复习备考题库_专升本高等数学
专升本高数一复习题
![专升本高数一复习题](https://img.taocdn.com/s3/m/d01cac885122aaea998fcc22bcd126fff6055d51.png)
专升本高数一复习题一、极限的概念与性质1. 极限的定义:对于函数f(x),当x趋近于某一点a时,如果存在一个实数L,使得当x趋近于a时,f(x)趋近于L,则称L为f(x)在x=a处的极限。
2. 极限的性质:极限具有唯一性、局部有界性、保号性等。
二、导数与微分1. 导数的定义:函数f(x)在x=a处的导数定义为极限lim(x→a)[f(x) - f(a)] / (x - a),如果该极限存在,则称f(x)在x=a处可导。
2. 基本导数公式:例如,对于幂函数f(x) = x^n,其导数为f'(x) = n*x^(n-1)。
3. 导数的几何意义:表示函数在某一点的切线斜率。
三、微分中值定理1. 罗尔定理:若函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且f(a)=f(b),则至少存在一点c∈(a,b),使得f'(c)=0。
2. 拉格朗日中值定理:在罗尔定理的基础上,若f(a)≠f(b),则存在一点c∈(a,b),使得f'(c) = [f(b) - f(a)] / (b - a)。
四、不定积分与定积分1. 不定积分:求原函数的过程,即求解∫f(x)dx。
2. 定积分:表示函数在某一区间上的累积效应,即求解∫[a,b]f(x)dx。
3. 牛顿-莱布尼茨公式:如果f(x)在[a,b]上连续,且F(x)是f(x)的一个原函数,则∫[a,b] f(x)dx = F(b) - F(a)。
五、级数1. 级数的收敛性:级数Σan是否收敛,即部分和是否趋向于一个有限值。
2. 收敛准则:比较准则、比值准则、根值准则等。
六、多元函数微分学1. 偏导数:多元函数f(x,y)在某一点的偏导数定义为lim(h→0)[f(x+h,y) - f(x,y)] / h。
2. 全微分:如果函数f(x,y)在某点(x0,y0)的偏导数存在,则全微分df = ∂f/∂x dx + ∂f/∂y dy。
七、常微分方程1. 一阶微分方程:形如dy/dx = f(x,y)的方程。
专升本数学复习题库
![专升本数学复习题库](https://img.taocdn.com/s3/m/546fa463ef06eff9aef8941ea76e58fafab045ac.png)
专升本数学复习题库一、选择题1. 函数f(x) = 2x^3 - 5x^2 + 7x - 6在x=1处的导数是:A. 2B. 3C. 4D. 52. 已知数列{an}的通项公式为an = 3n - 2,该数列的第10项a10是:A. 27B. 28C. 29D. 303. 圆的方程为(x - 3)^2 + (y - 4)^2 = 25,该圆的半径是:A. 3B. 4C. 5D. 25二、填空题1. 若函数f(x) = x^2 + 2x + 1在区间[-3, 1]上是增函数,则该函数的最小值是______。
2. 已知等差数列{bn}的首项b1=5,公差d=3,求该数列的前n项和Sn。
3. 根据二项式定理,(a + b)^n的展开式中,第r+1项的系数是______。
三、解答题1. 解不等式:|x - 1| + |x - 3| ≥ 2。
2. 证明:若a,b,c是实数,且a^2 + b^2 + c^2 = 1,则(a + b +c)^2 ≤ 3。
3. 已知函数f(x) = x^3 - 3x^2 + 2x,求该函数的极值。
四、证明题1. 证明:对于任意实数x,有e^x ≥ x + 1。
2. 证明:若数列{an}是单调递增数列,且an > 0,证明其前n项和Sn是单调递增的。
五、应用题1. 某工厂生产一种产品,其成本函数为C(x) = 100 + 30x,其中x是产品数量。
求生产100件产品时的平均成本。
2. 某公司计划投资x万元,预计收益函数为R(x) = 0.1x^2 - 0.05x + 50。
求该公司投资的最佳金额。
六、综合题1. 已知函数g(x) = ln(x) + 2x - 6,求该函数的单调区间以及极值。
2. 若某直线与抛物线y^2 = 4x相交于不同的两点A(x1, y1)和B(x2, y2),求证:AB的中点到原点的距离是2。
七、附加题1. 已知函数F(x) = x^4 - 4x^3 + 6x^2 - 4x + 2,求F(x)的n阶导数。
专升本《高等数学》复习题
![专升本《高等数学》复习题](https://img.taocdn.com/s3/m/1ec3be54f011f18583d049649b6648d7c1c7088c.png)
专升本《高等数学》复习题对于准备专升本考试的同学来说,《高等数学》是一门重要且具有一定难度的学科。
想要在考试中取得好成绩,系统而有效的复习至关重要。
以下为大家整理了一份专升本《高等数学》的复习题,希望能对大家的复习有所帮助。
一、函数与极限1、求函数\(f(x) =\frac{x^2 4}{x 2}\)的定义域。
这道题主要考查函数定义域的概念。
要使分式有意义,分母不能为零。
所以\(x 2 \neq 0\),即\(x \neq 2\)。
因此,函数的定义域为\(x \in (\infty, 2) \cup (2, +\infty)\)。
2、计算\(\lim_{x \to 2} \frac{x^2 4}{x 2}\)这是一个极限问题。
我们可以将分子进行因式分解:\(x^2 4 =(x + 2)(x 2)\),然后约分得到\(x + 2\)。
当\(x \to 2\)时,极限值为\(2 + 2 = 4\)。
3、讨论函数\(f(x) =\begin{cases} x + 1, & x < 0 \\ 0, & x = 0 \\ x 1, & x > 0 \end{cases}\)在\(x = 0\)处的连续性。
要判断函数在某一点的连续性,需要判断函数在该点的极限值是否等于函数值。
左极限为\(\lim_{x \to 0^} f(x) =\lim_{x \to 0^}(x + 1) = 1\),右极限为\(\lim_{x \to 0^+} f(x) =\lim_{x \to 0^+}(x 1) =-1\),函数值为\(f(0) = 0\)。
因为左极限、右极限和函数值都不相等,所以函数在\(x = 0\)处不连续。
二、导数与微分1、求函数\(y = x^3 3x^2 + 2\)的导数。
根据求导公式\((X^n)^\prime = nX^{n 1}\),对函数求导可得:\(y^\prime = 3x^2 6x\)2、求函数\(y =\ln(x +\sqrt{1 + x^2})\)的导数。
2024年专升本高数试题
![2024年专升本高数试题](https://img.taocdn.com/s3/m/78b39f2ff6ec4afe04a1b0717fd5360cba1a8d8a.png)
2024年专升本高数试题一、下列关于函数极限的说法,正确的是:A. 若函数在某点的左右极限相等,则该点处函数极限存在B. 无穷大是函数极限的一种,表示函数值可以无限增大或减小C. 有界函数的极限一定存在D. 函数在某点极限存在,则该函数在该点一定连续(答案:B)二、设函数f(x) = x2 - 3x + 2,则f(x)在区间[1,3]上的最小值为:A. -1B. 0C. 2D. 5(答案:B)三、下列关于导数的说法,错误的是:A. 导数描述了函数值随自变量变化的速率B. 常数的导数为0C. 函数的导数在其定义域内一定连续D. 直线斜率的数学表达就是导数(答案:C)四、设f(x) = ex,则f'(x) =A. exB. xexC. e(x+1)D. 1(答案:A)五、下列关于定积分的说法,正确的是:A. 定积分是函数在某一区间上所有函数值的和B. 定积分的值与积分变量的选取无关C. 定积分可以看作是由无穷多个小矩形面积的和逼近得到的D. 定积分只能用于计算面积(答案:C)六、设函数f(x) = x3 - x2,则f(x)在x=1处的切线斜率为:A. 1B. 2C. 3D. 0(答案:B)七、下列关于微分方程的说法,错误的是:A. 微分方程是含有未知函数及其导数的方程B. 微分方程的解是满足方程的函数C. 微分方程的阶数指的是方程中最高阶导数的阶数D. 所有微分方程都有唯一解(答案:D)八、设函数f(x) = sin(x) + cos(x),则f'(x) =A. sin(x) - cos(x)B. cos(x) - sin(x)C. -sin(x) + cos(x)D. sin(x) + cos(x)(答案:B)。
专升本复习题及答案数学
![专升本复习题及答案数学](https://img.taocdn.com/s3/m/6985411368eae009581b6bd97f1922791688be8f.png)
专升本复习题及答案数学一、选择题1. 下列函数中,为偶函数的是()。
A. y = x^2B. y = |x|C. y = sin(x)D. y = tan(x)答案:A2. 极限lim(x→0) sin(x)/x 的值是()。
A. 0B. 1C. 2D. 不存在答案:B3. 曲线y = x^3 在x = 1处的切线斜率是()。
A. 1B. 3C. 6D. 9答案:C4. 函数f(x) = x^2 - 4x + 4 的最小值出现在x =()。
A. 0B. 1C. 2D. 4答案:C5. 定积分∫(0,1) x^2 dx 的值是()。
A. 1/3B. 1/4C. 1/2D. 1答案:B二、填空题1. 若f(x) = 3x - 5,求f(3) = _______。
答案:42. 函数y = x + 1 在x = -1处的导数是 _______。
答案:13. 曲线y = x^2 - 2x + 1 的顶点坐标是 _______。
答案:(1,0)4. 一个圆的半径为r,其面积S的公式为 _______。
答案:πr^25. 已知等差数列的首项a1 = 2,公差d = 3,求第n项an = _______。
答案:3n - 1三、解答题1. 解不等式:2x^2 - 5x + 2 > 0。
解:首先计算判别式Δ = b^2 - 4ac = (-5)^2 - 4*2*2 = 9 > 0,所以不等式有两个实根。
解得x1 = 1/2, x2 = 2。
因此,不等式的解集为{x | x < 1/2 或 x > 2}。
2. 求曲线y = x^3 - 3x^2 + 2x 在x = 1处的切线方程。
解:首先求导数,y' = 3x^2 - 6x + 2。
将x = 1代入得y'(1) = -1。
同时,将x = 1代入原方程得y(1) = 0。
因此,切线方程为y -0 = -1(x - 1),即y = -x + 1。
专升本复习题及答案数学
![专升本复习题及答案数学](https://img.taocdn.com/s3/m/78e72efb0129bd64783e0912a216147917117edf.png)
专升本复习题及答案数学一、选择题1. 函数f(x) = x^2 - 4x + 4的图像关于哪条直线对称?A. x = 2B. x = -2C. x = 0D. y = 0答案:A2. 已知等差数列的首项a1=3,公差d=2,求第10项a10的值。
A. 23B. 21C. 19D. 17答案:A3. 圆的方程为(x-3)^2 + (y-4)^2 = 25,求圆心到直线x + 2y - 10 = 0的距离。
A. 3B. 4C. 5D. 6答案:B二、填空题4. 计算定积分∫[0,π] sin(x) dx 的值是_________。
答案:25. 已知曲线y = x^3 - 6x^2 + 9x,求在点(2,4)处的切线斜率。
答案:-5三、解答题6. 证明:对于任意实数x,不等式e^x ≥ x + 1成立。
证明:设函数g(x) = e^x - x - 1。
求导得到g'(x) = e^x - 1。
当x = 0时,g'(x) = 0。
由于e^x是严格递增函数,当x > 0时,g'(x) > 0,表明g(x)在x > 0时递增;当x < 0时,g'(x) < 0,表明g(x)在x < 0时递减。
因此,g(x)在x = 0处取得最小值,即g(0) = 0。
所以,对于任意实数x,有g(x) ≥ g(0) = 0,即e^x ≥ x + 1。
7. 已知函数f(x) = 2x^3 - 3x^2 - 12x + 7,求f(x)的极值点。
