数的运算法则求解即可; (2)利用有理指数幂的运算求解即可;(3)由题意得到log 32=1a , b =log 37,所以log 1256=log 356log 312=log 3(23×7)log 3(22×3)=3log 32+log 372log 32+1,代入即可. 【解答】解:(1)log 2√748+log 212−12log 242−21+log 23 =log 2√748+log 212−log 2√42−2⋅2log 23=log √748×12√42−2×3=log 22−12−6=−12−6=−132.(2)4×(1649)−12−√24×80.25+(−2010)0=4×(47)−1−214×234+1=7−2+1 =6.(3)∵ log 23=a ,3b =7, ∴ log 32=1a ,b =log 37, ∴ log 1256=log 356log 312=log 3(23×7)log 3(22×3)=3log 32+log 372log 32+1=3a +b 2a+1=3+ab 2+a.19. 【答案】解:(1)要使函数f (x )有意义,则有{1−x >0,x +3>0,解得−3<x <1,∴ 函数f (x )的定义域为(−3,1). (2)f (x )=log a (1−x )+log a (x +3) =log a [(1−x )(x +3)] =log a (−x 2−2x +3) =log a [−(x +1)2+4], ∵ −3<x <1,∴ 0<−(x +1)2+4≤4. ∵ 0<a <1,∴ log a [−(x +1)2+4]≥log a 4, 即f (x )min =log a 4,又∵ 函数f (x )的最小值为−2, ∴ log a 4=−2, ∴ a −2=4, ∴ a =12. 【考点】对数函数的定义域 对数及其运算 对数函数的值域与最值 【解析】 此题暂无解析 【解答】解:(1)要使函数f (x )有意义,则有{1−x >0,x +3>0,解得−3<x <1,∴ 函数f (x )的定义域为(−3,1). (2)f (x )=log a (1−x )+log a (x +3) =log a [(1−x )(x +3)] =log a (−x 2−2x +3) =log a [−(x +1)2+4],∵ −3<x <1,∴ 0<−(x +1)2+4≤4. ∵ 0<a <1,∴ log a [−(x +1)2+4]≥log a 4, 即f (x )min =log a 4,又∵ 函数f (x )的最小值为−2, ∴ log a 4=−2, ∴ a −2=4, ∴ a =12. 20.【答案】解:(1)因为f (x )为奇函数,所以对于定义域内任意x ,都有f (x )+f (−x )=0, 即lg (2x−1+a)+lg (2−x−1+a)=0, 所以(a +2x−1)⋅(a −2x+1)=1,显然x ≠1,由于奇函数定义域关于原点对称,所以必有x ≠−1.上面等式左右两边同时乘以(x −1)(x +1)得: [a (x −1)+2]⋅[a (x +1)−2]=x 2−1,化简得: (a 2−1)x 2−(a 2−4a +3)=0,上式对定义域内任意x 恒成立,所以必有{a 2−1=0a 2−4a +3=0,解得a =1. (2)由(1)知a =1, 所以f (x )=lg (1+2x−1), 即f (x )=lgx+1x−1,由x+1x−1>0得x <−1或x >1,所以函数f (x )定义域D =(−∞,−1)∪(1,+∞),由题意,要求方程lg x+1x−1=lg 2x 解的个数,即求方程: 2x −2x−1−1=0在定义域D 上的解的个数. 令F (x )=2x −2x−1−1,显然F (x )在区间(−∞,−1)和(1,+∞)均单调递增,又F (−2)=2−2−2−3−1=14−13<0,F (−32)=2−32−2−52−1=2√215>0 , 且F (32)=232−212−1=2√2−5<0, F (2)=22−21−1=1>0,所以函数F (x )在区间(−2,−32)和(32,2)上各有一个零点,即方程2x −2x−1−1=0在定义域D 上有2个解,所以函数y =f (x )与函数y =lg 2x 的图象有2个公共点.(3)要使x ∈[1,2)时,函数y =f (2x )的图象始终在函数y =lg (4−2x )的图象的上方, 必须使22x −1+a >4−2x 在x ∈[1,2)上恒成立,令t =2x ,则t ∈[2,4),上式整理得t 2+(a −5)t +6−a >0在t ∈[2,4)恒成立, 分离参数得:a >−t 2+5t−6t−1=−(t−1)2+3(t−1)−2t−1=−(t −1+2t−1)+3, t −1∈[1,3),因为t −1∈[1,3),所以t −1+2t−1∈[2√2,113),所以−(t −1+2t−1)+3∈(−23,3−2√2],所以a >3−2√2,即实数a 的取值范围为(3−2√2,+∞). 【考点】函数奇偶性的性质对数函数图象与性质的综合应用 对数及其运算 函数零点的判定定理 函数的单调性及单调区间 函数的最值及其几何意义 基本不等式在最值问题中的应用 函数恒成立问题 【解析】此题暂无解析 【解答】解:(1)因为f (x )为奇函数,所以对于定义域内任意x ,都有f (x )+f (−x )=0, 即lg (2x−1+a)+lg (2−x−1+a)=0, 所以(a +2x−1)⋅(a −2x+1)=1,显然x ≠1, 由于奇函数定义域关于原点对称,所以必有x ≠−1.上面等式左右两边同时乘以(x −1)(x +1)得: [a (x −1)+2]⋅[a (x +1)−2]=x 2−1, 化简得: (a 2−1)x 2−(a 2−4a +3)=0,上式对定义域内任意x 恒成立,所以必有{a 2−1=0a 2−4a +3=0,解得a =1.(2)由(1)知a =1, 所以f (x )=lg (1+2x−1),即f (x )=lg x+1x−1, 由x+1x−1>0得x <−1或x >1,所以函数f (x )定义域D =(−∞,−1)∪(1,+∞),由题意,要求方程lg x+1x−1=lg 2x 解的个数,即求方程: 2x −2x−1−1=0在定义域D 上的解的个数. 令F (x )=2x −2x−1−1,显然F (x )在区间(−∞,−1)和(1,+∞)均单调递增,又F (−2)=2−2−2−3−1=14−13<0,F (−32)=2−32−2−52−1=2√215>0 , 且F (32)=232−212−1=2√2−5<0, F (2)=22−21−1=1>0,所以函数F (x )在区间(−2,−32)和(32,2)上各有一个零点,即方程2x −2x−1−1=0在定义域D 上有2个解,所以函数y =f (x )与函数y =lg 2x 的图象有2个公共点.(3)要使x ∈[1,2)时,函数y =f (2x )的图象始终在函数y =lg (4−2x )的图象的上方, 必须使22x −1+a >4−2x 在x ∈[1,2)上恒成立,令t =2x ,则t ∈[2,4),上式整理得t 2+(a −5)t +6−a >0在t ∈[2,4)恒成立, 分离参数得:a >−t 2+5t−6t−1=−(t−1)2+3(t−1)−2t−1=−(t −1+2t−1)+3, t −1∈[1,3),因为t −1∈[1,3),所以t −1+2t−1∈[2√2,113),所以−(t −1+2t−1)+3∈(−23,3−2√2],所以a >3−2√2,即实数a 的取值范围为(3−2√2,+∞). 21. 【答案】解:(1)∵ f(1)=g(2), ∴ 0=2log a (4+t −2), 解得t =−1.(2)当t =4时,F(x)=g(x)−f(x)=log a (2x+2)2x,x ∈[1, 2].令ℎ(x)=(2x+2)2x =4(x +1x +2),x ∈[1, 2].设u =x +1x ,x ∈[1, 2],易知u(x)=x +1x 在[1, 2]上为单调增函数.∴ ℎ(x)在[1, 2]上是单调增函数, ∴ ℎ(x)min =16,ℎ(x)max =18. 当0<a <1时,有F(x)min =log a 18, 令log a 18=2,解得a =3√2>1(舍去); 当a >1时,有F(x)min =log a 16, 令log a 16=2,解得a =4>1, ∴ a =4.(3)当0<a <1,x ∈[1, 2]时,有f(x)≥g(x)恒成立,即当0<a <1,x ∈[1, 2]时,log a x ≥2log a (2x +t −2)恒成立, 由log a x ≥2log a (2x +t −2)可得log a √x ≥log a (2x +t −2), ∴ √x ≤2x +t −2, ∴ t ≥−2x +√x +2. 设u(x)=−2x +√x +2 =−2(√x)2+√x +2 =−2(√x −14)2+178.∵ x ∈[1, 2],∴ √x ∈[1, √2].∴ u(x)max =u(1)=1,∴ 实数t 的取值范围为t ≥1. 