韩伯棠管理运筹学(第三版)_第八章_整数规划

合集下载

第8章_整数规划(带答案)

第8章_整数规划(带答案)

1 2 3 4 5 6
1 2 3 0 10 16 10 0 24 16 24 0 28 32 12 27 17 27 20 10 21
4 28 32 12 0 15 25
5 27 17 27 15 0 14
6 20 10 21 25 14 0
18
二、背包问题(补充)
背包可装入 8 单位重量, 10 单位体积物品。若 背包中每件物品至多只能装一个,怎样才能使背包 装的物品价值最高。 物品 名称 重量 体积 价值
4
§1 整数规划的图解法
例1. 某公司拟用集装箱托运甲、乙两种货物, 这两种货物每件的体积、重量、可获利润以及 托运所受限制如表所示。
货物
甲 乙 托运限制
每件体积 (立方米) 195 273 1365
每件重量 (百千克) 4 40 140
每件利润 (百元) 2 3
甲种货物至多托运 4 件,问两种货物各托运多 少件,可使获得的利润最大。
例6.有四个工人,要分别指派他们完成四项 不同的工作,每人做各项工作所消耗的时间 如下表所示,问应如何指派工作,才能使总 的消耗时间为最少。
工作 工人 甲 乙 丙 丁 A 15 19 26 19 B 18 23 17 21 C 21 22 16 23 D 24 18 19 17
1 2 3 4 5 6
1 2 3 0 10 16 10 0 24 16 24 0 28 32 12 27 17 27 20 10 21
4 28 32 12 0 15 25
5 27 17 27 15 0 14
6 20 10 21 25 14 0
第2个地区建一个(地区1、2、6都解决了)
第4个地区建一个(地区3、4、5都解决了)

管理运筹学第三版课后答案

管理运筹学第三版课后答案

管理运筹学第三版课后答案【篇一:管理运筹学(第三版)课后习题答案】ss=txt>1、解:ax= 150 x= 7012目标函数最优值 103000b 1,3 使用完2,4 没用完 0,330,0,15c 50,0,200,0含义: 1 车间每增加 1 工时,总利润增加 50 元3 车间每增加 1 工时,总利润增加 200 元 2、4 车间每增加 1 工时,总利润不增加。

d 3 车间,因为增加的利润最大e 在 400 到正无穷的范围内变化,最优产品的组合不变f 不变因为在 [0,500]的范围内g 所谓的上限和下限值指当约束条件的右边值在给定范围内变化时,约束条j 不发生变化允许增加的百分比与允许减少的百分比之和没有超出100% k 发生变化 2、解:a 4000 10000 62000b 约束条件 1:总投资额增加 1 个单位,风险系数则降低 0.057约束条件 2:年回报额增加 1 个单位,风险系数升高 2.167 c 约束条件 1 的松弛变量是 0,约束条件 2 的剩余变量是 0约束条件 3 为大于等于,故其剩余变量为 700000 d 当 c不变时,c在 3.75 到正无穷的范围内变化,最优解不变21当 c不变时, c在负无穷到 6.4 的范围内变化,最优解不变12e 约束条件 1 的右边值在 [780000,1500000]变化,对偶价格仍为0.057(其他同理)f 不能,理由见百分之一百法则二 3 、解:a 18000 3000 102000 153000b 总投资额的松弛变量为 0基金 b 的投资额的剩余变量为 0c 总投资额每增加 1 个单位,回报额增加 0.1基金 b 的投资额每增加 1 个单位,回报额下降 0.06 d c不变时, c 在负无穷到 10 的范围内变化,其最优解不变12c不变时, c在 2 到正无穷的范围内变化,其最优解不变21e 约束条件 1 的右边值在 300000 到正无穷的范围内变化,对偶价格仍为 0.1约束条件 2 的右边值在 0 到 1200000 的范围内变化,对偶价格仍为-0.06 + = 100% 故对偶价格不变900000 900000 f4、解:a x=1x= 1.52x= 03x= 1 最优目标函数 18.548.5b 约束条件 2 和 3 对偶价格为 2 和 3.5c 选择约束条件 3,最优目标函数值 22d 在负无穷到 5.5 的范围内变化,其最优解不变,但此时最优目标函数值变化e 在 0 到正无穷的范围内变化,其最优解不变,但此时最优目标函数值变化 5、解:a 约束条件 2 的右边值增加 1 个单位,目标函数值将增加 3.622b 才有可能大于零或生产2c 根据百分之一百法则判定,最优解不变15 65d + 100 % 根据百分之一百法则二,我们不能判定? 30 ? 9.189因为111.25 15其对偶价格是否有变化第 4 章线性规划在工商管理中的应用1、解:为了用最少的原材料得到 10 台锅炉,需要混合使用 14 种下料方4286398505479691180剩余758设按 14 种方案下料的原材料的根数分别为 x1,x2,x3,x4,x5,x6,x7,x8,x9, x10,x11,x12,x13,x14,则可列出下面的数学模型: min f=x1+x2+x3+x4+x5+x6+x7+x8+x9+x10+x11+x12+x13+x14 s.t. 2x1+x2+x3+x4 ≥ 80x2+3x5+2x6+2x7+x8+x9+x10≥ 350 x3+x6+2x8+x9+3x11+x12+x13≥ 420x4+x7+x9+2x10+x12+2x13+3x14 ≥ 10x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14≥ 0 用管理运筹学软件我们可以求得此问题的解为:x1=40,x2=0,x3=0,x4=0,x5=116.667,x6=0,x7=0,x8=0, x9=0,x10=0,x11=140,x12=0,x13=0,x14=3.333 最优值为 300。

韩伯棠教授《管理运筹学》第三版习题答案 高等教育出版社

韩伯棠教授《管理运筹学》第三版习题答案 高等教育出版社

6 、解: b 1 ≤ c1 ≤ 3
c 2 ≤ c2 ≤ 6
d x1 = 6 x2 = 4
e x1 ∈ [4,8] x2 = 16 − 2x1
f 变化。原斜率从 − 2 变为 −1 3
7、解: 模型:
max z = 500x1 + 400x2
2x1 ≤ 300 3x2 ≤ 540 2x1 + 2x2 ≤ 440 1.2x1 +1.5x2 ≤ 300 x1, x2 ≥ 0
h 100×50=5000 对偶价格不变 i能 j 不发生变化 允许增加的百分比与允许减少的百分比之和没有超出 100% k 发生变化 2、解:
a 4000 10000 62000 b 约束条件 1:总投资额增加 1 个单位,风险系数则降低 0.057
约束条件 2:年回报额增加 1 个单位,风险系数升高 2.167 c 约束条件 1 的松弛变量是 0,约束条件 2 的剩余变量是 0
f 600000 + 300000 = 100% 故对偶价格不变 900000 900000
4、解:
a x1 = 8.5 x2 = 1.5 x3 = 0 x4 = 1 最优目标函数 18.5
b 约束条件 2 和 3
对偶价格为 2 和 3.5
c 选择约束条件 3,最优目标函数值 22
d 在负无穷到 5.5 的范围内变化,其最优解不变,但此时最优目标函数值变化
课后吧 kehou8.com
第 2 章 线性规划的图解法
1、解:
x2
6
a.可行域为 OABC。 b.等值线为图中虚线所示。
c.由图可知,最优解为 B 点,最优解:
A
B
12 x1 = 7
x2