解:首先求导数f'(x) = 6x^2 - 6x - 12。
令f'(x) = 0,解得x = -1和x = 2。
计算二阶导数f''(x) = 12x - 6。
对于x = -1,f''(-1) = -6 < 0,表明x = -1是极大值点;对于x = 2,f''(2) = 18 > 0,表明x = 2是极小值点。
(完整版)专升本高数试题库
![(完整版)专升本高数试题库](https://img.taocdn.com/s3/m/769ced55844769eae009edac.png)
全国教师教育网络联盟入学联考(专科起点升本科)高等数学备考试题库2012 年、选择题2.函数f (Xarcsin sinx 的定义域为( ) A:, B: , 2 2C:,- 2 2 D: 1,13.下列说法正确的为() A:单调数列必收敛;B:有界数列必收敛;C:收敛数列必单调;D:收敛数列必有界•4.函数f (x ) sinx 不是()函数•A:有界B:单调C:周期D:奇1.A: B: C: D:设f(x)的定义域为 21 21 21 1'1 0,1,贝U f (2x 1)的定义域为(A: y ・3sin i v u, u e ,v 2x 1B: y 3 u ,u vsine ,v 2x 1C: 32x 1y u ,u sin v,v eD: y 3 u ,u sin v, v we ,w 2x 15.函数y sin 3 e 2x 1的复合过程为( )sin 4x 6.设 f (x) xc ,则下面说法不正确的为( ).x 0A :函数f (x)在x 0有定义;B :极限l i m 0 f(x)存在;C:函数f(x)在x 0连续;D:函数f (x)在x 0间断。
7•极限佃沁=(x 0 x A: 1).B: 2C: 3D: 48. lim(1 $n 5 (n nA: 1B: eC:D:9.函数y x(1 COS 3 x)的图形对称于( ) A: ox 轴; B:直线y=x ;C:坐标原点;D: oy 轴10.函数 f (x) x 3 sin x 是( )A:奇函数;B:偶函数; C:有界函数;D:周期函数.11. 下列函数中,表达式为基本初等函数的为(2x2x 0A:y2x 1 x 0B:y 2x cosxC: y xD:y sin .. x12. 函数y sinx cosx是().A:偶函数;B:奇函数;C:单调函数;D:有界函数—,- si n4x13. lim ().x 0 sin 3xA: 1B: ■C: ■D:不存在14. 在给定的变化过程中,下列变量不为无穷大量是()A: 1空,当x 0x1B: e x1,当xC:亠△,当x 3x 9D: lgx,当x 015. lim(1 -)n 3().n nA: 1B: e3C: eD:16.下面各组函数中表示同一个函数的是()x 1A: y , y ;x(x 1) x 1B: y x, y x2;C : y 2ln|X ,y In x 2In xD : y x, y etan2x lim x 0 sin 3xA: 1B:32不存在B: 4C: 0D: 121.若 y ln(1 x),则 x 0 ().dxA: -1B: 1C: 2D: -217. C: D: 18.设 f(x) .1 sin x 1 x 0c,则下面说法正确的为(x 0 ). A:函数f(x)在x 0有定义;B:极限l i m 0 f(x)存在;C:函数f(x)在x 0连续;D:函数f (x)在x 0可导.4 x19.曲线y 上点(2, 3)处的切线斜率是(4 xA: -2B: -1C: 1D: 220.已知y A: -4sin 2x ,贝y22.函数y = e x 在定义区间内是严格单调() A:增加且凹的B:增加且凸的C:减少且凹的D:减少且凸的23. f (x)在点X 。
高等数学试题及答案专升本
![高等数学试题及答案专升本](https://img.taocdn.com/s3/m/506e2d462e60ddccda38376baf1ffc4ffe47e2f4.png)
高等数学试题及答案专升本高等数学试题及答案(专升本)一、选择题(每题4分,共40分)1. 极限lim(x→0) (sin x)/x 的值是()。
A. 0B. 1C. -1D. 2答案:B2. 函数f(x) = x^2 + 3x - 4的导数是()。
A. 2x + 3B. 2x - 3C. x^2 + 3D. x^2 - 3答案:A3. 曲线y = x^3 - 3x + 2在点(1, 0)处的切线斜率是()。
A. 1B. -1C. 3D. -3答案:B4. 不定积分∫(3x^2 - 2x + 1)dx 的结果是()。
A. x^3 - x^2 + x + CB. x^3 + x^2 - x + CC. x^3 - x^2 + x + CD. x^3 + x^2 - x + C答案:C5. 函数y = e^x 的原函数是()。
A. e^x + CB. e^(-x) + CC. e^x - CD. e^(-x) - C答案:A6. 已知函数f(x) = 2x + 1,g(x) = 3x - 2,则f[g(x)]的表达式是()。
A. 6x - 3B. 6x + 1C. 9x - 5D. 9x + 1答案:C7. 函数y = ln(x) 的反函数是()。
A. e^yC. x^yD. y^x答案:A8. 函数y = x^2 在区间[-2, 2]上的最大值是()。
A. 0B. 4C. -4D. 2答案:B9. 函数y = x^3 - 3x^2 + 2x 的极值点是()。
A. x = 0B. x = 1C. x = 2答案:B10. 曲线y = x^2 + 2x + 1与直线y = 3x + 2的交点个数是()。
A. 0B. 1C. 2D. 3答案:C二、填空题(每题4分,共20分)11. 极限lim(x→∞) (x^2 - 3x + 2)/(x^2 + 2x - 3) 的值是 _______。
答案:112. 函数f(x) = x^3 - 6x^2 + 11x - 6的二阶导数是 _______。
高等数学专转本复习资料
![高等数学专转本复习资料](https://img.taocdn.com/s3/m/28b8acf0b04e852458fb770bf78a6529647d35de.png)
《高等数学基础》专转本复习资料一、单项选择题1.设函数f(x)的定义域为,则函数f(x)+f(-x)的图形关于(C)对称.A.y=xB.x轴C.y轴D.坐标原点2.函数在x=0处连续,则k=(C).A.1B.5D.03.下列等式中正确的是(C).4.若F(x)是4.f(x)的一个原函数,则下列等式成立的是(A).5.下列无穷限积分收敛的是(D).6.设函数f (x)的定义域为,则函数f(x)- f(-x)的图形关于( D)对称.A.y=xB.x轴C.y轴D.坐标原点7.当时,下列变量中( A)是无穷大量.8.设f (x)在点x=1处可导,则 =(B).9.函数在区间(2,4)内满足(A).A.先单调下降再单调上升B.单调上升C.先单调上升再单调下降D.单调下降10.=(B).A.0B. ПC.2ПD. П/211.下列各函数对中,(B)中的两个函数相等.12.当,变量(C)是无穷小量.13.设f(x)在点x=0处可导,则=(A).14.若f(x)的一个原函数是,则=(D).15.下列无穷限积分收敛的是(C).16.设函数f(x)的定义域为,则函数的图形关于(A)对称.A.坐标原点B.x轴C.y轴D. y=x17.当时,变量(D)是无穷小量.18.设f(x)在x。
可导,则=(C).19.若则=(B).20. =(A).21.下列各函数对中,(B)中的两个函数相等.22.当k=(C)时,在点x=0处连续.A. -1B. 0c.1 D.223. 函数在区间(2,4)内满足(B).A. 先单调下降再单调上升B.单调上升C. 先单调上升再单调下降D.单调下降24 若,则= (D).A. sinx十CB. -sinx十cC. -cosx+cD. cosx 十C25. 下列无穷积分收敛的是(A).26.设函数f(x) 的定义域为,则函数f(x)- f(-x)的图形关于(D)对称.A.y=xB.x轴C.y轴D.坐标原点27. 当x→0时,变量(C)是无穷小量.28. 函数在区间(-5,5) 内满足(B).A. 单调下降B.先单调下降再单调上升C先单调上升再单调下降 D.单调上升29. 下列等式成立的是(A).30.下列积分计算正确的是(D).31. 函数的定义域是(D).32.若函数,在x=0处连续,则k=(B).A .1 B.2C.-1D.33.下列函数中,在内是单调减少的函数是(A).34.若f(x) 的一个原函数是,则=(C).A. cosx +cB. - sinx十CC. sinx十CD. - cosx十C35. 下列无穷限积分收敛的是(C).36.下列各函数对中,(C)中的两个函数相等.37.37.在下列指定的变化过程中, (A)是无穷小量.38. 设f(x)在可导,则= (C).39. =(A).40. 下列无穷限积分收敛的是(C).41.下列函数中为奇函数的是(A).42. 当x→0时,变量(C)无穷小量.43.下列等式中正确的是(B).44 若f(x)的一个原函数是,则=(D).45.=(A).46.函数的图形关于(D)对称.A.y=xB.x轴c.y轴 D.坐标原点47. 在下列指定的变化过程中,(A)是元穷小量.48.函数在区间(-5,5)内满足(C).A. 先单调上升再单调下降B.单调下降C. 先单调下降再单调上升D.单调上升49. 若f(x) 的一个原函数是,则 = (B).50.下列无穷限积分收敛的是(B).二、填空题1.函数的定义域是(3,5) .2.已知,当时,f(x)为无穷小量.3.曲线f(x)=sinx在处的切线斜率是 -1 .4.函数的单调减少区间是 .5.= 0 .6.函数的定义域是(2,6) .7.函数的间断点是 x=0 .8.函数的单调减少区间是 .9.函数的驻点是 x= - 2 .10.无穷积分当时p >1 时是收敛的.11..若,则f(x)= .12.函数的间断点是 x=0 .13.已知,则= 0 .14.函数的单调减少区间是 .15.= .16.函数的定义域是 (-5,2) .17. .18.曲线在点(1,3)处的切线斜率是 2 .19.函数的单调增加区间是 .20.若则f(x)= .21.若则f(x)= .22 已知当时,f(x)为无穷小量.23. 曲线在(l ,2) 处的切线斜率是 .24. = .25 若,则= .26.函数的定义域.27. 函数的间断点是 x=0 .28. 曲线在x=2处的切线斜率是 .29. 函数的单调增加区间是 .30.= .31. 函数,则f(x)= .32. 函数的间断点是 x=3 .33. 已知则 = 0 .34. 函数的单调减少区间 .35. 若f(x) 的一个原函数为lnx,则 f(x) = .36. 若函数,则f(O)= -3 .37.若函数在x=O处连续,则k=e .38.曲线在(2,2)处的切线斜率是 .39.函数的单调增加区间是 .40.= .41. 函数的定义域是(-2,2) .42. 函数的间断点是 x=3 .43. 曲线在(0,2)处的切线斜是 1 .44. 函数的单调增加区间是 .45. 若,则f(x)= .46.函数的定义域是.47.若函数,在x=O处连续,则k= e .48. 已知f(x) =ln2x ,则= 0 .49. 函数的单调增加区间是 .50. ,则= .三、计算题1.计算极限.解:2..解:由导数四则运算法则和复合函数求导法则得3.计算不定积分.解:由换元积分法得4.计算定积分.解:由分部积分法得5.计算极限.解:6.设,求.解:由导数四则运算法则和复合函数求导法则得7.计算不定积分.解:由换元积分法得8.计算定积分.解:由分部积分法得9.计算极限解:10.设,求dy.解:由微分四则运算法则和一阶微分形式不变性得11.计算不定积分.解:由换元积分法得12.计算定积分.解:由分部积分法得13.计算极限.解:14.设,求. 解:15.计算不定积分·解:由换元积分法得16.计算定定积分. 解:由分部积分法得17.计算极限. 解:18.设求dy. 解:19.计算不定积分.解:由换元积分法得20.计算定积分.解:由分部积分法得21.计算极限.22.设求 .解:由导数四则运算法则和导数基本公式得23.计算不定积分.解:由换元积分法得24.计算定积分.解:由分部积分法得25.计算极限.26.设,求.解: 由导数四则运算法则和复合函数求导法则得27.计算不定积分.解:由换元积分法得28.计算定积分.解:由分部积分法得29. 计算极限.30.设,求.解:由导数运算法则和导数基本公式得31.计算不定积分.解:由换元积分法得32. 计算定积分.解:由分部积分法得33. 计算极限.34设,求dy.解: 由微分运算法则和微分基本公式得35.计算不定积分.解:由换元积分法得36.计算定积分.解:由分部积分法得37. 计算极限38.设,求dy.解: 由微分运算法则和微分基本公式得39.计算不定积分.解:由换元积分法得40. 计算定积分.解:由分部积分法得四、应用题1.求曲线上的点,使其到点A(0,2)的距离最短.解:曲线上的点到点A(0,2)的距离公式为d与在同一点取到最大值,为计算方便求最大值点,将代人得求导得令得,并由此解出,即曲线上的点和点到点A(0,2)的距离最短。