【考点】 对数及其运算函数的最值及其几何意义 函数恒成立问题【解析】(1)当t =4,x ∈[1, 2],且F(x)=g(x)−f(x)有最小值2时,求a 的值;(2)当0<a <1,x ∈[1, 2]时,有f(x)≥g(x)恒成立,求实数t 的取值范围. 【解答】解:(1)∵ f(1)=g(2), ∴ 0=2log a (4+t −2), 解得t =−1.(2)当t =4时,F(x)=g(x)−f(x)=log a (2x+2)2x,x ∈[1, 2].令ℎ(x)=(2x+2)2x=4(x +1x +2),x ∈[1, 2].设u =x +1x ,x ∈[1, 2],易知u(x)=x +1x 在[1, 2]上为单调增函数. ∴ ℎ(x)在[1, 2]上是单调增函数, ∴ ℎ(x)min =16,ℎ(x)max =18. 当0<a <1时,有F(x)min =log a 18, 令log a 18=2,解得a =3√2>1(舍去); 当a >1时,有F(x)min =log a 16, 令log a 16=2,解得a =4>1, ∴ a =4.(3)当0<a <1,x ∈[1, 2]时,有f(x)≥g(x)恒成立,即当0<a <1,x ∈[1, 2]时,log a x ≥2log a (2x +t −2)恒成立, 由log a x ≥2log a (2x +t −2)可得log a √x ≥log a (2x +t −2), ∴ √x ≤2x +t −2, ∴ t ≥−2x +√x +2. 设u(x)=−2x +√x +2 =−2(√x)2+√x +2 =−2(√x −14)2+178.∵ x ∈[1, 2],∴ √x ∈[1, √2].∴ u(x)max =u(1)=1,∴ 实数t 的取值范围为t ≥1.。
【名师点睛】高中数学 必修一 对数运算及对数函数练习题(含答案)
07课 对数运算1.下列式子中正确的个数是( )①log a (b 2-c 2)=2log a b -2log a c ②(log a 3)2=log a 32③log a (bc)=(log a b)·(log a c) ④log a x 2=2log a xA.0B.1C.2D.3 2.log 22的值为( )A.- 2B. 2C.-12D.123.如果lgx=lga +2lgb -3lgc ,则x 等于( )A.a +2b -3cB.a +b 2-c 3C.ab 2c 3D.2ab 3c4.计算2log 510+log 50.25=( )A.0B.1C.2D.4 5.已知a=log 32,那么log 38-2log 36用a 表示为( )A.a -2B.5a -2C.3a -(1+a)2D.3a -a 2-16.已知f(log 2x)=x ,则f(12)=( )A.14B.12C.22 D. 2 7.设lg2=a ,lg3=b ,则log 512等于( )A.2a +b 1+aB.a +2b 1+aC.2a +b 1-aD.a +2b1-a8.已知log 72=p ,log 75=q ,则lg2用p 、q 表示为( )A.pqB.q p +qC.pp +qD.pq1+pq 9.设方程(lgx)2-lgx 2-3=0的两实根是a 和b ,则log a b +log b a 等于()A.1B.-2C.-103D.-410.计算:log 6[log 4(log 381)]=________.11.使对数式log (x -1)(3-x)有意义的x 的取值范围是________.12.已知5lgx=25,则x=________,已知log x 8=32,则x=________.13.计算:(1)2log 210+log 20.04=________; (2)lg3+2lg2-1lg1.2=________;(3)lg 23-lg9+1=________; (4)13log 168+2log 163=________; (5)log 6112-2log 63+13log 627=________.14.计算:log 23·log 34·log 45·log 56·log 67·log 78= 15.设log 89=a ,log 35=b ,则lg2=________.16.已知log 34·log 48·log 8m=log 416,求m 的值.17.设4a =5b=m ,且1a +2b=1,求m 的值.18.计算(lg 12+lg1+lg2+lg4+lg8+……+lg1024)·log 210.19.已知lg(x +2y)+lg(x -y)=lg2+lgx +lgy ,求xy的值.20.若25a =53b =102c,试求a 、b 、c 之间的关系.21.已知二次函数f(x)=(lga)x 2+2x +4lga 的最大值是3,求a 的值.指数函数练习题1.函数f(x)=ln(x2-x)的定义域为( )A.(0,1)B.[0,1]C.(-∞,0)∪(1,+∞)D.(-∞,0]∪[1,+∞)2.在同一直角坐标系中,函数f(x)=x a(x>0),g(x)=log a x的图象可能是( )3.函数的单调减区间为()A. B.C. D.4.设全集U=R,A={x|<2},B={x|},则右图中阴影部分表示的集合为( )A.{x|1≤x<2}B.{x|x≥1}C.{x|0<x≤1}D.{x|x≤1}5.计算所得的结果为()A.1B.2.5C.3.5D.46.设, 则()A. B. C. D.7.设全集,集合,,则 ( )A. B. C. D.8.已知集合,则( )A. B. C. D.9.已知f(x)是定义在R上的偶函数,在区间[0,+∞)上为增函数,且,则不等式的解集为()A. B. C. D.10.已知x, y为正实数, 则( )A.2lg x+lg y=2lg x+2lg yB.2lg(x+y) =2lg x·2lg yC.2lg x·lg y=2lg x+2lg yD.2lg(xy) =2lg x·2lg y11.已知集合A={x|0<log4x<1}, B={x|x≤2}, 则A∩B=( )A.(0,1)B.(0,2]C.(1,2)D.(1,2]12.设a=log36, b=log510, c=log714, 则( )A.c> b> aB.b> c> aC.a> c> bD.a> b> c13.若a=log43,则2a+2-a=________.14.已知4a=2,lg x=a,则x=________.15.函数f(x) =lg(x-2) 的定义域是.16.函数f(x) =的定义域为.17.函数f(x) =log5(2x+1)的单调增区间是.18.函数f (x)=的定义域为.19.关于x的不等式|log2x|>4的解集为.20. 函数的定义域为___________ .21. .22.已知函数.(Ⅰ)当a=3时,求函数在上的最大值和最小值;(Ⅱ)求函数的定义域,并求函数的值域. (用a表示)答案[答案] 1.C[答案] 2.D[答案] 3.D[答案] 4.A[答案] 5.A[答案] 6.C[答案] 7.B[答案] 8.C[答案] 9.C[答案] 10.D[答案] 11.D[答案] 12.D[答案] 13.[答案] 14.[答案] 15. (2,+∞)[答案] 16.[3, +∞)[答案] 17.(-0.5,+∞)[答案] 18.{x|0<x≤}[答案] 19.[答案] 20.[-0.25,0)∪(0.75,1][答案] 21.4。
高中数学第四章对数运算与对数函数3对数函数 对数函数y=log2x的图象和性质课件北师大版必修第一册
(2)因为函数 y=log2x 在定义域(0,+∞)上是增函数,且 0.5<0.8,
所以 log20.5<log20.8<0,所以log120.8<log120.5.
(3)因为函数 y=log1x 在定义域(0,+∞)上是减函数,且 3.2<3.6,
4
所以 log13.2>log13.6.
4
4
[归纳提升] 关于对数大小的比较 (1)对于底数相同的数,首先考查所涉及的函数的单调性,再比较真数 的大小,最后利用单调性比较两个数的大小. (2)对于底数不同的数,可以借助换底公式化同底,再比较大小.
基础自测
1.辨析记忆(对的打“√”,错的打“×”)
(1)函数 y=log2x 的图象都在 y 轴的左侧.
(2)函数 y=log1x 在定义域(0,+∞)上是增函数.
2
(×) (×)
(3)函数 y=log2x 的图象在直线 x=1 右侧,图象位于 x 轴上方;在直
线 x=1 左侧,图象位于 x 轴下方.
题型三
函数y=log2x的性质的应用
例 3 使不等式log2(2x)>log2(5x-3)成立的实数x的集合为 ___x_35_<__x_<__1__.
[解析] 因为函数 y=log2x 是(0,+∞)上的增函数, 2x>0,
所以52xx->35>x-03,,解得35<x<1. 所 以 使 不 等 式 log2(2x) > log2(5x - 3) 成 立 的 实 数 x 的 集 合 为 x35<x<1.
【对点练习】❷ 已知 a=log20.2,b=log10.2,c=log42,则 a,b,
2
c 由小到大的顺序为___a_<__c_<__b___.