《管理运筹学》第三版习题答案(韩伯棠教授)

《管理运筹学》第三版习题答案(韩伯棠教授)

第 2 章 线性规划的图解法11a.可行域为 OABC 。

b.等值线为图中虚线所示。

12c.由图可知,最优解为 B 点,最优解: x 1 = 769 。

7 2、解:15 x 2 =7, 最优目标函数值:a x 210.60.1O1有唯一解x 1 = 0.2函数值为 3.6x 2 = 0.6b 无可行解c 无界解d 无可行解e 无穷多解1 2 2 1 2f 有唯一解20 x 1 =3 8函数值为 92 33、解:a 标准形式:b 标准形式:c 标准形式:x 2 = 3max fmax f= 3x 1 + 2 x 2 + 0s 1 + 0s 2 + 0s 3 9 x 1 + 2x 2 + s 1 = 303x 1 + 2 x 2 + s 2 = 13 2 x 1 + 2x 2 + s 3 = 9 x 1 , x 2 , s 1 , s 2 , s 3 ≥= −4 x 1 − 6x 3 − 0s 1 − 0s 23x 1 − x 2 − s 1 =6x 1 + 2x 2 + s 2 = 10 7 x 1 − 6 x 2 = 4x 1 , x 2 , s 1 , s 2 ≥max f = −x ' + 2x ' − 2 x ''− 0s − 0s'''− 3x 1 + 5x 2 − 5x 2 + s 1 = 70 2 x ' − 5x ' + 5x '' = 50122' ' ''3x 1 + 2 x 2 − 2x 2 − s 2 = 30'' ''4 、解:x 1 , x 2, x 2, s 1 , s 2 ≥ 0标准形式: max z = 10 x 1 + 5x 2 + 0s 1 + 0s 23x 1 + 4 x 2 + s 1 = 9 5x 1 + 2 x 2 + s 2 = 8 x 1 , x 2 , s 1 , s 2 ≥ 0s 1 = 2, s 2 = 0标准形式: min f = 11x 1 + 8x 2 + 0s 1 + 0s 2 + 0s 310 x 1 + 2x 2 − s 1 = 203x 1 + 3x 2 − s 2 = 18 4 x 1 + 9x 2 − s 3 = 36 x 1 , x 2 , s 1 , s 2 , s 3 ≥ 0s 1 = 0, s 2 = 0, s 3 = 136 、解:b 1 ≤c 1 ≤ 3c 2 ≤ c 2 ≤ 6d x 1 = 6 x 2 = 4e x 1 ∈ [4,8]x 2 = 16 − 2x 1f 变化。

韩伯棠《管理运筹学(第2版)》案例题解

韩伯棠《管理运筹学(第2版)》案例题解

《管理运筹学》案例题解案例1:北方化工厂月生产计划安排解:设每月生产产品i (i=1,2,3,4,5)的数量为X i ,价格为P 1i ,Y j 为原材料j 的数量,价格为P 2i ,a ij 为产品i 中原材料j 所需的数量百分比,则:510.6j i ij i Y X a ==∑总成本:1521i i i TC Y P ==∑总销售收入为:511i i i TI X P ==∑目标函数为:MAX TP (总利润)=TI-TC 约束条件为:1030248002151×××≤∑=j j Y X 1+X 3=0.7∑=51i i XX 2≤50.05∑=51i i XX 3+X 4≤5X 1 Y 3≤54000 X i ≥0,i=1,2,3,4,5 应用计算工具求解得到:X 1=19639.94kg X 2=0kg X 3=7855.97kg X 4=11783.96kgX5=0kg最优解为:348286.39元案例2:石华建设监理工程师配置问题解:设X i表示工地i在标准施工期需要配备的监理工程师,Y j表示工地j在高峰施工期需要配备的监理工程师。

约束条件为:X1≥5X2≥4X3≥4X4≥3X5≥3X6≥2X7≥2Y1+Y2≥14Y2+Y3≥13Y3+Y4≥11Y4+Y5≥10Y5+Y6≥9Y6+Y7≥7Y7+Y1≥14Y j≥ X i (i=j,i=1,2, (7)总成本Y为:Y=∑=+71)12/353/7(ii iY X解得X1=5;X2=4;X3=4;X4=3;X5=3;X6=2;X7=2;Y1=9;Y2=5;Y3=8;Y4=3;Y5=7;Y6=2;Y7=5总成本Y=167案例3:北方印染公司应如何合理使用技术培训费解:变量的设置如下表所示,其中X ij为第i类培训方式在第j年培训的人数:第一年第二年第三年1.高中生升初级工X11X12X132.高中生升中级工X213.高中生升高级工X314.初级工升中级工X41X42X435.初级工升高级工X51X526.中级工升高级工X61X62X63则每年年底培养出来的初级工、中级工和高级工人数分别为:第一年底第二年底第三年底初级工X11X12X13中级工X41X42X21 +X43高级工X61X51 +X62X31 +X52+X63则第一年的成本TC1为:1000X11+3000X21+3000X31+2800X41+2000X51+3600 X61≤550000;第二年的成本TC2为:1000X12+3000X21+2000X31+2800X42+(3200 X51+2000X52)+3600X62≤450000;第三年的成本TC3为:1000X13+1000X21+4000X31+2800X43+3200 X52+3600X63≤500000;总成本TC= TC1 +TC2 +TC3≤1500000;其他约束条件为:X41 +X42 +X43+X51 +X52≤226;X61+X62 +X63≤560;X1j≤90 (j=1,2,3);X21 +X41≤80;X21 +X42≤80;X21 +X43≤80;X31 +X51+X61≤80;X31 +X51+X52+X62≤80;X31 +X52+X63≤80;以下计算因培训而增加的产值Max TO=(X11+ X12+ X13) + 4(X41 +X42 +X21 +X43) +5.5(X61 +X51 +X62 +X31 +X52+X63);利用计算机求解:X11=38;X41=80;X42=59;X43=77;X61=80;X62=79;X63=79;其余变量都为0;TO=2211案例4:光明制造厂经营报告书设直径4.76、6、8、10和12的钢管的需求量分别是X1,X2,X3,X4,X5。