专升本高等数学习题集及答案
![专升本高等数学习题集及答案](https://img.taocdn.com/s3/m/10015f3000f69e3143323968011ca300a6c3f619.png)
专升本高等数学习题集及答案高等数学是大学专升本考试中非常重要的一门科目,它是一门相对较难的学科,需要学生付出大量的时间和精力。
为了帮助学生更好地备考高等数学,我们整理了一套高等数学习题集及答案,旨在帮助学生查漏补缺,提高数学水平。
一、函数与极限1.已知函数$f(x)=\dfrac{x^2+x}{x-1}$,求:(1)$\lim\limits_{x\to1^-}f(x)$和$\lim\limits_{x\to1^+}f(x)$;(2)$\lim\limits_{x\to+\infty}f(x)$和$\lim\limits_{x\to-\infty}f(x)$;(3)函数$f(x)$的间断点。
答案:(1)$\lim\limits_{x\to1^-}f(x)=-\infty$,$\lim\limits_{x\to1^+}f(x)=+\infty$;(2)$\lim\limits_{x\to+\infty}f(x)=1$,$\lim\limits_{x\to-\infty}f(x)=-1$;(3)函数$f(x)$在$x=1$处有第一类间断点。
2.已知函数$f(x)=\dfrac{2x^2+3x-1}{5x^2-4x-3}$,求:(1)函数$f(x)$的定义域和值域;(2)函数$f(x)$的最大值和最小值。
答案:(1)函数$f(x)$的定义域为$x\neq\dfrac{3}{5}$,值域为$(-\infty,+\infty)$;(2)函数$f(x)$的最大值为$\dfrac{47}{66}$,最小值为$-\dfrac{8}{7}$。
二、导数与微分1.已知$f(x)=x^2\ln x$,求$f'(x)$和$f''(x)$。
答案:$f'(x)=2x\ln x+x$,$f''(x)=2\ln x+3$。
2.已知$y=\sqrt{x}(x+1)$,求$\dfrac{dy}{dx}$,并求出曲线$y=\sqrt{x}(x+1)$在点$(1,2)$处的切线方程。
高数专升本考试题及答案
![高数专升本考试题及答案](https://img.taocdn.com/s3/m/1b7241b7b8f3f90f76c66137ee06eff9aef84984.png)
高数专升本考试题及答案一、选择题(每题5分,共20分)1. 函数f(x) = x^2 - 4x + 4的零点为:A. 0B. 2C. 4D. 0, 2答案:B2. 以下哪项是连续函数?A. f(x) = 1/xB. f(x) = |x|C. f(x) = x^3D. f(x) = sin(x)答案:D3. 极限lim(x→0) (sin(x)/x)的值为:A. 0B. 1C. -1D. 2答案:B4. 函数f(x) = x^3 - 3x + 1在x=1处的导数为:A. -1B. 1C. 3D. 5答案:D二、填空题(每题5分,共20分)1. 函数y = x^2 + 2x + 1的最小值为______。
答案:12. 函数f(x) = ln(x)的不定积分为______。
答案:x * ln(x) - x + C3. 曲线y = x^3 - 3x^2 + 2在点(1, 0)处的切线斜率为______。
答案:-24. 定积分∫(0 to 1) x^2 dx的值为______。
答案:1/3三、解答题(每题10分,共60分)1. 求函数f(x) = x^3 - 6x^2 + 11x - 6的极值点。
解:首先求导数f'(x) = 3x^2 - 12x + 11。
令f'(x) = 0,解得x = 1, x = 11/3。
经检验,x = 1为极小值点,x = 11/3为极大值点。
2. 求曲线y = 3x^2 - 6x + 2与x轴的交点。
解:令y = 0,得到方程3x^2 - 6x + 2 = 0。
解得x = 2/3, x = 1。
3. 求定积分∫(0 to 2) (x^2 - 2x + 1) dx。
解:首先求不定积分,得到∫(x^2 - 2x + 1) dx = (1/3)x^3 -x^2 + x + C。
然后计算定积分,得到(1/3)(2)^3 - (2)^2 + 2 - [(1/3)(0)^3 - (0)^2 + 0] = 8/3 - 4 + 2 = 2/3。
专升本高等数学复习资料含答案
![专升本高等数学复习资料含答案](https://img.taocdn.com/s3/m/958ecb00770bf78a642954a0.png)
专升本高等数学复习资料一、函数、极限和连续 .函数)(x f y =的定义域是〔 〕.变量的取值范围 .使函数)(x f y =的表达式有意义的变量的取值范围.全体实数 .以上三种情况都不是 .以下说法不正确的选项是〔 〕.两个奇函数之和为奇函数 .两个奇函数之积为偶函数 .奇函数及偶函数之积为偶函数 .两个偶函数之和为偶函数 .两函数一样那么〔 〕.两函数表达式一样 .两函数定义域一样.两函数表达式一样且定义域一样 .两函数值域一样.函数y = 〕.(2,4) .[2,4] .(2,4] .[2,4).函数3()23sin f x x x =-的奇偶性为〔 〕.奇函数 .偶函数 .非奇非偶 .无法判断 .设那么)(x f 等于( ). . . . . 分段函数是( ).几个函数 .可导函数 .连续函数 .几个分析式和起来表示的一个函数 .以下函数中为偶函数的是( ) .x e y -= .)ln(x y -= .x x y cos 3= .x y ln =.以下各对函数是一样函数的有( ) .x x g x x f -==)()(与 .xx g x x f cos )(sin 1)(2=-=与. .⎩⎨⎧<->-=-=2222)(2)(x xx x x g x x f 与.以下函数中为奇函数的是( ) . .x x y sin = . .23x x y +=.设函数)(x f y =的定义域是[],那么)1(+x f 的定义域是( ).]1,2[-- . ]0,1[- .[] . [].函数⎪⎩⎪⎨⎧≤<+=<<-+=20200022)(2x x x x x x f 的定义域是( ).)2,2(- .]0,2(- .]2,2(- . (].假设=---+-=)1(,23321)(f xx x x x f 则( ).3- . .1- . .假设)(x f 在),(+∞-∞内是偶函数,那么)(x f -在),(+∞-∞内是( ).奇函数 .偶函数 .非奇非偶函数 .0)(≡x f.设)(x f 为定义在),(+∞-∞内的任意不恒等于零的函数,那么)()()(x f x f x F -+=必是( ).奇函数 .偶函数 .非奇非偶函数 .0)(≡x F. 设⎪⎩⎪⎨⎧<<≤<-≤<--=42,021,1211,1)(2x x x x x x f 那么)2(πf 等于 ( ) .12-π .182-π . 0 .无意义.函数x x y sin 2=的图形〔 〕.关于ox 轴对称 .关于oy 轴对称 .关于原点对称 .关于直线x y =对称.以下函数中,图形关于y 轴对称的有( ).x x y cos = .13++=x x y. . .函数)(x f 及其反函数)(1x f-的图形对称于直线( ).0=y .0=x .x y = .x y -=. 曲线)1,0(log ≠>==a a x y a y a x 与在同一直角坐标系中,它们的图形( ).关于x 轴对称 .关于y 轴对称 .关于直线x y =轴对称 .关于原点对称.对于极限)(limx f x →,以下说法正确的选项是〔 〕.假设极限)(lim 0x f x →存在,那么此极限是唯一的 .假设极限)(lim 0x f x →存在,那么此极限并不唯一.极限)(limx f x →一定存在.以上三种情况都不正确 .假设极限A )(lim 0=→x f x 存在,以下说法正确的选项是〔 〕.左极限)(lim 0x f x -→不存在 .右极限)(lim 0x f x +→不存在.左极限)(lim 0x f x -→和右极限)(lim 0x f x +→存在,但不相等.A )(lim )(lim )(lim 00===→→→-+x f x f x f x x x.极限的值是( ). .1e. .e .极限的值是( ).. . .∞ . 1-.,那么〔 〕.0,2==b a.1,1==b a .1,2==b a .0,2=-=b a.设b a<<0,那么数列极限l i m n n n n a b →+∞+是.a .b . .b a + .极限的结果是. .21.51 .不存在.∞→x lim 为( ). .21. .无穷大量 . 为正整数〕等于〔 〕.nm .mn . ..,那么〔 〕.0,2==b a.0,1==b a .0,6==b a .1,1==b a.极限( ).等于 .等于 .为无穷大 .不存在.设函数⎪⎩⎪⎨⎧>-=<+=010001sin )(x e x x x x f x 那么=→)(limx f x ( ). . .1- .不存在 .以下计算结果正确的选项是( ) . . . . .极限等于( ) . .∞ . .21 .极限的结果是.1- . . .不存在 .为 ( ) . .k1. .无穷大量 .极限( ). . .1- .2π-.当∞→x时,函数的极限是( ).e .e - . .1-.设函数⎪⎩⎪⎨⎧>-=<+=01cos 001sin )(x x x x x x f ,那么=→)(lim 0x f x. . .1- .不存在.a xax x x 则,516lim21=-++→的值是( ) . .7- . ..设⎪⎩⎪⎨⎧≥+<=020tan )(x x x xaxx f ,且)(limx f x →存在,那么a 的值是( ). .1- . .2- .无穷小量就是〔 〕.比任何数都小的数 .零 .以零为极限的函数 .以上三种情况都不是 .当0→x 时,)2sin(3x x +及x 比拟是( ).高阶无穷小 .等价无穷小 .同阶无穷小 ,但不是等价无穷小 .低阶无穷小 .当0→x 时,及x 等价的无穷小是〔 〕 .xx sin .)1ln(x + .)11(2x x -++ .)1(2+x x.当0→x 时,)3tan(3x x +及x 比拟是〔 〕.高阶无穷小 .等价无穷小 .同阶无穷小 ,但不是等价无穷小 .低阶无穷小 .设,1)(,)1(21)(x x g x xx f -=+-=那么当1→x 时〔 〕.)(x f 是比)(x g 高阶的无穷小 .)(x f 是比)(x g 低阶的无穷小 .)(x f 及)(x g 为同阶的无穷小 .)(x f 及)(x g 为等价无穷小.当+→0x时, 11)(-+=a x x f 是比x 高阶的无穷小,那么( ).1>a .0>a .a 为任一实常数 .1≥a.当0→x 时,x 2tan 及2x 比拟是〔 〕.高阶无穷小 .等价无穷小 .同阶无穷小 ,但不是等价无穷小 .低阶无穷小 .“当0x x→,A x f -)(为无穷小〞是“A x f x x =→)(lim 0〞的〔 〕.必要条件,但非充分条件 .充分条件,但非必要条件 .充分且必要条件 .既不是充分也不是必要条件 . 以下变量中是无穷小量的有( ) . . . ..设时则当0,232)(→-+=x x f x x ( ).)(x f 及x 是等价无穷小量 .)(x f 及x 是同阶但非等价无穷小量 .)(x f 是比拟x 高阶的无穷小量 .)(x f 是比拟x 低阶的无穷小量. 