汽轮机课程设计报告
汽轮机课程设计实训报告
一、前言汽轮机作为一种高效的能量转换装置,广泛应用于电力、石油、化工等领域。
为了更好地理解和掌握汽轮机的工作原理、结构特点及运行性能,我们进行了汽轮机课程设计实训。
本次实训旨在通过实际操作,加深对汽轮机理论知识的学习,提高我们的实践能力。
二、实训目的1. 理解汽轮机的工作原理和结构特点;2. 掌握汽轮机的设计方法及计算步骤;3. 提高动手操作能力和工程实践能力;4. 培养团队协作精神和创新意识。
三、实训内容本次实训主要包括以下内容:1. 汽轮机基础知识;2. 汽轮机结构分析;3. 汽轮机设计计算;4. 汽轮机性能分析;5. 汽轮机运行维护。
四、实训过程1. 汽轮机基础知识实训开始,我们首先学习了汽轮机的基本概念、工作原理和分类。
通过查阅资料,我们了解到汽轮机是将热能转换为机械能的装置,主要由汽轮机本体、汽轮机调节系统、汽轮机辅助设备等组成。
2. 汽轮机结构分析在了解汽轮机基础知识后,我们开始对汽轮机结构进行分析。
通过对汽轮机本体的结构、零部件的形状和作用进行分析,我们深入了解了汽轮机的运行原理。
3. 汽轮机设计计算在掌握汽轮机结构的基础上,我们进行了汽轮机设计计算。
实训过程中,我们学习了汽轮机设计的基本方法,包括热力计算、机械计算、强度计算等。
通过计算,我们得到了汽轮机的性能参数,如功率、效率、转速等。
4. 汽轮机性能分析在设计计算的基础上,我们对汽轮机的性能进行了分析。
通过对比不同参数对汽轮机性能的影响,我们了解了如何优化汽轮机的设计。
5. 汽轮机运行维护最后,我们学习了汽轮机的运行维护知识。
通过了解汽轮机的运行原理和结构特点,我们掌握了汽轮机的运行维护方法,为今后的工作打下了基础。
五、实训心得通过本次汽轮机课程设计实训,我收获颇丰。
以下是我的一些心得体会:1. 理论与实践相结合:本次实训使我深刻认识到理论与实践相结合的重要性。
只有在理论指导下,才能更好地进行实践;反之,实践经验也能丰富我们的理论知识。
课程设计汽轮机
课程设计汽轮机一、教学目标本课程的目标是让学生掌握汽轮机的基本原理、结构和工作流程,了解汽轮机在现代工业中的应用及其重要性。
知识目标:学生能够描述汽轮机的基本原理、结构和工作流程,了解汽轮机的分类和特点。
技能目标:学生能够运用所学知识分析汽轮机的工作性能,进行简单的故障诊断和维护。
情感态度价值观目标:学生能够认识到汽轮机在现代工业中的重要性,培养对汽轮机技术的兴趣和热情。
二、教学内容本课程的教学内容主要包括汽轮机的基本原理、结构、工作流程及其在现代工业中的应用。
1.汽轮机的基本原理:学生将学习汽轮机的工作原理,包括蒸汽的生成、膨胀和做功过程。
2.汽轮机的结构:学生将了解汽轮机的主要组成部分,如转子、静子、调速系统等,并学习其功能和相互关系。
3.汽轮机的工作流程:学生将掌握汽轮机的工作流程,包括蒸汽的进入、膨胀、排气等阶段。
4.汽轮机在现代工业中的应用:学生将学习汽轮机在电力、石油、化工等领域的应用及其重要性。
三、教学方法本课程将采用讲授法、案例分析法和实验法等多种教学方法,以激发学生的学习兴趣和主动性。
1.讲授法:教师将通过讲解汽轮机的基本原理、结构和工作流程,引导学生掌握相关知识。
2.案例分析法:教师将提供汽轮机实际运行案例,引导学生运用所学知识进行分析,提高学生的实际操作能力。
3.实验法:学生将有机会进行汽轮机模型实验,观察和验证汽轮机的工作原理,增强对知识的理解和记忆。
四、教学资源本课程将使用教材、参考书、多媒体资料和实验设备等多种教学资源。
1.教材:将选用权威、实用的教材,为学生提供全面、系统的学习资料。
2.参考书:提供相关的参考书籍,丰富学生的知识视野。
3.多媒体资料:利用多媒体课件、视频等资料,生动展示汽轮机的工作原理和实际运行场景。
4.实验设备:提供汽轮机模型实验设备,让学生亲自动手操作,提高实践能力。
五、教学评估本课程的评估方式将包括平时表现、作业、考试等多种形式,以全面客观地评价学生的学习成果。
西安交大汽轮机课程设计12000kW报告
目录前言 (2)设计任务书 (4)详细设计过程 (5)一、汽轮机进汽量D的初步估算和近似热力过程曲线的初步计算 (5)二、调节级初步设计 (7)三、分段拟定汽轮机热力过程曲线 (8)四、整机进汽量估计 (8)五、回热系统平衡初步估算 (9)1. 确定给水温度 (9) (9)2. 确定加热器端差t3. 确定各级加热器的汽水参数 (9)4. 热系统平衡计算数值 (10)5. 回热系统热平衡估算 (11)六、流量校核 (111)七、调节级详细热力计算 (13)八、压力级详细热力计算 (15)参考文献 (18)心得体会 (18)前言能源与动力系统及自动化专业涡轮方向的学生在学习各专业课之后,再进行汽轮机课程设计是十分必要的,它使学生针对一台汽轮机的热力设计要求,综合运用专业的知识,是培养学生独立思考和分析能力的重要学习环节之一。
汽轮机课程设计的主要目的有以下几个方面:1.系统地总结、巩固并应用《汽轮机原理》课程中已学过的理论知识,重点掌握汽轮机热力设计的方法、步骤。
2.汽轮机热力设计的任务,一般是按照给定的设计条件,确定通流部分的几何参数,力求获得较高的相对内效率。
就汽轮机课程设计而言其任务通常是指各级的几何尺寸的确定及级效率和内功率的计算。
3.通过设计对整个汽轮机的结构作进一步的了解,明确主要部件在整个机组中的作用、位置及相互关系。
4.通过设计了解并掌握我国当前的技术政策和国建标准、设计资料等。
汽轮机的设计通常分成两个阶段,即方案设计和施工设计,在方案设计中,必须先选定汽轮机的原始数据,后进行热力设计,通过计算分析,确定汽轮机通流部分的结构尺寸,同时并绘制通流部分图及汽轮机纵剖图,并提出该产品的技术经济指标,然后将方案设计及分析意见通过审查,根据审查结果决定采用的基本方案,进行全面的计算和强度计算。
汽轮机设计的主要内容与设计程序大致包括:1.分析并确定汽轮机热力设计的基本参数,如汽轮机容量、进汽参数、转速、排汽压力或循环水温度、回热加热级数及给水温度、供热汽轮机的供汽压力等。
汽轮机课程设计hwsg
汽轮机课程设计hwsg一、教学目标本课程的教学目标是使学生掌握汽轮机的基本原理、结构特点和运行机制,培养学生进行汽轮机设计和运行优化的基本能力,提高学生在能源工程及热能利用领域的综合素质。
