届高三数学基本函数知识点及典型例题
2024年高考数学高频考点(新高考通用)函数的概念及其表示(精练:基础+重难点)解析版
【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)第06讲函数的概念及其表示(精讲)【A组在基础中考查功底】则函数根据函数图像可知:(f x 故选:ACD.8.已知函数4 ()f x xx=+A.-3B 【答案】ABC四、解答题12.定义在R 上的函数()f x 对任意实数x 都有()2243f x x x -=-+.(1)求函数()f x 的解析式;(2)若函数()()23g x f x x =-+在[],1m m +上是单调函数,则求实数m 的取值范围.【答案】(1)()21f x x =-(2)(][),01,-∞+∞ 【分析】(1)配方后,利用整体法求解函数解析式;(2)求出()g x 的单调区间,与[],1m m +比较,得到不等式,求出实数m 的取值范围.【详解】(1)()()2224321f x x x x -=-+=--,故函数()f x 的解析式为()21f x x =-;(2)()()2223122121x x g x x x x =-+=---++=在(),1-∞上单调递减,在()1,+∞上单调递增,因为()g x 在[],1m m +上是单调函数,所以m 1≥或11m +≤,解得0m ≤或m 1≥,所以实数m 的取值范围是(][),01,-∞+∞ .【B 组在综合中考查能力】由图可得当且仅当0t<<时)的,故()()()()36494922f f f f m n =⨯=+=+.【C 组在创新中考查思维】,该函数在当32m>时,当x>m时()2,3f x⎛∈-∞-⎝①,当1,22aa >>时,()f x 在[]0,1上单调递增,②,由2222a a a x ⎛⎫-+⨯=- ⎪⎝⎭解得12x a +=或1x -=。
高三函数知识点总结及例题
高三函数知识点总结及例题函数是高中数学中的重要概念,它是一种特殊的关系,将一个集合中的每一个元素都对应到另一个集合中的唯一元素上。
在高三数学学习过程中,函数是必须掌握的重要知识点之一。
本文将对高三函数知识点进行总结,并通过例题进行讲解,帮助同学们更好地理解和掌握函数的相关内容。
一、函数的定义和表示方法函数的定义:设有两个集合X和Y,如果对于X中的每一个元素x,在Y中都有唯一确定的元素y与之对应,那么我们就说y 是x的函数。
用符号表示为:y=f(x)。
函数的表示方法:1. 函数关系式表示法:y=f(x),即用一个关系式来表示函数的对应关系。
2. 映射图表示法:通过图形的方式表示函数的对应关系。
3. 表格表示法:用表格列出变量x与函数值f(x)之间的对应关系。
4. 函数解析式表示法:通过给出函数在某个区间上的解析式来定义函数。
二、函数的基本性质和分类函数的基本性质:1. 定义域和值域:函数的定义域是指实变量能取的值的范围,值域是指函数值所能取的值的范围。
2. 单调性:函数在定义域上的增减关系。
3. 奇偶性:函数的对称性。
4. 周期性:函数是否具有重复性。
函数的分类:1. 一次函数:函数的最高次数为一的函数,表示为y = kx + b。
2. 二次函数:函数的最高次数为二的函数,表示为y = ax^2 +bx + c。
3. 指数函数:函数中自变量是指数的函数,表示为y = a^x,其中a为常数且不等于1。
4. 对数函数:函数中自变量是对数的函数,表示为y = loga(x),其中a为底数且大于0且不等于1。
5. 三角函数:正弦函数、余弦函数、正切函数等。
三、函数的运算函数的运算包括四则运算、复合运算和反函数运算。
1. 四则运算:加、减、乘、除运算。
2. 复合运算:将一个函数的输出作为另一个函数的输入,即将一个函数代入另一个函数中。
3. 反函数运算:如果函数f的定义域与值域互为对应关系,那么存在一个函数g,使得f和g互为反函数。
高考函数知识点和题型整理大全
高考函数知识点和题型整理大全函数是高考数学中的一个重要知识点,几乎贯穿了整个高中数学学习的内容。
它是数学与实际问题相结合的桥梁,也是解决复杂计算和推理问题的基础工具。
本文将整理高考函数知识点和相关题型,帮助同学们系统地回顾和总结。
一、函数的定义与性质1. 函数的定义:若给定数集A和数集B,对于每一个属于A的元素x,通过一个确定的法则f,可以得出B中唯一确定的元素y与之对应,那么就称f为从A到B的一个函数。
2. 函数的性质:自变量、因变量、定义域、值域、图像与映射关系等。
二、常见函数类型及其性质1. 一次函数:一次函数是函数的一种特殊类型,其形式为y=ax+b,其中a和b 为常数,a≠0。
性质:函数图像为一条直线,斜率为a,截距为b;增减性与性质。
2. 二次函数:二次函数是函数的一种特殊类型,其形式为y=ax^2+bx+c,其中a、b和c为常数,a≠0。
性质:函数图像为一条抛物线,开口的方向由a的正负决定;顶点坐标与坐标轴交点等。
3. 幂函数:幂函数是函数的一种特殊类型,形式为y=x^a,其中a为常数。
性质:函数图像与幂指数a的奇偶性相关;增减性与性质。
4. 指数函数:指数函数是函数的一种特殊类型,形式为y=a^x,其中a为常数且a>0且a≠1。
性质:函数图像通过点(0, 1);增减性与性质。
5. 对数函数:对数函数是函数的一种特殊类型,形式为y=loga(x),其中a为常数且a>0且a≠1。
性质:函数图像通过点(1, 0);增减性与性质。
6. 三角函数:三角函数是函数的一种特殊类型,包括正弦函数、余弦函数和正切函数等。
性质:函数图像的周期、对称性、单调性等。
三、函数的运算与复合1. 函数的四则运算:函数的加减乘除运算与性质。
2. 函数的复合:函数的复合运算与性质。
四、函数的图像与方程1. 方程的解与函数的零点:求解方程与函数的零点之间的关系。
2. 函数图像与方程的联系:根据函数图像求解方程,根据方程确定函数图像等。
高中数学函数知识点归纳及常考题型
《函数》知识要点和基本方法1.映射定义:设非空集合A,B ,若对集合A 中任一元素a ,在集合B 中有唯一元素b 与之对应,则称从A 到B 的对应为映射。
若集合A 中有m 个元素,集合B 中有n 个元素,则从A 到B 可建立n m个映射。
2.函数定义:函数就是定义在非空数集A,B 上的映射f 。
此时称数集A 为函数f(x)的定义域,集合C={f(x)|x ∈A}为值域,且C ⊆B 。
3.定义域、对应法则和值域构成了函数的三要素。
相同函数的判断方法:①定义域、值域;②对应法则。
(两点必须同时具备)4.求函数的定义域常涉及到的依据为:①分母不为0;②偶次根式中被开方数不小于0;③对数的真数大于0,底数大于零且不等于1;④零指数幂的底数不等于零;⑤实际问题要考虑实际意义;⑥正切函数角的终边不在y 轴上。
5.函数解析式的求法:①配凑法; ②换元法: ③待定系数法; ④赋值法;⑤消元法等。
6.函数值域的求法:①配方法;②分离常数法;③逆求法;④换元法;⑤判别式法;⑥单调性法等。
7.函数单调性及证明方法:如果对于定义域内某个区间上的任意..两个自变量的值x 1,x 2,当x 1<x 2时,都有f(x 1)< f(x 2)(或f(x 1)>f(x 2)),那么就说f(x)在这个区间上是增函数(或减函数)。
第一步:设x 1、x 2是给定区间内的两个任意的值,且x 1<x 2;第二步:作差f(x 2)-f(x 1),并对“差式”变形,主要方法是:整式——分解因式或配方;分式——通分;根式——分子有理化,等);第三步:判断差式f(x 2)-f(x 1)的正负号,从而证得其增减性。
8.函数单调区间的求法:①定义法;②图象法;③同增异减原则。
9.函数的奇偶性:如果对于函数f(x)的定义域内任意一个x ,都有f(-x)=f(x) (或f(-x)=-f(x)),那么函数f(x)就叫做偶函数(或奇函数)。
高三数学函数知识点及练习
高三数学函数知识点及练习一、函数基本概念函数是数学中的重要概念之一,它描述了两个数集之间的特定关系。
在函数中,我们常常使用“自变量”和“因变量”来表示这种关系。
函数的定义:设 A 和 B 是两个非空数集,如果按照某种确定的对应关系 f,使得集合 A 中的每一个元素 x 在 B 中都有唯一确定的函数值 y,那么就称 f 是从 A 到 B 的一个函数,记作f: A → B。
其中,A 称为定义域,B 称为值域。
函数 f 的函数值在数学中常常用 f(x) 来表示,表示自变量 x 经过函数 f 的转换后所得到的因变量值。
二、常见函数类型1. 线性函数线性函数是最简单的函数之一,它的图像是一条直线。
线性函数的一般形式为 f(x) = kx+m,其中 k 是斜率,m 是截距。
2. 平方函数平方函数是以自变量的平方为函数值的函数,一般形式为 f(x) = ax²+bx+c。
其中 a、b、c 是常数,a≠0。
3. 指数函数指数函数是以底为常数的自然对数(e)为自变量的函数。
它的一般形式为 f(x) = a^x,其中 a 是常数,且 a>0。
4. 对数函数对数函数是指数函数的逆运算,它的一般形式为f(x) = logₐx,其中 a 是常数,且 a>0 且a≠1。
5. 三角函数三角函数是与角度相关的函数,常见的三角函数有正弦函数、余弦函数、正切函数等。
三、函数性质与运算1. 函数的奇偶性如果对于函数 f(x) 成立 f(-x) = f(x),则称该函数为偶函数;如果对于函数 f(x) 成立 f(-x) = -f(x),则称该函数为奇函数。
2. 函数的单调性函数的单调性用于描述函数的增减趋势。
若对于函数 f(x),当x₁<x₂时,有 f(x₁)<f(x₂),则称 f(x) 在定义域上是增函数;若对于函数 f(x),当 x₁<x₂时,有 f(x₁)>f(x₂),则称 f(x) 在定义域上是减函数。
《高等数学》函数考点精讲与例题解析
《高等数学》函数考点精讲与例题解析 第一部分 函数 极限 连续函数是微积分的研究对象,极限是微积分的理论基础,而连续性是可导性与可积性的重要条件。
它们是每年必考的内容之一。
第一节 函 数内容考点一、函数的定义给定两个非空数集D 和M ,若有对应法则f ,使得对于D 内的每一个x ,都有唯一确定的M y ∈与之对应,则称f 是定义在数集D 上的函数,记作)(x f y =,D x ∈,数集D 成为函数的定义域,)(D)(M f ⊂称为值域。
【考点一】会求函数的定义域及其表达式,特别是复合函数的定义域。
二、函数的奇偶性(1)首先必须要求函数的定义域关于原点对称。
例如,)(x f y =的定义域为),(a a -)0(>a 关于原点对称。
(2)验证对于任),(a a x -∈,都有)()(x f x f =-,称)(x f 为偶函数;偶函数)(x f 的图形关于y 轴对称。
(3)验证若对于任),(a a x -∈都有)()(x f x f -=-,称)(x f 为奇函数;奇函数)(x f 的图形关于坐标原点对称。
【考点二】会判定函数)(x f 的奇偶性,不管)(x f 的具体形式是什么,都需要计算)(x f -的值。
如果)()(x f x f =-,则由定义知)(x f 为偶函数;如果)()(x f x f -=-,则由定义知)(x f 为奇函数。
三、函数的周期性对函数)(x f y =,若存在常数0>T ,使得对于定义域的每一个x ,T x +仍在定义域内,且有)()(x f T x f =+,则称函数)(x f y =为周期函数,T 称为)(x f 的周期。
【考点三】判断函数是否为周期函数,主要方法是根据周期函数的定义,要先找到一个非零常数T ,计算是否有等式)()(x f T x f =+成立。
特别要求掌握三角函数的周期性四、函数的有界性设函数)(x f y =在数集X 上有定义,若存在正数M ,使得对于每一个X x ∈,都有M x f ≤)( 成立,称)(x f 在X 上有界,否则,即这样的M 不存在,称)(x f 在X 上无界。