运筹学钱颂迪答案

运筹学钱颂迪答案

运筹学钱颂迪答案【篇一: 803 运筹学】class=txt>运筹学考试大纲一、考试性质运筹学是我校航空运输管理学院硕士生入学考试的综合考试科目之一,它是我校为招收交通运输规划与管理学科硕士研究生而实施的水平考试,其评价标准是普通高等院校优秀本科毕业生能够达到的及格以上水平,以保证被录取者较好地掌握了必备的专业基础知识。

本门课程主要考试内容包括:线性规划及其对偶理论、运输问题、目标规划、整数规划、动态规划、图与网络分析,注重考察考生是否已经掌握运筹学最基本的理论知识与方法。

二、考试形式与试卷结构1.答卷方式:闭卷、笔试2.答卷时间: 180 分钟3.题型比例:满分 150 分,基本概念 20% ,计算及证明题 80%三、考查要点1.线性规划及对偶理论:单纯形法,改进单纯形法。

线性规划的对偶理论,对偶单纯形法,灵敏度分析;2.运输问题:运输问题的数学模型;用表上作业法求解运输问题;产销不平衡的运输问题及其求解方法;3.目标规划:目标规划的数学模型,目标规划的图解法与单纯形法;4.整数规划:0-1 型整数规划,分支定界解法,割平面解法,指派问题;5.动态规划:动态规划的基本概念和基本方法,动态规划的最优性原理与最优性定理,动态规划与静态规划的关系,动态规划的应用;6.图与网络分析:图与树的基本概念,最短路问题,网络最大流问题,最小费用最大流问题,中国邮路问题,网络计划。

四、主要参考书目1、郭耀煌,李军 .运筹学原理与方法. 成都:西南交通大学出版社,2004 ;2 、钱颂迪主编. 运筹学(修订版). 北京:清华大学出版社,1991 。

【篇二:运筹学大纲(13 、 14 级使用)2014.9 】(理论课程)开课系(部):数理教研部课程编号:380020 、 381703课程类型:专业必修课或学科必修课总学时: 48 或 32学分:3或2适用专业:信息管理与信息系统、投资学、工业工程、工程管理、经济统计学、物流管理开课学期: 3 或 4 或 5先修课程:高等数学、线性代数一、课程简述本课程是以经济活动方面的问题以及解决这类问题的原理和方法作为研究的对象,把经济活动中的问题归结为对应的某种数学模型,运用数学知识等工具求得最合理的工作方案。

管理运筹学讲义:整数规划

管理运筹学讲义:整数规划
3
福建师范大学经济学院
第一节
• 步骤:
整数规划问题
二、 整数规划的图解法
在线性规划的可行域内列出所有决策变量可能取的整数值, 求出这些变量所有可行的整数解, 比较它们相应的目标函数值,最优的目标函数值所对应的 解就是整数规划的最优解。 x2
• 实用性:
只有两个决策变量, 可行的整数解较少。
x2
5
4
3 2 1

• • •
1
• • •
2
x2=3
• •
3

4
5x1 +7 x2 =35 2x1 + x2 =9
x2 =2
x1
10
福建师范大学经济学院
第二节
分枝定界法
• 求解相应的线性规划的最优解
问题4相应的线性规划的最优解: x1=3,x2 =2,Z4=28 问题5相应的线性规划的最优解:x1=14/5,x2 =3,Z5=159/5
11
福建师范大学经济学院
第二节
问题6:maxZ= 6x1 +5 x2 2x1 + x2 ≤9 5x1 +7 x2 ≤35 x1≤3 x2 ≥3 x1≤2 x1, x2 ≥0 x1, x2取整数
分枝定界法
问题7: maxZ= 6x1 +5 x2 2x1 + x2 ≤9 5x1 +7 x2 ≤35 x1 ≤3 x2 ≥3 x1 ≥ 3 x1, x2 ≥0 x1, x2取整数
第6章
整数规划
• 线性规划的决策变量取值可以是任意非负实数,但许多
实际问题中,只有当决策变量的取值为整数时才有意义。
例如,产品的件数、机器的台数、装货的车数、完成工作的人 数等,分数或小数解显然是不合理的。

管理运筹学讲义整数规划

管理运筹学讲义整数规划

管理运筹学讲义整数规划整数规划是管理运筹学中一种重要的优化技术,它在实际问题中具有广泛的应用。

本文将介绍整数规划的基本概念、建模方法以及解决算法,并通过实例展示其在实际问题中的应用。

一、整数规划的基本概念整数规划是线性规划的一种扩展形式,其决策变量被限制为整数。

在实际问题中,往往存在某些变量只能取整数值的约束条件,这时就需要使用整数规划方法进行求解。

与线性规划相比,整数规划的求解难度更大,但可以提供更精确的结果。

二、整数规划的建模方法在进行整数规划建模时,需要确定决策变量、目标函数和约束条件。

1. 决策变量决策变量是问题中需要优化的变量,其取值决定了问题的解。

在整数规划中,决策变量通常表示为整数。

2. 目标函数目标函数是整数规划问题中需要最小化或最大化的目标。

它可以是线性函数或非线性函数,但在整数规划中,通常只考虑线性目标函数。

3. 约束条件约束条件是问题的限制条件,限制了决策变量的取值范围。

在整数规划中,约束条件可以是线性等式或线性不等式。

三、整数规划的解决算法解决整数规划问题的常见算法包括割平面法、分支定界法和动态规划法等。

这些算法通过不断对问题进行优化,逐步逼近最优解。

1. 割平面法割平面法是一种通过添加额外的约束条件来逼近最优解的方法。

它首先求解一个松弛问题,然后根据松弛问题的解加入新的约束条件,直到找到最优解。

2. 分支定界法分支定界法是一种将整数规划问题划分为多个子问题,并对每个子问题进行求解的方法。

它通过不断分支和剪枝来找到最优解。

3. 动态规划法动态规划法是一种通过将问题分解为多个子问题,并通过求解子问题的最优解来求解原始问题的方法。

它采用自底向上的求解方式,将所有可能的决策情况进行组合,得到最优解。

四、整数规划在实际问题中的应用整数规划在实际问题中有着广泛的应用。

以下是一个应用整数规划解决的实际问题示例:某公司生产两种产品A和B,每天的生产时间为8小时。

产品A每单位利润为100元,产品B每单位利润为150元。

2024版清华大学出版《运筹学》第三版完整版课件

2024版清华大学出版《运筹学》第三版完整版课件

要点三
金融服务与投资管理
在金融服务和投资管理中,存储论可用 于优化资金配置和投资组合,降低风险 和提高收益。例如,通过定期订货模型 的运用,可以制定合理的投资策略和资 产配置方案,实现资产的保值增值和风 险控制。
2024/1/28
31
07
排队论
2024/1/28
32
排队论的基本概念
2024/1/28
清华大学出版《运筹 学》第三版完整版课