知识目标:了解汽轮机的发展历程、分类和基本工作原理;熟悉汽轮机的各级结构、材料和热力特性;掌握汽轮机的运行调节、效率评价和故障分析。
技能目标:能够运用所学知识进行汽轮机的热力计算和结构设计;具备汽轮机运行参数的监测、调整和优化能力;掌握汽轮机常见故障的诊断和处理方法。
情感态度价值观目标:培养学生对汽轮机及相关领域的热爱和敬业精神,树立正确的创新意识;强化学生在团队合作中积极沟通、协作解决问题的能力。
二、教学内容本课程的教学内容主要包括汽轮机的基本原理、结构与特性,汽轮机的运行与管理,以及汽轮机的热力计算与设计。
1.汽轮机的基本原理与结构:介绍汽轮机的工作原理、各级结构及其功能,包括静叶环、动叶环、叶轮、喷嘴等。
2.汽轮机的特性:阐述汽轮机的热力特性、机械特性和运行特性,分析影响汽轮机效率的因素。
3.汽轮机的运行与管理:讲解汽轮机的启动、停机、运行调节和故障处理,强调运行安全与经济性。
4.汽轮机的热力计算与设计:学习汽轮机的热力计算方法,包括热力参数的选取、热力损失的计算等;介绍汽轮机的设计原则和方法。
三、教学方法本课程采用多种教学方法,包括讲授法、案例分析法、实验法等,以激发学生的学习兴趣和主动性。
1.讲授法:通过系统讲解,使学生掌握汽轮机的基本原理、结构和运行特性。
2.案例分析法:分析实际运行中的汽轮机案例,提高学生解决实际问题的能力。
3.实验法:开展汽轮机实验,使学生了解汽轮机的实际运行情况,培养学生的动手能力。
四、教学资源本课程的教学资源包括教材、参考书、多媒体资料和实验设备。
1.教材:选用权威、实用的教材,为学生提供系统、全面的知识体系。
2.参考书:推荐相关领域的经典著作和最新研究成果,拓宽学生的知识视野。
大学汽轮机课程设计
大学汽轮机课程设计一、课程目标知识目标:1. 理解并掌握汽轮机的基本结构、工作原理及性能参数;2. 学习汽轮机的设计原则,了解不同类型汽轮机的特点及适用场合;3. 掌握汽轮机热力计算、气动计算和强度计算的基本方法;4. 了解汽轮机系统优化设计及节能技术。
技能目标:1. 能够运用所学知识进行汽轮机选型、设计和计算;2. 培养学生运用CAD等软件绘制汽轮机零部件图纸的能力;3. 培养学生运用专业软件对汽轮机系统进行仿真分析的能力;4. 提高学生解决实际工程问题的能力。
情感态度价值观目标:1. 培养学生热爱祖国、热爱专业,树立正确的价值观;2. 培养学生严谨求实、团结协作的科学态度;3. 增强学生的环保意识,认识到节能减排的重要性;4. 培养学生勇于创新、敢于挑战的精神。
本课程针对大学高年级学生,结合学科特点和教学要求,将目标分解为具体的学习成果。
通过本课程的学习,使学生具备扎实的汽轮机理论知识,较强的实践能力和创新精神,为我国汽轮机行业的发展贡献力量。
二、教学内容1. 汽轮机概述:介绍汽轮机的发展历程、基本结构、分类及工作原理,对应教材第一章内容。
- 汽轮机的基本结构及工作原理;- 汽轮机的类型及适用场合。
2. 汽轮机设计与计算:讲解汽轮机设计原则、热力计算、气动计算和强度计算方法,对应教材第二章和第三章内容。
- 汽轮机设计原则及流程;- 汽轮机热力计算方法;- 汽轮机气动计算方法;- 汽轮机强度计算方法。
3. 汽轮机系统设计与优化:介绍汽轮机系统设计方法、优化原则及节能技术,对应教材第四章内容。
- 汽轮机系统设计方法;- 汽轮机系统优化原则;- 节能技术及其在汽轮机中的应用。
4. 汽轮机零部件设计:分析汽轮机主要零部件的设计方法及注意事项,对应教材第五章内容。
- 汽轮机叶片设计;- 汽轮机转子设计;- 汽轮机静子设计。
5. 汽轮机设计实例及仿真分析:结合实际工程案例,运用专业软件进行汽轮机设计及仿真分析,对应教材第六章内容。
l汽轮机课程设计
l汽轮机课程设计一、课程目标知识目标:1. 理解汽轮机的基本原理与结构,掌握其主要部件的作用及相互关系。
2. 掌握汽轮机工作循环的类型,了解其热效率的影响因素。
3. 掌握汽轮机的主要性能参数,能够进行简单的性能计算。
技能目标:1. 能够分析汽轮机的能量转换过程,绘制简单的热力循环图。
2. 学会使用相关软件或工具对汽轮机性能进行模拟和优化。
3. 能够运用所学知识,针对特定问题提出汽轮机的改进措施。
情感态度价值观目标:1. 培养学生对能源转换与利用的兴趣,增强节能环保意识。
2. 培养学生的团队协作精神,提高沟通与交流能力。
3. 引导学生关注我国汽轮机行业的发展,激发学生为祖国能源事业作贡献的志向。
课程性质:本课程为专业选修课,旨在帮助学生深入理解汽轮机的工作原理,提高解决实际问题的能力。
学生特点:学生处于高年级阶段,已具备一定的专业基础知识,具有较强的自学能力和动手能力。
教学要求:结合学生特点,注重理论与实践相结合,强调知识的应用性和实用性。
通过课程学习,使学生能够将所学知识内化为具体的学习成果,为未来的职业发展打下坚实基础。
二、教学内容1. 汽轮机原理与结构- 汽轮机工作原理- 汽轮机主要部件及功能- 汽轮机分类及特点2. 汽轮机工作循环- 热力循环基本概念- 汽轮机典型热力循环分析- 热效率及其影响因素3. 汽轮机性能参数与计算- 主要性能参数介绍- 性能计算方法- 性能优化途径4. 汽轮机模拟与优化- 汽轮机性能模拟软件介绍- 模拟软件操作方法- 性能优化案例分析5. 汽轮机实际应用与改进- 汽轮机在能源领域的应用- 汽轮机常见问题分析- 改进措施及发展趋势教学内容安排与进度:第一周:汽轮机原理与结构第二周:汽轮机工作循环第三周:汽轮机性能参数与计算第四周:汽轮机模拟与优化第五周:汽轮机实际应用与改进教学内容与教材关联性:本教学内容与教材章节紧密相关,涵盖教材中关于汽轮机的基本理论、性能分析及应用实例等内容,确保学生能够系统地掌握汽轮机相关知识。
qiang 汽轮机设计报告
汽轮机课程设计报告一、课程设计的目的、任务与要求通过设计加深巩固《汽轮机原理》中所学的理论知识,了解汽轮机热力设计的一般步骤,掌握设计方法。
并通过设计对汽轮机的结构进一步了解,明确主要零件的作用与位置。
具体要求就是按给定的设计条件,选取有关参数,确定汽轮机通流部分尺寸,力求获得较高的汽轮机效率。