当+→0x时,以下函数为无穷小的是( ). .xe 1 .x ln.. 当0→x 时,及2sin x 等价的无穷小量是 ( ) .)1ln(x + .x tan .()x cos 12- .1-x e . 函数当∞→x时)(x f ( ).有界变量 .无界变量 .无穷小量 .无穷大量. 当0→x 时,以下变量是无穷小量的有( ).xx 3 . .x ln.x e -. 当0→x 时,函数是( ).不存在极限的 .存在极限的 .无穷小量 .无意义的量 .假设0x x→时, )(x f 及)(x g 都趋于零,且为同阶无穷小,那么( ). . . .不存在.当0→x 时,将以下函数及x 进展比拟,及x 是等价无穷小的为( ).x 3tan .112-+x .x x cot csc - ..函数)(x f 在点0x 有定义是)(x f 在点0x 连续的〔 〕.充分条件 .必要条件 .充要条件 .即非充分又非必要条件 .假设点0x 为函数的连续点,那么以下说法不正确的选项是〔 〕.假设极限A )(lim 0=→x f x x 存在,但)(x f 在0x 处无定义,或者虽然)(x f 在0x 处有定义,但)(A 0x f ≠,那么0x 称为)(x f 的可去连续点.假设极限)(lim 0x f x x +→及极限)(lim 0x f x x -→都存在但不相等,那么0x 称为)(x f 的跳跃连续点.跳跃连续点及可去连续点合称为第二类的连续点 .跳跃连续点及可去连续点合称为第一类的连续点 .以下函数中,在其定义域内连续的为( ).x x x f sin ln )(+= .⎩⎨⎧>≤=0sin )(x ex xx f x.⎪⎩⎪⎨⎧>-=<+=01011)(x x x x x x f .⎪⎩⎪⎨⎧=≠=001)(x x xx f.以下函数在其定义域内连续的有( ) . .⎩⎨⎧>≤=0cos 0sin )(x xx xx f.⎪⎩⎪⎨⎧>-=<+=01001)(x x x x x x f . .设函数⎪⎩⎪⎨⎧=-≠=021arctan )(x x x x f π 那么)(x f 在点0=x 处( ).连续 .左连续 .右连续 .既非左连续,也非右连续 .以下函数在0=x处不连续的有( ).⎪⎩⎪⎨⎧=≠=-00)(2x x e x f x .⎪⎩⎪⎨⎧=≠=010sin )(21x x xx x f . .⎩⎨⎧≤->+=0)1ln()(2x xx x x f .设函数⎪⎩⎪⎨⎧=≠--=12111)(2x x x x x f , 那么在点)(1x f x 处函数=( ) .不连续 .连续但不可导 .可导,但导数不连续 .可导,且导数连续 .设分段函数⎩⎨⎧<+≥+=011)(2x x x x x f ,那么)(x f 在0=x 点( ).不连续 .连续且可导 .不可导 .极限不存在 .设函数)(x f y =,当自变量x 由0x 变到y x x ∆∆+相应函数的改变量时,0( ).)(0x x f ∆+ .x x f ∆)('0 .)()(00x f x x f -∆+ .x x f ∆)(0.函数⎪⎩⎪⎨⎧>+=<=01200)(x x x x e x f x ,那么函数)(x f ( ) .当0→x 时,极限不存在 .当0→x 时,极限存在 .在0=x处连续 .在0=x 处可导.函数的连续区间是( ).),2[]2,1[+∞⋃ .),2()2,1(+∞⋃ .),1(+∞ .),1[+∞ .设,那么它的连续区间是( ).),(+∞-∞ . .)0()0,(∞+⋃-∞ . .设函数⎪⎪⎩⎪⎪⎨⎧=≠-+=031011)(x x x x x f , 那么函数在0=x 处( ).不连续 .连续不可导 .连续有一阶导数 .连续有二阶导数 .设函数 ,那么)(x f 在点0=x 处( ).连续 .极限存在 .左右极限存在但极限不存在 .左右极限不存在 .设11cot)(2-+=x arc x x f ,那么1=x 是)(x f 的〔 〕.可去连续点 .跳跃连续点 .无穷连续点 .振荡连续点 .函数的连续点是( ).)1,1(),1,1(),0,1(-- .是曲线y e y -=上的任意点.)1,1(),1,1(),0,0(- .曲线2x y =上的任意点.设,那么曲线( ).只有水平渐近线2-=y .只有垂直渐近线0=x .既有水平渐近线2-=y ,又有垂直渐近线0=x .无水平,垂直渐近线.当0>x时, ( ).有且仅有水平渐近线 .有且仅有铅直渐近线.既有水平渐近线,也有铅直渐近线 .既无水平渐近线,也无铅直渐近线 二、一元函数微分学 .设函数)(x f 在点0x 处可导,那么以下选项中不正确的选项是〔 〕. .xx f x x f x f x ∆-∆+=→∆)()(lim)('000.00)()(lim)('0x x x f x f x f x x --=→ .hx f h x f x f h )()21(lim)('0000--=→ .假设e cos x y x =,那么'(0)y =( ). . .1- .2 .设x x g e x f x sin )(,)(==,那么=)]('[x g f ( ).xe sin .xecos - .xecos .xesin -.设函数)(x f 在点0x 处可导,且2)('0=x f ,那么hx f h x f h )()21(lim 000--→等于( ).1- . . .21- .设)(x f 在a x =处可导,那么x x a f x a f x )()(lim0--+→( ) .)('a f .)('2a f . .)2('a f.设)(x f 在2=x 处可导,且2)2('=f ,那么=--+→hh f h f h )2()2(lim〔 〕. . . . .设函数)3)(2)(1()(---=x x x x x f ,那么)0('f 等于〔 〕. .6- . . .设)(x f 在0=x 处可导,且1)0('=f ,那么〔 〕. . . . .设函数)(x f 在0x 处可导,那么0lim→h ( ).及0x 都有关 .仅及0x 有关,而及无关.仅及有关,而及0x 无关 .及0x 都无关 .设)(x f 在1=x 处可导,且21)1()21(lim0=--→h f h f h ,那么=)1('f 〔 〕.21. 21- . 41 .41- .设==-)0('')(2f e x f x 则( ).1- . .2- . .导数)'(log x a等于( ). . . .x1.假设),1()2(249102+-++=x x x x y 那么)29(y ( ). .! . .×× .设',)(',)()(y x f e e f y x f x 则存在且=( ).)()()()('x f x x f x e e f e e f + .)(')(')(x f e e f x f x ⋅ .)(')()(')()(x f e e f e e f x f x x f x x ⋅++ .)()('x f x e e f.设=---=)0('),100()2)(1()(f x x x x x f 则 ( ). .! .!100- .100- .假设==',y x y x 则( ).1-⋅x x x .x xxln .不可导 .)ln 1(x x x +.处的导数是在点22)(=-=x x x f ( ). . .1- .不存在 .设==-',)2(y x y x 则( ).)1()2(x x x +--.2ln )2(x x -. .)2ln 1()2(x x x+--.设函数)(x f 在区间],[b a 上连续,且,0)()(<b f a f 那么 ( ).)(x f 在),(b a 内必有最大值或最小值 .)(x f 在),(b a 内存在唯一的0)(,=ξξf 使 .)(x f 在),(b a 内至少存在一个0)(,=ξξf 使 .)(x f 在),(b a 内存在唯一的0)(',=ξξf 使.设那么=dxdy( ) . . . . .假设函数)(x f 在区间)b a,(内可导,那么以下选项中不正确的选项是〔 〕.假设在)b a,(内0)('>x f ,那么)(x f 在)b a,(内单调增加 .假设在)b a,(内0)('<x f ,那么)(x f 在)b a,(内单调减少 .假设在)b a,(内0)('≥x f ,那么)(x f 在)b a,(内单调增加.)(x f 在区间)b a,(内每一点处的导数都存在.假设)(y x f =在点0x 处导数存在,那么函数曲线在点))(,(00x f x 处的切线的斜率为〔 〕.)('0x f .)(0x f . ..设函数)(yx f =为可导函数,其曲线的切线方程的斜率为1k ,法线方程的斜率为2k ,那么1k 及2k 的关系为〔 〕. .121-=⋅k k .121=⋅k k .021=⋅k k.设0x 为函数)(x f 在区间()b a ,上的一个极小值点,那么对于区间()b a ,上的任何点x ,以下说法正确的选项是〔 〕.)()(0x f x f > .)()(0x f x f < .)()(0x f x f -> .)()(0x f x f -<.设函数)(x f 在点0x 的一个邻域内可导且0)('0=x f 〔或)('0x f 不存在〕,以下说法不正确的选项是〔 〕 .假设0x x <时, 0)('>x f ;而0x x >时, 0)('<x f ,那么函数)(x f 在0x 处取得极大值 .假设0x x<时, 0)('<x f ;而0x x >时, 0)('>x f ,那么函数)(x f 在0x 处取得极小值.假设0x x<时, 0)('<x f ;而0x x >时, 0)('>x f ,那么函数)(x f 在0x 处取得极大值.如果当x 在0x 左右两侧邻近取值时, )('x f 不改变符号,那么函数)(x f 在0x 处没有极值.0)('0=x f ,0)(''0≠x f ,假设0)(''0>x f ,那么函数)(x f 在0x 处取得〔 〕.极大值 .极小值 .极值点 .驻点.b x a <<时,恒有0)(>''x f ,那么曲线)(x f y =在()b a ,内〔 〕.单调增加 .单调减少 .上凹 .下凹 .数()e x f x x =-的单调区间是( ) ..在),(+∞-∞上单增 .在),(+∞-∞上单减 .在(,0)-∞上单增,在(0,)+∞上单减 .在(,0)-∞上单减,在(0,)+∞上单增.数43()2f x x x =-的极值为〔 〕..有极小值为(3)f .有极小值为(0)f .有极大值为(1)f .有极大值为(1)f -.x e y =在点()处的切线方程为( ).x y +=1 .x y +-=1 .x y -=1 .x y --=1.函数x x x x x f 处的切线与的图形在点)1,0(162131)(23+++=轴交点的坐标是( ) . .)0,1(- . .)0,1(.抛物线x y =在横坐标4=x 的切线方程为 ( ).044=+-y x .044=++y x .0184=+-y x .0184=-+y x.线)0,1()1(2在-=x y 点处的切线方程是( ).1+-=x y .1--=x y .1+=x y .1-=x y .曲线)(x f y =在点x 处的切线斜率为,21)('x x f -=且过点(),那么该曲线的方程是( ) .12++-=x x y .12-+-=x x y.12++=x x y .12-+=x x y.线上的横坐标的点0=x 处的切线及法线方程( ).063023=-+=+-y x y x 与 .063023=--=++-y x y x 与 .063023=++=--y x y x 与 .063023=+-=++y x y x 与.函数处在点则0)(,)(3==x x f x x f ( ).可微 .不连续 .有切线,但该切线的斜率为无穷 .无切线.以下结论正确的选项是( ).导数不存在的点一定不是极值点.驻点肯定是极值点.导数不存在的点处切线一定不存在.0)('0=x f 是可微函数)(x f 在0x 点处取得极值的必要条件.假设函数)(x f 在0=x 处的导数,0)0('=f 那么0=x 称为)(x f 的( ).极大值点 .极小值点 .极值点 .驻点.曲线)1ln()(2+=x x f 的拐点是( ).)1ln ,1(及)1ln ,1(- .)2ln ,1(及)2ln ,1(-.)1,2(ln 及)1,2(ln - .)2ln ,1(-及)2ln ,1(--.线弧向上凹及向下凹的分界点是曲线的( ).驻点 .极值点 .切线不存在的点 .拐点.