2024/1/28
1
目录
2024/1/28
• 绪论 • 线性规划 • 整数规划 • 动态规划 • 图与网络分析 • 存储论 • 排队论
2
01
绪论
2024/1/28
3
运筹学的定义与发展
运筹学的定义
运筹学是一门应用数学学科,主要研究如何在有限资源下做出最优决策,以最 大化效益或最小化成本。
目标函数
表示决策变量的线性函数,需要最大化或最 小化。
约束条件
表示决策变量需要满足的线性等式或不等式。
2024/1/28
决策变量
表示问题的未知数,需要在满足约束条件的 情况下求解目标函数的最优值。
8
线性规划问题的图解法
01
可行域
表示所有满足约束条件的决策变量构成的集合。
2024/1/28
02
目标函数等值线
2024/1/28
34
单服务台排队系统
M/M/1排队系统
到达间隔和服务时间均服从负指数分布的单服务台排队系 统。
M/D/1排பைடு நூலகம்系统
到达间隔服从负指数分布,服务时间服从确定型分布的单 服务台排队系统。
表格。
10

运筹学第三版课后习题答案 (2)

运筹学第三版课后习题答案 (2)

运筹学第三版课后习题答案第一章:引论1.1 课后习题习题1a)运筹学是一门应用数学的学科,旨在解决实际问题中的决策和优化问题。

它包括数学模型的建立、问题求解方法的设计等方面。

b)运筹学可以应用于各个领域,如物流管理、生产计划、流程优化等。

它可以帮助组织提高效率、降低成本、优化资源分配等。

c)运筹学主要包括线性规划、整数规划、指派问题等方法。

习题2运筹学的应用可以帮助组织提高效率、降低成本、优化资源分配等。

它可以帮助制定最佳的生产计划,优化供应链管理,提高运输效率等。

运筹学方法的应用还可以帮助解决紧急情况下的应急调度问题,优化医疗资源分配等。

1.2 课后习题习题1运筹学方法可以应用于各个领域,如物流管理、生产计划、供应链管理、流程优化等。

在物流管理中,可以使用运筹学方法优化仓储和运输的布局,提高货物的运输效率。

在生产计划中,可以使用运筹学方法优化产品的生产数量和生产周期,降低生产成本。

在供应链管理中,可以使用运筹学方法优化订单配送和库存管理,提高供应链的效率。

在流程优化中,可以使用运筹学方法优化业务流程,提高整体效率。

习题2在物流管理中,可以使用运筹学方法优化车辆的调度和路线规划,以提高运输效率和降低成本。

在生产计划中,可以使用运筹学方法优化生产线的安排和产品的生产量,以降低生产成本和提高产能利用率。

在供应链管理中,可以使用运筹学方法优化供应链各个环节的协调和调度,以提高整体效率和减少库存成本。

在流程优化中,可以使用运筹学方法优化业务流程的排布和资源的分配,以提高流程效率和客户满意度。

第二章:线性规划基础2.1 课后习题习题1线性规划是一种数学优化方法,用于解决包含线性约束和线性目标函数的优化问题。

其一般形式为:max c^T*xs.t. Ax <= bx >= 0其中,c是目标函数的系数向量,x是决策变量向量,A是约束矩阵,b是约束向量。

习题2使用线性规划方法可以解决许多实际问题,如生产计划、供应链管理、资源分配等。

《管理运筹学》复习题及参考答案

《管理运筹学》复习题及参考答案

《管理运筹学》复习题及参考答案一、选择题1. 管理运筹学的研究对象是()A. 生产过程B. 管理活动C. 经济活动D. 运筹问题参考答案:D2. 以下哪个不属于管理运筹学的基本方法?()A. 线性规划B. 整数规划C. 非线性规划D. 人力资源规划参考答案:D3. 在线性规划中,约束条件是()A. 等式B. 不等式C. 方程组D. 矩阵参考答案:B4. 以下哪种方法不属于线性规划的对偶问题求解方法?()A. 单纯形法B. 对偶单纯形法C. 拉格朗日乘数法D. 牛顿法参考答案:D5. 在目标规划中,以下哪个不是目标约束的类型?()A. 等式约束B. 不等式约束C. 目标函数约束D. 线性约束参考答案:C二、填空题1. 管理运筹学的核心思想是______。

参考答案:最优化2. 在线性规划中,最优解存在的条件是______。

参考答案:可行性、有界性3. 整数规划的求解方法主要有______和______。

参考答案:分支定界法、动态规划法4. 在目标规划中,目标函数的求解方法有______、______和______。

参考答案:单纯形法、拉格朗日乘数法、动态规划法5. 非线性规划问题可以分为______、______和______。

参考答案:无约束非线性规划、约束非线性规划、非线性规划的对偶问题三、判断题1. 管理运筹学的研究对象是管理活动。

()参考答案:正确2. 在线性规划中,最优解一定存在。

()参考答案:错误3. 整数规划的求解方法比线性规划复杂。

()参考答案:正确4. 目标规划的求解方法与线性规划相同。

()参考答案:错误5. 非线性规划问题一定比线性规划问题复杂。

()参考答案:错误四、计算题1. 某工厂生产甲、乙两种产品,甲产品每件利润为10元,乙产品每件利润为8元。

生产甲产品每件需消耗2小时机器工作时间,3小时人工工作时间;生产乙产品每件需消耗1小时机器工作时间,2小时人工工作时间。

工厂每周最多可利用机器工作时间100小时,人工工作时间150小时。

管理运筹学期末复习资料【韩伯棠】

管理运筹学期末复习资料【韩伯棠】

运筹学(Operational Research)复习资料第一章绪论一、名词解释1.运筹学:运筹学是应用分析、试验、量化的方法,对经济管理系统中的人力、物力、财力等资源进行统筹安排,为决策者提供有依据的最优方案,以实现最有效的管理。

二、选择题1.运筹学的主要分支包括(ABDE )A图论B线性规划C非线性规划D整数规划E目标规划2. 最早运用运筹学理论的是( A )A . 二次世界大战期间,英国军事部门将运筹学运用到军事战略部署B . 美国最早将运筹学运用到农业和人口规划问题上C . 二次世界大战期间,英国政府将运筹学运用到政府制定计划D . 50年代,运筹学运用到研究人口,能源,粮食,第三世界经济发展等问题上第二章线性规划的图解法一、选择题/填空题1.线性规划标准式的特点:(1)目标函数最大化(2)约束条件为等式(3 决策变量为非负(4 ) 右端常数项为非负2. 在一定范围内,约束条件右边常数项增加一个单位:(1)如果对偶价格大于0,则其最优目标函数值得到改进,即求最大值时,最优目标函数值变得更大,求最小值时最优目标函数值变得更小。