二、设计题目机组型号:B24-8.63/0.981机组型式:多级冲动式背压汽轮机新汽压力:8.6300Mpa新汽温度:540.0℃排汽压力:0.9810Mpa额定功率:24000.00kW转速:3000.00rpm三、课程设计:(一)、设计工况下的热力计算1.配汽方式:喷嘴配汽2.调节级选型:单列级3.选取参数:(1)设计功率=额定功率=经济功率(2)汽轮机相对内效率ηri=80.5%(3机械效率ηm=90.0%④.发电机效率ηg=97.0%4.近似热力过程线拟定(1).进汽节流损失ΔPo=0.05*Po调节级喷嘴前Po'=0.95*Po=8.1985Mpa(2).排汽管中的压力损失ΔP≈05.调节级总进汽量Do的初步估算由Po、to查焓熵图得到Ho、So,再由So、Pc查Hc。
查得Ho=3489.1962kJ/kg ,Hc=2878.4080kJ/kg通流部分理想比焓降(ΔHt(mac))'=Ho-Hc=610.7882 kJ/kgDo=3.6*Pel/((ΔHt(mac))'*ηri*ηg*ηm)*m+ΔDDo=3.6*24000.00/(610.7882*0.805*0.970*0.900)*1.00+4.20=205.4857(kJ/kg)6.调节级详细热力计算(1).调节级进汽量DgDg=Do-Dv=204.2857t/h(2)确定速比Xa和理想比焓降Δht取Xa=0.3520,dm=1100.0mm,并取dn=db=dm由u=π*dm*n/60,Xa=u/Ca ,Δht=Ca^2/2u=172.79m/s ,Ca=490.88m/sΔht=120.4786kJ/kg在70~125kJ/kg范围内,所以速比选取符合要求。
汽轮机原理课程设计报告
余速损失
48
叶高损失
49
摩擦损失
50
部分进汽损失
51
级内损失
52
级有效比焓降
53
级相对内效率
54
级功率
P1+P2
表4 第3压力级热力计算数据表
序号
项目
符号
单位
计算公式
工况
工况一
工况二
1
喷嘴流量
2
级前温度
3
级前滞止压力
4
级前比容
5
喷嘴前压力
6
喷嘴前比容
7
临界压力
P1cr
MPa
8
喷嘴后压力
先估后校
9
喷嘴后温度
项目
符号
单位
计算公式
工况
工况一
工况二
1
喷嘴流量
2
级前温度
3
级前滞止压力
4
级前比容
5
喷嘴前压力
6
喷嘴前比容
7
临界压力
P1cr
MPa
8
喷嘴后压力
先估后校
9
喷嘴后温度
10
喷嘴后比容
11
喷嘴出口的理想比焓值
由h-s图确定
12
喷嘴滞止理想比焓降
13
喷嘴出口速度
14
喷嘴损失
15
喷嘴实际出口比焓
16
喷嘴个数
先估后校
先估后校
32
动叶出口理想状态点焓值
33
动叶理想比焓降
34
动叶滞止理想比焓降
35
动叶速度系数
根据(Ωm,w2t)关系曲线查得
36
电厂汽轮机原理及系统课程设计
电厂汽轮机原理及系统课程设计一、课程设计背景本课程设计是为了帮助学生对电厂汽轮机的原理及系统有一个更加深入的了解和掌握。
电厂汽轮机是电厂中最重要的设备之一,它是从汽油、燃料油、天然气等化石燃料中提取的热能将机械能转换成电能的工具,也是电力工业的核心设备之一。
因此,在电力工程专业中,深入学习电厂汽轮机的原理及系统是非常必要的。
二、课程设计内容1. 电厂汽轮机的基本结构和工作原理电厂汽轮机由压气机、燃烧室、高压涡轮机、中压涡轮机、低压涡轮机及发电机等部分组成。
这些部分相互协调,使生热、蒸汽、雾滴和颗粒子沿着节约路径在叶轮里转动,从而变成动能。
发电机受到机械转动而产生电流,同时输出电能。
2. 电厂汽轮机的热力学分析热力学是学习能量转换和热力学平衡的分支学科,在电厂汽轮机的设计和运行中扮演着重要的角色。
通过对热力学的分析,可以帮助工程师优化电厂汽轮机的设计并提高发电效率。
3. 电厂汽轮机的控制系统电厂汽轮机的控制系统通常由控制器、测量仪表、自动调节器等部分组成。
这些部分协同工作,以优化汽轮机的性能和效率,并保证汽轮机的安全稳定运行。
三、设计要求本课程设计旨在帮助学生掌握电厂汽轮机的原理及系统,设计要求如下:1.掌握电厂汽轮机的基本结构及工作原理。
2.进行电厂汽轮机的热力学分析,优化机器设计和提高发电效率。
3.熟悉电厂汽轮机控制系统,从而确保汽轮机的安全稳定运行。
四、设计流程1. 学生参阅课程资料和标准,对电厂汽轮机的基本结构和工作原理进行了解,并撰写报告。
学生需要参阅课程教材、标准和相关资料,对电厂汽轮机的基本结构和工作原理进行了解,并撰写报告。
报告应包括电厂汽轮机的主要部件、蒸汽周期、工作原理等内容。
2. 学生进行电厂汽轮机的热力学分析,并进行模拟仿真。
学生需要使用相应的软件对电厂汽轮机的热力学性能进行分析,并进行模拟仿真。
分析过程需要考虑电厂汽轮机的运行环境、热力学参数、热效率等因素。
3. 学生了解电厂汽轮机的控制系统,并设计相应的控制系统。
武汉大学汽轮机课程设计
武汉大学汽轮机课程设计一、教学目标本课程的教学目标是使学生掌握汽轮机的基本原理、结构、分类、性能及其在能源工程中的应用。
通过本课程的学习,学生应能:1.描述汽轮机的工作原理和主要组成部分,理解其热力学和动力学基础。
2.分析不同类型的汽轮机特点,选择合适的汽轮机设计方案。
3.评估汽轮机的性能指标,如效率、输出功率等,并了解其优化方法。
4.掌握汽轮机的运行维护方法,确保设备安全、高效运行。
5.培养学生的创新意识和工程实践能力,为未来从事能源工程领域的工作打下基础。
二、教学内容本课程的教学内容主要包括以下几个部分:1.汽轮机的基本原理:介绍汽轮机的工作原理,包括蒸汽的生成、膨胀、做功和排汽过程。
2.汽轮机的结构与分类:讲解不同类型汽轮机的结构特点和应用场景,包括轴流式、贯流式和反动式汽轮机等。
3.汽轮机的性能指标:介绍汽轮机的性能评价指标,如效率、输出功率、热耗等,并分析影响因素。
4.汽轮机的设计与优化:讲解汽轮机的设计方法,包括热力计算、结构设计、强度校核等,并探讨优化策略。
5.汽轮机的运行维护:介绍汽轮机的运行条件、维护方法和安全注意事项,以确保设备正常运行。
三、教学方法为了提高教学效果,本课程将采用多种教学方法相结合的方式进行教学:1.讲授法:通过教师的讲解,使学生掌握汽轮机的基本原理、结构和性能。
2.案例分析法:通过分析实际案例,使学生了解汽轮机的应用场景和运行维护方法。
3.实验法:学生进行汽轮机实验,使学生亲手操作,加深对汽轮机原理和结构的理解。