高三函数知识点与例题
高三函数知识点与例题一、函数基本概念函数是数学中的重要概念之一,在高三数学中也扮演着重要角色。
函数可以理解为两个数集之间的对应关系,通常用f(x)来表示。
其中,x为自变量,f(x)为因变量。
下面是高三函数知识点的介绍及例题:1. 定义域和值域函数的定义域是自变量x所有可能的取值范围,值域是函数所有可能的输出值的集合。
例如,对于函数f(x) = 2x,其定义域是所有实数集合R,值域也是实数集合R。
例题:给定函数f(x) = x^2 - 1,求其定义域和值域。
解析:对于定义域,由于平方根只能是非负数,所以x^2 - 1 ≥ 0,解得定义域为(-∞, ∞)。
对于值域,我们可以观察到函数是一个开口向上的抛物线,所以值域为[-1, ∞)。
2. 奇偶性函数的奇偶性可以通过函数的对称性来判断。
若对于任意的x,有f(x) = f(-x),则函数为偶函数;若对于任意的x,有f(x) = -f(-x),则函数为奇函数。
例题:判断函数f(x) = x^3 + x^2的奇偶性。
解析:我们可以将f(x)进行变形,得到f(x) = x(x+1)(x-1),观察可得f(x) = -f(-x),所以函数f(x)为奇函数。
3. 单调性和极值函数的单调性指函数在定义域上的增减情况。
若对于任意的x1, x2(x1 < x2),有f(x1) ≤ f(x2),则函数为单调递增函数;若对于任意的x1, x2(x1 < x2),有f(x1) ≥ f(x2),则函数为单调递减函数。
函数的极值是指函数在某个点上取得的最大值或最小值。
例题:分析函数f(x) = 2x^3 - 3x^2的单调性和极值。
解析:我们可以求函数的导数f'(x) = 6x^2 - 6x,然后令f'(x) = 0,解得x = 0, 1。
然后我们可以通过一阶导数的符号表来判断函数的单调性和极值。
当x ∈ (-∞,0) 时,f'(x) < 0,所以函数在此区间上单调递减;当x ∈ (0,1) 时,f'(x) > 0,所以函数在此区间上单调递增;当x ∈ (1,∞) 时,f'(x) < 0,所以函数在此区间上单调递减。
函数概念例题和知识点总结
函数概念例题和知识点总结在数学的广袤世界中,函数是一个极其重要的概念。
它就像是一座桥梁,连接着不同的数学领域,帮助我们理解和解决各种问题。
接下来,让我们通过一些例题来深入理解函数的概念,并对相关知识点进行总结。
一、函数的定义函数是一种特殊的对应关系。
在给定的集合中,对于每一个自变量的值,都有唯一确定的因变量的值与之对应。
例如,我们有一个函数 f(x) = 2x + 1。
当 x = 1 时,f(1) = 2×1 +1 = 3;当 x = 2 时,f(2) = 2×2 + 1 = 5。
可以看到,对于每一个给定的 x 值,都能通过这个表达式得到唯一确定的 f(x) 值。
二、函数的表示方法函数可以用多种方式表示,常见的有解析法、列表法和图像法。
1、解析法就是用数学表达式来表示函数关系,如上面提到的 f(x) = 2x + 1 就是解析法。
2、列表法通过列出自变量和对应的因变量的值来表示函数,比如:| x | 1 | 2 | 3 ||||||| f(x) | 3 | 5 | 7 |3、图像法用图像来直观地展示函数关系。
例如,对于函数 f(x) = x²,它的图像是一个开口向上的抛物线。
三、函数的定义域和值域定义域是指自变量的取值范围,而值域则是因变量的取值范围。
例如,对于函数 f(x) = 1 /(x 1),由于分母不能为 0,所以 x 1 ≠ 0,即x ≠ 1,定义域为x ≠ 1。
通过分析函数的表达式,可以得出值域。
四、例题分析例 1:已知函数 f(x) =√(x 2),求其定义域。
要使根式有意义,被开方数必须大于等于 0,即x 2 ≥ 0,解得x ≥ 2,所以定义域为 2, +∞)。
例 2:若函数 f(x) = 2x + 3,当 x =-1 时,求 f(x)的值。
将 x =-1 代入函数中,f(-1) = 2×(-1) + 3 = 1 。
例 3:已知函数 f(x)的图像经过点(1, 2)和(2, 4),求函数的表达式。
函数-高考数学常见题型大全
函数常见题型总结一.函数的概念及表达式题型一:函数的概念函数是一种特殊的映射,必须是数集和数集之间的对应。
例1:下列各组函数中,函数)(x f 与)(x g 表示同一函数的是(1))(x f =x ,)(x g =xx 2;(2))(x f =3x -1,)(t g =3t -1;(3))(x f =0x ,)(x g =1;(4))(x f =2x ,)(x g =2(x ;题型二:函数的表达式1.解析式法例2:已知函数1222,1()log (1),1x x f x x x -⎧-≤=⎨-+>⎩,且()3f a =-,则(6)f a -=()(A )74-(B )54-(C )34-(D )14-2.图象法例3:如图,长方形的边AB =2,BC =1,O 是AB 的中点,点P 沿着边BC ,CD 与DA 运动,记,将动点P 到A ,B 两点距离之和表示为x 的函数()f x ,则的图像大致为()A .B .C .D .题型三:求函数的解析式.1.换元法例4:已知1)1(+=+x x f ,则函数)(x f =例5:已知f(x 6)=log 2x,那么f(8)等于2.待定系数法例6:已知二次函数f (x)满足条件f (0)=1及f (x+1)-f (x)=2x。
则f (x)的解析式____________3.构造方程法例7:已知f(x)是奇函数,g(x)是偶函数,且f(x)+g(x)=11-x ,则f(x)=例8:若函数(),()f x g x 分别是R 上的奇函数、偶函数,且满足()()xf xg x e -=,则有()A .(2)(3)(0)f f g <<B .(0)(3)(2)g f f <<C .(2)(0)(3)f g f <<D .(0)(2)(3)g f f <<二.函数的定义域题型一:求函数定义域问题1.求有函数解析式的定义域问题例9:函数y =的定义域是()A .[1,)+∞B .2(,)3+∞C .2[,1]3D .2(,1]32.求抽象函数的定义域问题例10:已知函数()f x 的定义域为(1,1)-,函数()(21)g x f x =-,则函数()g x 的定义域为()A .(1,1)-B .(0,1)C .(3,1)-D .((3)f -,f (1))例11:若函数y =)13(-x f 的定义域是[1,2],则y =)12(-x f 的定义域是.题型二:已知函数定义域的求解问题例12:如果函数34)(2++=kx kx x f 的定义域为R,则实数k 的取值范围是.例13:已知函数()f x =的值域是[0,)+∞,则实数m 的取值范围是_____________例14:已知函数()2()lg 2f x x x a =++,(1)若它的定义域为R ,求实数a 的取值范围;(2)若它的值域为R ,求实数a 的取值范围.三.函数的值域1.二次函数类型(图象法):例19:函数()2f x x =-的最小值为.2.单调性法例20:求函数51)(--=x x x f []4,1∈x 的最大值和最小值。
高中数学常用公式、重要结论及典型例题(函数与导数)
高中数学常用公式、重要结论及典型例题函数与导数(内部资料翻录必究)相关概念1. 函数的定义域:定义域是一个集合,要用集合或区间来表示,如果用区间表示,不能用“或”连接,要用U “”连接。
2. 如()f x 的定义域为[,]a b ,则复合函数(())f g x 的定义域由()a g x b ≤≤求出。
3. 任何一个定义域关于原点对称的函数)(x f ,都可以写成一个奇函数)(x h 与一个偶函数)(x g 之和的形式(事实上,这种表示还是唯一的,令()()()()12h x f x f x =--,()()()()12g x f x f x =+-即可)。
1) 凸函数(凹函数):设函数)(x f 在区间I 有定义,若对12,(0,1)x x I t ∀∈∈、,都有 )()1()())1((2121x f t x tf x t tx f -+≤-+(或)()1()())1((2121x f t x tf x t tx f -+≥-+),则称)(x f 为区间I 上的凸函数(或凹函数)。
2) 凸函数(凹函数)快速判断:如果函数)(x f 的二阶导数存在,则()0f x ''>时,)(x f 是凹函数(图像开口向上);()0f x ''<时,)(x f 是凸函数(图像开口向下)。
此性质往往可以用来快速判断函数图像类选填题。
3) 函数)(x f y =在0x 处可导,如果0()0f x '>,则)(x f 在0x 附近递增;如果0()0f x '<,则)(x f 在0x 附近递减。
此性质往往可以用来速解某些函导混合类选填题难题。
4. 方程)0(02≠=++a c bx ax 在),(21k k 内有且只有一个实根,等价于12()()0f k f k ⋅< 5. 闭区间上二次函数的最值:)0()(2≠++=a c bx ax x f 在闭区间[]q p ,上的最值只能在abx 2-=处或区间的两端点处取得,具体如下: (1)当0a >时,若[]q p a bx ,2∈-=,则{}min max ()(),()max (),()2b f x f f x f p f q a =-=; 若[]q p abx ,2∉-=,则{}max ()max (),()f x f p f q =,{}min ()min (),()f x f p f q = (2)当0a <时,若[]q p abx ,2∈-=,则{}min ()min (),()f x f p f q =, 若[]q p abx ,2∉-=,则{}max ()max (),()f x f p f q =,{}min ()min (),()f x f p f q = 6. 函数单调性的等价关系(1)设[]1212,,,x x a b x x ∈≠那么[]1212()()()0x x f x f x -->⇔[]b a x f x x x f x f ,)(0)()(2121在⇔>--上是增函数;[]1212()()()0x x f x f x --<⇔[]b a x f x x x f x f ,)(0)()(2121在⇔<--上是减函数(2)设函数)(x f y =在某个区间内可导,如果0)(>'x f ,则)(x f 为增函数;如果0)(<'x f ,则)(x f 为减函数7. 单调性的典型应用:(1)利用单调性求函数值域(2)利用单调性解方程:例如,对于方程2332(2038)484152x x x x x -+=-+- 可将其变形为2323(2038)4(2038)4x x x x x x -++-+=+ 构造函数3()4f x x x =+,原方程变为2(2038)()f x x f x -+=考虑到()f x 为单调递增函数,故必有22038x x x -+=,解得2x =或19x =。
高中数学函数经典复习题含答案
高中数学函数经典复习题含答案1、求函数的定义域1)y=(x-1)/(x^2-2x-15)先求分母为0的解:x^2-2x-15=0x-5)(x+3)=0得到:x=5或x=-3但是x=-3不在定义域内,因为分母为0时分式无意义,所以定义域为(-∞,-3)∪(-3,5)∪(5,+∞)2)y=1-((x+1)/(x+3))-3先求分母为0的解:x+3=0得到:x=-3但是x=-3不在定义域内,因为分母为0时分式无意义,所以定义域为(-∞,-3)∪(-3,-1)∪(-1,+∞)2、设函数1/(x-1)+(2x-1)+4-x^2的定义域为[1,∞),则函数f(x^2)的定义域为[1,∞);函数f(x-2)的定义域为[3,∞)。
3、若函数f(x+1)的定义域为[-2,3],则函数f(2x-1)的定义域为[-1,2],函数f(2x-1)的值域为[-2,3]。