数)(x f y =在区间[]上连续,那么该函数在区间[]上( ).一定有最大值无最小值 .一定有最小值无最大值.没有最大值也无最小值 .既有最大值也有最小值.以下结论正确的有( ).0x 是)(x f 的驻点,那么一定是)(x f 的极值点 .0x 是)(x f 的极值点,那么一定是)(x f 的驻点 .)(x f 在0x 处可导,那么一定在0x 处连续 .)(x f 在0x 处连续,那么一定在0x 处可导.由方程y x e xy +=确定的隐函数)(x y y ==dxdy ( ) . . . ..=+=x y y xe y ',1则( ). . . .y e x )1(+.设x x g e x f x sin )(,)(==,那么=)]('[x g f 〔 〕.x esin .x e cos - .x e cos .x e sin - .设x x g e x f x cos )(,)(-==,那么=)]('[x g f.x esin .x e cos - .x e cos .x e sin - .设)(),(x t t f y φ==都可微,那么=dy.dt t f )(' .)('x φdx .)('t f )('x φdt .)('t f dx.设,2sin x e y =那么=dy 〔 〕.x d e x 2sin .x d e x 2sin sin 2 .xxd e x sin 2sin 2sin .x d e x sin 2sin .假设函数)(x f y =有dy x x x x f 处的微分该函数在时则当00,0,21)('=→∆=是( ) .及x ∆等价的无穷小量 .及x ∆同阶的无穷小量.比x ∆低阶的无穷小量 .比x ∆高阶的无穷小量.给微分式,下面凑微分正确的选项是( ). . . ..下面等式正确的有( ).)(sin sin x x x x e d e dx e e = ..)(222x d e dx xex x -=-- .)(cos sin cos cos x d e xdx e x x = .设)(sin x f y =,那么=dy ( ).dx x f )(sin ' .x x f cos )(sin ' .xdx x f cos )(sin ' .xdx x f cos )(sin '-.设,2sin x e y =那么=dy.x d e x 2sin .x d e x 2sin sin 2 .x xd e x sin 2sin 2sin .x d e x sin 2sin三、一元函数积分学.可导函数)(F x 为连续函数)(x f 的原函数,那么( ) .0)('=x f .)()(F'x f x = .0)(F'=x .0)(=x f.假设函数)(F x 和函数)(x Φ都是函数)(x f 在区间I 上的原函数,那么有( ) .I x x x ∈∀=Φ),(F )(' .I x x x ∈∀Φ=),()(F .I x x x ∈∀Φ=),()(F' .I x C x x ∈∀=Φ-,)()(F.有理函数不定积分等于〔 〕.. .. ..不定积分等于〔 〕..2arcsin x C + .2arccos x C +.2arctan x C + .2cot arc x C +.不定积分等于〔 〕.. .. ..函数x e x f 2)(=的原函数是( ). .x e 22 . .x e 231.⎰xdx 2sin 等于( ). .c x +2sin .c x +-2cos 2 ..假设⎰⎰-=xdx x x dx x xf sin sin )(,那么)(x f 等于〔 〕.x sin .x x sin .x cos .. 设 x e -是)(x f 的一个原函数,那么⎰=dx x xf )('〔 〕.c x e x +--)1( .c x e x ++--)1( .c x e x +--)1(. c x e x ++-)1( .设,)(x e x f -= 那么 ( ). . .c x +-ln .c x +ln.设)(x f 是可导函数,那么()')(⎰dx x f 为〔 〕.)(x f .c x f +)( .)('x f .c x f +)('. 以下各题计算结果正确的选项是( ). ..⎰+-=c x xdx cos sin .⎰+=c x xdx 2sec tan. 在积分曲线族⎰dx x x 中,过点()的积分曲线方程为( ).12+x . .x 2 ..( ).c x +--43 . . ..设)(x f 有原函数x x ln ,那么⎰dx x xf )(( ). .c x x ++)ln 2141(2. ..⎰=xdx x cos sin ( ). . . ..积分( ). . .x tan arg .c x +arctan.以下等式计算正确的选项是( ).⎰+-=c x xdx cos sin .c x dx x +=---⎰43)4(.c x dx x +=⎰32 .c dx x x +=⎰22.极限的值为〔 〕.1- . . ..极限的值为〔 〕.1- . . ..极限( ).41 .31 .21 ..〔 〕.)1(2+x e .ex .ex 2 .12+x e.假设,那么〔 〕.x x f sin )(= .x x f cos 1)(+-=.c x x f +=sin )( .x x f sin 1)(-=.函数在区间]10[,上的最小值为〔 〕 .21.31 .41.0.假设()⎰+==xt x c dt t e x f e x x g 02122213)(,)(,且那么必有〔 〕.0=c .1=c .1-=c .2=c.( ).21x + .41x + . ..( ).2cos x .2cos 2x x .2sin x .2cos t .设函数⎪⎪⎩⎪⎪⎨⎧=≠=⎰00sin )(20x a x x tdtx f x在0=x 点处连续,那么a 等于〔 〕.2 .21 .1 .2-.设)(x f 在区间],[b a 连续, ),()()(b x a dt t f x F x a ≤≤=⎰那么)(x F 是)(x f 的() .不定积分 .一个原函数 .全体原函数 .在],[b a 上的定积分.设则为连续函数其中,)(,)()(2x f dt t f a x x x F xa ⎰-=)(lim x F a x →( ).2a .)(2a f a . .不存在.函数的原函数是( ).c x +tan .c x +cot .c x +-cot ..函数)(x f 在[]上连续, ⎰=xa dt t f x )()(ϕ,那么( ).)(x ϕ是)(x f 在[]上的一个原函数 .)(x f 是)(x ϕ的一个原函数 . )(x ϕ是)(x f 在[]上唯一的原函数 . )(x f 是)(x ϕ在[]上唯一的原函数.广义积分=⎰+∞-0dx e x ( ). . . .发散 .=+⎰dx x π02cos 1( ). . 2 .22 ..设)(x f 为偶函数且连续,又有等于则)(,)()(0x F dt t f x F x-=⎰( ).)(x F .)(x F - . . )(x F.以下广义积分收敛的是〔 〕. . . ..以下广义积分收敛的是〔 〕.⎰+∞13x dx . . . .等于( ).pa e - . . ..( ). .e1 .e .∞+(发散) .积分dx e kx -+∞⎰0收敛的条件为〔 〕 .0>k .0<k .0≥k .0≤k .以下无穷限积分中,积分收敛的有( ) .⎰∞-0dx e x ..⎰∞--0dx e x .⎰∞-0cos xdx.广义积分为( ). .发散 .21 . .以下广义积分为收敛的是( ). .. ..以下积分中不是广义积分的是( ).⎰+∞+0)1ln(dx x .. ..函数()f x 在闭区间[]上连续是定积分⎰b adx x f )(在区间[]上可积的〔 〕. .必要条件 .充分条件.充分必要条件 .既非充分又飞必要条件.定积分等于〔 〕.. . . .1-.定积分⎰-122d ||x x x 等于〔 〕. . . .174 .174- .定积分x x x d e )15(405⎰+等于〔 〕. . .5e .5-e .52e.设)(x f 连续函数,那么〔 〕. . . ..积分〔 〕. . . ..设)(x f 是以为周期的连续函数,那么定积分⎰+=T l l dx x f I )(的值( ) .及l 有关 .及有关 .及l 均有关 .及l 均无关 .设)(x f 连续函数,那么〔 〕 . . . ..设)(x f 为连续函数,那么等于〔 〕.)0()2(f f - . . .)0()1(f f -.数)(x f 在区间[]上连续,且没有零点,那么定积分⎰b adx x f )(的值必定( ) .大于零 .大于等于零 .小于零 .不等于零.以下定积分中,积分结果正确的有( ).c x f dx x f b a +=⎰)()(' .)()()('a f b f dx x f b a +=⎰ .)]2()2([21)2('a f b f dx x f ba-=⎰ .)2()2()2('a f b f dx x f b a -=⎰ .以下定积分结果正确的选项是( ). . .211=⎰-dx .211=⎰-xdx .⎰=adx x 0)'(arccos ( ). . . .0arccos arccos -a.以下等式成立的有( ).0sin 11=⎰-xdx x .011=⎰-dx e x .a b xdx ab tan tan ]'tan [-=⎰ .xdx xdx d x sin sin 0=⎰ .比拟两个定积分的大小( ) .⎰⎰<213212dx x dx x .⎰⎰≤213212dx x dx x .⎰⎰>213212dx x dx x .⎰⎰≥213212dx x dx x .定积分等于( ). . . . .⎰=11-x dx ( ). .2- . .1-.以下定积分中,其值为零的是( ).⎰22-sin xdx x .⎰20cos xdx x .⎰+22-)(dx x e x .⎰+22-)sin (dx x x .积分⎰-=21dx x ( ). .21 .23 .25 .以下积分中,值最大的是( ) .⎰102dx x .⎰103dx x .⎰104dx x .⎰105dx x .曲线x y -=42及y 轴所围局部的面积为〔 〕. . . ..曲线x e y =及该曲线过原点的切线及轴所围形的为面积〔 〕. .. . .曲线2x y x y ==与所围成平面图形的面积( ) .31 .31- . .四、常微分方程.函数y c x =-〔其中c 为任意常数〕是微分方程1x y y '+-=的〔 〕. .通解 .特解 .是解,但不是通解,也不是特解 .不是解.函数23x y e =是微分方程40y y ''-=的〔 〕..通解 .特解 .是解,但不是通解,也不是特解 .不是解.2()sin y y x y x '''++=是〔 〕..四阶非线性微分方程 .二阶非线性微分方程.二阶线性微分方程 .四阶线性微分方程.以下函数中是方程0y y '''+=的通解的是〔 〕..12sin cos y C x C x =+ .x y Ce -= .y C = .12x y C e C -=+专升本高等数学综合练习题参考答案. . .. 在偶次根式中,被开方式必须大于等于零,所以有40x -≥且20x -≥,解得24x ≤≤,即定义域为[2,4].. 由奇偶性定义,因为33()2()3sin()23sin ()f x x x x x f x -=---=-+=-,所以3()23sin f x x x =-是奇函数. .解:令t x -=1,那么tt t t t f 21212211)(--=---+=,所以 ,应选 .解:选 . 解:选 . 解:选 .解:选 . 解:110≤+≤x ,所以01≤≤-x ,应选 . 解:选 . 解:选 . 解:选.解:选 . 解:)(x f 的定义域为)4,1[-,选.解:根据奇函数的定义知选 . 解:选 . 解:选.解:因为函数)1,0(log ≠>==a a x y a y a x 与互为反函数,故它们的图形关于直线x y =轴对称,选 . . .解:这是00型未定式,应选. .解:这是∞∞型未定式 22csc ln cot sin cot lim lim lim lim 11ln sin cos sin cos x x x x xx x x x x x x x x xx→→→→-==-⋅=-=-++++0000 应选..