4.讨论法:学生进行课堂讨论,激发学生的思考,提高学生的创新能力。
四、教学资源为了支持本课程的教学,我们将准备以下教学资源:1.教材:选用权威、实用的汽轮机教材,为学生提供系统的学习资料。
2.参考书:推荐学生阅读相关参考书籍,丰富学生的知识体系。
3.多媒体资料:制作精美的PPT课件,直观展示汽轮机的原理和结构。
4.实验设备:准备完善的汽轮机实验设备,为学生提供实践操作的机会。
汽轮机课程设计
汽轮机课程设计⼀、设计任务初步设计⼀台冲动式汽轮机,⽤以带动发电机。
1. 原始数据:蒸汽初参数:p0=3.43MPa, t0=435℃;凝汽器出⼝处压⼒:pc=5.4kPa;给⽔温度:tfw=160℃;经济功率:Pc=12000kW±1%;汽轮机转速:n=3000r/min;汽轮机内效率:ηoi=0.80±1%2. 设计任务:(1). 热⼒系统设计及计算:拟定具有三级抽汽的热⼒系统,其中第2级抽汽供除氧器加热⽤;作出原则性热⼒系统图;计算系统热耗率。
(2). 汽轮机的热⼒设计及计算:调节级与压⼒级的焓降分配;调节级的⽅案⽐较及详细热⼒计算;压⼒机的详细热⼒设计及计算。
(3). 按⽐例绘出调节级与各个压⼒机的速度三⾓形,以及在i-s图上的热⼒膨胀过程曲线。
给出热⼒设计说明书。
⼆、设计机组热⼒系统1. 概述:如图1所⽰,设计机组为单机带3级回热抽汽的热⼒发电系统。
锅炉新蒸汽通过阀v3 进⼊汽轮机做功,带动发电机⼯作,乏汽通过凝汽器,经给⽔泵升压后依次通过射极抽汽器,低压加热器、除氧器、给⽔泵、⾼压加热器返回锅炉,完成循环。
2. ⼏点说明:(1). 在汽轮机设计3个抽汽⼝,分别供⾼压加热器、除氧器、低压加热器回热之⽤。
(2). 为了保证凝汽器的真空,及时排除漏⼊空⽓,设置射极抽汽器sc,利⽤阀v2的引⼊部分新蒸汽,抽出漏汽,辅助凝汽器维持真空,其凝结疏⽔汇⼊凝结⽔泵,此过程会增⼤主蒸汽流量。
(3). 除氧器⼯作压⼒恒为0.118MPa,为了在低负荷时保证其正常⼯作,新蒸汽⼀分⽀通过阀v1与汽轮机中压抽汽⼀同引⼊除氧器,以便于在不同⼯况下维持其⼯作压⼒。
此过程同样会增⼤主蒸汽流量。
(4). 汽轮机前轴封漏⽓不予利⽤,直接排空。
3. 回热系统各点温度的确定:(1). 由凝汽器出⼝处压⼒pc=5.4kPa;经⽂献[3]查得对应饱和温度ts=34.6℃;凝汽器端差取1℃,于是tc=33.6℃(2). 由除氧器⼯作压⼒0.118MPa,由⽂献[3]查得其饱和温度为tcy=104.8℃=t4;(3). 凝结⽔泵、给⽔泵温升取2℃。
汽轮机课程设计(PDF)
(一)汽轮机热平衡估算基本数据:额定功率Pr=10000kW,设计功率Pe=10000kW,新汽压力p0=4.9MPa,新汽温度t0=435℃,排汽压力pc=0.008MPa。
1、近似热力过程曲线的拟定在h-s图上,由p0、t0可确定汽轮机进汽状态点0并查得初比焓h0=3282.845226J/kg。
设进汽机构的节流损失△p0=0.05p0,得调节级前压力Po′=0.95p0=4.875MPa,并确定调节级前蒸汽状态点1。
设排汽损失为0.02Pc,则排汽压力pc′=0.00816MPa。
过1点作等比熵线向下交pc′线于2点,查得h3′=2121.36644kJ/kg,整机的理想比焓降(Δhtmac)′=h0-h3′=3282.845226-2121.3664=1161.478786kJ/kg。
估计汽轮机相对内效率ηri=83%,有效比焓降Δhtmac=(Δhtmac)′×ηri =1161.478786×0.83=964.0273927kJ/kg,排汽比焓hz=2121.66443kJ/kg,光滑连接1、4点,得该机设计工况下的近似热力过程曲线,见图1。
图1 近似热力过程曲线(二)设计工况下的热力计算确定机组配汽方式采用喷嘴配汽2.调节级选型采用单列级3.主要参数⑴已知设计参数Po=4.9Mpa ,to=435℃, Pc=0.008Mpa, Pe=10000KW ,n=3000rpm⑵选取设计参数①设计功率设计功率Pe=10000kW②汽轮机相对内效率ηri选取某一ηri 值,待各级详细计算后与所得ηri′进行比较,直到符合要求为止。
这里取ηri=86%③机械效率:取ηm= 98%④发电效率:取ηg= 95%4.近似热力过程线的拟定(1)进汽机构的节流损失Δpo;阀门全开时,ΔPo=(0.03~0.05)Po,取调节级喷嘴前Po′=0.95Po(2)排汽管中压力损失ΔPc :对于本机,认为Pc′=0.98Pc,即ΔPc=0.02Pc 5.汽轮机总进汽量的初步估算3.6*P elDo= —————————————*m+ΔD= 46.4443117t / h(Δht mac)′*ηriηgηmPel ——汽轮机的设计功率,kW(Δht mac)′——汽轮机通流部分的理想比焓降。
5mw汽轮机课程设计
5mw汽轮机课程设计一、课程设计简介本次课程设计的主题为5mw汽轮机,旨在通过对汽轮机的研究和设计,提高学生对汽轮机的理解和应用能力。
本次课程设计分为以下几个步骤:确定设计目标、进行基础研究、进行参数计算、进行系统集成和优化。
二、确定设计目标1. 设计要求根据题目要求,本次课程设计需要设计一台额定功率为5mw的汽轮机,并满足以下要求:(1)蒸汽参数:进口压力10MPa,进口温度550℃,排气压力0.15MPa;(2)转速:3000r/min;(3)效率:热效率不低于42%,机械效率不低于98%。
2. 设计思路根据上述要求,我们可以采用以下的设计思路:(1)选择适合的汽轮机类型;(2)确定各级叶片数和叶片型式;(3)进行叶片参数计算;(4)进行系统集成和优化。
三、基础研究1. 汽轮机类型选择根据题目要求,我们可以选择适合的汽轮机类型。
由于蒸汽参数较高且功率较大,因此可以选择双背压式汽轮机。
2. 叶片数和叶片型式确定根据汽轮机类型的选择,我们可以确定出各级叶片数和叶片型式。
在本次课程设计中,我们选用了三级汽轮机,各级叶片数分别为:第一级45片、第二级60片、第三级70片。
同时,我们采用了多元流叶轮和反弯曲叶轮。
3. 叶片参数计算根据各级叶轮的类型和叶片数,我们可以进行相应的叶片参数计算。
具体计算过程如下:(1)多元流叶轮的计算利用多元流理论,可以得到多元流角度βm、进口角α1m、出口角α2m等参数。