4、已知函数f(x)的定义域为[-1,1],且函数F(x)=f(x+m)-f(x-m)的定义域存在,求实数m的取值范围。
因为F(x)的定义域存在,所以f(x+m)和f(x-m)的定义域必须都存在,即:1≤x+m≤11≤x-m≤1将两个不等式联立,得到:1≤x≤1m≤x≤m所以m的取值范围为[-1,1]。
二、求函数的值域5、求下列函数的值域:1)y=x+2/x-3 (x∈R)先求分母为0的解:x-3=0得到:x=3但是x=3不在定义域内,因为分母为0时分式无意义,所以定义域为(-∞,3)∪(3,+∞)当x→±∞时,y→±∞,所以值域为(-∞,-2]∪[2,+∞)2)y=x+2/x-3 (x∈[1,2])先求分母为0的解:x-3=0得到:x=3但是x=3不在定义域内,因为分母为0时分式无意义,所以定义域为[1,3)∪(3,2]∪(2,+∞)当x→1+时,y→-∞,当x→2-时,y→+∞,所以值域为(-∞,-2]∪[2,+∞)3)y=22/(3x-13x-1)先求分母为0的解:3x-13x-1=0得到:x=4但是x=4不在定义域内,因为分母为0时分式无意义,所以定义域为(-∞,4)∪(4,+∞)当x→±∞时,y→0,所以值域为(0,+∞)4)y=(5x^2+9x+4)/(2x-6) (x≥5)当x→+∞时,y→+∞,当x→5+时,y→+∞,所以值域为[5,+∞)5)y=(x-3)/(x+1)+x+1先求分母为0的解:x+1=0得到:x=-1但是x=-1不在定义域内,因为分母为0时分式无意义,所以定义域为(-∞,-1)∪(-1,+∞)化简得到y=x-2,所以值域为(-∞,-2]∪[-2,+∞)6)y=(x-3+x+1)/(2x-1x+2)先求分母为0的解:2x-1=0或x+2=0得到:x=1/2或x=-2但是x=1/2不在定义域内,因为分母为0时分式无意义,所以定义域为(-∞,1/2)∪(1/2,-2)∪(-2,+∞)化简得到y=1/2,所以值域为{1/2}7)y=x^2-x/(x+2)先求分母为0的解:x+2=0得到:x=-2但是x=-2不在定义域内,因为分母为0时分式无意义,所以定义域为(-∞,-2)∪(-2,+∞)化简得到y=x-2-5/(x+2),所以值域为(-∞,-13/4]∪[1/4,+∞)8)y=(2-x^2-x)/(3x+6)先求分母为0的解:3x+6=0得到:x=-2但是x=-2不在定义域内,因为分母为0时分式无意义,所以定义域为(-∞,-2)∪(-2,+∞)化简得到y=-1/3,所以值域为{-1/3}三、求函数的解析式1、已知函数f(x-1)=x-4x,求函数f(x),f(2x+1)的解析式。
函数概念例题和知识点总结
函数概念例题和知识点总结在数学的世界里,函数是一个极其重要的概念,它就像是一座桥梁,连接着不同的数学领域和实际应用。
为了更好地理解函数,让我们通过一些例题来深入探究,并对相关知识点进行总结。
一、函数的定义函数的定义可以简单地理解为:对于给定的一个非空数集 A,按照某种确定的对应关系 f,使得对于集合 A 中的任意一个数 x,在集合 B 中都有唯一确定的数 y 与之对应,就称 f 是集合 A 到集合 B 的一个函数。
我们用符号 y = f(x)来表示,其中 x 称为自变量,y 称为因变量。
二、函数的表示方法函数常见的表示方法有三种:解析式法、列表法和图象法。
解析式法就是用数学式子表示两个变量之间的对应关系,比如 y =2x + 1 。
列表法是通过列出表格来表示两个变量之间的对应关系,比如在一定范围内,给出 x 的值和对应的 y 的值。
图象法是用图象来表示两个变量之间的对应关系,比如画出函数 y= x²的图象。
三、函数的定义域和值域定义域是指自变量 x 的取值范围,而值域则是因变量 y 的取值范围。
例如,对于函数 y = 1/x ,其定义域为x ≠ 0 ,值域为y ≠ 0 。
确定函数定义域时,需要考虑以下几点:1、分式的分母不为零。
2、偶次根式的被开方数非负。
3、对数函数的真数大于零。
四、函数的单调性函数的单调性是指函数在某个区间上是递增还是递减的性质。
如果对于区间 I 内的任意两个自变量的值 x₁、x₂,当 x₁< x₂时,都有 f(x₁) < f(x₂) ,那么就说函数 f(x) 在区间 I 上是增函数;反之,如果都有 f(x₁) > f(x₂) ,则函数 f(x) 在区间 I 上是减函数。
例如,函数 y = x²在区间(∞, 0) 上是减函数,在区间(0, +∞)上是增函数。
五、函数的奇偶性如果对于函数 f(x) 的定义域内任意一个 x ,都有 f(x) = f(x) ,那么函数 f(x) 就叫做偶函数;如果都有 f(x) = f(x) ,那么函数 f(x) 就叫做奇函数。
高三数学专题复习-函数概念及其表示专题练习带答案
04 函数概念及其表示1.函数f (x )=log 2(1-2x )+1x +1的定义域为( ) A.⎝⎛⎭⎫0,12 B .⎝⎛⎭⎫-∞,12 C .(-1,0)∪⎝⎛⎭⎫0,12 D .(-∞,-1)∪⎝⎛⎭⎫-1,12 【答案】D.要使函数有意义,需满足⎩⎪⎨⎪⎧1-2x >0,x +1≠0,解得x <12且x ≠-1,故函数的定义域为(-∞,-1)∪(-1,12).2.已知集合A={x|x 2-2x ≤0},B={y|y=log 2(x+2),x ∈A },则A ∩B 为( ) A.(0,1) B.[0,1] C.(1,2) D.[1,2]【答案】D由题意,集合A={x|x 2-2x ≤0}=[0,2], 因为x ∈A ,则x+2∈[2,4],所以B={y|y=log 2(x+2),x ∈A }=[1,2], 所以A ∩B=[1,2].故选D .3.已知函数f (x )=⎩⎪⎨⎪⎧f (-x ),x >2,ax +1,-2≤x ≤2,f (x +5),x <-2,若f (2 019)=0,则a =( )A .0B .-1C .1D .-2【答案】B.由于f (2 019)=f (-2 019)=f (-404×5+1)=f (1)=a +1=0,故a =-1.4.下列函数中,其定义域和值域分别与函数y=10lg x 的定义域和值域相同的是( ) A.y=x B.y=lg x C.y=2x D.y=【答案】Dy=10lg x =x ,定义域与值域均为(0,+∞).A 项中,y=x 的定义域和值域均为R;B 项中,y=lg x 的定义域为(0,+∞),值域为R;C 项中,y=2x 的定义域为R,值域为(0,+∞);D 项中,y=的定义域与值域均为(0,+∞).故选D . 5.若函数f (x )满足f (1-ln x )=1x,则f (2)等于( )A.12 B .e C.1e D .-1【答案】B.解法一:令1-ln x =t ,则x =e 1-t ,于是f (t )=1e1-t ,即f (x )=1e1-x ,故f (2)=e.解法二:由1-ln x =2,得x =1e ,这时1x =11e =e ,即f (2)=e.6.若函数y=f (x )的值域是[1,3],则函数F (x )=1-f (x+3)的值域是( ) A.[-8,-3] B.[-5,-1]C.[-2,0]D.[1,3]【答案】C∵1≤f (x )≤3,∴1≤f (x+3)≤3,-3≤-f (x+3)≤-1,∴-2≤1-f (x+3)≤0.故F (x )的值域为[-2,0].7.设函数f (x )=⎩⎪⎨⎪⎧3x -b , x <1,2x , x ≥1.若f ⎝⎛⎭⎫f ⎝⎛⎭⎫56=4,则b =( ) A .1 B .78C.34 D .12【答案】D.f ⎝⎛⎭⎫56=3×56-b =52-b , 当52-b ≥1,即b ≤32时,f ⎝⎛⎭⎫52-b =252-b , 即252-b =4=22,得到52-b =2,即b =12;当52-b <1,即b >32时,f ⎝⎛⎭⎫52-b =152-3b -b =152-4b , 即152-4b =4,得到b =78<32,舍去. 综上,b =12,故选D.8. 若任意都有,则函数的图象的对称轴方程为A .,B .,C .,D .,【答案】A令,代入则联立方程得解方程得=所以对称轴方程为解得所以选A 。
高考数学必背公式与知识点及答案数学高考复习必备
高考数学必背公式与知识点及答案数学高考复习必备以下是十道高考数学必背公式与知识点及试题及答案:1. 二次函数的标准式:f(x) = ax^2 + bx + c,其中a ≠ 0。
知识点:顶点坐标、对称轴、开口方向等。
试题:已知二次函数f(x) = x^2 + px + q的顶点坐标为(2, -3),求p和q的值。
解答:由题意知,顶点坐标为(2,-3)。
根据顶点坐标公式,可得p=-2、q=-72.指数函数的定义:f(x)=a^x,其中a>0且a≠1、知识点:增减性、对数函数、指数方程等。
试题:若f(3)=2,求指数函数f(x)=2^x的解析式。
解答:由题意知,f(3)=2,即2^3=2、所以,指数函数f(x)的解析式为f(x)=2^x。
3. 对数函数的定义:f(x) = loga(x),其中a>0且a≠1、知识点:性质、换底公式、对数方程等。
试题:若f(x) = log3(x),求f(243)。
解答:由题意知,f(x) = log3(x),则f(243) = log3(243) = 54. 三角函数的定义:sinθ、cosθ、tanθ等。
知识点:周期性、反函数、三角恒等式等。
试题:若sinθ = 1/2,且0°<θ<180°,求cosθ的值。
解答:由题意知,sinθ = 1/2,则θ等于30°或150°。
根据三角函数的关系可知,cos30° = √3/2,cos150° = -√3/2、由于0°<θ<180°,所以cosθ的值为√3/25.函数的复合:(fog)(x)=f(g(x))。
知识点:复合函数的性质、反函数等。
试题:已知函数f(x)=3x+1,g(x)=2x-1,求复合函数f(g(x))的解析式。
解答:根据复合函数的定义可知,f(g(x))=f(2x-1)=3(2x-1)+1=6x-26.集合的运算:并、交、差等。
高中函数知识点总结及经典题目
高中函数知识点总结及经典题目函数是高中数学中的重要知识点之一,掌握函数的概念和性质对于研究高中数学非常重要。
本文将对高中函数的知识点进行总结,并列出一些经典的函数题目供研究和练。
一、函数的基本概念函数是一种特殊的关系,其中每个输入值都对应唯一的输出值。
函数可以用数学符号表示为f(x),其中f表示函数名称,x表示输入值,输出值可以用f(x)表示。
二、函数的性质1. 定义域和值域:函数的定义域是指所有可能的输入值,值域是函数的所有可能输出值的集合。
2. 单调性:函数可以是递增的或递减的。
当输入值增加时,如果函数值也增加,则函数是递增的;当输入值增加时,如果函数值减少,则函数是递减的。
3. 奇偶性:函数可以是奇函数或偶函数。
如果对于任意x,f(-x) = -f(x),则函数是奇函数;如果对于任意x,f(-x) = f(x),则函数是偶函数。
4. 对称轴:如果函数是偶函数,则对称轴是y轴;如果函数是奇函数,则对称轴是原点。
三、常见函数类型1. 线性函数:y = kx + b,其中k和b分别是常数。
2. 二次函数:y = ax^2 + bx + c,其中a、b和c是常数,且a不等于0。
3. 指数函数:y = a^x,其中a是常数,且a大于0且不等于1。
4. 对数函数:y = loga(x),其中a是常数,且a大于0且不等于1。
四、经典题目1. 已知函数f(x) = 2x + 3,求f(4)的值。
2. 已知函数f(x) = x^2 + 2x + 1,求f(-1)的值。
3. 已知函数f(x) = 3^x,求f(2)的值。
4. 已知函数f(x) = log2(x),求f(8)的值。
以上是高中函数知识点的总结及一些经典题目。
通过对函数的掌握和练习,可以提高高中数学的理解和解题能力。
希望对你的学习有所帮助。
(完整版)高考文科数学函数专题讲解及高考真题精选(含答案)