[解析] 因为 a=log20.2<0,b=log120.2=log1251=log25,c=log42=
人教a版高中数学:对数与对数函数知识点及例题专练
一.对数的运算指对互化:⇔=N a x ____________对数恒等式:1.___________________2.___________________3._______________4.______________对数的运算性质:1.___________________2.___________________3._______________换底公式:1.___________________2.___________________特殊对数:⑴通常以10为底的对数叫做常用对数,并把10log N 记为_________;⑵通常以e 为底的对数叫做自然对数,并把e log N 记为_________.1.求下列各式的值.(1)355log +212log -1505log -145log ;(2)log 2125×log 318×log 519.2.若()6430log log log x =⎡⎤⎣⎦,则12x -=3.(1)lg12-lg 58+lg12.5-log 89·log 278;(2)log 535+212log -log 5150-log 514;(3)4lg 2lg 5lg 22+-(4)(多选)以下运算中正确的有()A.lg5+lg2=1 B.5⋅−52=0C.2log 23−30= 2D.log 89⋅log 2716=89(5)(多选)下列等式成立的是()A.lg2+lg5−lg8lg50−lg40=1B.lg4+lg5−12lg0.5+lg8=2C.lg14−2lg 73+lg7−lg18=0 D.(lg2)2+lg2lg5+lg5=24.已知log 189=a,18b =5,用a、b 表示log 36455.已知实数x、y、z 满足3x =4y =6z>1,(1)求证:2x +1y =2z;(2)试比较3x、4y、6z 的大小二.对数函数的定义一般地,函数叫做对数函数,其中是自变量,函数定义域是.6.函数()()31f x lg x =+的定义域是7.函数(21)log x y -=的定义域是三.对数函数的性质1a >01a <<图象性质(1)定义域:(2)值域:(3)过点,即时(4)在上是函数(4)在上是函数(5)y<0⇔y=0⇔y>0⇔(6)y<0⇔y=0⇔y>0⇔8.较下列比较下列各组数中两个值的大小:⑴6log 7,7log 6;⑵3log π,2log 0.8;⑶0.91.1, 1.1log 0.9,0.7log 0.8;⑷5log 3,6log 3,7log 39.比较大小⑴8.1log 37.2log 3;⑵5log 67log 610.已知125ln ,log 2,x y z eπ-===,则().A x y z <<.B z x y <<.C z y x <<.D y z x<<11.设2554log 4,(log 3),log 5,a b c ===则().A a c b <<.B b c a <<.C a b c <<.D b a c<<12.函数log (1)2a y x =++的图像必过定点______________.13.函数log (2)21a y x x =++-的图像过定点______________14.解不等式2)1(log 3≥--x x 15.解关于x 的不等式:)1,0(,2log )12(log )34(log 2≠>>---+a a x x x a a a 16.()2211log log 1a a x x -->+,则a 的取值范围为________________17.解关于x 的不等式:2(log 21x )2+9(log 21x )+9≤018.图中的曲线是x y a log =的图像,已知a 的值为51,103,34,2,则相应曲线4321,,,C C C C 的a 依次为()A 、103,51,34,2B 、51,103,342C 、2,34,103,51D 、51,103,2,3419.若函数()(01)x f x a a a -=>≠且是定义域为R 的增函数,则函数()log (1)a f x x =+的图像大致是()20.(多选)已知函数=lg 2−414()A.的最小值为1B.∃∈,1+=2C.l 92>23D.o90.1−12)>o30.18−12)21.设1a >,函数()log a f x x =在区间[],2a a 上的最大值与最小值之差为12,则a =________________22.若函数()log (01)a f x x a =<<在区间[],2a a 上的最大值是最小值的3倍,则a =________________23.函数2log (3)y x =-的定义域为________________24.函数()()2log 31xf x =+的值域为________________四.对数型函数25.已知函数22()log (32)f x x x =+-.⑴求函数()f x 的定义域;⑵求()f x 的单调区间;⑶求函数()f x 的值域.26.已知[]3()2log (1,9)f x x x =+∈,求函数[]22()()()g x f x f x =+的最大值与最小值.27.已知函数()()2lg 21f x ax x =++(1)若()f x 的定义域是R ,求实数a 的取值范围及()f x 的值域(2)若()f x 的值域是R ,求实数a 的取值范围及()f x 的定义域28.已知()x f y =是二次函数,且()80=f 及()()121+-=-+x x f x f ⑴求()x f 的解析式⑵求函数()x f y 3log =的递减区间及值域29.已知:函数2()f x x x k =-+,且(2)22log 2,(log ),(0,1)f f a k a a ==>≠.⑴求,k a 的值;⑵当x 为何值时,函数(log )a f x 有最小值?求出该最小值.30.(多选)已知函数op =lg(1−p ,则A.op 的定义域为(−∞,1) B.op 的值域为C.o −1)+o −4)=1D.=o 2)的单调递增区间为(0,1)。
专题09 对数与对数函数(重难点突破)原卷版附答案.pdf
ab 2b
2
.
11
(2). 求下列函数的定义域: 1
(1)f(x)=lg(x-2)+x-3;(2)f(x)=log(x+1)(16-4x). 【解析】 (1)要使函数有意义,需满足Error!解得 x>2 且 x≠3, 所以函数定义域为(2,3)∪(3,+∞). (2)要使函数有意义,需满足Error!解得-1<x<0 或 0<x<4, 所以函数定义域为(-1,0)∪(0,4).
底数,N 叫做真数.
重难点二 对数的性质、换底公式与运算性质
(1)对数的性质:①alogaN=N;②logaab=b(a>0,且 a≠1). (2)对数的运算法则
如果 a>0 且 a≠1,M>0,N>0,那么 ①loga(MN)=logaM+logaN;
M ②loga N =logaM-logaN;
B. y ln(2 x) C. y ln(1 x)
D.
3
y ln(2 x)
(3).函数 f(x)=ax-b 的图象如图所示,其中 a,b 为常数,则下列结论正确的是( )
A.a>1,b<0
B.a>1,b>0
C.0<a<1,b>0
D.0<a<1,b<0
(4).当 a>1 时,在同一坐标系中,函数 y=a-x 与 y=logax 的图象为( )
例 2 求下列函数的定义域:
1
1
(1)f(x)=
;(2)f(x)= +ln(x+1);
1
2-x
log x+1
2
1
1
【解析】(1)要使函数 f(x)有意义,则 log x+1>0,即 log x>-1,解得 0<x<2,即函数 f(x)的定义
《对数函数》指数函数与对数函数PPT教学课件(第2课时对数函数及其性质的应用)
解下列不等式:
(1)log1x>log1(4-x);
7
7
(2)logx12>1;
(3)loga(2x-5)>loga(x-1).
栏目 导引
【解】
(1)由题意可得4x->x0>,0, x<4-x,
解得 0<x<2.
所以原不等式的解集为(0,2).
(2)当 x>1 时,logx12>1=logxx,
解得 x<12,此时不等式无解.
栏目 导引
第四章 指数函数与对数函数
2.已知 a=30.5,b=log312,c=log32,则(
)
A.a>c>b
B.a>b>c
C.c>a>b
D.b>a>cog312<0,0<c=log32<1,所以
a>c>b.
栏目 导引
解对数不等式
第四章 指数函数与对数函数
栏目 导引
第四章 指数函数与对数函数
与对数函数有关的值域与最值问题 已知函数 f(x)=loga(1+x)+loga(3-x)(a>0,且 a≠1). (1)求函数 f(x)的定义域; (2)若函数 f(x)的最小值为-2,求实数 a 的值.
栏目 导引
【解】
第四章 指数函数与对数函数
(1)由题意得31-+xx>>00,,解得-1<x<3.
栏目 导引
第四章 指数函数与对数函数
(3)因为 0>log0.23>log0.24, 所以 1 < 1 ,
log0.23 log0.24 即 log30.2<log40.2. (4)因为函数 y=log3x 是增函数,且 π>3,所以 log3π>log33=1, 同理,1=logππ>logπ3,即 log3π>logπ3.