其中,进口角α1m和出口角α2m需要通过实验或仿真来确定。
(2)反弯曲叶轮的计算利用反弯曲理论,可以得到反弯曲系数K1、K2等参数。
其中,K1需要通过实验或仿真来确定。
四、参数计算1. 蒸汽参数计算根据题目要求,进口蒸汽压力为10MPa,进口蒸汽温度为550℃。
根据蒸汽表可知,在此条件下蒸汽比焓为3561.5kJ/kg。
排气压力为0.15MPa,根据蒸汽表可知,在此条件下蒸汽比焓为2597.3kJ/kg。
汽轮机课程设计报告书
军工路男子职业技术学院课程设计报告书课程名称:透平机械原理课程设计院(系、部、中心):能源与动力工程学院专业:能源与动力工程班级:2013级姓名:JackT学号:131141xxxx起止日期:2016.12.19---2017.1.6 指导教师:万福哥我校研究的透平机械主要是是以水蒸汽为工质的旋转式动力机械,即汽轮机,常用于火力发电。
汽轮机通常与锅炉、凝汽器、水泵等一些列的设备、装置配合使用,将燃煤热能通过转化为高品质电能。
与其它原动机相比,汽轮机机具有单机功率大、效率高、运转平稳和使用寿命长等优点,但电站汽轮机在体积方面较为庞大。
汽轮机的主要用途是作为发动机的原动机。
与常规活塞式内燃机相比,其具有输出功率稳定、功率大等特点。
在使用化石燃料的现代常规火力发电厂、核电站及地热发电站中,都采用以汽轮机为原动机的汽轮发电机组,这种汽轮机具有转速一定的特点。
汽轮机在一定条件下还可变转速运行,例如驱动各种泵、风机、压缩机和船舶螺旋桨等,我国第一艘航母“辽宁号”就是以汽轮为原动机。
汽轮机的排汽或中间抽气还可以用来满足工业生产(卷烟厂、纺织厂)和生活(北方冬季供暖、宾馆供应热水)上的供热需要。
在生产过程中有余能、余热的工厂企业中,还可以用各种类型的工业汽轮机(包括发电、热电联供、驱动动力用),使用不同品位的热能,使热能得以合理且有效地利用。
汽轮机与锅炉(或其他蒸汽发生装置,比如核岛)、发电机(或其他被驱动机械,比如泵、螺旋桨等)、凝汽器、加热器、泵等机械设备组成成套装置,协同工作。
具有一定温度和压力的蒸汽可来自锅炉或其他汽源,经主汽阀和调节汽阀进入汽轮机内,依次流过一系列环形安装的喷嘴栅(或静叶栅)和动叶栅而膨胀做功,将其热能转换成推动汽轮机转子旋转的机械功,通过联轴器驱动其他机械,如发电机。
膨胀做功后的蒸汽由汽轮机的排汽部分排出。
在火电厂中,其排气通常被引入凝汽器,向冷却水或空气放热而凝结,凝结水再经泵输送至加热器中加热后作为锅炉给水,循环工作。
汽轮机课程设计
汽轮机课程设计汽轮机课程设计第一部分汽轮机课程设计任务及要求一、设计任务:1.任选一组参数,分析并确定热力设计的基本参数,分析并选择汽轮机型式、配汽机构形式、通流部分形状及有关参数;2.拟定汽轮机近似热力过程曲线和原则性热力系统,进行汽耗量、回热系统热平衡及热经济性的初步计算;3.根据汽轮机运行特性、经济要求及结构强度等因素,比较和确定调节级的形式、比焓降、叶型及尺寸;4.根据通流部分形状和回热抽汽点的要求,确定压力级的级数和排汽口数,并进行各级比焓降分配;5.对各级进行热力计算,求出各级通流部分的几何尺寸、相对内效率和内功率,确定汽轮机实际的热力过程曲线;6.根据各级热力计算结果,修正各回热抽汽点压力以符合实际热力过程曲线的要求,修正回热系统热平衡计算结果;7.根据需要修正汽轮机热力计算结果;8.绘制通流部分及纵剖面图(手工或CAD绘制)。
二、设计要求:1.运行时有较高的经济性;2.不同工况下工作时均有高的可靠性;3.在满足经济性和可靠性的同时,还应考虑到汽轮机的结构紧凑,系统简单,布置合理,成本低廉,安装与维修方便,以及零件的通用化和系列等因素。
第二部分选题以及参数题目:多级汽轮机热力过程设计基本参数:汽轮机额定功率(Pr, kW):50000汽轮机设计功率(Pe, kW):45000汽轮机初压(p0, Mpa):8.9汽轮机初温(t0, 0C):535汽轮机工作转速(n, r/min):3000汽轮机排气压力(p/c, Mpa):0.0049给水温度(tfw, 0C):217冷却水温(tcl , 0C):20凝汽器出口水温(tc , 0C):31.5给水泵压头(pfp, Mpa):13.73凝结水泵压头(pcp, Mpa):1.33射汽抽气器汽耗量(ΔDej, t/h):1.2射汽抽气器出口水温(tej, 0C):38.68射汽抽气器比焓降(Δhej,kJ/kg):558.3回热级数(Z, 级):5第三部分多级汽轮机设计一、分析并选择汽轮机型式、配汽机构形式、通流部分形状及有关参数(一)分析确定汽轮机设计的基本参数1.汽轮机容量:额定功率Pr=50MW 设计功率Pe=45MW2.进汽参数:(1)新汽参数汽轮机初压P0=8.9Mpa 汽轮机初温t0=535℃(2)再热蒸汽参数再热温度tz=535℃3.排汽压力汽轮机排气压力Pc=0.0049Mpa 冷却水温tc1= 20℃4.汽轮机转数汽轮机工作转速n=3000r/min5.给水温度和回热级数给水温度tfw=217℃回热级数Z=5级6.其他参数凝汽器出口水温tc=31.5℃给水泵压头Pfp=13.73MPa凝结水泵压头Pcp=1.33Mpa射汽抽气器汽耗量Δdej=1.22t/h射汽抽气器出口水温tej=38.68℃射汽抽气器比焓降Δhej=558.3kJ/k(二)分析并选择汽轮机型式、配汽机构形式、通流部分形状1.汽轮机型号Pc和冷却温度tc1可知为:凝气式汽轮机。
25汽轮机课程设计
25汽轮机课程设计一、课程目标知识目标:1. 让学生掌握25汽轮机的基本结构及其工作原理,能够准确描述其主要部件的功能和作用。
2. 使学生了解汽轮机的热力学循环过程,掌握其主要性能参数及其计算方法。
3. 引导学生掌握汽轮机的设计原则,能够运用所学知识解决实际问题。
技能目标:1. 培养学生运用CAD软件绘制25汽轮机主要部件图纸的能力。
2. 培养学生根据实际需求,选择合适的汽轮机型号并进行参数计算的能力。
3. 提高学生运用所学知识对汽轮机故障进行分析和解决的能力。
情感态度价值观目标:1. 激发学生对能源转换与利用的兴趣,培养其节能环保意识。
2. 培养学生严谨的科学态度和团队合作精神,使其在解决问题的过程中体验到学习的快乐。
3. 引导学生关注我国汽轮机行业的发展,培养其爱国主义情怀和社会责任感。