解:因为所以0)(lim 20=+→b ax x ,得0=b ,所以2=a ,应选 .解:b b b b b a b b n n n n n n n n n ==+≤+≤=2选.解:选 .解:因为∞→x lim 2121lim 21sin==∞→x x x x x ,应选 .解:n m nx mx nx mx x x ==→→00lim sin sin lim 应选 .解:因为所以0)(lim 20=+→b ax x ,得0=b ,,所以1=a ,应选 .解:1cos 1cos 1lim cos cos lim =+-=+-∞→∞→xx x xx x x x x x ,选 .解:因为01lim )(lim 00=-=++→→)(x x x e x f ,11sin lim )(lim 00=+=--→→)(x x f x x 所以)(lim 0x f x →不存在,应选 .解:41414010])41(lim [)41(lim e x x x x x x =+=+→→,选 .解:极限0sin lim cotx lnx - lim )1(lim 200tan 0===+++→→→xx x x x x x ,选 .解:110sin 11sin lim 0-=-=⎪⎭⎫ ⎝⎛-→x x x x x ,选.解:kkx x kx x x x 11lim 1sin lim ==∞→∞→选 .解:,选 .解:选 . 解:选.解:06lim 21=++→ax x x ,7-=a ,选 .解:2),2(lim tan lim 00=+=-+→→a x x ax x x ,选 .解:根据无穷小量的定义知:以零为极限的函数是无穷小量,应选 .解:因为22lim )2sin(lim 2020=+=+→→xx x x x x x x ,应选 .解:因为,应选 .解:因为33lim )3tan(lim 2020=+=+→→xx x x x x x x ,应选 .解:因为21)1(21lim 1)1(21lim 11=++=-+-→→x x xx xx x ,应选 .解:因为021lim 11lim 00==-+++→→xx x x a x a x ,所以1>a ,应选 .解:因为,应选.解:由书中定理知选.解:因为,应选 .解:因为6ln 13ln 32ln 2lim 232lim 00=+=-+→→x x x x x x x ,选 .解:选.解:,选.解:因为1)(lim =+∞→x f x ,选.解:选.解:,选.解:选.解:选 .解:根据连续的定义知选..解:选.解:选.解:, ,选.解:选 .解:因为21)1)(1(lim 11lim 21=-+-=--++→→x x x x x x x ,21)1)(1(lim 11lim 21-=-+--=----→→x x x x x x x ,选.解:因为)0(1)(lim 0f x f x ==+→,又)0(1)(lim 0f x f x ==-→,所以)(x f 在0=x 点连续,但111lim )0()(lim )0('00=-+=-=--→→-xx x f x f f x x , 011lim )0()(lim )0('200=-+=-=++→→+xx x f x f f x x 所以)(x f 在0=x 点不可导,选 .解:选.解:因为)0(1)(lim 0f x f x ≠=+→,又)0(1)(lim 0f x f x ≠=-→,所以)(x f 在0=x 点不连续,从而在0=x 处不可导,但当0→x 时,极限存在,选.解:选.解:,选 .解:)0(2111lim0f x x x ≠=-+→,选 .解:选 .解:因为0)11cot (lim )(lim 211=-+=++→→x arc x x f x x , π=-+=--→→)11cot (lim )(lim 211x arc x x f x x 应选 .解:选.解:因为2lim ,lim 0-=∞=∞→→y y x x ,曲线既有水平渐近线2-=y ,又有垂直渐近线0=x ,选 .解:因为,所以有水平渐近线1=y ,但无铅直渐近线,选. . 解:e cos e sin x x y x x '=-,(0)101y '=-=.选. . 解:x x g cos )('=,所以x e x gf cos )]('[=,应选. .解:=--→h x f h x f h )()21(lim 000 1)('21)21(21)()21(lim 0000-=-=----→x f h x f h x f h ,选 .解:)('2])()()()([lim )()(lim 00a f xa f x a f x a f x a f x x a f x a f x x =---+-+=--+→→,选 .解:因为=--+→hh f h f h )2()2(lim 0 )2('2f ,应选 .解:)0('f 6)3)(2)(1(lim )0()(lim 00-=---=-=→→xx x x x x f x f x x ,应选 .解:因为 )0('2f ,应选.解:因为0lim →h )(')()h - x (000x f h x f f -=-,应选 .解:因为 21)1('222)1()21(lim 0=-=----→f h f h f h )( ,应选 .解:222242)('',2)('x x x e x e x f xe x f ---+-=-=,2)0(''-=f 选.解:选 .解:01282829.....a x a x a x y ++++=,所以!29)29(=y ,选.解:)(')()('')()(x f e e f e e f y x f x x f x x ⋅+=+,选 .解:!100)100()2)(1(lim )0()(lim )0('00=---=-=→→xx x x x x f x f f x x ,选 .解:)'('ln x x e y =)ln 1(x x x +=,选 .解:,1202lim 2)2()(lim )2('22=---=--=++→→+x x x f x f f x x ,1202lim 2)2()(lim )2('22-=---=--=--→→-x x x f x f f x x 选 .解:[]]1)2ln([)2('')2ln(--==--x x e y x x x ,选 .解:选 .解:])()(')()('[21,)](ln )([ln 21x g x g x f x f y y e y x g x f -⋅='=-,选 . . . . . . ..解:()1e x f x '=-.令()0f x '=,那么0x =.当)0,(-∞∈x 时0)(>'x f ,当),0(+∞∈x 时0)(<'x f ,因此()e x f x x =-在)0,(-∞上单调递增, 在),0(+∞上单调递减.答案选..解:根据求函数极值的步骤,〔〕关于x 求导,322'()462(3)f x x x x x =-=- 〔〕令'()0f x =,求得驻点0,3x =〔〕求二阶导数2"()121212(1)f x x x x x =-=- 〔〕因为''(3)720f =>,由函数取极值的第二种充分条件知27)3(=f 为极小值. 〔〕因为''(0)0f =,所以必须用函数取极值的第一种充分条件判别,但在0x =左右附近处,)('x f 不改变符号,所以(0)f 不是极值.答案选..1)0('=y ,曲线x e y =在点()处的切线方程为x y =-1,选 .解:函数162131)(23+++=x x x x f 的图形在点)1,0(处的切线为x y 61=-,令0=y ,得,选 .,抛物线x y =在横坐标4=x 的切线方程为,选.,切线方程是1-=x y ,选.1,)(2=+-=c c x x x f ,选 .解:3)0('),121(2'2=++=y x e y x ,切线方程x y 32=- 法线方程,选 .选 .由函数取得极值的必要条件〔书中定理〕知选.解:选.解:,)1(22)1(4)1(2'',12'22222222x x x x x y x x y +-=+-+=+= 422222)1(2)1(2)22()1(4'''x x x x x x y ++--+-= ,)1(124)1(4)1(23233222x x x x x x +-=+-+=令0''=y 得1,1-=x ,0)1('''≠±y , )2ln ,1(及)2ln ,1(-为拐点,选.选 .选 .选.解:)'1()'1('y xy y e xy y y x +=+=++,选 .解:''y xe e y y y +=,选,应选.解:x x g cos )('=,所以x e x g f cos )]('[=,应选 .解:x x g sin )('=,所以x e x g f sin )]('[=,应选.解:选 .解:=dy;sin 2sin 2x d e x 应选 .解:因为)()('0x o x x f dy ∆+∆=,所以,应选.解:选 .解:选 .解:x x f y cos )(sin ''=,选 .解:选. . .解:222111d d (1)d ln 11112x x x x x x x x x C x x x -+⎰=⎰=-+=-++++++⎰. 所以答案为..解:由于(2arccos )x '=,所以答案为. .解:22e 11e (1)d (e )d e x xx x x x C x x x -⎰-=⎰-=++ .解:选.解:因为c x x xd xdx x xdx +===⎰⎰⎰2sin sin sin 2cos sin 22sin ,应选 .解:对⎰⎰-=xdx x x dx x xf sin sin )(两边求导得x x x x x xf sin cos sin )(-+= ,应选.解:c e e x dx x f x xf x xdf dx x xf x x +--=-==--⎰⎰⎰)()()()(',应选 .解:c xc x f dx x x f +=+=⎰1)(ln )(ln ',应选 .解:()')(⎰dx x f )(x f ,应选.解:选 .解:1,5225=+=⎰c c x dx x x ,应选.解:,选.解:x x x x f ln 1)'ln ()(+==,⎰⎰+=dx x x x dx x xf )ln ()(c x x x x x xd x +-+=+=⎰2222241ln 21212ln 21,选 .解:⎰⎰=xdx xdx x 2sin 21cos sin ,选.解:选 .解:选.解:因为 ,应选.解:因为 ,应选 .解:414sin lim sin lim 3304030==→→⎰x x x dt t x x x ,应选 .解:因为,应选.解:因为x sin =,应选 .解:043)21(313)('22>+-=+-=x x x x x x φ,所以)0(φ为 函数在区间]10[,上的最小值 ,应选.解: 所以1=c ,应选 .解:=+=+⎰x x dt t dx d x21)1(214 ,应选 .解:选 .解:212sin lim sin lim 0200===→→⎰x x x tdt a x xx ,应选 .解:由于)()('x f x F =,应选.解:因为=→)(lim x F a x )()(lim lim )(lim 222a f a ax dt t f x dt t f a x x xa a x a x x a a x =-=-⎰⎰→→→,选 .解:选 .解:选 .解:100=∞+-=-∞+-⎰xx e dx e ,选 .解:22cos 2cos 22cos 10020===+⎰⎰⎰dx x dx x dx x πππ,选 .解:,⎰-=-xdt t f x F 0)()(令u t -=,那么)()())(()(00x F du u f du u f x F x x-=-=--=-⎰⎰,选 .解:因为2112311231=∞++-=+-+∞⎰x x x dx ,应选 .解:因为21121213=∞+-=-+∞⎰x xdx ,应选.解:=∞+-=-+∞-⎰a e pdx e px a px 1 ,应选 .解:1ln 1)(ln 2=∞+-=⎰∞+e x x x dx e ,应选 .解:010∞+-=--∞+⎰kx kxe kdx e ,所以积分dx e kx -+∞⎰0收敛,必须0>k 应选 .解:,选 .解:e x dx xx e ∞+=⎰∞+ln ln ln ,发散,选 .解:因为1ln 1)(ln 12=∞+-=⎰∞+e x dx x x e ,选 .解:选 .解:假设〔〕在区间[]上连续,那么〔〕在区间[]上可积。