2020_2021学年新教材高中数学第四章对数运算和对数函数4.1对数的概念一课一练含解析第一册
第四章对数运算与对数函数§1对数的概念知识点对数式与指数式互化1。
☉%4¥*#0¥06%☉(多选)(2020·上海徐江区检测)下列说法中正确的是()。
A。
零和负数没有对数B。
任何一个指数式都可以化成对数式C.以10为底的对数叫作常用对数D。
以e为底的对数叫作自然对数答案:ACD解析:ACD正确,B不正确,只有a>0且a≠1时,a x=N才能化为对数式.故选ACD。
2。
☉%6#25*2@*%☉(2020·六安一中检测)若a>0且a≠1,c>0,则将a b=c化为对数式为().A。
log a b=c B.log a c=bC.log b c=a D。
log c a=b答案:B解析:由对数的定义直接可得log a c=b。
故选B。
3。
☉%1@#08¥*3%☉(2020·吴淞中学月考)若log a√b7=c(a〉0且a≠1,b〉0),则有()。
A。
b=a7c B。
b7=a cC.b=7a cD.b=c7a答案:A解析:因为log a √b 7=c ,所以a c =√b 7,所以(a c )7=(√b 7)7,所以a 7c =b 。
故选A.4.☉%4*494¥*¥%☉(2020·忻州一中月考)已知a 23=49(a >0且a ≠1),则lo g 23a =( ).A 。
2 B.3 C.12 D 。
13答案:B解析:由a 23=49,得a =(49)32=(23)3,所以lo g 23a =lo g 23(23)3=3.故选B 。
5。
☉%3##5*7*9%☉(2020·高州三中测试)下列指数式与对数式互化不正确的一组是( )。
A.e 0=1与ln1=0 B 。
log 39=2与912=3C 。
8-13=12与log 812=-13D.log 77=1与71=7 答案:B解析:log 39=2化为指数式为32=9,故选B.6.☉%¥671¥@4#%☉(2020·广安二中检测)将下列指数式化为对数式,对数式化为指数式。
对数与对数运算(附答案)
2.2 对数函数2.2.1 对数与对数运算知识点一:对数的概念与性质1.以下说法不正确的是A .0和负数没有对数B .对数值可以是任意实数C .以a(a >0,a ≠1)为底1的对数等于0D .以3为底9的对数等于±22.设log 34·log 48·log 8m =log 416,那么m 等于A.92B .9C .18D .27 3.2211+log 52⋅的值等于A .2+ 5B .2 5C .2+52 D .1+52 4.若log 31-2x 9=0,则x =__________. 5.给出以下三个命题:①对数的真数是非负数;②若a >0且a ≠1,则log a 1=0;③若a >0且a ≠1,则log a a =1.其中正确命题的序号是__________.知识点二:指数式与对数式的互化6.有以下四个结论:①lg(lg10)=0;②ln(lne)=0;③若10=lgx ,则x =100;④若e =lnx ,则x =e 2.其中正确的是A .①③B .②④C .①②D .③④7.下列指数式与对数式互化不正确的一组是A .e 0=1与ln1=0B .813-=12与log 812=-13C .log 39=2与912=3 D .log 77=1与71=78.已知lg3=α,lg4=β,求10α+β、10α-β、10-2α、105β.9.已知log a 2=m ,log a 3=n ,求a 2m +n .知识点三:对数的运算性质及换底公式10.若a >0,a ≠1,x >0,y >0,x >y ,下列式子中正确的个数为 ①log a x·log a y =log a (x +y) ②log a x -log a y =log a (x -y) ③log ax y=log a x÷log a y ④log a (xy)=log a x·log a yA .0B .1C .2D .311.log 56·log 67·log 78·log 89·log 910的值为A .1B .lg5 C.1lg5D .1+lg2 12.若a >0,a 23=49,则log 23a =__________. 13.设3a =4b =36,求2a +1b的值.能力点一:求值问题14.计算2log 525+3log 264-8log 71的值为A .14B .8C .22D .2715.2log a (M -2N)=log a M +log a N ,则M N的值为 A.14B .4C .1D .4或1 16.(2010河南洛阳高一期中)华南虎是我国一级保护动物,为挽救濒临物种,国家建立了华南虎繁殖基地,第一年(1986年)只有20只,由于科学的人工培养,华南虎的数量y(只)与培养时间x(年)间的关系可近似符合y =alog 2(x +1),则到2016年时,预测华南虎约有__________只.17.2008年5月12日,四川汶川发生里氏8.0级特大地震,给人民的生命财产造成了巨大的损失.里氏地震的等级最早是在1935年由美国加州理工学院的地震学家里特判定的.它与震源中心释放的能量(热能和动能)大小有关.震级M =23lgE -3.2,其中E(焦耳)为以地震波的形式释放出的能量.如果里氏6.0级地震释放的能量相当于1颗美国在二战时投放在广岛的原子弹的能量,那么汶川大地震所释放的能量相当于__________颗广岛原子弹.18.求下列各式中的x 值:(1)log 8x =-23;(2)log x 27=34;(3)x =log 128.能力点二:对数运算性质的综合问题19.已知lga 、lgb 是方程2x 2-4x +1=0的两个根,则(lg a b)2的值是 A .4 B .3 C .2 D .120.lg2=a ,lg3=b ,用a 、b 表示lg 458=__________. 21.(1)lg2+lg5-lg8lg50-lg40; (2)log 34273log 5[412log 210-(33)23-7log 72].22.已知x ,y ,z 均大于1,a ≠0,log z a =24,log y a =40,log (xyz)a =12,求log x a.23.甲、乙两人解关于x 的方程:log 2x +b +c·log x 2=0,甲写错了常数b ,得到解为14和18;乙写错了常数c ,得到解为12和64,求b ,c 都正确的情况下该方程的解.答案与解析基础巩固1.D2.B ∵log 416=2,∴log 34·log 48·log 8m =2,即lgm =lg9.∴m =9,应选B.3.B 原式=21+log 22log 2 5.4.-4 由已知可得1-2x 9=1, ∴1-2x =9.∴2x =-8.∴x =-4.5.②③ ①对数的真数为正数,故①错;②∵a 0=1,∴log a 1=0,②对;③∵a 1=a ,∴log a a =1,③对.6.C 7.C8.解:由条件得10α=3,10β=4,则10α+β=10α·10β=12,10α-β=10α10β=34,10-2α=(10α)-2=19, 10β5=(10β)15=415. 9.解:log a 2=m ,log a 3=n ,由对数定义知a m =2,a n =3,∴(a m )2=4,即a 2m =4.∴a 2m +n =a 2m ·a n =4×3=12.10.A11.C 原式=lg6lg5·lg7lg6·lg8lg7·lg9lg8·lg10lg9=lg10lg5=1lg5. 12.3 a >0,由a 23=49,知(a 13)2=(23)2,∴a 13=23. 两端取对数得log 23a 13=log 2323=1,即13log 23a =1, ∴log 23a =3.13.解法一:由3a =4b =36,得log 336=a ,log 436=b ,∴由换底公式a =log 336=1log 363,b =log 436=1log 364.∴2a +1b=2log 363+log 364=log 3636=1. 解法二:对已知条件的两边取以6为底的对数,得alog 63=2blog 62=2,∴2a =log 63,1b=log 62. ∴2a +1b=log 63+log 62 =log 66=1.能力提升14.C 原式=2×2+3×6-8×0=22.15.B 由题意,得M >0,N >0,M -2N >0.故M N>2,显然只有B 符合条件. 16.100 当x =1时,y =alog 2(1+1)=20,∴a =20.∴y =20log 2(x +1),到2016年时,培养时间为(2 016-1 986)+1=31(年),则到2016年时,预测华南虎的数量约为y =20log 2(31+1)=100(只).17.1 000 设里氏8.0级,6.0级地震释放的能量分别为E 2,E 1,则8-6=23(lgE 2-lgE 1),即lg E 2E 1=3. ∴E 2E 1=103=1 000,即汶川大地震所释放的能量相当于1 000颗广岛原子弹.18.解:(1)由log 8x =-23,得 x =823-=(23) 23-=2-2=14. (2)由log x 27=34,得x 34=27=33, ∴x 14=3.∴x =34=81.(3)由x =log 128,得(12)x =8=23=(12)-3,∴x =-3. 19.C lga +lgb =2,lga·lgb =12,(lg a b)2=(lga -lgb)2=(lga +lgb)2-4lga·lgb =4-2=2. 20.1-4a +2b 原式=lg45-3lg2=lg5+2lg3-3lg2=1-4lg2+2lg3=1-4a +2b.21.解:(1)原式=lg 2×58lg 5040=lg 54lg 54=1. (2)原式=log 33433·log 5[22log 10-(332)23-77log 2] =(34log 33-log 33)log 5(10-3-2)=(34-1)·log 55=-14. 22.解:由log z a =24得log a z =124, 由log y a =40得log a y =140, 由log (xyz)a =12得log a (xyz)=112, 即log a x +log a y +log a z =112. ∴log a x +140+124=112, 解得log a x =160. ∴log x a =1log a x=60. 拓展探究23.解:由甲可知2142181log log 20,41log log 20,8b c b c ⎧++⋅=⎪⎪⎨⎪++⋅=⎪⎩即⎩⎨⎧ -2+b -12c =0,①-3+b -13c =0. ②由①-②,得1-16c =0,∴c =6. 由乙可知2122641log log 202log 64log 20b c b c ⎧++⋅=⎪⎨⎪++⋅=⎩ 即⎩⎪⎨⎪⎧-1+b -c =0, ③6+b +16c =0. ④由③+④×6,得7b +35=0, ∴b =-5.综上,方程为log 2x +6log x 2-5=0,即(log 2x)2-5log 2x +6=0, ∴log 2x =2或log 2x =3.∴x =4或x =8,即原方程的解为4或8.。
高中数学第二章对数函数2.2.1对数与对数运算第1课时对数学案(含解析)新人教版