课程性质:本课程为专业课,旨在使学生掌握汽轮机的基本理论和设计方法,提高其工程实践能力。
学生特点:学生具备一定的机械工程基础知识,具有较强的学习兴趣和动手能力。
教学要求:结合学生特点,注重理论与实践相结合,提高学生的实际操作能力和创新能力。
通过本课程的学习,使学生能够达到上述课程目标,为后续专业课程学习和工程实践打下坚实基础。
二、教学内容1. 汽轮机概述:介绍汽轮机的定义、分类及其在能源领域的应用,使学生对其有一个全面的认识。
教材章节:第一章 汽轮机概述2. 汽轮机工作原理及结构:讲解汽轮机的工作原理,分析其主要结构部件及其作用。
教材章节:第二章 汽轮机工作原理及结构3. 汽轮机热力学循环:阐述汽轮机的热力学循环过程,引导学生掌握其主要性能参数的计算方法。
教材章节:第三章 汽轮机热力学循环4. 汽轮机设计原则与方法:介绍汽轮机设计的基本原则,讲解设计方法及其在实际工程中的应用。
教材章节:第四章 汽轮机设计原则与方法5. 汽轮机主要部件设计:详细讲解汽轮机主要部件的设计方法,包括叶片、转子、静子等。
教材章节:第五章 汽轮机主要部件设计6. 汽轮机性能分析与故障诊断:分析汽轮机性能的影响因素,介绍故障诊断方法及预防措施。
热工汽轮机课程设计
热工汽轮机课程设计一、教学目标本课程旨在让学生掌握热工汽轮机的基本原理、结构及其工作过程,培养学生分析和解决实际问题的能力。
具体目标如下:1.知识目标:(1)了解汽轮机的基本概念、分类和性能参数。
(2)掌握汽轮机的组成部分及其功能。
(3)熟悉汽轮机的工作原理和运行特性。
(4)了解热工自动化在汽轮机中的应用。
2.技能目标:(1)能够运用所学知识分析汽轮机的热效率和能耗。
(2)具备绘制汽轮机主要部件图纸的能力。
(3)学会使用常用测量仪器和设备进行汽轮机参数的检测。
(4)具备初步设计小型汽轮机的能力。
3.情感态度价值观目标:(1)培养学生对汽轮机行业的兴趣和热情。
(2)增强学生的团队合作意识和动手实践能力。
(3)培养学生遵守纪律、严谨治学的学术态度。
二、教学内容本课程的教学内容主要包括以下几个方面:1.汽轮机的基本概念、分类和性能参数。
2.汽轮机的组成部分(如静叶、动叶、轮盘、轴承等)及其功能。
3.汽轮机的工作原理(如热力循环、蒸汽膨胀、涡轮转动等)和运行特性。
4.热工自动化在汽轮机中的应用(如温度、压力、流量等测量的实现)。
教学过程中,将结合教材和实际案例进行讲解,注重理论与实践相结合。
三、教学方法为了提高教学效果,将采用多种教学方法相结合的方式进行授课:1.讲授法:通过讲解基本概念、原理和案例,使学生掌握汽轮机的基本知识。
2.讨论法:学生就热点问题进行讨论,培养学生的思考和表达能力。
3.案例分析法:分析实际运行中的汽轮机故障案例,提高学生解决实际问题的能力。
4.实验法:安排实验室实践环节,让学生亲自动手操作,增强实践能力。
四、教学资源为了支持教学内容和教学方法的实施,将准备以下教学资源:1.教材:选用权威、实用的教材,如《热工汽轮机原理与应用》等。
2.参考书:提供相关领域的参考书籍,丰富学生的知识体系。
3.多媒体资料:制作精美的PPT课件,辅助讲解和展示。
4.实验设备:配备完善的实验设备,为学生提供实践操作的机会。
300MW汽轮机课程设计
300MW汽轮机课程设计(报告书)学院:班级:姓名:学号:二O一六年一月十五日300MW汽轮机热力计算一、热力参数选择1.类型:N300-16.67/537/537机组形式为亚临界、一次中间再热、两缸两排气。
额定功率:Pel=300MW;高压缸排气压力prh=p2=3.8896MPa;中压缸排汽压力p3=p4=0.7979Mpa;凝汽器压力Pc=0.004698Mpa;汽轮机转速n=3000r/min;2.其他参数:给水泵出口压力Pfp=19.82MPa;凝结水泵出口压力Pcp=5.39MPa;机械效率ƞni=0.99;发电机效率ƞg=0.99;加热器效率ƞh=0.98;3.相对内效率的估计根据已有同类机组相关运行数据选择汽轮机的相对内效率:高压缸,ƞriH=0.875 ;中压缸,ƞriM=0.93;低压缸ƞriL=0.86;4.损失的估算主汽阀和调节汽阀节流压力损失:Δp0=0.8335MPa;再热器压损ΔPrh=0.1Prh=0.3622MPa;中压缸联合气阀节流压力损失ΔP‘rh=0.02 Prh=0.07244MPa;中低压缸连通管压力损失Δp s=0.02ps=0.0162MPa;低压缸排气阻力损失Δp c=0.04pc=0.1879KPa;二、热力过程线的拟定1.在焓熵图,根据新蒸汽压力p0=16.67 和新蒸汽温度t= 537,可确定汽轮机进气状态点0(主汽阀前),并查的该点的比焓值h0=3396.13,比熵s=6.4128,比体积v=0.019896。
2.在焓熵图上,根据初压p0= 16.67和主汽阀和调节气阀节533.62流压力损失Δp=0.8335 以确定调节级级前压力p‘0= p-Δp=15.8365,然后根据p‘和h的交点可以确定调节级级前状态点1,并查的该点的温度t‘0=533.62,比熵s’=6.4338,比体积v‘=0.0209498。
3.在焓熵图上,根据高压缸排气压力prh =3.8896和s=6.546437可以确定高压缸理想出口状态点为2t,并查的该点比焓值hHt = 3056.864,温度tHt= 335.743,比体积vHt=0.066192,由此可以得到高压缸理想比焓降ΔHt H=h0-hHt=339.266 ,进而可以确定高压缸实际比焓降ΔHi H=ΔHtH×ƞriH=296.8578,再根据h’rh、ΔHiM和ps可以确定高压缸实际出口状态2,并查得该点比焓值hH =3099.2722,温度tH=351.3652,比体积vH= 0.0687,sH=6.6058。
汽轮机课程设计
汽轮机课程设计第一章绪言ξ1.1、变工况计算的意义汽轮机在变工况条件下工作时,沿通流部分各级的蒸汽流量,喷嘴动叶前后的气温,汽压及湿度将偏离设计值,使零部件的受力情况,轴向推力,效率,出力发生变化。
此外,汽轮机在启停或负荷剧烈变动时,可能在零部件中产生很大的热应力,引起金属材料疲劳损伤,影响机组寿命,这种情况,在大型机组上尤为注意。
为此常常需要对它们进行校核和分析,以保证机组的安全可靠和经济运行。