函 数【1.2.1】函数的概念(1)函数的概念①设A 、B 是两个非空的数集,如果按照某种对应法则f ,对于集合A 中任何一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的一个函数,记作:f A B →.②函数的三要素:定义域、值域和对应法则.③只有定义域相同,且对应法则也相同的两个函数才是同一函数. (2)区间的概念及表示法①设,a b 是两个实数,且a b <,满足a x b ≤≤的实数x 的集合叫做闭区间,记做[,]a b ;满足a x b <<的实数x 的集合叫做开区间,记做(,)a b ;满足a x b ≤<,或a x b <≤的实数x 的集合叫做半开半闭区间,分别记做[,)a b ,(,]a b ;满足,,,x a x a x b x b ≥>≤<的实数x 的集合分别记做[,),(,),(,],(,)a a b b +∞+∞-∞-∞.注意:对于集合{|}x a x b <<与区间(,)a b ,前者a 可以大于或等于b ,而后者必须a b <. (3)求函数的定义域时,一般遵循以下原则:①()f x 是整式时,定义域是全体实数.②()f x 是分式函数时,定义域是使分母不为零的一切实数.③()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合.④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1. ⑤tan y x =中,()2x k k Z ππ≠+∈.⑥零(负)指数幂的底数不能为零.⑦若()f x 是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集.⑧对于求复合函数定义域问题,一般步骤是:若已知()f x 的定义域为[,]a b ,其复合函数[()]f g x 的定义域应由不等式()a g x b ≤≤解出.⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论. ⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义. (4)求函数的值域或最值求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法:①观察法:利用常见函数的值域来求一次函数y=ax+b(a ≠0)的定义域为R ,值域为R ; 反比例函数)0(≠=k xky 的定义域为{x|x ≠0},值域为{y|y ≠0}; 二次函数)0()(2≠++=a c bx ax x f 的定义域为R ,当a>0时,值域为{ab ac y y 4)4(|2-≥};当a<0时,值域为{ab ac y y 4)4(|2-≤}②配方法:③判别式法:若函数()y f x =可以化成一个系数含有y 的关于x 的二次2()()()0a y x b y x c y ++=,则在()0a y ≠时,由于,x y 为实数,故必须有2()4()()0b y a y c y ∆=-⋅≥,从而确定函数的值域或最值.④不等式法:利用基本不等式确定函数的值域或最值.转化成型如:)0(>+=k xkx y ,利用平均值不等式公式来求值域;⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题.⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值. ⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值. ⑧函数的单调性法.【1.2.2】函数的表示法(5)函数的表示方法表示函数的方法,常用的有解析法、列表法、图象法三种.解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列出表格来表示两个变量之间的对应关系.图象法:就是用图象表示两个变量之间的对应关系. (6)映射的概念①设A 、B 是两个集合,如果按照某种对应法则f ,对于集合A 中任何一个元素,在集合B 中都有唯一的元素和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的映射,记作:f A B →.②给定一个集合A 到集合B 的映射,且,a A b B ∈∈.如果元素a 和元素b 对应,那么我们把元素b 叫做元素a 的象,元素a 叫做元素b 的原象. (7)求函数解析式的题型有:1)已知函数类型,求函数的解析式:待定系数法;2)已知()f x 求[()]f g x 或已知[()]f g x 求()f x :换元法、配凑法;3)已知函数图像,求函数解析式;4)()f x 满足某个等式,这个等式除()f x 外还有其他未知量,需构造另个等式解方程组法;5)应用题求函数解析式常用方法有待定系数法等yxo〖1.3〗函数的基本性质 【1.3.1】单调性与最大(小)值(1)函数的单调性①定义及判定方法函数的 性 质定义图象判定方法函数的单调性如果对于属于定义域I 内某个区间上的任意两个自变量的值x 1、x 2,当x .1.< .x .2.时,都有f(x ...1.)<f(x .....2.).,那么就说f(x)在这个区间上是增函数.... x 1x 2y=f(X)xy f(x )1f(x )2o(1)利用定义(2)利用已知函数的单调性(3)利用函数图象(在某个区间图 象上升为增) (4)利用复合函数 如果对于属于定义域I 内某个区间上的任意两个自变量的值x 1、x 2,当x .1.< .x .2.时,都有f(x ...1.)>f(x .....2.).,那么就说f(x)在这个区间上是减函数.... y=f(X)yx ox x 2f(x )f(x )211(1)利用定义 (2)利用已知函数的单调性(3)利用函数图象(在某个区间图 象下降为减)(4)利用复合函数增函数,减函数减去一个增函数为减函数.③对于复合函数[()]y f g x =,令()u g x =,若()y f u =为增,()u g x =为增,则[()]y f g x =为增;若()y f u =为减,()u g x =为减,则[()]y f g x =为增;若()y f u =为增,()u g x =为减,则[()]y f g x =为减;若()y f u =为减,()u g x =为增,则[()]y f g x =为减. (2)打“√”函数()(0)af x x a x=+>的图象与性质 ()f x 分别在(,]a -∞-、[,)a +∞上为增函数,分别在[,0)a -、]a 上为减函数.(3)最大(小)值定义①一般地,设函数()y f x =的定义域为I ,如果存在实数M 满足:(1)对于任意的x I ∈,都有()f x M ≤;(2)存在0x I ∈,使得0()f x M =.那么,我们称M 是函数()f x 的最大值,记作max ()f x M =.②一般地,设函数()y f x =的定义域为I ,如果存在实数m 满足:(1)对于任意的x I ∈,都有()f x m ≥;(2)存在0x I ∈,使得0()f x m =.那么,我们称m 是函数()f x 的最小值,记作max ()f x m =.1 (4)证明函数单调性的一般方法:①定义法:设2121,x x A x x <∈且;作差)()(21x f x f -,判断正负号②用导数证明: 若)(x f 在某个区间A 内有导数,则()0f x ≥’,)x A ∈(⇔)(x f 在A 内为增函数;⇔∈≤)0)(A x x f ,(’)(x f 在A 内为减函数 (5)求单调区间的方法:定义法、导数法、图象法(6)复合函数[])(x g f y =在公共定义域上的单调性:①若f 与g 的单调性相同,则[])(x g f 为增函数;②若f 与g 的单调性相反,则[])(x g f 为减函数注意:先求定义域,单调区间是定义域的子集(7)一些有用的结论:①奇函数在其对称区间上的单调性相同;②偶函数在其对称区间上的单调性相反; ③在公共定义域内:增函数+)(x f 增函数)(x g 是增函数;减函数+)(x f 减函数)(x g 是减函数; 增函数-)(x f 减函数)(x g 是增函数;减函数-)(x f 增函数)(x g 是减函数④函数)0,0(>>+=b a x bax y 在,,b b a a ⎛⎤⎡⎫-∞-+∞ ⎪⎥⎢ ⎪⎝⎦⎣⎭或上单调递增;在,00b b a a ⎡⎫⎛⎤-⎪ ⎢⎥⎪ ⎣⎭⎝⎦或,上是单调递减【1.3.2】奇偶性①定义及判定方法函数的 性 质定义图象判定方法 函数的奇偶性如果对于函数f(x)定义域内任意一个x ,都有f(..-.x)=...-.f(x)....,那么函数f(x)叫做奇函数....(1)利用定义(要先判断定义域是否关于原点对称) (2)利用图象(图象关于原点对称)如果对于函数f(x)定义域内任意一个x ,都有f(..-.x)=...f(x)....,那么函数f(x)叫做偶函数....(1)利用定义(要先判断定义域是否关于原点对称) (2)利用图象(图象关于y 轴对称)②若奇函数()f x 的定义域包含0,则(0)0f =.()f x 为偶函数()(||)f x f x ⇔=③奇函数在y 轴两侧相对称的区间增减性相同,偶函数在y 轴两侧相对称的区间增减性相反. ④在公共定义域内,奇+奇=奇,奇⨯奇=偶,偶+偶=偶,偶⨯偶=偶,奇⨯偶=奇判断函数的奇偶性有时可以用定义的等价形式:()()0f x f x ±-=,()1()f x f x =±- 函数周期性定义:若T 为非零常数,对于定义域内的任一x ,使)()(x f T x f =+恒成立,则f(x)叫做周期函数,T 叫做这个函数的一个周期〖补充知识〗函数的图象(1)作图利用描点法作图:①确定函数的定义域; ②化解函数解析式; ③讨论函数的性质(奇偶性、单调性); ④画出函数的图象. 利用基本函数图象的变换作图:要准确记忆一次函数、二次函数、反比例函数、指数函数、对数函数、幂函数、三角函数等各种基本初等函数的图象.①平移变换0,0,|()()h h h h y f x y f x h ><=−−−−−−−→=+左移个单位右移|个单位0,0,|()()k k k k y f x y f x k ><=−−−−−−−→=+上移个单位下移|个单位②伸缩变换01,1,()()y f x y f x ωωω<<>=−−−−→=伸缩 01,1,()()A A y f x y Af x <<>=−−−−→=缩伸③对称变换()()x y f x y f x =−−−→=-轴()()y y f x y f x =−−−→=-轴 ()()y f x y f x =−−−→=--原点1()()y x y f x y f x -==−−−−→=直线 ()(||)y y y y f x y f x =−−−−−−−−−−−−−−−→=去掉轴左边图象保留轴右边图象,并作其关于轴对称图象 ()|()|x x y f x y f x =−−−−−−−−−→=保留轴上方图象将轴下方图象翻折上去①y=f(x) 轴x →y= -f(x); ②y=f(x) 轴y →y=f(-x);③y=f(x) ax =→直线y=f(2a -x); ④y=f(x) xy =→直线y=f -1(x);⑤y=f(x) 原点→y= -f(-x)(2)识图对于给定函数的图象,要能从图象的左右、上下分别范围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性,注意图象与函数解析式中参数的关系. (3)用图函数图象形象地显示了函数的性质,为研究数量关系问题提供了“形”的直观性,它是探求解题途径,获得问题结果的重要工具.要重视数形结合解题的思想方法.第二章 基本初等函数(Ⅰ)〖2.1〗指数函数【2.1.1】指数与指数幂的运算(1)根式的概念①如果,,,1nx a a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.