§2.2对数函数2.2.1 对数与对数运算第1课时对数学习目标 1.理解对数的概念、掌握对数的性质(重、难点).2.掌握指数式与对数式的互化,能应用对数的定义和性质解方程(重点).知识点1 对数1.对数(1)指数式与对数式的互化及有关概念:(2)底数a的范围是a>0,且a≠1.2.常用对数与自然对数【预习评价】(正确的打“√”,错误的打“×”)(1)根据对数的定义,因为(-2)4=16,所以log(-2)16=4.( )(2)对数式log32与log23的意义一样.( )(3)对数的运算实质是求幂指数.( )提示(1)×因为对数的底数a应满足a>0且a≠1,所以(1)错;(2)×log32表示以3为底2的对数,log23表示以2为底3的对数,所以(2)错;(3)√由对数的定义可知(3)正确.知识点2 对数的基本性质 (1)负数和零没有对数. (2)log a 1=0(a >0,且a ≠1). (3)log a a =1(a >0,且a ≠1). 【预习评价】若log 32x -33=1,则x =________;若log 3(2x -1)=0,则x =________.解析 若log 32x -33=1,则2x -33=3,即2x -3=9,x =6;若log 3(2x -1)=0,则2x -1=1,即x =1. 答案 6 1题型一 对数的定义【例1】 (1)在对数式y =log (x -2)(4-x )中,实数x 的取值范围是________; (2)将下列指数式化为对数式,对数式化为指数式. ①54=625;②log 216=4;③10-2=0.01;④log5125=6.(1)解析 由题意可知⎩⎪⎨⎪⎧4-x >0,x -2>0,x -2≠1,解得2<x <4且x ≠3.答案 (2,3)∪(3,4)(2)解 ①由54=625,得log 5625=4. ②由log 216=4,得24=16. ③由10-2=0.01,得lg 0.01=-2. ④由log5125=6,得(5)6=125.规律方法 指数式与对数式互化的思路(1)指数式化为对数式:将指数式的幂作为真数,指数作为对数,底数不变,写出对数式. (2)对数式化为指数式:将对数式的真数作为幂,对数作为指数,底数不变,写出指数式. 【训练1】 将下列指数式化为对数式,对数式化为指数式:(1)43=64;(2)ln a =b ;(3)⎝ ⎛⎭⎪⎫12m=n ;(4)lg 1000=3.解 (1)因为43=64,所以log 464=3;(2)因为ln a =b ,所以e b=a ;(3)因为⎝ ⎛⎭⎪⎫12m=n ,所以log 12n =m ; (4)因为lg 1 000=3,所以103=1 000. 题型二 利用指数式与对数式的互化求变量的值 【例2】 (1)求下列各式的值.①log 981=________.②log 0.41=________.③ln e 2=________. (2)求下列各式中x 的值. ①log 64x =-23;②log x 8=6;③lg 100=x ;④-ln e 2=x .(1)解析 ①设log 981=x ,所以9x =81=92,故x =2,即log 981=2;②设log 0.41=x ,所以0.4x =1=0.40,故x =0,即log 0.41=0;③设ln e 2=x ,所以e x =e 2,故x =2,即ln e 2=2. 答案 ①2 ②0 ③2(2)解 ①由log 64x =-23得x =64-23=43×(-23)=4-2=116; ②由log x 8=6,得x 6=8,又x >0,即x =816=23×16=2;③由lg 100=x ,得10x=100=102,即x =2; ④由-ln e 2=x ,得ln e 2=-x ,所以e -x=e 2, 所以-x =2,即x =-2.规律方法 对数式中求值的基本思想和方法 (1)基本思想.在一定条件下求对数的值,或求对数式中参数字母的值,要注意利用方程思想求解. (2)基本方法.①将对数式化为指数式,构建方程转化为指数问题. ②利用幂的运算性质和指数的性质计算.【训练2】 利用指数式、对数式的互化求下列各式中x 的值. (1)log 2x =-12;(2)log x 25=2;(3)log 5x 2=2.解 (1)由log 2x =-12,得2-12=x ,∴x =22. (2)由log x 25=2,得x 2=25. ∵x >0,且x ≠1,∴x =5. (3)由log 5x 2=2,得x 2=52,∴x =±5.∵52=25>0,(-5)2=25>0, ∴x =5或x =-5.题型三 利用对数的性质及对数恒等式求值 【例3】 (1)71-log 75;(2)100⎝⎛⎭⎪⎪⎫12lg 9-lg 2; (3)alog ab ·log bc(a ,b 为不等于1的正数,c >0).解 (1)原式=7×7-log 75=77log 75=75. (2)原式=10012lg 9×100-lg 2=10lg 9×1100lg 2=9×1102lg 2 =9×110lg 4=94.(3)原式=(alog ab )log bc=blog bc=c .规律方法 对数恒等式a log a N =N 的应用 (1)能直接应用对数恒等式的直接应用即可.(2)对于不能直接应用对数恒等式的情况按以下步骤求解.【训练3】 (1)设3log 3(2x +1)=27,则x =________.(2)若log π(log 3(ln x ))=0,则x =________. 解析 (1)3log 3(2x +1)=2x +1=27,解得x =13.(2)由log π(log 3(ln x ))=0可知log 3(ln x )=1,所以ln x =3,解得x =e 3. 答案 (1)13 (2)e 3课堂达标1.有下列说法:(1)只有正数有对数;(2)任何一个指数式都可以化成对数式;(3)以5为底25的对数等于±2;(4)3log 3(-5)=-5成立.其中正确的个数为( )A.0B.1C.2D.3解析 (1)正确;(2),(3),(4)不正确. 答案 B2.使对数log a (-2a +1)有意义的a 的取值范围为( ) A.a >12且a ≠1B.0<a <12C.a >0且a ≠1D.a <12解析 由题意知⎩⎪⎨⎪⎧-2a +1>0,a >0,a ≠1,解得0<a <12.答案 B3.方程lg(2x -3)=1的解为________.解析 由lg(2x -3)=1知2x -3=10,解得x =132.答案1324.计算:2log 23+2log 31-3log 77+3ln 1=________.解析 原式=3+2×0-3×1+3×0=0. 答案 05.把下列指数式化为对数式,对数式化为指数式. (1)2-3=18;(2)⎝ ⎛⎭⎪⎫17a =b ;(3)lg 11 000=-3;(4)ln 10=x .解 (1)由2-3=18可得log 218=-3;(2)由⎝ ⎛⎭⎪⎫17a=b 得log 17b =a ;(3)由lg 11 000=-3可得10-3=11 000;(4)ln 10=x 可得e x=10.课堂小结1.对数概念与指数概念有关,指数式和对数式是互逆的,即a b=N ⇔log a N =b (a >0,且a ≠1,N >0),据此可得两个常用恒等式:(1)log a ab =b ;(2)a log a N =N .2.在关系式a x=N 中,已知a 和x 求N 的运算称为求幂运算,而如果已知a 和N 求x 的运算就是对数运算,两个式子实质相同而形式不同,互为逆运算. 3.指数式与对数式的互化基础过关1.有以下四个结论:①lg(lg 10)=0;②ln(ln e)=0;③若10=lg x ,则x =10;④若e =ln x ,则x =e 2.其中正确的是( ) A.①③ B.②④ C.①②D.③④解析 lg(lg 10)=lg 1=0,ln(ln e)=ln 1=0,故①②正确;若10=lg x ,则x =1010,故③错误;若e =ln x ,则x =e e,故④错误. 答案 C2.log a b =1成立的条件是( ) A.a =b B.a =b 且b >0 C.a >0,a ≠1D.a >0,a =b ≠1解析 由log a b =1得a >0,且a =b ≠1. 答案 D3.设a =log 310,b =log 37,则3a -b 的值为( )A.107B.710C.1049D.4910解析 3a -b=3a÷3b=3log 310÷3log 37=10÷7=107.答案 A4.若log (1-x )(1+x )2=1,则x =________. 解析 由题意知1-x =(1+x )2, 解得x =0或x =-3.验证知,当x =0时,log (1-x )(1+x )2无意义, 故x =0时不合题意,应舍去.所以x =-3. 答案 -35.若log 3(a +1)=1,则log a 2+log 2(a -1)=________.解析 由log 3(a +1)=1得a +1=3,即a =2,所以log a 2+log 2(a -1)=log 22+log 21=1+0=1. 答案 16.将下列指数式化成对数式,对数式化成指数式. (1)35=243;(2)2-5=132;(3)log 1381=-4;(4)log 2128=7.解 (1)log 3243=5;(2)log 2132=-5;(3)⎝ ⎛⎭⎪⎫13-4=81;(4)27=128.7.求下列各式中的x 的值. (1)log x 27=32;(2)log 2x =-23;(3)log x (3+22)=-2; (4)log 5(log 2x )=0; (5)x =log 2719.解 (1)由log x 27=32,得x 32=27,∴x =2723=32=9.(2)由log 2x =-23,得2-23=x ,∴x =1322=322.(3)由log x (3+22)=-2,得3+22=x -2, ∴x =(3+22)-12=2-1.(4)由log 5(log 2x )=0,得log 2x =1.∴x =21=2. (5)由x =log 2719,得27x=19,即33x=3-2, ∴x =-23.能力提升8.对于a >0且a ≠1,下列说法正确的是( )(1)若M =N ,则log a M =log a N ;(2)若log a M =log a N ,则M =N ;(3)若log a M 2=log a N 2,则M =N ;(4)若M =N ,则log a M 2=log a N 2.A.(1)(2)B.(2)(3)(4)C.(2)D.(2)(3)解析 (1)中若M ,N 小于或等于0时,log a M =log a N 不成立;(2)正确;(3)中M 与N 也可能互为相反数且不等于0;(4)中当M =N =0时不正确. 答案 C9.已知log 3(log 5a )=log 4(log 5b )=0,则a b的值为( ) A.1 B.-1 C.5D.15解析 由log 3(log 5a )=0得log 5a =1,即a =5,同理b =5,故a b=1. 答案 A 10.方程3log 2x =127的解是________. 解析 3log 2x =3-3,∴log 2x =-3,x =2-3=18.答案 1811.若正数a ,b 满足2+log 2a =3+log 3b =log 6(a +b ),则1a +1b=________.解析 设2+log 2a =3+log 3b =log 6(a +b )=k ,则a =2k -2,b =3k -3,a +b =6k ,即4a =2k,27b =3k ,所以108ab =6k,∴108ab =a +b ,∴108=1a +1b.答案 10812.(1)若f (10x)=x ,求f (3)的值; (2)计算23+log 23+35-log 39.解 (1)令t =10x,则x =lg t ,∴f (t )=lg t ,即f (x )=lg x ,∴f (3)=lg 3. (2)23+log 23+35-log 39=23·2log 23+353log 39 =23×3+359=24+27=51.13.(选做题)若log 2(log 12(log 2x ))=log 3(log 13(log 3y ))=log 5(log 15(log 5z ))=0,试确定x ,y ,z 的大小关系.解 由log 2(log 12(log 2x ))=0,得log 12(log 2x )=1,log 2x =12,x =212=(215)130.由log 3(log 13(log 3y ))=0,得log 13(log 3y )=1,log 3y =13,y =313=(310)130.由log 5(log 15(log 5z ))=0,得log 15(log 5z )=1,log 5z =15,z =515=(56)130.∵310>215>56,∴y >x >z .。
高中数学第4章对数运算和对数函数2对数的运算课件北师大版必修第一册
(4)法一:原式=lg 5(2lg 2+lg 5)+(lg 2)2=(lg 5+lg 2)2=(lg 10)2=
12345
5.若logab·log3a=4,则b的值为________.