由于变工况热力计算能获得各级的状态参数,理想比焓降,反动度,效率,出力等较详尽的数据,这就为强度分析,推力计算以及了解效率及出力变化提供了科学的参考依据。
因此,变工况热力核算常成为了解机组运行情况,预测设备系统改进所产生的效果,乃至分析事故原因的重要手段。
ξ1.2、变工况数值计算的方法与特点1.2.1、方法汽轮机整机的热力计算是建立在单级核算的基础上的。
目前,在变工况计算中,根据不同的给定原始条件,单级的详细热力核算可分为顺序计算和倒序计算两种基本方法,此外还有将倒序和顺序结合起来的混合算法。
1.2.2、特点顺序算法以给定的级前状态为起点,由前向后计算;倒序算法则以给定的级后状态为起点,由后向前计算。
混合算法中,每级都包含若干轮先是倒序后是顺序的混合计算,只有当倒序与顺序的计算结果相符合时,级的核算才可以结束,然后逐级向前推进。
三种方法都建立在喷嘴和动叶出口截面连续性方程和单级工作原理的基础上,并且计算时,级流量和几何尺寸是已知的。
与此相对应,单级的数值计算也有顺序,倒序和混合三种算法。
汽轮机在级在偏离设计工况工作时,在许多情况下,常常已知级后的压力以及流量,此时采用以级后状态为起点的倒序算法较为方便。
这种情况常出现在凝汽式和被压式机组的末级或是抽汽机组抽汽点前面的压力级,也可能出现在通流部分被拆除级前面的压力级,由于凝汽器内的压力或是抽汽压力或是被压发生变化,需要对其级前的功率,效率进行校核。
在另外一些情况下,则可能已知级前的状态与级流量,此时应采用以级前状态为起点的顺序算法比较方便,例如通过计算得到或通过实验测得调节级室的压力和温度,因此压力级组前的状态是已知的,在此情况下,对压力级的校核就应采用顺序算法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、课题背景:随着电力需求的迅速增长,电力负荷的多样性及可变性在所难免,而电能的不可储藏性决了发电机组的工况必须随着电力负荷的变化而变化。
所以发电机组常常需要偏离设计工况运行。
作为发电机组的原动机,汽轮机也必然受到变工况运行的影响。
汽轮机在变工况下运行时,通过汽轮机的蒸汽流量或蒸汽参数将发生变化,汽轮机的某些级或全部级的反动度、级效率也随之发生变化。
为了估计汽轮机在新工况下的经济性和可靠性,有必要对新工况进行热力核算。
汽轮机整机变工况热力核算是建立在单级核算基础上的,因此研究单级热力核算对于顺利完成整机热力核算任务有重要意义。
正是基于此,本设计拟题为:某型汽轮机最末级的倒序法变工况热力核算。
二、设计要求:根据计算准确度的要求不同,热力核算可采用详细的热力核算,也可以采用近似的算法。
本次设计要求的是单级的详细热力核算。
由给定的不同的原始条件,单级的详细热力核算又分为顺序计算和倒序计算两种基本方法,以及将这两种算法结合起来的混合算法。
本设计采用以给定的变工况后的级后状态为起点,由后向前计算的倒序法对某型汽轮机最末级进行详细的变工况热力核算。
要求在规定的时间内,按规范完成设计说明书,并通过指导老师组织的小型答辩。
三、原始数据:流量G=33.6kg/s,喷嘴平均直径=2.004m,动叶平均直径=2.0m,级前压力=0.0134Mpa,级前干度=0.903,喷嘴圆周速度=314.6m/s,动叶圆周速度=314m/s,反动度=0.574,级前余速动能=11.05kJ/kg,喷嘴速度系数φ =0.97,喷嘴出汽角=18°20’,喷嘴高度=0.665m,喷嘴出口截面积=1.321;级后压力=0.0046Mpa,级后干度=0.866,动叶出口截面积=2.275 ,动叶出汽角=3254’。
变工况条件:=40.32kg/s,= =0.0046Mpa,=2311 kJ/kg 。
四、课程设计进程安排五、设计工况下的热力核算(顺序算法)5.1级内焓降的分配和各状态点参数的确定0点参数:已知级前压力=0.0134,级前干度=0.903,由水和蒸汽性质计算软件(以下简称软件)查得蒸汽进入喷嘴前0点的各个参数:焓值=2364.3930 kJ/kg ,熵值=7.3383 kJ/(kg ·C ),比体积=10.0628/kg点参数:已知级前余速动能=11.05,算得等熵滞止状态点的焓值==(2364.3930+11.05)=。
又知点的熵值==7.3383 kJ/(kg ·C ),由软件查得可以得到点的各个参数:=0.01456 MPa ,= 9.3433/Kg ,= 0.90662t ’点参数:已知级后压力=0.0046MPa ,0点到2t ’点是等熵过程,==7.3383 kJ/(kg ·C ),可以得到2t ’点的各个参数:=2227.7499 kJ/kg ,=26.3402/kg ,=0.8636进而求出级的滞止理想比焓降图 1 级内焓降分配 011t2t ’2t2==(2375.4430-2227.7499)=147.6931 kJ/kg焓降分配:已知反动度=0.574,蒸汽在动叶内的焓降:==kJ/kg=84.7758 kJ/kg;蒸汽在喷嘴中的焓降:==(147.6931-84.7758) kJ/kg=62.9173 kJ/kg1t点参数:则1t点的焓值==(-62.9173)kJ/kg=2312.5257 kJ/kg,又知1t点的熵==7.3383 kJ/(kg·C),由软件查得1t 点的参数:= 0.00906250 MPa,= 14.2951951/Kg,= 0.8882;已知喷嘴的速度系数=0.97,可以得喷嘴损失=()=(1-)62.9173 kJ/kg =3.7184 kJ/kg1点参数:1点的焓值==(2312.5257+3.7184)kJ/kg=2316.2441kJ/kg,1点的焓值==0.00906250 MPa,由软件查得:=7.3495 kJ/(kg·C),=14.3188 /kg,=0.88942t点参数:1点到2t点为等熵过程==7.3495 kJ/(kg·C),又知2t点的压力==0.0046 MPa,由软件查得2t点的参数:=2231.1611 kJ/kg,=0.8650,=26.3831 /kg5.2 级的截面形状与速度三角形的分析5.2.1 喷嘴的截面形状分析等熵指数:=1.035+0.1=1.035+0.1=1.1246喷嘴的临界压比:===0.5796喷嘴前后压力比:===0.6225>所以喷嘴的形状是渐缩喷嘴。