当n 是奇数时,a 的n 次当n 是偶数时,正数a 的正的n负的n次方根用符号表示;0的n 次方根是0;负数a 没有n 次方根.这里n 叫做根指数,a 叫做被开方数.当n 为奇数时,a 为任意实数;当n 为偶数时,0a ≥.③根式的性质:n a =;当n 为奇数时,a =;当n 为偶数时,(0)|| (0) a a a a a ≥⎧==⎨-<⎩. (2)分数指数幂的概念①正数的正分数指数幂的意义是:0,,,mna a m n N +=>∈且1)n >.0的正分数指数幂等于0.②正数的负分数指数幂的意义是:1()0,,,m m nn aa m n N a -+==>∈且1)n >.0的负分数指数幂没有意义. 注意口诀:底数取倒数,指数取相反数.(3)分数指数幂的运算性质①(0,,)rsr sa a aa r s R +⋅=>∈ ②()(0,,)r s rs a a a r s R =>∈③()(0,0,)r r rab a b a b r R =>>∈【2.1.2】指数函数及其性质(4)指数函数〖2.2〗对数函数【2.2.1】对数与对数运算(1)对数的定义①若(0,1)xa N a a =>≠且,则x 叫做以a 为底N 的对数,记作log a x N =,其中a 叫做底数,N 叫做真数.②负数和零没有对数.③对数式与指数式的互化:log (0,1,0)xa x N a N a a N =⇔=>≠>.(2)几个重要的对数恒等式log 10a =,log 1a a =,log b a a b =.(3)常用对数与自然对数常用对数:lg N ,即10log N ;自然对数:ln N ,即log e N (其中 2.71828e =…). (4)对数的运算性质 如果0,1,0,0a a M N >≠>>,那么①加法:log log log ()a a a M N MN += ②减法:log log log a a aM M N N-= ③数乘:log log ()na a n M M n R =∈ ④log a N a N =⑤log log (0,)b n a a nM M b n R b=≠∈ ⑥换底公式:log log (0,1)log b a b N N b b a =>≠且【2.2.2】对数函数及其性质设函数()y f x =的定义域为A ,值域为C ,从式子()y f x =中解出x ,得式子()x y ϕ=.如果对于y 在C 中的任何一个值,通过式子()x y ϕ=,x 在A 中都有唯一确定的值和它对应,那么式子()x y ϕ=表示x 是y 的函数,函数()x y ϕ=叫做函数()y f x =的反函数,记作1()x f y -=,习惯上改写成1()y fx -=.(7)反函数的求法①确定反函数的定义域,即原函数的值域;②从原函数式()y f x =中反解出1()x f y -=;③将1()x fy -=改写成1()y f x -=,并注明反函数的定义域.(8)反函数的性质①原函数()y f x =与反函数1()y fx -=的图象关于直线y x =对称.②函数()y f x =的定义域、值域分别是其反函数1()y fx -=的值域、定义域.③若(,)P a b 在原函数()y f x =的图象上,则'(,)P b a 在反函数1()y f x -=的图象上.④一般地,函数()y f x =要有反函数则它必须为单调函数.〖2.3〗幂函数(1)幂函数的定义一般地,函数y x α=叫做幂函数,其中x 为自变量,α是常数.(2)幂函数的图象(3)幂函数的性质①图象分布:幂函数图象分布在第一、二、三象限,第四象限无图象.幂函数是偶函数时,图象分布在第一、二象限(图象关于y 轴对称);是奇函数时,图象分布在第一、三象限(图象关于原点对称);是非奇非偶函数时,图象只分布在第一象限.②过定点:所有的幂函数在(0,)+∞都有定义,并且图象都通过点(1,1).③单调性:如果0α>,则幂函数的图象过原点,并且在[0,)+∞上为增函数.如果0α<,则幂函数的图象在(0,)+∞上为减函数,在第一象限内,图象无限接近x 轴与y 轴.④奇偶性:当α为奇数时,幂函数为奇函数,当α为偶数时,幂函数为偶函数.当qpα=(其中,p q 互质,p 和q Z ∈),若p 为奇数q 为奇数时,则q py x =是奇函数,若p 为奇数q 为偶数时,则q py x =是偶函数,若p 为偶数q 为奇数时,则qpy x =是非奇非偶函数.⑤图象特征:幂函数,(0,)y x x α=∈+∞,当1α>时,若01x <<,其图象在直线y x =下方,若1x >,其图象在直线y x =上方,当1α<时,若01x <<,其图象在直线y x =上方,若1x >,其图象在直线y x =下方.〖补充知识〗二次函数(1)二次函数解析式的三种形式①一般式:2()(0)f x ax bx c a =++≠②顶点式:2()()(0)f x a x h k a =-+≠③两根式:12()()()(0)f x a x x x x a =--≠(2)求二次函数解析式的方法①已知三个点坐标时,宜用一般式.②已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式. ③若已知抛物线与x 轴有两个交点,且横线坐标已知时,选用两根式求()f x 更方便.(3)二次函数图象的性质①二次函数2()(0)f x ax bx c a =++≠的图象是一条抛物线,对称轴方程为,2bx a=-顶点坐标是24(,)24b ac b a a--. ②当0a >时,抛物线开口向上,函数在(,]2b a -∞-上递减,在[,)2b a-+∞上递增,当2bx a =-时,2min 4()4ac b f x a -=;当0a <时,抛物线开口向下,函数在(,]2b a -∞-上递增,在[,)2ba -+∞上递减,当2bx a=-时,2max 4()4ac b f x a -=.③二次函数2()(0)f x ax bx c a =++≠当240b ac ∆=->时,图象与x 轴有两个交点11221212(,0),(,0),||||||M x M x M M x x a =-=. (4)一元二次方程20(0)ax bx c a ++=≠根的分布一元二次方程根的分布是二次函数中的重要内容,这部分知识在初中代数中虽有所涉及,但尚不够系统和完整,且解决的方法偏重于二次方程根的判别式和根与系数关系定理(韦达定理)的运用,下面结合二次函数图象的性质,系统地来分析一元二次方程实根的分布.设一元二次方程20(0)ax bx c a ++=≠的两实根为12,x x ,且12x x ≤.令2()f x ax bx c =++,从以下四个方面来分析此类问题:①开口方向:a ②对称轴位置:2bx a=- ③判别式:∆ ④端点函数值符号.(5)二次函数2()(0)f x ax bx c a =++≠在闭区间[,]p q 上的最值 设()f x 在区间[,]p q 上的最大值为M ,最小值为m ,令01()2x p q =+. (Ⅰ)当0a >时(开口向上)①若2b p a -<,则()m f p = ②若2b p q a ≤-≤,则()2b m f a =- ③若2b q a ->,则()m f q = ①若02b x a -≤,则()M f q = ②02bx a ->,则()M f p =(Ⅱ)当0a <时(开口向下)①若2bp a -<,则()M f p = ②若2b p q a ≤-≤,则()2b M f a =- ③若2bq a ->,则()M f q =①若02bx a -≤,则()m f q = ②02bx a ->,则()m f =.>O -=f (p) f (q) ()2b f a -x>O -=f (p) f (q) ()2b f a -x >O -=f(p)f (q) ()2bf a -x>O -=f(p)f (q) ()2bf a -0x x >O -=f (p) f (q) ()2b f a -0x x <O -=f (p) f (q) ()2b f a -x <O -=f (p) f(q) ()2bf a -x <O -=f (p) f (q) ()2b f a -0xx <O -=f(p) f (q)()2bf a -x<O-=f(p) f (q)()2bfa -0x第三章 函数的应用一、方程的根与函数的零点1、函数零点的概念:对于函数))((D x x f y ∈=,把使0)(=x f 成立的实数x 叫做函数))((D x x f y ∈=的零点。
高中数学第三章函数的概念与性质知识点归纳总结(精华版)(带答案)
高中数学第三章函数的概念与性质知识点归纳总结(精华版)单选题1、若函数f(x)=x2−mx+10在(−2,1)上是减函数,则实数m的取值范围是()A.[2,+∞)B.[−4,+∞)C.(−∞,2]D.(−∞,−4]答案:A分析:结合二次函数的对称轴和单调性求得m的取值范围.,由于f(x)在(−2,1)上是减函数,函数f(x)=x2−mx+10的对称轴为x=m2≥1⇒m≥2.所以m2故选:A2、函数f(x)在(−∞,+∞)上是减函数,且a为实数,则有()A.f(a)<f(2a) B.f(a2)<f(a)C.f(a2+1)<f(a)D.f(a2−a)<f(a)答案:C分析:利用a=0可排除ABD;根据函数单调性和a2+1>a恒成立可知C正确.当a=0时,ABD中不等式左右两侧均为f(0),不等式不成立,ABD错误;∵a2+1−a>0对于a∈R恒成立,即a2+1>a恒成立,又f(x)为R上的减函数,∴f(a2+1)<f(a),C正确.故选:C.3、已知定义在R上的函数f(x)满足f(x+2)=f(x+4),且f(x+1)是奇函数,则()对称A.f(x)是偶函数B.f(x)的图象关于直线x=12,0)对称C.f(x)是奇函数D.f(x)的图象关于点(12答案:C分析:由周期函数的概念易知函数f(x)的周期为2,根据图象平移可得f(x)的图象关于点(1,0)对称,进而可得奇偶性.由f(x+2)=f(x+4)可得2是函数f(x)的周期,因为f(x+1)是奇函数,所以函数f(x)的图象关于点(1,0)对称,所以f(x)=−f(2−x),f(x)=−f(−x),所以f(x)是奇函数,故选:C.4、已知f(x)是定义在(−2,2)上的单调递减函数,且f(2a−3)<f(a−2),则实数a的取值范围是()A.(0,4)B.(1,+∞)C.(12,52)D.(1,52)答案:D分析:根据函数自变量的定义域以及函数单调递减列式,求出a的取值范围. ∵f(x)是定义在(−2,2)上的单调递减函数,且f(2a−3)<f(a−2),则{2a−3>a−2−2<a−2<2−2<2a−3<2,解得1<a<52故选:D..5、已知幂函数的图象经过点P(4,12),则该幂函数的大致图象是()A.B.C.D.答案:A分析:设出幂函数的解析式,利用函数图象经过点求出解析式,再由定义域及单调性排除CDB即可. 设幂函数为y=xα,因为该幂函数得图象经过点P(4,12),所以4α=12,即22α=2−1,解得α=−12,即函数为y =x −12,则函数的定义域为(0,+∞),所以排除CD ,因为α=−12<0,所以f(x)=x −12在(0,+∞)上为减函数,所以排除B ,故选:A6、已知函数f (x )={√x −2,x >2|x −3|+2,x ≤2,则f(f (9))=( )A .1B .2C .4D .8答案:C分析:根据定义域选择合适的表达式代入求值f(f (9))=f(√9−2)=f(1)=|1−3|+2=4故选:C7、已知函数f (x 2+1)=x 4,则函数y =f (x )的解析式是( )A .f (x )=(x −1)2,x ≥0B .f (x )=(x −1)2,x ≥1C .f (x )=(x +1)2,x ≥0D .f (x )=(x +1)2,x ≥1答案:B分析:利用凑配法求得f (x )解析式.f (x 2+1)=x 4=(x 2+1)2−2(x 2+1)+1,且x 2+1≥1,所以f (x )=x 2−2x +1=(x −1)2,x ≥1.