81
[logab·log3a=llgg
b lg a·lg
3a=llgg
3b=4,
所以lg b=4lg 3=lg 34,
所以b=34=81.]
1234 5
[跟进训练] 1.求下列各式的值. (1)24+log23;(2)12log312-log32;(3)lg25+2lg2-lg22.
[解] (1)24+log23=24×2log23=16×3=48.
(2) 12log312-log32=log3
12-log32=log3
12 2
=log3 3=21 .
[跟进训练]
3.已知x,y,z都是大于1的正数,m>0,且logxm=24,logym= 40,logxyzm=12,求logzm的值.
[解] 由logxm=24得logmx=214,由logym=40得logmy=410,由
logxyzm=12得logm(xyz)=112,则logmx+logmy+logmz=112. 所以logmz=112-214-410=610, 所以logzm=60.
[解] 因为9b=5, 所以log95=b. 所以log3645=lloogg994356=lloogg9954× ×99=lloogg9945++lloogg9999=ab++11.
《对数和对数函数习题课》示范公开课教学PPT课件【高中数学人教版】
y log2 x 符合.将表中数据代入 验证,数据基本相符.所以选D.
习题讲解
12.下列各项是四种生意预期的收益y关于时间x的函数,从足够长远 的角度看,更为有前途的生意的序号是_____①_______.
① y 3 1.04x ;
③ y 40 lg x 1 ;
② y 20 x10 ; ④ y 80.
解:结合三类函数的增长差异可知①的预期收益最大,故填①.
习题讲解
13.
解:A容器下粗上细,溶液高度的变化越来越快,故与(4)对应;B容 器为球形,溶液高度变化为快—慢—快,应与(1)对应;C,D容器都 是柱形的,溶液高度的变化速度都应是直线型,但C容器细,D容器粗, 故溶液高度的变化为C容器快,与(3)对应,D容器慢,与(2)对 应.
am
2 an 32 9 .
2.已知 log2 log4 log3 x log3 log4 log2 y 0 ,则x y __9_7___.
解:由题意可知 log4 log3 x 1 ,所以 log3 x 4 ,所以 x 34 81 ;
同理可得 y 24 16 ,所以 x y 97 .
loga (x
1) 2
为增函数,
没有符合的选项.所以答案为D.
习题讲解
9.
解:因为对数函数 y log6 x 在其定义域上是增函数,所以 a log6 5 log6 1 0且 a log6 5 log6 6 1 .因为指数函数 y x 在其定义域上是增函数,所以 b 0.3 0 1.因为 在其定义域上是 增函数,所以 c ln 1 ln1 0 .综上,c<0<a<1<b,即c<a<b ,
则x,y最合适的函数是( )
A.y 2x
B.y x2 1
第二章 对数函数 习题课
学习目标 1.巩固和深化对数及其运算的理解和运用.2.掌握简单的对数函数的图象变换及其应用.3.会综合应用对数函数性质与其他有关知识解决问题.知识点一 对数概念及其运算1.由指数式对数式互化可得恒等式:⎭⎪⎬⎪⎫a b =Nlog a N =b ⇒log a N a =N (a >0,且a ≠1). 2.对数log a N (a >0,且a ≠1)具有下列性质: (1)0和负数没有对数,即N >0; (2)log a 1=0; (3)log a a =1. 3.运算公式已知a >0,且a ≠1,M 、N >0. (1)log a M +log a N =log a (MN ); (2)log a M -log a N =log a MN ;(3)log a n M m =mnlog a M ;(4)log a M =log c Mlog c a =1log Ma(c >0,且c ≠1).知识点二 对数函数及其图象、性质 函数y =log a x (a >0,且a ≠1)叫做对数函数.(1)对数函数y =log a x (a >0,且a ≠1)的定义域为(0,+∞);值域为R ; (2)对数函数y =log a x (a >0,且a ≠1)的图象过点(1,0); (3)当a >1时,y =log a x 在(0,+∞)上单调递增; 当0<a <1时,y =log a x 在(0,+∞)上单调递减;(4)直线y =1与函数y =log a x (a >0,且a ≠1)的图象交点为(a,1). (5)y =log a x 与y =a x 的图象关于y =x 对称. y =log a x 与y =1log ax 的图象关于x 轴对称.类型一 对数式的化简与求值 例1 (1)计算:(2log (2-3);(2)已知2lg x -y 2=lg x +lg y,求(3log -xy .解 (1)方法一 利用对数定义求值: 设log (2+3)(2-3)=x ,则(2+3)x =2-3=12+3=(2+3)-1,∴x =-1.方法二 利用对数的运算性质求解: log (2+3)(2-3)=log (2+3)12+3=log (2+3)(2+3)-1=-1.(2)由已知得lg(x -y2)2=lg xy ,∴(x -y 2)2=xy ,即x 2-6xy +y 2=0.∴(x y )2-6(xy )+1=0. ∴xy =3±2 2. ∵⎩⎪⎨⎪⎧x -y >0,x >0,y >0,∴x y >1,∴xy=3+22,∴log (3-22)xy =log (3-22)(3+22)=log (3-22)13-22=-1.反思与感悟 在对数运算中,先利用幂的运算把底数或真数进行变形,化成分数指数幂的形式,使幂的底数最简,然后再运用对数运算法则化简合并,在运算中要注意化同底,指数与对数互化.跟踪训练1 (1)(lg 3)2-lg 9+1(lg 27+lg 8-lg 1 000)lg 0.3·lg 1.2=________.(2)已知函数f (x )=lg x ,若f (ab )=1,则f (a 2)+f (b 2)=________. 答案 (1)-32 (2)2解析 (1)∵(lg 3)2-lg 9+1=(lg 3)2-2lg 3+1=1-lg 3,lg 27+lg 8-lg 1 000=32lg 3+3lg 2-32=32(lg 3-1)+3lg 2=32(lg 3+2lg 2-1), lg 0.3·lg 1.2=lg310·lg 1210=(lg 3-1)(lg 12-1) =(lg 3-1)(lg 3+2lg 2-1), ∴原式=-32.(2)∵f (ab )=lg(ab )=1.∴f (a 2)+f (b 2)=lg a 2+lg b 2=lg(a 2b 2)=2lg(ab )=2. 类型二 对数函数图象的应用例2 已知函数f (x )=⎩⎪⎨⎪⎧|ln x |,0<x ≤e ,2-ln x ,x >e ,若a ,b ,c 互不相等,且f (a )=f (b )=f (c ),求abc 的取值范围.解 f (x )的图象如图:设f (a )=f (b )=f (c )=m , 不妨设a <b <c ,则直线y =m 与f (x )交点横坐标从左到右依次为a ,b ,c , 由图象易知0<a <1<b <e<c <e 2, ∴f (a )=|ln a |=-ln a ,f (b )=|ln b |=ln b .∴-ln a =ln b ,ln a +ln b =0,ln ab =ln 1,∴ab =1. ∴abc =c ∈(e ,e 2).反思与感悟 函数的图象直观形象地显示了函数的性质,因此涉及方程解的个数及不等式的解集等问题大都可以通过函数的图象解决,即利用数形结合思想,使问题简单化.跟踪训练2 已知f (x )=log a x (a >0且a ≠1),如果对于任意的x ∈[13,2]都有|f (x )|≤1成立,试求a 的取值范围.解 ∵f (x )=log a x ,则y =|f (x )|的图象如图.由图示,要使x ∈[13,2]时恒有|f (x )|≤1,只需|f (13)|≤1,即-1≤log a 13≤1,即log a a -1≤log a 13≤log a a ,亦当a >1时,得a -1≤13≤a ,即a ≥3;当0<a <1时,a -1≥13≥a ,得0<a ≤13.综上所述,a 的取值范围是(0,13]∪[3,+∞).类型三 对数函数的综合应用例3 已知函数f (x )=log a (x +1)(a >1),若函数y =g (x )图象上任意一点P 关于原点对称的点Q 在函数f (x )的图象上. (1)写出函数g (x )的解析式;(2)当x ∈[0,1)时总有f (x )+g (x )≥m 成立,求m 的取值范围. 