5.2.2 喷嘴出口的速度三角形分析图2 动叶进出口速度三角形已知=314.6m/s,喷嘴出汽角=1820’喷嘴出口的理想速度:==m/s =354.7317 m/s 喷嘴出口绝对速度:==0.97354.7317 m/s =344.0898m/s喷嘴出口的相对速度:==m/s=108.8976 m/s动叶进口汽流方向角:===83.665.2.3 动叶出口的速度三角形分析已知=314m/s,动叶出汽角=3254’动叶出口的理想速度:==m/s = 425.9229m/s动叶出口相对速度:==0.95425.9229 m/s =404.6267m/s动叶出口绝对速度:==m/s=221.2842 m/s则蒸汽在动叶中的滞止理想比焓降:==(84.7758+) kJ/kg =90.7051 kJ/kg由反动度查课本图2-16得动叶速度系数=0.95,可以得到动叶损失:=(1)=(1-)90.7051kJ/kg =8.8437 kJ/kg2点的参数:已知=+=(2231.1611 +8.8437)kJ/kg=2240.0048 kJ/kg,=0.0046MPa,由软件查得:=0.8686,=7.3785 kJ/(kg·C),=26.4942 /kg,而已知中给出=0.866与得出的接近,说明计算较为准确。
5.2.4 动叶的截面形状分析等熵指数:=1.035+0.1=1.035+0.1=1.1229动叶的临界压比:===0.57991*点参数:==(2316.2441+)kJ/kg =2322.1734 kJ/kg,又知==7.3495 kJ/(kg·C),由软件查得1*的参数= 0.00949738 MPa,=0.8914 ,= 13.7284056 /kg动叶前后压力比:===0.4843<动叶的临界速度==m/s=371.3766 m/s动叶的临界压力:==0.009497380.5800 MPa =0.00550848动叶中临界压力对应的临界焓值:=-=(2322.1734-)kJ/kg=2253.2131 kJ/kg由软件查得:=22.4205/kg,=0.8713,=7.3495kJ/(kg·C)所以动叶的形状是先缩后放即缩放型动叶,具有斜切部分,汽流在斜切部分的偏转角:=()=()=0.5572=-=33.86-32.9=0.96即在设计工况下汽流在动叶斜切部分的偏转角为0.965.3 级内各项损失计算理想能量:==()kJ/kg=余速损失:==kJ/kg =24.4833 kJ/kg叶高损失:由于查时没有考虑端部损失,则叶高损失要单独计算而不能混入动叶损失中,则=()=(147.6931-3.7184-8.8437-24.4833) kJ/kg =0.2644 kJ/kg其中:a=1.6时,扇形损失已计入叶高损失中,不必单独计算;由课本表2-3查得喷嘴高度大于150mm时,顶部盖度=3mm,端部盖度=1.5mm,=++=0.665m+3mm+1.5mm=669.5mm。
轮周损失:==(147.6931-3.7184-8.8437-24.4833-0.2644)kJ/kg =110.3833 kJ/kg叶轮摩擦损失:==kJ/kg =0.1681 kJ/kg部分进气损失:全周进汽时没有部分进气损失,即=0漏气损失:本设计只计算叶顶漏汽损失==1.72=1.72147.6931 kJ/kg = 0.0632kJ/kg湿汽损失:=(1-)=(1-)=(1-)110.3833 kJ/kg = 12.6058kJ/kg其中:==(147.6931-3.7184-8.8437-24.4833-0.2644-0) kJ/kg=110.3833 kJ/kg轮周效率:===0.7474有效焓降:==(147.6931-3.7184-8.8437-24.4833-0.2644-0-0.1681-0.0632-12.6058)kJ/kg=97.5462 kJ/kg相对内效率:===0.6605内功率:=D=33.697.5462kW=3277.55kW六、变工况下的热力核算(倒序算法)图3 变工况热力核算图6.1 确定排汽状态点和动叶出口状态点根据题意=,==,由、在h-s图上求得排汽状态点1,得,,=7.6116 kJ/(kg·C)先用近似法估算、、设计工况下,动叶出口的音速为:a==m/s=369.9345 m/s而=404.6267 m/s,>a,所以末级动叶出口时超临界的。
变工况下,流量增大,则动叶出口速度更是超音速。
因此,可用压力与流量成正比的关系即弗留格尔公式求出:喷嘴前滞止压力:==MPa 喷嘴前压力:==喷嘴后压力:==为确定动叶出口的蒸汽状态,需先估算变工况下级的几项损失:叶高损失:摩擦损失:==漏气损失:==其中:==(147.6931-11.05)=136.6431;=164是估计=0.016MPa到=0.0046MPa之间的理想焓降湿气损失:===余速损失:==上两式中=0.88和=26皆是估计值。
损失之和::=()=从而得动叶实际出口状态:=()=由=,由软件得:,0.8780,6.2 动叶栅计算动叶出口速度是超临界的,为此需先求取动叶喉部的临界压力及由公式:式中按上式求出数据如下表所示:(Kg/(m·s))由上表数据,作出与的关系曲线,如下图所示。
(Kg/(m·s))当时,查上图得,由此查得==。
此时:动叶实际出口速度:式中是有至间的有效焓降。
叶片出口偏转角:又则 2.69由动叶出口速度三角形得:核算余速损失:,与原估计值0.0298。
重新确定状态点1,因余速损失相差不大,因此不必重新计算。
动叶损失:点3参数:沿线,由点2向下截取,即可以得到点3:,==0.0046MPa,由软件查得/Kg,=7.4187(),=0.8736。
动叶滞止理想焓降:点参数:由动叶出口理想状态点3向上截取,得动叶进口滞止状态点,=+=(+)=2360.1076,又由==7.4187(),由软件查得,=12.4511585,=0.9053初估动叶理想比焓降:=4点参数:由点3垂直向上截取,得动叶进口状态点4:=+=(+)=2353.0555,==7.4187(),由软件可得,与估计值较接近,/kg,6.3喷嘴叶栅计算因为撞击损失较小,我们暂时先不考虑撞击损失,我们认为点4即是喷嘴出口的蒸汽状态点。