故选:B8、已知函数f (x )=(m 2−2m −2)⋅x m−2是幂函数,且在(0,+∞)上递增,则实数m =()A .-1B .-1或3C .3D .2答案:C分析:根据幂函数的定义和性质,列出相应的方程,即可求得答案.由题意知:m 2−2m −2=1,即(m +1)(m −3)=0,解得m =−1或m =3,∴当m =−1时,m −2=−3,则f (x )=x −3在(0,+∞)上单调递减,不合题意;当m=3时,m−2=1,则f(x)=x在(0,+∞)上单调递增,符合题意,∴m=3,故选:C多选题9、已知偶函数f(x)满足f(x)+f(2−x)=0,下列说法正确的是()A.函数f(x)是以2为周期的周期函数B.函数f(x)是以4为周期的周期函数C.函数f(x+2)为偶函数D.函数f(x−3)为偶函数答案:BC分析:根据函数的奇偶性和周期性确定正确选项.依题意f(x)是偶函数,且f(x)+f(2−x)=0,f(x)=−f(2−x)=−f(x−2),所以A错误.f(x)=−f(x−2)=−[−f(x−2−2)]=f(x−4),所以B正确.f(x+2)=f(x−2+4)=f(x−2)=f(−(x−2))=f(−x+2),所以函数f(x+2)为偶函数,C正确.若f(x−3)是偶函数,则f(x−3)=f(−x−3)=f(x+3),则函数f(x)是周期为6的周期函数,这与上述分析矛盾,所以f(x−3)不是偶函数.D错误.故选:BC10、(多选题)下列函数中,定义域是其值域子集的有()A.y=85x+6B.y=−x2−2x+5C.y=√x−1D.y=1x−1答案:AC分析:分别求得函数的定义域和值域,利用子集的定义判断.A函数的定义域和值域都是R,符合题意;B.定义域为R,因为y=−x2−2x+5=−(x+1)2+6≤6,所以函数值域为(−∞,6],值域是定义域的真子集不符合题意;C.易得定义域为[1,+∞),值域为[0,+∞),定义域是值域的真子集;D.定义域为{x|x ≠0},值域为{x|x ≠−1},两个集合只有交集;故选:AC11、已知函数f (x )={kx +1,x ≤0log 2x,x >0,下列是关于函数y =f [f (x )]+1的零点个数的判断,其中正确的是( ) A .当k >0时,有3个零点B .当k <0时,有2个零点C .当k >0时,有4个零点D .当k <0时,有1个零点答案:CD解析:令y =0得f [f (x )]=−1,利用换元法将函数分解为f (x )=t 和f (t )=﹣1,作出函数f (x )的图象,利用数形结合即可得到结论.令y =f [f (x )]+1=0,得f [f (x )]=−1,设f (x )=t ,则方程f [f (x )]=−1等价为f (t )=﹣1, ①若k >0,作出函数f (x )的图象如图:∵f (t )=﹣1,∴此时方程f (t )=﹣1有两个根其中t 2<0,0<t 1<1,由f (x )=t 2<0,此时x 有两解,由f (x )=t 1∈(0,1)知此时x 有两解,此时共有4个解,即函数y =f [f (x )]+1有4个零点.②若k <0,作出函数f (x )的图象如图:∵f (t )=﹣1,∴此时方程f (t )=﹣1有一个根t 1,其中0<t 1<1,由f (x )=t 1∈(0,1),此时x 只有1个解,即函数y =f [f (x )]+1有1个零点.故选:CD .小提示:本题考查分段函数的应用,考查复合函数的零点的判断,利用换元法和数形结合是解决本题的关键,属于难题.12、下列函数既是偶函数,在(0,+∞)上又是增函数的是()A.y=x2+1B.y=2x C.y=|x|D.y=|1x−x|答案:AC分析:根据偶函数的定义和增函数的性质,逐个分析判断即可得解.对A,开口向上,且对称轴为x=0,所以y=x2+1是偶函数,在(0,+∞)上是增函数,故A正确;对B,y=2x为奇函数,故B错误;对C,y=|x|为偶函数,当x∈(0,+∞)时,y=x为增函数,故C正确;对D,令f(x)=|1x −x|,f(−x)=|1−x+x|=|1x−x|=f(x)为偶函数,当x∈(0,1),y=1x−x为减函数,故D错误,故选:AC13、关于直线y=m与函数y=|x|+|2x+4|的图象的交点有如下四个结论,其中正确的是()A.不论m为何值时都有交点B.当m>2时,有两个交点C.当m=2时,有一个交点D.当m<2时,没有交点答案:BCD分析:化简函数y=|x|+|2x+4|表达式即为y=|x|+|2x+4|={−3x−4,x<−2x+4,−2≤x≤03x+4,x>0,作出直线y=m与函数y=|x|+|2x+4|的图象,通过数形结合直接判断即可.由题意得,y=|x|+|2x+4|={−3x−4,x<−2x+4,−2≤x≤03x+4,x>0,作此函数图像如下图折线所示;y=m即平行于x轴的直线,作图像如下图直线所示.对于A,由图可知,当m<2时,直线y=m与函数y=|x|+|2x+4|的图象无交点,故A错误;对于B,由图可知,当m>2时,直线y=m与函数y=|x|+|2x+4|的图象有两个交点,故B正确;对于C,由图可知,当m=2时,直线y=m与函数y=|x|+|2x+4|的图象,有一个交点,故C正确;对于D,由图可知,当m<2时,直线y=m与函数y=|x|+|2x+4|的图象无交点,故D正确.故选:BCD填空题14、函数f(x)=√x−4|x|−5的定义域是______.答案:[4,5)∪(5,+∞)解析:利用分式的分母不等于0.偶次根式的被开方数大于或等于0,列不等式组求得自变量的取值范围即可.要使函数f(x)=√x−4|x|−5有意义,则{x−4≥0|x|−5≠0,解得x≥4且,x≠±5,故函数的定义域为[4,5)∪(5,+∞),所以答案是:[4,5)∪(5,+∞).15、设函数f(x)=(x+1)2+ax 1 32x2+2,a∈R的最大值为M,最小值为m,则M+m=__.答案:1分析:令g(x)=f(x)−12=2x+ax132x2+2,易判断g(x)为奇函数,由奇函数的性质,可得(M−12)+(m−12)=0,即可求出M+m的值.解:f(x)=(x+1)2+ax 1 32x2+2=x2+2x+1+ax132x2+2=12+2x+ax132x2+2,令g (x )=f (x )−12=2x+ax 132x 2+2, 则g (﹣x )=−2x−ax 132x 2+2=−g (x ),所以g (x )为奇函数,所以g (x )的最大最小值分别为M −12,m −12,由奇函数的性质,可得(M −12)+(m −12)=0,所以M +m =1.所以答案是:1.16、已知f (x )={ax +4,x ≤1log 2x,x ≥2,若函数f (x )的值域为[1,+∞),则a 的最小值为______. 答案:−3分析:根据函数的解析式,结合f (2)=1和一次函数的性质,列出不等式组,即可求解.由题意,函数f (x )={ax +4,x ≤1log 2x,x ≥2,可得f (2)=1, 要使得函数f (x )的值域为[1,+∞),则满足{a ≤0a +4≥1,解得−3≤a ≤0, 所以实数a 的最小值为−3.所以答案是:−3.解答题17、已知函数f (x )=x |x −a |(1)讨论函数f(x)的奇偶性(只需写出正确结论);(2)当a =2时,写出函数f(x)的单调递增区间:(3)当a ≥2时,求函数f(x)在区间[0,2]上的最大值.答案:(1)答案见解析(2)单调递增区间为(−∞,1],[2,+∞)(3)f max (x)={a 24,2≤a ≤42a −4,a >4分析:(1)利用奇偶性的定义求解即可;(2)按x 的范围去绝对值,进而求单调递增区间即可;(3)由a≥2且x∈[0,2]可得f(x)=−x(x−a)=−x2+ax,讨论对称轴的位置求最大值即可. (1)当a=0时,f(x)=x|x|,f(−x)=−x|−x|=−x|x|=−f(x),故f(x)为奇函数;当a≠0时,f(x)=x|x−a|为非奇非偶函数.(2)当a=2时,f(x)=x|x−2|,所以f(x)={x(x−2)=x2−2x,x≥2x(2−x)=−x2+2x,x<2,所以当x≥2时,x2−2x的单调递增区间为[2,+∞);当x<2时,−x2+2x的单调递增区间为(−∞,1],所以f(x)的单调递增区间为(−∞,1],[2,+∞).(3)因为a≥2且x∈[0,2],所以f(x)=−x(x−a)=−x2+ax,对称轴为x=a2,当0<a2≤2,即2≤a≤4时,f max(x)=f(a2)=a24;当a2>2,即a>4时,f(x)在[0,2]上单调递增,f max(x)=f(2)=2a−4,综上f max(x)={a24,2≤a≤42a−4,a>4.18、已知函数f(x)的图象如图所示,其中y轴的左侧为一条线段,右侧为某抛物线的一段.(1)写出函数f(x)的定义域和值域;(2)求f[f(−1)]的值.答案:(1)定义域为[−2,3],值域为[−2,2];(2)-1.分析:(1)由图像直接得到定义域和值域;(2)先求出解析式,再直接代入求f[f(−1)]的值.解:(1)由图象可知,函数f(x)的定义域为[−2,3],值域为[−2,2];(2)当x ∈[−2,0]时,设f(x)=kx +b(k ≠0),将(−2,0),(0,2)代入可得{−2k +b =0b =2, 解得k =1,b =2,即f(x)=x +2,当x ∈(0,3]时,设f(x)=a(x −2)2−2,将点(3,−1)代入可得−1=a(3−2)2−2,解得a =1, ∴f(x)=(x −2)2−2=x 2−4x +2,∴f(x)={x +2,−2⩽x ⩽0x 2−4x +2,0<x ⩽3, ∴f(−1)=−1+2=1,∴f[f(−1)]=f (1)=12−4+2=−1.。
高三数学函数题集附解答
高三数学函数题集附解答-----------------1. 函数f(x) = 2x^2 + 3x - 1中,当x = 1时的函数值是多少?解答:将x = 1代入函数表达式中,得到:f(1) = 2(1)^2 + 3(1) - 1 = 2 + 3 - 1 = 4-----------------2. 已知函数g(x) = x^3 + 3x^2 - 2x - 5,求函数的导数g'(x)。
解答:对函数g(x)按照幂次降序求导,得到:g'(x) = 3x^2 + 6x - 2-----------------3. 已知函数h(x) = 2^(x+1),求函数在x = 3处的值以及导数h'(x)。
解答:将x = 3代入函数表达式中,得到:h(3) = 2^(3+1) = 2^4 = 16对函数h(x)求导,使用指数函数的导数公式,得到:h'(x) = (ln2) * 2^(x+1)-----------------4. 函数f(x) = 3x^2 - 4x + 1和g(x) = x + 2的复合函数f(g(x))是多少?解答:将g(x)代入f(x)的表达式,得到:f(g(x)) = 3(g(x))^2 - 4(g(x)) + 1= 3(x + 2)^2 - 4(x + 2) + 1= 3(x^2 + 4x + 4) - 4x - 8 + 1= 3x^2 + 12x + 12 - 4x - 7= 3x^2 + 8x + 5-----------------5. 已知函数f(x) = 3x^2 - 2x + 1和g(x) = x + 1,求f(x)与g(x)的和f(x) + g(x)。
解答:将f(x)和g(x)相加,得到:f(x) + g(x) = (3x^2 - 2x + 1) + (x + 1)= 3x^2 - 2x + 1 + x + 1= 3x^2 - x + 2-----------------6. 函数f(x) = x^3 - x^2 + 2x - 1的图像是否关于y轴对称?请说明理由。