解 (1)设P (x ,y )为g (x )图象上任意一点, 则Q (-x ,-y )是点P 关于原点的对称点, ∵Q (-x ,-y )在f (x )的图象上, ∴-y =log a (-x +1), 即y =g (x )=-log a (1-x ). (2)f (x )+g (x )≥m ,即log a x +11-x≥m .设F (x )=log a 1+x 1-x =log a (-1+21-x ),x ∈[0,1),由题意知,只要F (x )min ≥m 即可.∵F (x )在[0,1)上是增函数,∴F (x )min =F (0)=0. 故m ≤0即为所求.跟踪训练3 已知函数f (x )的定义域是(-1,1),对于任意的x ,y ∈(-1,1),有f (x )+f (y )=f ⎝⎛⎭⎪⎫x +y 1+xy ,且当x <0时,f (x )>0. (1)验证函数g (x )=ln 1-x1+x,x ∈(-1,1)是否满足上述这些条件;(2)你发现这样的函数f (x )还具有其他什么样的性质?试将函数的奇偶性、单调性方面的结论写出来,并加以证明.解 (1)因为g (x )+g (y )=ln 1-x 1+x +ln 1-y1+y=ln ⎝ ⎛⎭⎪⎫1-x 1+x ·1-y 1+y =ln 1-x -y +xy1+x +y +xy , g ⎝ ⎛⎭⎪⎫x +y 1+xy =ln 1-x +y1+xy 1+x +y 1+xy=ln 1-x -y +xy1+x +y +xy ,所以g (x )+g (y )=g ⎝ ⎛⎭⎪⎫x +y 1+xy 成立.又当x <0时,1-x >1+x >0,所以1-x1+x >1,所以g (x )=ln 1-x1+x >0成立,综上g (x )=ln 1-x1+x满足这些条件.(2)发现这样的函数f (x )在(-1,1)上是奇函数. 因为x =y =0代入条件,得f (0)+f (0)=f (0), 所以f (0)=0.将y =-x 代入条件得f (x )+f (-x )=f (0)=0⇒f (-x )=-f (x ), 所以函数f (x )在(-1,1)上是奇函数. 又发现这样的函数f (x )在(-1,1)上是减函数.因为f (x )-f (y )=f (x )+f (-y )=f ⎝ ⎛⎭⎪⎫x -y 1-xy ,当-1<x <y <1时,x -y1-xy <0,由条件知f ⎝ ⎛⎭⎪⎫x -y 1-xy >0,即f (x )-f (y )>0⇒f (x )>f (y ), 所以函数f (x )在(-1,1)上是减函数.1.若log x 7y =z ,则( ) A.y 7=x z B.y =x 7z C.y =7x z D.y =z 7x答案 B解析 由log x 7y =z ,得x z =7y ,∴⎝⎛⎭⎫7y 7=(x z )7,即y =x 7z .2.当0<x ≤12时,4x <log a x ,则a 的取值范围是( )A.⎝⎛⎭⎫0,22 B.⎝⎛⎭⎫22,1C.(1,2)D.(2,2)答案 B解析 a >1时,当0<x ≤12时,log a x <0,不合题意.0<a <1时,只需124<log a 12,即log a a 2<log a 12,解得a >22,又a ∈(0,1),∴a ∈⎝⎛⎭⎫22,1.3.已知函数y =f (2x )的定义域为[-1,1],则函数y =f (log 2x )的定义域为( ) A.[-1,1] B.[12,2] C.[1,2] D.[2,4]答案 D解析 ∵-1≤x ≤1,∴2-1≤2x ≤2,即12≤2x ≤2.∴y =f (x )的定义域为[12,2],即12≤log 2x ≤2,∴2≤x ≤4.4.函数f (x )=a x +log a (x +1)在[0,1]上的最大值与最小值之和为a ,则a 的值为( ) A.14 B.12 C.2 D.4 答案 B解析 函数f (x )=a x +log a (x +1),令y 1=a x ,y 2=log a (x +1),显然在[0,1]上, y 1=a x 与y 2=log a (x +1)同增或同减. 因而[f (x )]max +[f (x )]min =f (1)+f (0) =a +log a 2+1+0=a ,解得a =12.5.已知23a =49(a >0),则23log a =________.答案 3解析 设23log a =x ,则a =⎝⎛⎭⎫23x,又23a =49,∴2323x⎡⎤⎛⎫⎢⎥ ⎪⎝⎭⎢⎥⎣⎦=⎝⎛⎭⎫232,即2323x ⎛⎫⎪⎝⎭=⎝⎛⎭⎫232,∴23x =2,解得x =3.1.指数式a b =N 与对数式log a N =b 的关系以及这两种形式的互化是对数运算法则的关键.2.指数运算的实质是指数式的积、商、幂的运算,对于指数式的和、差应充分运用恒等变形和乘法公式;对数运算的实质是把积、商、幂的对数转化为对数的和、差、积.3.注意对数恒等式、对数换底公式及等式log a m b n =n m ·log a b ,log a b =1log b a 在解题中的灵活应用.4.在运用性质log a M n =n log a M 时,要特别注意条件,在无M >0的条件下应为log a M n =n log a |M |(n ∈N *,且n 为偶数).5.指数函数y =a x (a >0,且a ≠1)与对数函数y =log a x (a >0,且a ≠1)互为反函数,应从概念、图象和性质三个方面理解它们之间的联系与区别.6.明确函数图象的位置和形状要通过研究函数的性质,要记忆函数的性质可借助于函数的图象.因此要掌握指数函数和对数函数的性质首先要熟记指数函数和对数函数的图象.课时作业一、选择题1.已知a =log 0.60.5,b =ln 0.5,c =0.60.5,则( ) A.a >b >c B.a >c >b C.c >a >b D.c >b >a答案 B解析 ∵y =log 0.6x 在(0,+∞)上为减函数. ∴log 0.60.6<log 0.60.5,即a >1. 同理,ln 0.5<ln 1=0,即b <0.0<0.60.5<0.60,即0<c <1. ∴a >c >b .2.已知x ,y ,z 都是大于1的正数,m >0,且log x m =24,log y m =40,log xyz m =12,则log z m 的值为( ) A.160 B.60 C.2003 D.3200答案 B解析 由已知得log m (xyz )=log m x +log m y +log m z =112,而log m x =124,log m y =140,故log m z =112-log m x -log m y =112-124-140=160,即log z m =60.3.函数f (x )=log a [(a -1)x +1]在定义域上( ) A.是增函数 B.是减函数 C.先增后减 D.先减后增 答案 A解析 ∵a >1时,y =log a u ,u =(a -1)x +1都是增函数. 0<a <1时,y =log a u ,u =(a -1)x +1都是减函数. ∴f (x )在定义域上为增函数.4.函数f (x )=ln(x 2+1)的图象大致是( )答案 A解析 本题考查的是对数函数的图象.由函数解析式可知f (x )=f (-x ),即函数为偶函数,排除C ;由函数过(0,0)点,排除B 、D.5.设函数f (x )=⎩⎪⎨⎪⎧21-x ,x ≤1,1-log 2x ,x >1,则满足f (x )≤2的x 的取值范围是( )A.[-1,2]B.[0,2]C.[1,+∞)D.[0,+∞)答案 D解析 f (x )≤2等价于⎩⎪⎨⎪⎧ x ≤1,21-x ≤2或⎩⎪⎨⎪⎧x >1,1-log 2x ≤2,解得0≤x ≤1或x >1. ∴x 的取值范围是[0,+∞).6.两个函数的图象经过平移后能够重合,称这两个函数为“同形”函数,给出下列四个函数: f 1(x )=2log 2(x +1),f 2(x )=log 2(x +2),f 3(x )=log 2x 2,f 4(x )=log 2(2x ), 则是“同形”函数的是( ) A.f 2(x )与f 4(x ) B.f 1(x )与f 3(x ) C.f 1(x )与f 4(x ) D.f 3(x )与f 4(x )答案 A解析 因为f 4(x )=log 2(2x )=1+log 2x ,所以f 2(x )=log 2(x +2),沿着x 轴先向右平移2个单位得到y =log 2x 的图象,然后再沿着y 轴向上平移1个单位可得到f 4(x )=log 2(2x )=1+log 2x ,根据“同形”函数的定义,f 2(x )与f 4(x )为“同形”函数.f 3(x )=log 2x 2=2log 2|x |与f 1(x )=2log 2(x +1)不“同形”,故选A. 