(2)如果对偶价格小于0,则其最优目标函数值变坏,即求最大值时,最优目标函数值变小了;求最小值时,最优目标函数值变大了。

(3)如果对偶价格等于0,则其最优目标函数值不变。

3.LP模型(线性规划模型)三要素:(1)决策变量(2)约束条件(3)目标函数4. 数学模型中,“s·t”表示约束条件。

5. 将线性规划模型化成标准形式时,“≤”的约束条件要在不等式左端加上松弛变量。

6. 将线性规划模型化成标准形式时,“≥”的约束条件要在不等式左端减去剩余变量。

7.下列图形中阴影部分构成的集合是凸集的是A【解析】:如何判断是凸集?凸集:两点之间连线在图内凹集:两点之间连线在图外8. 线性规划问题有可行解且凸多边形无界,这时CA没有无界解 B 没有可行解 C 有无界解 D 有有限最优解9. 对于线性规划问题,下列说法正确的是( D )A. 线性规划问题可能没有可行解B. 在图解法上,线性规划问题的可行解区域都是“凸”区域C. 线性规划问题如有最优解,则最优解可在可行解区域顶点上到达D. 上述说法都正确第三章线性规划问题的计算机求解一、名词解释1.相差值:相应的决策变量的目标系数需要改进的数量,使得决策变量为正值。

运筹学 第八章(二)

运筹学 第八章(二)
最优目标函数值为: 万元 万元。 最优目标函数值为:245万元。 此结果告诉我们:在 A1 , A2 , A5 , A6 , A9 , A10六个地点建立销售 此结果告诉我们: 门市部,既满足规定,又在投资不超过720万元(实际投资额为: 门市部,既满足规定,又在投资不超过 万元(实际投资额为: 万元 100+120+70+90+160+180=720万元)的情况下,获得最大利润245 万元)的情况下,获得最大利润 万元 万元。 万元。
所需时间 工人 工作 小时) (小时) A 15 19 26 19 B 18 23 17 21 C 21 22 16 23 D 24 18 19 17
甲 乙 丙 丁
8
引入0—1变量 x ij,并令 解: 引入 变量 当指派第 i 个人去完成第 j 项工作时 ; 1 , x ij = 0 , 当不指派第 i 个人去完成第 j 项工作时 . 使总消耗时间最少,则目标函数为: 使总消耗时间最少,则目标函数为: min z = 15 x11 + 18 x12 + 21x13 + 24 x14 + 19 x21 + 23 x22 + 22 x23 + 18 x24 + 26 x31 + 17 x32 + 16 x33 + 19 x34 + 19 x41 + 21x42 + 23 x43 + 17 x44 . 每人只能干一项工作的约束条件可以写为: 每人只能干一项工作的约束条件可以写为: x11 + x12 + x13 + x14 = 1, (甲只干一项工作) 甲只干一项工作)
项任务的成本(如所需时间, 并设 c ij 第 i 个人去完成 j 项任务的成本(如所需时间,费用 等),则一般指派问题的数学模型为: ),则一般指派问题的数学模型为: 则一般指派问题的数学模型为

《管理运筹学》第三版(韩伯棠 )课后习题答案 高等教育出版社

《管理运筹学》第三版(韩伯棠 )课后习题答案  高等教育出版社
x1=8,x2=0,x3=1,x4=1,x5=0,x6=4,x7=0,x8=6,x9=0, x10=0,x11=0 最优值为 320。
a、 在满足对职工需求的条件下,在 10 时安排 8 个临时工,12 时新安排 1 个临时工,13 时新安排 1 个临时工,15 时新安排 4 个临时工,17 时新 安排 6 个临时工可使临时工的总成本最小。
50xa + 100xb ≤ 1200000 5xa + 4xb ≥ 60000 100xb ≥ 300000 xa , xb ≥ 0 基金 a,b 分别为 4000,10000。 回报率:60000
b 模型变为: max z = 5xa + 4xb
50xa + 100xb ≤ 1200000 100xb ≥ 300000 xa , xb ≥ 0
xi ≥ 0, yi ≥ 0 i=1,2,…,11
稍微变形后,用管理运筹学软件求解可得:总成本最小为 264 元。 安排如下:y1=8( 即在此时间段安排 8 个 3 小时的班),y3=1,y5=1,y7=4,x8=6 这样能比第一问节省:320-264=56 元。
x2+x3+x4+x5+1 ≥ 3 x3+x4+x5+x6+2 ≥ 3 x4+x5+x6+x7+1 ≥ 6 x5+x6+x7+x8+2 ≥ 12 x6+x7+x8+x9+2 ≥ 12 x7+x8+x9+x10+1 ≥ 7 x8+x9+x10+x11+1 ≥ 7 x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11≥ 0 用管理运筹学软件我们可以求得此问题的解为:
b、 这时付给临时工的工资总额为 80 元,一共需要安排 20 个临时工的班 次。
约束 -------
1 2 3 4 5 6 7 8 9 10 11

运筹学 整数规划( Integer Programming )

运筹学 整数规划( Integer  Programming )
组成两个新的松弛问题,称为分枝。新的松弛问题具有特征:当原问题 是求最大值时,目标值是分枝问题的上界;当原问题是求最小值时,目 标值是分枝问题的下界。
检查所有分枝的解及目标函数值,若某分枝的解是整数并且目标函数 值大于(max)等于其它分枝的目标值,则将其它分枝剪去不再计算,若 还存在非整数解并且目标值大于(max)整数解的目标值,需要继续分枝, 再检查,直到得到最优解。
割平面法的内涵:
Page 18
通过找适当的割平面,使得切割后最终得到这样的可行域( 不一定一次性得到), 它的一个有整数坐标的顶点恰好是 问题的最优解.
-Gomory割平面法
例: 求解
max z x1 x2 s.t. x1 x2 1
3x1 x2 4 x1 , x2 0, 整 数
1 x1 3/4 1 0 -1/4 1/4 0
1 x2 7/4 0 1 3/4 1/4 0
0 x5 -3 0 0 -3 -1 1
0 0 -1/2 -1/2 0
由对偶单纯形法, x5为换出变量, x3为换入变量, 得Page 29
cj CB XB b 1 x1 1 1 x2 1 0 x3 1
1 100 0 x1 x2 x3 x4 x5 1 0 0 1/3 1/12 0 1 0 0 1/4 0 0 1 -1 -1/3 0 0 0 -1/2 -1/6
收敛性很慢. 但若下其它方法(如分枝定界法)配合使用,
也是有效的.
分支定界法
Page 33
分支定界法的解题步骤:
1)求整数规划的松弛问题最优解; 若松弛问题的最优解满足整数要求,得到整数规划的最优解,否则转下
一步; 2)分支与定界:
任意选一个非整数解的变量xi,在松弛问题中加上约束: xi≤[xi] 和 xi≥[xi]+1