高三数学各知识点的例题
高三数学各知识点的例题1. 函数与方程例题1: 已知函数 f(x) = x^2 + 3x + 2,求 f(2) 的值。
例题2: 解方程 2x^2 + 3x - 5 = 0。
2. 三角函数例题3: 求 sin 30°的值。
例题4: 解方程 2sin^2x - 3sinx = 0。
3. 数列与数学归纳法例题5: 求等差数列的前 n 项和 Sn = 2n^2 + 3n 的表达式。
例题6: 求等比数列的前 n 项和 Sn = 5(1 - q^n) / (1 - q) 的表达式。
4. 概率与统计例题7: 从标有编号 1-50 的卡片中随机抽取一张,求抽到奇数的概率。
例题8: 一批产品中存在缺陷,已知产品的不良率为 5%,从中抽取 100 个产品,求其中不超过 3 个缺陷的概率。
5. 解析几何例题9: 判断点 P(1, 2) 是否在直线 L: 2x - y + 1 = 0 上。
例题10: 求直线 L: x + y = 4 与直线 L': 2x + y = 3 的交点坐标。
6. 三角恒等式与解三角形例题11: 证明恒等式 sin^2x + cos^2x = 1。
例题12: 已知∠A = 60°,a = 5,b = 3,求三角形 ABC 的第三边 c 的长度。
7. 排列与组合例题13: 从 10 个不同的数字中任取 4 个,求不重复的取法有多少种。
例题14: 有 5 个男生和 4 个女生,从中选择 3 个人组成一个小组,其中至少有一个男生的组合方式有多少种。
8. 导数与微分例题15: 求函数 f(x) = x^3 - 2x^2 + x 的导数。
例题16: 已知函数 y = x^3 - 2x^2 + x,求函数在 x = 2 处的切线方程。
以上为高三数学各知识点的例题,通过这些例题的训练和掌握,可以帮助同学们加深对各个数学知识点的理解和应用能力。
在备战高考的过程中,多做例题,多理解解题思路,相信能够取得好成绩。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
09级高三数学总复习讲义——基本函数1知识清单:1.一元一次函数:)0(≠+=a b ax y ,当0>a 时,是增函数;当0<a 时,是减函数;2.一元二次函数:一般式:)0(2≠++=a c bx ax y ;对称轴方程是2b x a =-;顶点为24(,)24b ac b a a--;两点式:))((21x x x x a y --=;对称轴方程是 ;与x 轴的交点为 ; 顶点式:h k x a y +-=2)(;对称轴方程是 ;顶点为 ; ⑴一元二次函数的单调性:当0>a 时: 为增函数; 为减函数; 当0<a 时: 为增函数; 为减函数;⑵二次函数求最值问题:首先要采用配方法,化为h k x a y +-=2)(的形式, (Ⅰ)、若顶点的横坐标在给定的区间上,则当0>a 时:在顶点处取得最小值,最大值在距离对称轴较远的端点处取得;当0<a 时:在顶点处取得最大值,最小值在距离对称轴较远的端点处取得; (Ⅱ)若顶点的横坐标不在给定的区间上,则当0>a 时:最小值在距离对称轴较近的端点处取得,最大值在距离对称轴较远的端点处取得;当0<a 时:最大值在距离对称轴较近的端点处取得,最小值在距离对称轴较远的端点处取得; ⑶二次方程实数根的分布问题: 设实系数一元二次方程0)(2=++=c bx ax x f 的两根为21,x x ;则:另外:①二次方程f (x )=0的一根小于p ,另一根大于q (p <q )⇔()0()0a f p a f q ⋅<⎧⎨⋅<⎩。
②二次方程f (x )=0在区间(p ,q )内只有一根⇔f (p )·f (q )<0,或⎩⎨⎧>⋅=0)(0)(q f a p f (检验)或⎩⎨⎧>⋅=0)(0)(p f a q f (检验)。
③若在闭区间],[n m 讨论方程0)(=x f 有实数解的情况,可先利用在开区间),(n m 上实根分布的情况,得出结果,在令n x =和m x =检查端点的情况。
注:常见的初等函数一次函数,二次函数,反比例函数,指数函数,对数函数。
特别指出,分段函数也是重要的函数模型。
3.指数函数:x a y =(0,1a a >≠),定义域R ,值域为(+∞,0).⑴①当1a >,指数函数:x a y =在定义域上为增函数;②当01a <<,指数函数:x a y =在定义域上为减函数.⑵当1a >时,x a y =的a 值越大,越靠近y 轴;当01a <<时,则相反.4.对数函数:如果a (0,1a a >≠)的b 次幂等于N ,就是N a b=,数b 就叫做以a 为底的N 的对数,记作b N a =log (0,1a a >≠,负数和零没有对数);其中a 叫底数,N 叫真数. ⑴对数运算:1211log 231log ()log log log log log log log 1log log log log log log log log 1log log ...log log (0,0,0,1,0,1,0,1,a n a a a aa a n a a n a a N ba b a b c a a a n a n M N M N MM N NM n M M M na NNN a b c a a a a a M N a a b b c c a -⋅=+=-=⋅==⋅⋅=⇒⋅⋅⋅=>>>≠>≠>≠①②③④⑤⑥换底公式:⑦推论:以上2,, (01)n a a >≠且例如:2log 2log (2log a a a x x x ≠Q 中x >0而2log x a 中x ∈R ).⑵x a y =(0,1a a >≠)与x y a log =互为反函数.当1a >时,x y a log =的a 值越大,越靠近x 轴;当01a <<时,则相反. 5.幂函数(1)幂函数的定义: 。
(2)幂函数的性质:①所有幂函数在 上都有意义,并且图像都过点 。
②如果0a >,则幂函数图像过原点,并且在区间 上为增函数。
③如果0a <,则幂函数图像在()0,+∞上是 。
在第一象限内,当x 从右边趋向于原点时,图像在y 轴右方无限地逼近 。
当x 趋向于+∞时,图像在y 轴右方无限地逼近 。
④当a 为奇数时,幂函数为 ,当a 为偶数时,幂函数为 , (3)幂函数[)0a y x ,x ,=∈+∞,当1a >时,若01x ,<<其图像在直线y x =的下方,若1x >,其图像在直线y x =的上方;当01a <<时,若01x ,<<其图像在直线y x =的上方,当1a >时,若1x >其图像在直线y x =的下方。
课前预习1. 当0≤x ≤1时,函数y=ax+a -1的值有正值也有负值,则实数a 的取值范围是( )(A)a <21 (B)a >1 (C)a <21或a >1 (D)21<a <12.已知函数1)()(32+-+=x a a ax x f 在]1,(--∞上递增,则a 的取值范围是( ) (A)a (B)a (C)0a < (D)0a <3. 已知二次函数c x b a ax x f +++=)()(22的图像开口向上,且1)0(=f ,0)1(=f ,则实数b 取值范围是( )(A) ]43,(--∞(B) )0,43[- (C) ),0[+∞(D) )1,(--∞4.设函数⎪⎩⎪⎨⎧<-=>=0,10,00,1)(x x x x f ,则方程)()12(1x f x x -=+的解为 5.函数12+=-x a y (0>a ,且1≠a )的图象必经过点( )(A)(0,1) (B)(1,1) (C) (2, 0) (D) (2,2) 6. )223(log 29log 2log 3777+-7.设),0(,,+∞∈z y x 且z y x 643==, ⑴ 求证:zy x 1211=+;⑵比较z y x 6,4,3的大小. 8.已知3log 1)(x x f += ,2log 2)(x x g = , 试比较)()(x g x f 和的大小。
9.求函数)183(log 221--=x x y 的单调减区间,并用单调定义给予证明。
10. 求下列函数的定义域、值域: ①41212-=--xy ; ②)54(log 231++-=x x y 11. 已知函数223n n y x --=()n ∈Z 的图象与两坐标轴都无公共点,且其图象关于y 轴对称,求n 的值,并画出函数的图象.典型例题1、解析式、待定系数法EG 1.若()2f x x bx c =++,且()10f =,()30f =,求()1f -的值.变式1:若二次函数()2f x ax bx c =++的图像的顶点坐标为()2,1-,与y 轴的交点坐标为(0,11),则A .1,4,11a b c ==-=-B .3,12,11a b c ===C .3,6,11a b c ==-=D .3,12,11a b c ==-=变式2:若()()223,[,]f x x b x x b c =-+++∈的图像x =1对称,则c =_______. 变式3:若二次函数()2f x ax bx c =++的图像与x 轴有两个不同的交点()1,0A x 、()2,0B x ,且2212269x x +=,试问该二次函数的图像由()()231f x x =--的图像向上平移几个单位得到? 2、图像特征EG2:将函数()2361f x x x =--+配方,确定其对称轴,顶点坐标,求出它的单调区间及最大值或最小值,并画出它的图像.变式1:已知二次函数()2f x ax bx c =++,如果()()12f x f x =(其中12x x ≠),则122x x f +⎛⎫= ⎪⎝⎭A .2b a -B .ba- C . c D .244ac b a -变式2:函数()2f x x px q =++对任意的x 均有()()11f x f x +=-,那么()0f 、()1f -、()1f 的大小关系是A .()()()110f f f <-<B .()()()011f f f <-<C .()()()101f f f <<-D .()()()101f f f -<<变式3:已知函数()2f x ax bx c =++的图像如右图所示,请至少写出三个与系数a 、b 、c 有关的正确命题_________.3.单调性EG3:已知函数()22f x x x =-,()()22[2,4]g x x x x =-∈. (1)求()f x ,()g x 的单调区间;(2) 求()f x ,()g x 的最小值.变式1:已知函数()242f x x ax =++在区间(),6-∞内单调递减,则a 的取值范围是A .3a ≥B .3a ≤C .3a <-D .3a ≤-变式2:已知函数()()215f x x a x =--+在区间(12 ,1)上为增函数,那么()2f 的取值范围是_________.变式3:已知函数()2f x x kx =-+在[2,4]上是单调函数,求实数k 的取值范围. 4.最值EG4已知函数()22f x x x =-,()()22[2,4]g x x x x =-∈. (1)求()f x ,()g x 的单调区间;(2) 求()f x ,()g x 的最小值.变式1:已知函数()223f x x x =-+在区间[0,m ]上有最大值3,最小值2,则m 的取值范围是A .[)1,+∞B .[]0,2C .[]1,2xyOD .(),2-∞变式2:若函数y =M ,最小值为m ,则M + m 的值等于________.变式3:已知函数()224422f x x ax a a =-+-+在区间[0,2]上的最小值为3,求a 的值. 5.奇偶性EG5:已知函数()f x 是定义在R 上的奇函数,当x ≥0时,()()1f x x x =+.画出函数()f x 的图像,并求出函数的解析式.变式1:若函数()()()22111f x m x m x =-+-+是偶函数,则在区间(],0-∞上()f x 是A .增函数B .减函数C .