二、填空题7.函数f (x )=|log 3x |在区间[a ,b ]上的值域为[0,1],则b -a 的最小值为________. 答案 23解析 由题意可知求b -a 的最小值即求区间[a ,b ]的长度的最小值,当f (x )=0时,x =1,当f (x )=1时,x =3或13,所以区间[a ,b ]的最短长度为1-13=23,所以b -a 的最小值为23.8.(lg 2)2+lg 2·lg 50+lg 25=________. 答案 2解析 原式=lg 2·(lg 2+lg 50)+lg 25=2lg 2+lg 25=lg 100=2. 9.已知实数a ,b 满足log 12a =log 13b ,下列五个关系式:①a >b >1;②0<b <a <1;③b >a >1;④0<a <b <1;⑤a =b . 其中可能成立的关系式序号为________. 答案 ②③⑤解析 由图易知,12log a =13log b 有且仅有3种情形:0<b <a <1或1<a <b 或a =b =1.10.已知0<a <1,0<b <1,若a log b (x -3)<1,则x 的取值范围是__________.答案 (3,4)解析 ∵0<a <1,∴a log b (x -3)<1=a 0等价于log b (x -3)>0=log b 1.∵0<b <1,∴⎩⎪⎨⎪⎧x -3>0,x -3<1,解得3<x <4. 三、解答题11.已知定义在R 上的偶函数f (x )在区间[0,+∞)上是单调减函数,若f (1)>f (lg 1x),求x 的取值范围.解 因为f (x )是定义在R 上的偶函数且在区间[0,+∞)上是单调减函数,所以f (x )在区间(-∞,0)上是单调增函数,所以不等式f (1)>f (lg 1x)可化为 lg 1x >1或lg 1x<-1, 所以lg 1x >lg 10或lg 1x <lg 110, 所以1x >10或0<1x <110, 所以0<x <110或x >10. 所以x 的取值范围为(0,110)∪(10,+∞). 12.已知函数f (x )=2+log 2x ,x ∈[1,4].(1)求函数f (x )的值域;(2)设g (x )=[f (x )]2-f (x 2),求g (x )的最值及相应的x 的值.解 (1)∵f (x )=2+log 2x 在[1,4]上是增函数,又f (1)=2+log 21=2,f (4)=2+log 24=2+2=4.∴函数f (x )的值域是[2,4].(2)g (x )=[f (x )]2-f (x 2)=4+4log 2x +(log 2x )2-(2+log 2x 2)=(log 2x )2+2log 2x +2=(log 2x +1)2+1.由⎩⎪⎨⎪⎧1≤x ≤4,1≤x 2≤4,得1≤x ≤2, ∴g (x )的定义域是[1,2].∴0≤log 2x ≤1.∴当log 2x =0,即x =1时,g (x )有最小值g (1)=2;当log 2x =1,即x =2时,g (x )有最大值g (2)=5.13.已知函数f (x )=lg(a x -b x )(a >1>b >0).(1)求y =f (x )的定义域;(2)在函数y =f (x )的图象上是否存在不同的两点,使得过这两点的直线平行于x 轴;(3)当a ,b 满足什么条件时,f (x )在(1,+∞)上恒取正值.解 (1)由a x -b x >0,得(a b)x >1,且a >1>b >0, 得a b>1,所以x >0, 即f (x )的定义域为(0,+∞).(2)任取x 1>x 2>0,a >1>b >0,则ax 1>ax 2>1,0<bx 1<bx 2<1,所以ax 1-bx 1>ax 2-bx 2>0,即lg(ax 1-bx 1)>lg(ax 2-bx 2).故f (x 1)>f (x 2).所以f (x )在(0,+∞)上为增函数.假设函数y =f (x )的图象上存在不同的两点A (x 1,y 1),B (x 2,y 2),使直线平行于x 轴,则x 1≠x 2,y 1=y 2,这与f (x )是增函数矛盾.故函数y =f (x )的图象上不存在不同的两点使过两点的直线平行于x 轴.(3)因为f (x )是增函数,所以当x ∈(1,+∞)时,f (x )>f (1),这样只需f (1)=lg(a -b )≥0,即当a ≥b +1时,f (x )在(1,+∞)上恒取正值.四、探究与拓展14.函数f (x )=log 2x ·log 2(2x )的最小值为________.答案 -14解析 由题意得x >0,∴f (x )=log 2x ·log 2(2x )=12log 2x ·log 2(4x 2)=12log 2x ·(log 24+2log 2x )=log 2x +(log 2x )2=⎝⎛⎭⎫log 2x +122-14≥-14.当且仅当x =22时,有f (x )min =-14. 15.已知函数f (x )=log 2(2x +1).(1)求证:函数f (x )在(-∞,+∞)内单调递增;(2)若g (x )=log 2(2x -1)(x >0),且关于x 的方程g (x )=m +f (x )在[1,2]上有解,求m 的取值范围.(1)证明 因为函数f (x )=log 2(2x +1),任取x 1<x 2,则f (x 1)-f (x 2)=log 2(2x 1+1)-log 2(2x 2+1)=log 22x 1+12x 2+1, 因为x 1<x 2,所以0<2x 1+12x 2+1<1, 所以log 22x 1+12x 2+1<0, 所以f (x 1)<f (x 2),所以函数f (x )在(-∞,+∞)内单调递增.(2)解 g (x )=m +f (x ),即g (x )-f (x )=m .设h (x )=g (x )-f (x )=log 2(2x -1)-log 2(2x +1)=log 22x -12x +1=log 2⎝ ⎛⎭⎪⎫1-22x +1. 设1≤x 1<x 2≤2.则3≤2x 1+1<2x 2+1≤5, 13≥12x 1+1>12x 2+1≥15, -23≤-22x 1+1<-22x 2+1≤-25, ∴13≤1-22x 1+1<1-22x 2+1≤35, ∴log 213≤h (x 1)<h (x 2)≤log 235, 即h (x )在[1,2]上为增函数且值域为[log 213,log 235]. 要使g (x )-f (x )=m 有解,需m ∈[log 213,log 235].。
新教材高中数学第四章对数运算与对数函数33第2课时对数函数图象及性质的应用(习题课)课件北师大版
当 log2x=0,即 x=1 时,f(x)取得最大值为 2,
∴函数 f(x)的值域是-14,2.
求函数值域的方法 (1)求对数型函数的值域,一般需要根据对数函数的单调性及真数的取值范 围求解; (2)求函数的值域时,一定要注意定义域对它的影响,并结合函数的单调性 求解,当函数较为复杂时,可对对数函数进行换元,把复杂问题简单化.
(2)[解] 设 u(x)=x2-2ax-a. ∵f(x)在(-∞,-3)上是减函数, ∴u(x)在(-∞,-3)上是减函数, 且 u(x)>0 在(-∞,-3)上恒成立. 又 u(x)=(x-a)2-a-a2 在(-∞,a)上是减函数. ∴au≥(--33,)≥0,∴a≥-95. ∴满足条件的实数 a 的取值范围是-95,+∞.
[跟踪训练] 1.若 y=log(2a-3)x 在(0,+∞)上是增函数,则实数 a 的取值范围为________.
解析:由 y=log(2a-3)x 在(0,+∞)上是增函数,所以 2a-3>1,解得 a>2. 答案:(2,+∞)
2.讨论函数 y=loga(3x-1)的单调性. 解:由 3x-1>0,得函数的定义域为xx>13. 当 a>1,x>13时, 函数 y=f(x)=loga(3x-1)为增函数; 当 0<a<1,x>13时, 函数 y=f(x)=loga(3x-1)为减函数.
[问题探究] 1.已知函数 f(x)=log2( x2+1+x),试判断其奇偶性.
提示:由 f(x)知 x∈R ,
又 f(-x)+f(x)=log2( x2+1-x)+log2( x2+1+x) =log21=0.∴f(x)为奇函数. 2.探究 1 中函数若变为 f(x)=log2( x2+1-x),f(x)还是奇函数吗? 提示:是.