管理运筹学 第三版韩伯棠 考点归纳

管理运筹学  第三版韩伯棠   考点归纳

1.线性规划问题及其数学模型
2、约束条件不是等式的问题: 设约束条件为
ai1 x1+ai2 x2+ „ +ain xn ≤ bi 可以引进一个新的变量xs,使它等于约束右边与左边之差 xs=bi–(ai1 x1 + ai2 x2 + „ + ain xn ) 显然, xs也具有非负约束,即xs≥0,
A B B’
C’
C D x1
E
3.图解法的灵敏度分析
(二)约束条件中右边系数bi的灵敏度分析 可见,由于增加了10个台时数,使利润增加了500元,可见 每 个台时数可增加利润50元. 像这样在约束条件右边常量增加一个单位而使最优目标函数 值得到改进的数量称为这个约束条件的对偶价格。 本例中的设备对偶价格为50元/台时。 但不是每个约束条件右边常量的变化都会引起目标函数值的 变化的。 本例中,如果A原料的量增加10千克,也可以使可行域扩 大,但对最优解却没有影响,因此原料A的对偶价格为0。
3.图解法的灵敏度分析
(一)目标函数中的系数cj的灵敏度分析 由图可知,如果cj发生变化,则目标函数的等值线的斜率会 发生变化。如果要求最优解仍在B点,则会以B点为轴点而发 x 生转动。
2
z=27500=50x1+100x2
A B C
k=0
k=-c1/c2
E D x1
k=-2
k=-1
3.图解法的灵敏度分析
a11x1+a12x2+„+a1nxn≤( =, ≥ )b1 a21x1+a22x2+„+a2nxn≤( =, ≥ )b2
„„
am1x1+am2x2 +„+amnxn≤( =, ≥ )bm x1 ,x2 ,„ ,xn ≥ 0

管理运筹学课后答案-----韩伯裳

管理运筹学课后答案-----韩伯裳

12 15 69 , x2 。最优目标函数值: 7 7 7
0.6
0.1 0 0.1 0.6 1 x1
(1) 由图解法可得有唯一解 (2) (3) (4) (5) 无可行解 无界解 无可行解 无穷多解
x1 0.2 x 2 0 .6
,函数值为 3.6。
第 369 页
张越老师所使用的《运筹学》课后习题答案,PDF 版本方便大家在电子设备中阅读。QQY 2012-09-11
从上午11时到下午10时分成11个班次设xi表示第i班次安排的临时工的人数模型如minf16x1x2x3x4x5x6x7x8x9x10x11x1x2x2x3x1x2x3x4x3x4x5x4x5x6x5x6x7x6x7x8x6x7x8x9x8x9x10x9x10x11在满足对职工需求的条件下在11时安排8个临时工13时新安排1个临时工14时新安排1个临时工16时新安排4个临时工18时新安排6个临时工可使临时工的总成本最小
' '' 3 x1 5 x 2 5x2 s1 70 ' '' 2 x1' 5 x 2 5x2 50 ' '' 3 x1' 2 x 2 2 x2 s 2 30 ' '' x1' , x 2 , x2 , s1 , s 2 0
4.解: 标准形式:
max z 10 x1 5 x2 0s1 0s 2
3 x1 4 x 2 s1 9 5 x1 2 x 2 s 2 8 x1 , x 2 , s1 , s 2 0
松弛变量(0,0) 最优解为 x1 =1,x 2 =3/2.
第 370 页
张越老师所使用的《运筹学》课后习题答案,PDF 版本方便大家在电子设备中阅读。QQY 2012-09-11

管理运筹学 第3版 韩伯棠 高教社 课后答案

管理运筹学 第3版 韩伯棠  高教社 课后答案

第四章 线性规划在工商管理中的应用 作业:P57-58,Q2,Q3 Q2:某快餐店座落在一个旅游景点中。该景点远离市区,平时顾客不多,而在每个周六顾客猛增。该店主要为顾客 提供低价位的快餐服务。该店雇佣 2 名正式工,每天工作 8 小时。其余工作由临时工担任,临时工每天工作 4 小时。 周六营业时间 11:00a.m-22:00p.m。根据就餐情况,在周六每个营业小时所需的职工数如表(包括正式工和临时工) 。 已知一名正式工从 11 点上班,工作 4 小时后休息 1 小时,而后在工作 4 小时。另外一名正式工 13 点上班,工作 4 小时后,休息 1 小时,在工作 4 小时。又知临时工每小时工资 4 元。 时间 11:00-12:00 12:00-13:00 13:00-14:00 14:00-15:00 15:00-16:00 16:00-17:00 所需职工数 9 9 9 3 3 3 时间 17:00-18:00 18:00-19:00 19:00-20:00 20:00-21:00 21:00-22:00 所需职工数 6 12 12 7 7
(1) 、满足对职工需求的条件下,如何安排临时工的班次,使得临时工成本最小。 (2) 、这时付给临时工的工资总额是多少,一共需要安排多少临时工班次。请用剩余变量来说明应该安排一些临时
6
工的 3 小时工作时间的班次,可使得总成本更小。 (3) 、如果临时工每班工作时间可以是 3 小时,也可以是 4 小时,那么如何安排临时工的班次,使得临时工总成本 最小。这样比(1)节省多少费用,这时要安排多少临时工班次。 解题如下: (1)临时工的工作时间为 4 小时,正式工的工作时间也是 4 小时,则第五个小时需要新招人员,临时工只要招用,无 论工作多长时间,都按照 4 小时给予工资。每位临时工招用以后,就需要支付 16 元工资。从上午 11 时到晚上 10 时共计 11 个班次,则设 Xi(i =1,2,…,11)个班次招用的临时工数量,如下为最小成本: minf=16(X1+X2+X3+X4+X5+X6+X7+X8+X9+X10+X11) 两位正式工一个在 11-15 点上班,在 15-16 点休息,然后在 16-20 点上班。另外一个在 13-17 点上班,在 17 -18 点休息,18-22 点上班。则各项约束条件如下: X1+1>=9 X1+X2+1>=9 X1+X2+X3+2>=9 X1+X2+X3+X4+2>=3 X2+X3+X4+X5+1>=3 X3+X4+X5+X6+2>=3 X4+X5+X6+X7+2>=6 X5+X6+X7+X8+1>=12 X6+X7+X8+X9+2>=12 X7+X8+X9+X10+1>=7 X8+X9+X10+X11+1>=7 Xi>=0(i=1,2,…,11) 运用计算机解题,结果输出如下; **********************最优解如下************************* 目标函数最优值为 : 320 变量 最优解 -------------x1 8 x2 0 x3 1 x4 0 x5 1 x6 4 x7 0 x8 6 x9 0 x10 0 x11 0 目标函数最优值为 : 320 这时候临时工的安排为: 变量 班次 临时工班次 -------------x1 8 x2 0 x3 1 x4 0