常数D .可能是增函数,也可能是常数变式2:若函数()()2312f x ax bx a b a x a =+++-≤≤是偶函数,则点(),a b 的坐标是________.变式3:设a 为实数,函数1||)(2+-+=a x x x f ,R x ∈. (I)讨论)(x f 的奇偶性; (II)求)(x f 的最小值.6.图像变换EG6、已知2243,30()33,0165,16x x x f x x x x x x ⎧++-≤<⎪=-+≤<⎨⎪-+-≤≤⎩.(1)画出函数的图象;(2)求函数的单调区间;(3)求函数的最大值和最小值. 变式1:指出函数223y x x =-++的单调区间. 变式2:已知函数)(|2|)(2R x b ax x x f ∈+-=.给下列命题:①)(x f 必是偶函数;② 当)2()0(f f =时,)(x f 的图像必关于直线x =1对称;③ 若02≤-b a ,则)(x f 在区间[a ,+∞)上是增函数; ④)(x f 有最大值||2b a -.其中正确的序号是________.③变式3:设函数,||)(c bx x x x f ++=给出下列4个命题: ①当c =0时,)(x f y =是奇函数;②当b =0,c >0时,方程0)(=x f 只有一个实根;③)(x f y =的图象关于点(0,c )对称;④方程0)(=x f 至多有两个实根.上述命题中正确的序号为 . 7.值域EG7:求二次函数2()26f x x x =-+在下列定义域上的值域: (1)定义域为{}03x Z x ∈≤≤;(2) 定义域为[]2,1-. 变式1:函数()2()2622f x x x x =-+-<<的值域是A .20,2⎡-⎢⎣⎦B .()20,4-C .920,2⎛⎤- ⎥⎝⎦ D . 920,2⎛⎫- ⎪⎝⎭变式2:函数y =cos2x +sin x 的值域是__________.变式3:已知二次函数 f (x ) = a x 2 + bx (a 、b 为常数,且 a ≠ 0),满足条件 f (1 + x ) = f (1-x ),且方程 f (x ) = x 有等根. (1)求 f (x ) 的解析式;(2)是否存在实数 m 、n (m < n ),使 f (x ) 的定义域和值域分别为 [m ,n ] 和 [3m ,3n ],如果存在,求出 m 、n 的值,如果不存在,说明理由.8.恒成立问题EG8:当,,a b c 具有什么关系时,二次函数()2f x ax bx c =++的函数值恒大于零?恒小于零?变式1:已知函数 f (x ) = lg (a x 2 + 2x + 1) .(I)若函数 f (x ) 的定义域为 R ,求实数 a 的取值范围; (II)若函数 f (x ) 的值域为 R ,求实数 a 的取值范围.变式2:已知函数2()3f x x ax a =++-,若[]2,2x ∈-时,有()2f x ≥恒成立,求a 的取值范围. 变式3:若f (x ) = x 2 + bx + c ,不论 α、β 为何实数,恒有 f (sin α )≥0,f (2 + cos β )≤0.(I) 求证:b + c = -1; (II) 求证: c ≥3;(III) 若函数 f (sin α ) 的最大值为 8,求 b 、c 的值.9.根与系数关系右图是二次函数()2f x ax bx c =++的图像,它与x 轴交于点()1,0x 和()2,0x ,试确定,,a b c 以及12x x ,12x x +的符号.变式1:二次函数b ax y +=2与一次函数)(b a b ax y >+=在同一个直角坐标系的图像为变式2:直线3-=mx y 与抛物线x m x y C m mx x y C )12(:,45:2221-+=-+=23,m +-23:323C y x mx m =+--中至少有一条相交,则m 的取值范围是.变式3:对于函数 f (x ),若存在 x 0 ∈ R ,使 f (x 0) = x 0 成立,则称 x 0 为 f (x ) 的不动点.如果函数 f (x ) = a x 2 + bx + 1(a > 0)有两个相异的不动点 x 1、x 2.(I)若 x 1 < 1 < x 2,且 f (x ) 的图象关于直线 x = m 对称,求证m > 12 ; (II)若 | x 1 | < 2 且 | x 1-x 2 | = 2,求 b 的取值范围.10.应用EG :绿缘商店每月按出厂价每瓶3元购进一种饮料.根据以前的统计数据,若零售价定为每瓶4元,每月可销售400瓶;若每瓶售价每降低0.05元,则可多D .C .xyO xyO OO xyx yA .B .销售40瓶.在每月的进货量当月销售完的前提下,请你给该商店设计一个方安:销售价应定为多少元和从工厂购进多少瓶时,才可获得最大的利润?变式1:在抛物线()2f x x ax =-+与x 轴所围成图形的内接矩形(一边在x 轴上)中(如图),求周长最长的内接矩形两边之比,其中a 是正实数.变式2:某民营企业生产A ,B 两种产品,根据市场调查与预测,A 产品的利润与投资成正比,其关系如图一;B 产品的利润与投资的算术平方根成正比,其关系如图二(注:利润和投资单位:万元)(1) 分别将A 、B 两种产品的利润表示为投资的函数关系式;(2) 该企业已筹集到10万元资金,并全部投入A ,B 两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润?其最大利润约为多少元(精确到1万元)?变式3:设a 为实数,记函数x x x a x f -+++-=111)(2的最大值为g (a ) .(Ⅰ)求g (a );(Ⅱ)试求满足)1()(ag a g =的所有实数a .11、指数函数EG :已知下列等式,比较m ,n 的大小:(1)22m n < (2)0.20.2m n < 变式1:设111()()1222b a <<<,那么 ( ) A.a a <a b <b a B.a a < b a <a b C.a b <a a <b a D.a b <b a <a a变式2:函数x y a =在[0,1]上的最大值与最小值的和为3,则a 的值为( )A .12 B.2 C.4 D.14变式3:已知函数)(x f y =的图象与函数x a y =(0>a 且1≠a )的图象关于直线x y =对称,记]1)2(2)()[()(-+=f x f x f x g .若)(x g y =在区间]2,21[上是增函数,则实数a 的取值范围是( )A .),2[+∞B .)2,1()1,0(YC .)1,21[D .]21,0(12、对数函数B CxyDO AEG :已知函数()log (1)a f x x =+,()log (1)(0a g x x a =->,且1)a ≠ (1) 求函数()()f x g x +定义域(2) 判断函数()()f x g x +的奇偶性,并说明理由.变式1:已知2()3f x ax bx a b =+++是偶函数,定义域为[1,2]a a -.则a = ,b = 变式2:若函数()log (a f x x =+是奇函数,则a =变式3:设,0.(),0.x e x g x lnx x ⎧≤=⎨>⎩则1(())2g g =__________变式4:已知(31)4,1()log ,1a a x a x f x x x -+≤⎧=⎨>⎩是(,)-∞+∞上的减函数,那么a 的取值范围是 A.(0,1) B.1(0,)3 C.11[,)73D.1[,1)7EG2:若3log 1(04aa <>,且1)a ≠,求实数a 的取值范围. 变式1:若011log 22<++aa a,则a 的取值范围是 ( )A .),21(+∞B .),1(+∞C .)1,21(D .)21,0(变式2:设10<<a ,函数)22(log )(2--=x x a a a x f ,则使0)(<x f 的x 的取值范围是(A ))0,(-∞(B )),0(+∞(C ))3log ,(a -∞ (D )),3(log +∞a变式3:已知111222log log log b a c <<,则 ( )A .222b a c >> B.222a b c >> B.222c b a >> D.222c a b >> 13、幂函数EG.已知点在幂函数()f x 的图象上,点124⎛⎫- ⎪⎝⎭,,在幂函数()g x 的图象上. 问当x 为何值时有:(1)()()f x g x >;(2)()()f x g x =;(3)()()f x g x <. 分析:由幂函数的定义,先求出()f x 与()g x 的解析式,再利用图象判断即可.变式:函数1224(42)(1)y mx x m m mx -=++++-+的定义域是全体实数,则实数m 的取值范围是( ).A.12),B.1)+,∞C.(22)-,D.(11--+ 实战训练 一、选择1.设1a >,函数()log a f x x =在区间[,2]a a 上的最大值与最小值之差为12,则a = AB .2 C. D .4 2.函数)2log 2(0)y x =+>的反函数是( )A.142(2)x x y x +=->B.142(1)x x y x +=->C.242(2)x x y x +=->D.242(1)x x y x +=->3.设,,a b c 均为正数,且11222112log ,log ,log ,22bcaa b c ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭则 ( ) A.a b c << B.c b a << C.c a b << D.b a c <<4.设11,1,,32a ⎧⎫∈-⎨⎬⎩⎭,则使函数y x α=的定义域为R 且为奇函数的所有α值为(A )1,3 (B ) 1,1- (C )1,3- (D ) 1,1,3- 5.以下四个数中的最大者是 (A) (ln2)2(B) ln(ln2)(C) ln 2(D) ln26.函数()3(02)x f x x =<≤的反函数的定义域为( ) A.(0)+∞,B.(19],C.(01),D.[9)+∞,7.设函数()f x 定义在实数集上,它的图像关于直线1x =对称,且当1x ≥时,()31x f x =-,则有( )A .132()()()323f f f <<B .231()()()323f f f <<C .213()()()332f f f <<D .321()()()233f f f <<8.设2()lg()1f x a x=+-是奇函数,则使()0f x <的x 的取值范围是(A ) A .(1,0)- B .(0,1) C .(,0)-∞O0.11 y(毫克) t (小时)D .(,0)(1,)-∞+∞U9.函数2()1log f x x =+与1()2x g x -+=在同一直角坐标系下的图象大致是( )二、填空1.函数2lg(2)y x x =-的定义域是____________________.2.若函数2()lg 22f x x a x =⋅-+在区间(1,2)内有且只有一个零点,那么实数a 的取值范围是 .3.已知函数)1(log )(+=x x f a 的定义域和值域都是[]0,1,则实数a 的值是 . 4.定义:区间)](,[2121x x x x <的长度为12x x -.已知函数|log |5.0x y =定义域为],[b a ,值域为]2,0[,则区间],[b a 的长度的最大值为 .;5.=++5lg 5lg 2lg 2lg 26.函数2lg(421)y x x =--的定义域是 .7.若方程1n 2100x x +-=的解为0x ,则不小于0x 的最小整数是 .8.如图,函数)(x f y =的图象在点P 处的切线是l ,则(2)(2)f f '+= . 9.函数()y f x =的图象与函数3log (0)y x x =>的图象关于直线y x =对称,则()f x =____________。