专升本高数二复习题
![专升本高数二复习题](https://img.taocdn.com/s3/m/c7480a9388eb172ded630b1c59eef8c75fbf95e6.png)
专升本高数二复习题一、选择题(每题2分,共20分)1. 函数f(x)=2x^3-3x^2+5在x=1处的导数是()。
A. 1B. 7C. -1D. 52. 曲线y=x^2+3x-2在x=-1处的切线斜率是()。
A. 0B. 1C. 2D. 33. 函数y=sin(x)的不定积分是()。
A. cos(x)B. -cos(x)C. sin(x)D. x4. 已知∫f(x)dx=2x^2+C,f(x)=()。
A. 4xB. 2xC. 4D. 25. 函数y=e^x的n阶导数是()。
A. e^xB. ne^xC. n!e^xD. n^ne^x6. 极限lim(x→0) (sin(x)/x)的值是()。
A. 0B. 1C. 2D. ∞7. 函数y=ln(x)的定义域是()。
A. (-∞, 0)B. (0, +∞)C. (-∞, +∞)D. [0, +∞)8. 曲线y=x^3-2x^2+x在x=1处的极值是()。
A. 极小值B. 极大值C. 无极值D. 不确定9. 函数f(x)=x^2-4x+3的最小值是()。
A. -1B. 0C. 1D. 310. 微分dy=3x^2dx表示的函数f(x)是()。
A. f(x)=x^3+CB. f(x)=x^3-CC. f(x)=3x^3+CD. f(x)=3x^3-C二、填空题(每题2分,共20分)1. 函数f(x)=x^4-2x^3+x^2-3的二阶导数是 _ 。
2. 函数y=x^2-4x+7在x=2处的值是 _ 。
3. 曲线y=sin(x)+cos(x)的拐点是 _ 。
4. 函数y=ln(x)+e^x的不定积分是 _ 。
5. 函数y=x^3+2x^2-5x+7的导数是 _ 。
6. 极限lim(x→∞) (1/x)的值是 _ 。
7. 函数y=e^x的反函数是 _ 。
8. 函数y=x^2+1的值域是 _ 。
9. 函数y=x^3-6x^2+11x-6的极小值点是 _ 。
10. 函数y=2x^2-5x+3的导数是 _ 。
专升本高等数学复习资料(含答案)
![专升本高等数学复习资料(含答案)](https://img.taocdn.com/s3/m/73c70b57284ac850ad0242f3.png)
专升本高等数学复习资料〔含答案〕专升本高等数学复习资料一、函数、极限和连续 1.函数y?f(x)的定义域是〔B 〕y?f(x)的表达式有意义的变量x的取值范围A.变量x的取值范围 B.使函数C.全体实数 D.以上三种情况都不是 2.以下说法不正确的选项是〔 C 〕 A.两个奇函数之和为奇函数 B.两个奇函数之积为偶函数 C.奇函数与偶函数之积为偶函数 D.两个偶函数之和为偶函数 3.两函数相同那么〔 C 〕A.两函数表达式相同 B.两函数定义域相同C.两函数表达式相同且定义域相同 D.两函数值域相同 4.函数y?4?x?x?2的定义域为〔〕4) B.[2,4] 4] D.[2,4)A.(2,C.(2,5.函数f(x)?2x3?3sinx的奇偶性为〔〕A.奇函数 B.偶函数 C.非奇非偶 D.无法判断1?x,那么f(x)等于( )2x?1xx?21?x2?x A. B. C. D.2x?11?2x2x?11?2x6.设f(1?x)?7.分段函数是( )A .几个函数 B.可导函数 C.连续函数 D.几个分析式和起来表示的一个函数 8.以下函数中为偶函数的是( ) A.y?e?x B.y?ln(?x) C.y?x3cosx D.y?lnx9.以下各对函数是相同函数的有( ) A.f(x)?x与g(x)??x B.f(x)?1?sin2x与g(x)?cosx?x?2xf(x)?与g(x)?1 D.f(x)?x?2与g(x)??x?2?xC.x?2x?210.以下函数中为奇函数的是( )ex?e?x A.y?cos(x?) B.y?xsinx C.y?32? D.y?x3?x211.设函数y?f(x)的定义域是[0,1],那么f(x?1)的定义域是( )[?1,0] C .[0,1] D. [1,2]A .[?2,?1] B.?x??2?x?012.函数f(x)??2?0x?0的定义域是( ) ??x2?20?x?2A.(?2,2) B.(?2,0] C.(?2,2] D. (0,2]13.假设f(x)?1?x?2x?33x?2x,那么f(?1)?( )A.?3 B.3 C.?1 D.1 14.假设f(x)在(??,??)内是偶函数,那么f(?x)在(??,??)内是( )A.奇函数 B.偶函数 C.非奇非偶函数 D.f(x)?015.设f(x)为定义在(??,??)内的任意不恒等于零的函数,那么F(x)?f(x)?f(?x)必是( A.奇函数 B.偶函数 C.非奇非偶函数 D.F(x)?0??1?x?116.设f(x)??x?1,?2x2?1,1?x?2 那么f(2?)等于 ( )??0,2?x?4A.2??1 B.8?2?1 C. 0 D.无意义17.函数y?x2sinx的图形〔〕A.关于ox轴对称 B.关于oy轴对称 C.关于原点对称 D.关于直线y?x对称18.以下函数中,图形关于y轴对称的有( )A.y?xcosx B.y?x?x3?1C.y?ex?e?x .y?ex?e?x2 D219.函数f(x)与其反函数f?1(x)的图形对称于直线( )A.y?0 B.x?0 C.y?x D.y??x20. 曲线y?ax与y?logax(a?0,a?1)在同一直角坐标系中,它们的图形( )A.关于x轴对称 B.关于y轴对称 C.关于直线y?x轴对称 D.关于原点对称21.对于极限limx?0f(x),以下说法正确的选项是〔〕 A.假设极限limx?0f(x)存在,那么此极限是唯一的 B.假设极限limx?0f(x)存在,那么此极限并不唯一1)C.极限limx?0f(x)一定存在D.以上三种情况都不正确 22.假设极限limx?0f(x)?A存在,以下说法正确的选项是〔〕A.左极限C.左极限D.x?0?limf(x)不存在 B.右极限lim?f(x)不存在x?0x?0x?0?limf(x)和右极限lim?f(x)存在,但不相等x?0x?0x?0?limf(x)?limf(x)?limf(x)?A ?lnx?1的值是( )x?ex?e1A.1 B. C.0 D.eelncotx24.极限lim的值是( ).+x?0lnxA. 0 B. 1 C .? D. ?1 23.极限limax2?b?2,那么〔〕 25.limx?0xsinxA.a?2,b?0 B.a?1,b?1 C.a?2,b?1 D.a??2,b?0 a?b,那么数列极限limnan?bn是n???26.设0?A.a B.b C.1 D.a27.极限limx?0?b12?3121x的结果是A.0 B.28.lim C.1 D.不存在 51为( )x??2x1A.2 B. C.1 D.无穷大量2sinmx(m,n为正整数〕等于〔〕 29. limx?0sinnxxsinA.mn B.nm C.(?1)m?nmn?mn D.(?1) nmax3?b?1,那么〔〕 30.limx?0xtan2xA.a?2,b?0 B.a?1,b?0 C.a?6,b?0 D.a?1,b?1 x?cosxx??x?cosx( )31.极限limA.等于1 B.等于0 C.为无穷大 D.不存在232.设函数?sinx?1?f(x)??0?ex?1?x?0x?0x?0 那么limx?0f(x)?( )A.1 B.0 C.?1 D.不存在 33.以下计算结果正确的选项是( )A.xxlim(1?)x?e B .lim(1?)x?e4 x?0x?04411111x?x?4 C .lim(1?)x?eD .lim(1?)x?e4x?0x?04434.极限1lim?()tanx等于( ) x?0x A. 1 B.? C .0 D.1235.极限lim?xsin?x?0?11??sinx?的结果是 xx?A.?1 B.1 C.0 D.不存在 1?k?0?为 ( )x??kx1 A.k B. C.1 D.无穷大量k36.limxsin37.极限limsinx=( )x???2A.0 B.1 C.?1 D.?38.当x??时,函数(1??21x)的极限是( ) xA.e B.?e C .1 D.?139.设函数?sinx?1?f(x)??0?cosx?1?x?0x?0,那么limf(x)?x?0x?0A.1 B.0 C.?1 D.不存在x2?ax?6?5,那么a的值是( ) 40.limx?11?xA.7 B.?7 C. 2 D.341.设?tanax?f(x)??x??x?2x?0x?0,且limx?0f(x)存在,那么a的值是( )2A.1 B.?1 C .2 D.?42.无穷小量就是〔〕A.比任何数都小的数 B.零 C.以零为极限的函数 D.以上三种情况都不是43.当x?0时,sin(2x?x3)与x比拟是( )3A.高阶无穷小 B.等价无穷小 C.同阶无穷小,但不是等价无穷小 D.低阶无穷小 44.当x A.?0时,与x等价的无穷小是〔〕x B.ln(1?x) C.2(sinx1?x?1?x) D.x2(x?1)45.当x?0时,tan(3x?x3)与x比拟是〔〕A.高阶无穷小 B.等价无穷小 C.同阶无穷小,但不是等价无穷小 D.低阶无穷小 46.设f(x)?1?x,g(x)?1?x,那么当x?1时〔〕2(1?x)A.C.f(x)是比g(x)高阶的无穷小 B.f(x)是比g(x)低阶的无穷小 f(x)与g(x)为同阶的无穷小 D.f(x)与g(x)为等价无穷小47.当xA.a48.当x?0?时, f(x)?1?xa?1是比x高阶的无穷小,那么( ) ?1 B.a?0 C.a为任一实常数 D.a?1?0时,tan2x与x2比拟是〔〕A.高阶无穷小 B.等价无穷小 C.同阶无穷小,但不是等价无穷小 D.低阶无穷小 49.“当x?x0,f(x)?A为无穷小〞是“limf(x)?A〞的〔〕x?x0A.必要条件,但非充分条件 B.充分条件,但非必要条件 C.充分且必要条件 D.既不是充分也不是必要条件 50.以下变量中是无穷小量的有( ) A.lim(x?1)(x?1)1 B.limx?0ln(x?1)x?1(x?2)(x?1) C.lim51.设 A. C.111cos D.limcosxsin x??xx?0xxf(x)?2x?3x?2,那么当x?0时( )f(x)与x是等价无穷小量 B.f(x)与x是同阶但非等价无穷小量 f(x)是比x 较高阶的无穷小量 D.f(x)是比x较低阶的无穷小量52.当x?0?时,以下函数为无穷小的是( )111 A.xsin B.ex C.lnx D.sinxxx53.当x?0时,与sinx2等价的无穷小量是 ( )1? A.ln(54.函数x) B.tanx C.2?1?cosx? D.ex?11y?f(x)?xsin,当x??时f(x) ( )x4。
高等数学专升本复习题
![高等数学专升本复习题](https://img.taocdn.com/s3/m/d1ac0b81b8f3f90f76c66137ee06eff9aff84951.png)
高等数学专升本复习题一、选择题(每题2分,共20分)1. 下列函数中,哪一个不是周期函数?A. \( y = \sin x \)B. \( y = e^x \)C. \( y = \cos x \)D. \( y = \tan x \)2. 函数 \( f(x) = x^2 - 4x + 4 \) 的最小值是:A. 0B. 1C. 4D. 83. 极限 \( \lim_{x \to 0} \frac{\sin x}{x} \) 的值是:A. 0B. 1C. \( \frac{\pi}{2} \)D. \( \infty \)4. 下列哪个选项是 \( e^x \) 的泰勒展开式?A. \( 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots \)B. \( 1 - x + \frac{x^2}{2} - \frac{x^3}{6} + \cdots \)C. \( 1 + x^2 + \frac{x^4}{4!} + \cdots \)D. \( 1 + \frac{x}{1!} + \frac{x^2}{2!} + \cdots \)5. 函数 \( f(x) = \ln(x) \) 的导数是:A. \( \frac{1}{x} \)B. \( \frac{x}{1} \)C. \( \frac{1}{x^2} \)D. \( \frac{x^2}{1} \)6. 函数 \( y = x^3 - 3x^2 + 2x \) 的拐点是:A. \( x = 0 \)B. \( x = 1 \)C. \( x = 2 \)D. \( x = 3 \)7. 函数 \( y = \sin x + \cos x \) 的最大值是:A. 1B. 2C. \( \sqrt{2} \)D. \( \sqrt{3} \)8. 函数 \( f(x) = \frac{1}{x} \) 在 \( x = 0 \) 处的连续性是:A. 连续B. 可导C. 可微D. 无定义9. 函数 \( y = x^2 \) 在 \( x = 1 \) 处的切线斜率是:A. 0B. 1C. 2D. 410. 函数 \( y = \ln(x) \) 的原函数是:A. \( x^2 \)B. \( x^3 \)C. \( e^x \)D. \( x \ln(x) - x \)二、填空题(每题2分,共20分)1. 函数 \( y = \frac{1}{x} \) 的导数是 ______ 。