韩伯棠管理运筹学(第三版)_第四章_线性规划在工商管理中的应用

韩伯棠管理运筹学(第三版)_第四章_线性规划在工商管理中的应用

解: 函数值=36, X1=3,x2=5, x3=12,X4=0, x5=11,x6=0 X7=5, 则周1休息人数为 周3上班的+周2上 班的=12+5=17,与 法一是一样的周1 开始休息仍为175=12人 12
§4.2、生产计划的问题
例3
.明兴公司面临一个是外包协作还 是自行生产的问题。该公司生产甲、乙、 丙三种产品,这三种产品都要经过铸造、 机加工和装配三个车间。甲、乙两种产品 的铸件可以外包协作,亦可以自行生产, 但产品丙必须本厂铸造才能保证质量。有 关情况见表4—3;公司中可利用的总工时 为:铸造8000小时,机加工12000小时和装 配10000小时。公司为了获得最大利润,甲、 乙、丙三种产品各生产多少件?甲、乙两种 产品的铸造应多少由本公司铸造?应多少由 外包协作?
工时与成本



每件铸造工时(小时) 每件机加工工时(小时) 每件装配工时(小时)
5 6 3

10 4 2
7 8 2
建立数学模型如下: 目标函数: max 15X1+10X2+7X3+13X4+9X5 约束条件: 5X1+10X2+7X3≤8000(这里没包括外协铸造时间), 6X1+4X2+8X3+6X4+4X5≤12000(机加工), 3X1+2X2+2X3+3X4+2X5≤10000(装配), X1,X2,X3,X4,X5≥0 用“管理运筹学”软件进行计算,计算机计算结果显示 在图4-1中。详见上机计算……。
7
目标函数 :
约束条件 : x1 x2 x3 x4 x5 28
喂!请问数学模型?

韩伯棠教授《管理运筹学》第三版习总复习

韩伯棠教授《管理运筹学》第三版习总复习

一、管理运筹学的定义运筹学(Operational Research,简称OR) ,英文直译为“运作研究”。

管理运筹学是应用分析、试验、量化的方法,对经济管理系统中的人力、物力、财力等资源进行统筹安排,为决策者提供有依据的最优方案,以实现最有效的管理。

——《中国企业管理百科全书》绪论二、管理运筹学Ⅰ的主要分支线性规划(Linear Programming,简称LP)整数规划(Integral Programming,简称IP)目标规划(Objective Programming,简称OP)动态规划(Dynamic Programming,简称DP)图与网络(Graph and Network)三、管理运筹学的工作步骤提出问题、分析问题建立模型求解解的检验、控制、实施四、运筹学方法的特点1. 最优化方法2. 定量的方法线性规划(LP)一、问题的提出1.生产计划安排问题:合理利用人力、物力、财力等,在资源有限的约束条件下,寻求使得获利最大的最优生产计划方案。

2.人力资源分配的问题:在满足工作的需要的条件下,寻求使用最少的劳动力的最优分配方案。

3.套裁下料问题:在保证正常生产,完成生产任务的条件下,寻求使用原料最省的最优下料方案。

4.投资问题:在投资额限制的条件下,从多个投资项目中选取使得投资回报最大的最优投资方案。

5.运输问题:寻求使得总运费最小的最优调运方案。

二、建模1.一般步骤:分析问题,设出决策变量根据所提问题列出目标函数根据已知条件列出所有约束条件数学模型的一般形式★矩阵形式:假设有n个决策变量,m个约束条件。

目标函数:Max (Min)z = CX约束条件:AX ≤(=, ≥)b.X≥0其中,C=(c1 , c2 , …, cn )(价值向量)X= (x1 , x2 , …, xn )T(决策变量向量)b=(b1 , b2 , …, bm )T (限定向量)a11 a12 (1)a21 a22 …a2n (约束条件系数矩阵) Am×n = ……am1 am2 …amn数学模型的特点(1)由目标函数和约束条件构成;(2)目标函数只有两种情况:求极小或求极大。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
工作 工人 甲 乙 丙 丁 A 15 19 26 19 B 18 23 17 21 C 21 22 16 23 D 24 18 பைடு நூலகம்9 17
解:引入0—1变量 xij,并令
xij =1(当指派第 i人去完成第j项工作时)或0(当不指 派第i人去完成第j项工作时).这可以表示为一个0--1 整数规划问题:
一般形式:
max Z
Ci xi
i 1
n
n ai xi b i 1 xi 0, 整数
xi为i 物品携带数量 ai为i 物品单位重量
ci为i 物品重要性估价
b为最大负重
§3 整数规划的应用
二、固定成本问题 例6.高压容器公司制造小、中、大三种尺寸的金属 容器,所用资源为金属板、劳动力和机器设备,制造一 个容器所需的各种资源的数量如表所示。不考虑固定费 用,每种容器售出一只所得的利润分别为 4万元、5万元、 6万元,可使用的金属板有500吨,劳动力有300人/月,机 器有100台/月,此外不管每种容器制造的数量是多少,都 要支付一笔固定的费用:小号是l00万元,中号为 150 万 元,大号为200万元。现在要制定一个生产计划,使获得 的利润为最大。
24
§3 整数规划的应用
三、指派问题 有 n 项不同的任务,恰好 n 个人可分 别承担这些任务,但由于每人特长不同,完 成各项任务的效率等情况也不同。现假设必 须指派每个人去完成一项任务,怎样把 n 项任务指派给n个人,使得完成 n 项任务的 总的效率最高,这就是指派问题。
25
§3 整数规划的应用
§1 整数规划的图解法
x2
Max z = 2x1 +3x2
4 x1+40 x2 =140
3 2 1 1 2 3 4 x1
195x1+273x2=1365
利用图解法,得到线性规划的最优解为x1=2.44, x2=3.26,目标函数值为14.66。 由图表可看出, 整数规划的最优解为x1=4, x2=2, 目标函数值为14。 7
例5、解决某市消防站的布点问题,该城市有6个区, 每个区都可以建消防站。市政府希望设置的消防站 最少,但必须满足在城市的任何地区发生火警时, 消防车要在15分钟内赶到现场。据实地测定,各区 之间消防车行驶的时间如下表所示,请帮助该市制 定一个最省的计划。 1 2 3 4 5 6 1 0 10 16 28 27 20 2 10 0 24 32 17 10 3 16 24 0 12 27 21 4 28 32 12 0 15 25 5 27 17 27 15 0 14 6 20 10 21 25 14 0
资源 金属板(吨) 劳动力(人月) 机器设备(台月) 小号容器 2 2 1 中号容器 4 3 2 大号容器 8 4 3
22
§3 整数规划的应用
解:这是一个整数规划的问题。 设x1,x2, x3 分别为小号容器、中号容器和大
号容器的生产数量。各种容器的固定费用只有在
生产该种容器时才投入,为了说明固定费用的这 种性质,设 yi = 1(当生产第 i种容器, 即 xi > 0 时) 或0(当不生产第 i种容器即 xi = 0 时)。 引入约束 xi ≤ M yi ,i =1,2,3,M充分大,
4
3 5
10
18 15
物品 名称 1 书 2 摄像机 3 枕头 4 休闲食品 5 衣服
重量 5 3 1 2 4
体积 2 1 4 3 5
价值 20 30 10 18 15
解:xi为是否带第 i 种物品 Max Z=20x1 + 30x2 +10x3+18x4 +15x5 5x1+3x2 +x3 +2x4 +4x5 8 2x1+x2 +4x3 +3x4 +5x5 10 xi为0, 1
A1 利润 36
A2 40
A3 50
A4 80 22
A5 70 20
A6 90 30
A7 80 25
A8 48
A9 58
A10 61
投资额 100 120 150
140 160 180
解:设:0--1变量 xi = 1 (Ai 点被选用)或 0 (Ai 点没被选用)。 这样我们可建立如下的数学模型: Max z=36x1+40x2+50x3+22x4+20x5+30x6+25x7+48x8+58x9+61x10 s.t.
例7.有四个工人,要分别指派他们完成四项 不同的工作,每人做各项工作所消耗的时间 如下表所示,问应如何指派工作,才能使总 的消耗时间为最少。
工作 工人 甲 乙 丙 丁 A 15 19 26 19 B 18 23 17 21 C 21 22 16 23 D 24 18 19 17
26
§3 整数规划的应用
运筹学
第八章 整数规划
1
第六章 整数规划
§1 整数规划的图解法 §2 整数规划的计算机求解 §3 整数规划的应用
*§4 整数规划的分枝定界法
2
第六章 整数规划
整数规划是一类要求变量取整数值的数学规划, 可分成线性和非线性两类。 整数线性规划(Integer Linear Programming, 简记为ILP)问题研究的是要求变量取整数值时, 在一组线性约束条件下一个线性函数最优问题, 是应用非常广泛的运筹学的一个重要分支。 应用实例:
5 6 27 20 17 27 15 10 21 25 0 14 14 0
17
18
练习、背包问题
背包可装入8单位重量,10单位体积物品。若 背包中每件物品至多只能装一个,怎样才能使背包 装的物品价值最高。 物品 名称 重量 体积 价值
1
2

摄像机
5
3
2
1
20
30
3
4 5
枕头
休闲食品 衣服
1
2 4
Max z = 3x1 + x2 + 3x3
s.t. -x1 + 2x2 + x3 ≤ 4 4x2 -3x3 ≤2 x1 -3x2 + 2x3 ≤3 x1, x2, x3 ≥ 0 , 为整数 用《管理运筹学》软件 求解得: x 1 = 5 x2 = 2 x3 = 2
用《管理运筹学》软件求 解得: z = 16.25 x1 = 4 x2 = 1.25 x3 = 1 12
A1
A2
A3
A4 80
A5 70
A6 90
A7 80
A8
A9
A10
投资额 100 120 150
140 160 180
36 40 50 22 20 30 25 48 58 61 利润 Aj 各点的设备投资及每年可获利润由于地点不同都是不一样的, 预测情况见表所示 (单位:万元)。但投资总额不能超过720万 元,问应选择哪几个销售点,可使年利润为最大? 13
• 分枝定界法步骤: 求解与IP相应的LP问题,可能会出现下面 几种情况: 若所得的最优解的各变量恰好取整数,则这 个解也是原整数规划的最优解,计算结束。 若无可行解,则原整数规划问题也无可行解, 计算结束。
若有最优解,但其各分量不全是整数,则这 个解不是原整数规划的最优解,转下一步。
9
• 分枝定界法步骤(续): 从不满足整数条件的基变量中任选 一个xl进 行分枝,它必须满足xl [xl ] 或xl [xl ] +1中的一个,把这两个约束条件加进原问题 中,形成两个互不相容的子问题(分枝)。 定界:把满足整数条件各分枝的最优目标函 数值作为上(下)界,用它来判断分枝是保 留还是剪枝。
剪枝:把那些子问题的最优值与界值比较, 凡不优或不能更优的分枝全剪掉,直到每个 分枝都查清为止。
例:分支定界法的求解思路图 线性规划1 Z1=14.66 X1=2.44 X2=3.26 X1≤2 线性规划2 Z2=13.90 X1=2 X2=3.30
z=13,
z
=14.66
X1≥3 线性规划3 Z3=14.58 X1=3 X2=2.86 z=13, z =14.58 X2≥3
每件重量 (百千克) 4 40 140
每件利润 (百元) 2 3
甲种货物至多托运4件,问两种货物各托运多 少件,可使获得利润最大。
5
§1 整数规划的图解法
货物
甲 乙 托运限制 每件体积 (立方米) 195 273 1365 每件重量 (百千克) 4 40 140 每件利润 (百元) 2 3
解:设x1 、 x2分别为甲、乙两种货物托运的件数,建 立模型。 目标函数: Max z = 2x1 +3x2 约束条件:s.t. 195 x1 + 273 x2 ≤1365 4 x1 + 40 x2 ≤140 x1 ≤4 x1,x2 ≥0, 为整数。 如果去掉最后一个约束,就是一个线性规划问题. 6
整数规划是数学规划中一个较弱的分支,目前 有成熟的方法解线性整数规划问题,而非线性整 数规划问题,还没有好的办法。
4
§1 整数规划的图解法
例1. 某公司拟用集装箱托运甲、乙两种货物, 这两种货物每件的体积、重量、可获利润以及 托运所受限制如表所示。
货物
甲 乙 托运限制
每件体积 (立方米) 195 273 1365
§1 整数规划的图解法
对于整数规划,易知有以下性质:
性质1:任何求最大目标函数值的纯整数规 划或混合整数规划的最大目标函数值小于 或等于相应的线性规划的最大目标函数值; 任何求最小目标函数值的纯整数规划或混 合整数规划的最小目标函数值大于或等于 相应的线性规划的最小目标函数值。
8
§2 分支定界法以及计算机求解
以保证当 yi = 0 时,xi = 0 。
相关文档
最新文档