专升本高等数学复习资料(含答案)
![专升本高等数学复习资料(含答案)](https://img.taocdn.com/s3/m/48bf912dcc7931b764ce1507.png)
专升本高等数学复习资料一、函数、极限和连续1.函数)(x f y =的定义域是( )A .变量x 的取值范围B .使函数)(x f y =的表达式有意义的变量x 的取值范围C .全体实数D .以上三种情况都不是2.以下说法不正确的是( )A .两个奇函数之和为奇函数B .两个奇函数之积为偶函数C .奇函数与偶函数之积为偶函数D .两个偶函数之和为偶函数3.两函数相同则( )A .两函数表达式相同B .两函数定义域相同C .两函数表达式相同且定义域相同D .两函数值域相同 4.函数42y x x =-+-的定义域为( ) A .(2,4) B .[2,4] C .(2,4] D .[2,4) 5.函数3()23sin f x x x =-的奇偶性为( )A .奇函数B .偶函数C .非奇非偶D .无法判断6.设,121)1(-+=-x xx f 则)(x f 等于( )A .12-x xB .x x 212--C .121-+x xD .xx212--7. 分段函数是( )A .几个函数B .可导函数C .连续函数D .几个分析式和起来表示的一个函数8.下列函数中为偶函数的是( )A .x e y -=B .)ln(x y -=C .x x y cos 3=D .x y ln =9.以下各对函数是相同函数的有( )A .x x g x x f -==)()(与B .x x g x x f cos )(sin 1)(2=-=与C .1)()(==x g x xx f 与 D .⎩⎨⎧<->-=-=2222)(2)(x x x x x g x x f 与10.下列函数中为奇函数的是( )A .)3cos(π+=x y B .x x y sin = C .2xx e e y --= D .23x x y +=11.设函数)(x f y =的定义域是[0,1],则)1(+x f 的定义域是( )A .]1,2[--B . ]0,1[-C .[0,1]D . [1,2]12.函数⎪⎩⎪⎨⎧≤<+=<<-+=20200022)(2x x x x x x f 的定义域是( )A .)2,2(-B .]0,2(-C .]2,2(-D . (0,2] 13.若=---+-=)1(,23321)(f xx x x x f 则( )A .3-B .3C .1-D .114.若)(x f 在),(+∞-∞内是偶函数,则)(x f -在),(+∞-∞内是( )A .奇函数B .偶函数C .非奇非偶函数D .0)(≡x f15.设)(x f 为定义在),(+∞-∞内的任意不恒等于零的函数,则)()()(x f x f x F -+=必是( ) A .奇函数 B .偶函数 C .非奇非偶函数 D .0)(≡x F16. 设 ⎪⎩⎪⎨⎧<<≤<-≤<--=42,021,1211,1)(2x x x x x x f 则)2(πf 等于 ( ) A .12-π B .182-π C . 0 D .无意义 17.函数x x y sin 2=的图形( )A .关于ox 轴对称B .关于oy 轴对称C .关于原点对称D .关于直线x y =对称 18.下列函数中,图形关于y 轴对称的有( ) A .x x y cos = B .13++=x x yC .2x x e e y -+=D .2xx e e y --=19.函数)(x f 与其反函数)(1x f-的图形对称于直线( )A .0=yB .0=xC .x y =D .x y -=20. 曲线)1,0(log ≠>==a a x y a y a x 与在同一直角坐标系中,它们的图形( )A .关于x 轴对称B .关于y 轴对称C .关于直线x y =轴对称D .关于原点对称 21.对于极限)(lim 0x f x →,下列说法正确的是( )A .若极限)(lim 0x f x →存在,则此极限是唯一的B .若极限)(lim 0x f x →存在,则此极限并不唯一C .极限)(lim 0x f x →一定存在D .以上三种情况都不正确22.若极限A )(lim 0=→x f x 存在,下列说法正确的是( )A .左极限)(lim 0x f x -→不存在 B .右极限)(lim 0x f x +→不存在C .左极限)(lim 0x f x -→和右极限)(lim 0x f x +→存在,但不相等D .A )(lim )(lim )(lim 0===→→→-+x f x f x f x x x23.极限ln 1limx e x x e→--的值是( )A .1B .1eC .0D .e24.极限ln cot lim ln x xx→+0的值是( ). A . 0 B . 1 C .∞ D . 1-25.已知2sin lim20=+→xx bax x ,则( ) A .0,2==b a B .1,1==b a C .1,2==b a D .0,2=-=b a26.设b a <<0,则数列极限l i m n n n n a b →+∞+是A .aB .bC .1D .b a + 27.极限xx 1321lim+→的结果是A .0B .21C .51D .不存在28.∞→x lim xx 21sin为( )A .2B .21C .1D .无穷大量29. n m nxmxx ,(sin sin lim 0→为正整数)等于( )A .n mB .m nC .n m n m --)1(D .mn m n --)1(30.已知1tan lim230=+→xx bax x ,则( ) A .0,2==b a B .0,1==b a C .0,6==b a D .1,1==b a 31.极限xx xx x cos cos lim+-∞→( )A .等于1B .等于0C .为无穷大D .不存在32.设函数⎪⎩⎪⎨⎧>-=<+=01001sin )(x e x x x x f x 则=→)(lim 0x f x ( )A .1B .0C .1-D .不存在33.下列计算结果正确的是( )A . e x x x =+→10)41(lim B .410)41(lim e xx x =+→C .410)41(lim --→=+e x x x D .4110)41(lim e xx x =+→34.极限x x xtan 0)1(lim +→等于( )A . 1B . ∞C .0D .2135.极限⎪⎭⎫⎝⎛-→x x x x x sin 11sin lim 0的结果是A .1-B .1C .0D .不存在36.()01sin lim ≠∞→k kxx x 为 ( )A .kB .k 1C .1D .无穷大量37.极限x x sin lim 2π-→=( )A .0B .1C .1-D .2π-38.当∞→x 时,函数x x)11(+的极限是( )A .eB .e -C .1D .1- 39.设函数⎪⎩⎪⎨⎧>-=<+=01cos 001sin )(x x x x x x f ,则=→)(lim 0x f xA .1B .0C .1-D .不存在40.已知a xax x x 则,516lim21=-++→的值是( ) A .7 B .7- C . 2 D .341.设⎪⎩⎪⎨⎧≥+<=020tan )(x x x xaxx f ,且)(lim 0x f x →存在,则a 的值是( )A .1B .1-C .2D .2-42.无穷小量就是( )A .比任何数都小的数B .零C .以零为极限的函数D .以上三种情况都不是 43.当0→x 时,)2sin(3x x +与x 比较是( )A .高阶无穷小B .等价无穷小C .同阶无穷小 ,但不是等价无穷小D .低阶无穷小 44.当0→x 时,与x 等价的无穷小是( ) A .xx sin B .)1ln(x + C .)11(2x x -++ D .)1(2+x x45.当0→x 时,)3tan(3x x +与x 比较是( )A .高阶无穷小B .等价无穷小C .同阶无穷小 ,但不是等价无穷小D .低阶无穷小 46.设,1)(,)1(21)(x x g x xx f -=+-=则当1→x 时( )A .)(x f 是比)(x g 高阶的无穷小B .)(x f 是比)(x g 低阶的无穷小C .)(x f 与)(x g 为同阶的无穷小D .)(x f 与)(x g 为等价无穷小 47.当+→0x 时, 11)(-+=a x x f 是比x 高阶的无穷小,则( )A .1>aB .0>aC .a 为任一实常数D .1≥a 48.当0→x 时,x 2tan 与2x 比较是( )A .高阶无穷小B .等价无穷小C .同阶无穷小 ,但不是等价无穷小D .低阶无穷小 49.“当0x x →,A x f -)(为无穷小”是“A x f x x =→)(lim 0”的( )A .必要条件,但非充分条件B .充分条件,但非必要条件C .充分且必要条件D .既不是充分也不是必要条件 50. 下列变量中是无穷小量的有( ) A .)1ln(1lim 0+→x x B .)1)(2()1)(1(lim 1-+-+→x x x x xC .x x x 1cos 1lim∞→ D .xx x 1sin cos lim 0→ 51.设时则当0,232)(→-+=x x f x x ( )A .)(x f 与x 是等价无穷小量B .)(x f 与x 是同阶但非等价无穷小量C .)(x f 是比x 较高阶的无穷小量D .)(x f 是比x 较低阶的无穷小量 52. 当+→0x 时,下列函数为无穷小的是( )A .x x 1sinB .x e 1C .x lnD .x xsin 153. 当0→x 时,与2sin x 等价的无穷小量是 ( ) A .)1ln(x + B .x tan C .()x cos 12- D .1-x e54. 函数,1sin )(xx x f y ==当∞→x 时)(x f ( )A .有界变量B .无界变量C .无穷小量D .无穷大量55. 当0→x 时,下列变量是无穷小量的有( )A .x x 3B .xx cos C .x ln D .x e -56. 当0→x 时,函数xxy sec 1sin +=是( )A .不存在极限的B .存在极限的C .无穷小量D .无意义的量 57.若0x x →时, )(x f 与)(x g 都趋于零,且为同阶无穷小,则( ) A .0)()(lim=→x g x f x x B .∞=→)()(lim 0x g x f x xC .)1,0()()(lim≠=→c c x g x f x x D .)()(lim 0x g x f x x →不存在58.当0→x 时,将下列函数与x 进行比较,与x 是等价无穷小的为( ) A .x 3tan B .112-+x C .x x cot csc - D .xx x 1sin 2+ 59.函数)(x f 在点0x 有定义是)(x f 在点0x 连续的( )A .充分条件B .必要条件C .充要条件D .即非充分又非必要条件60.若点0x 为函数的间断点,则下列说法不正确的是( )A .若极限A )(lim 0=→x f x x 存在,但)(x f 在0x 处无定义,或者虽然)(x f 在0x 处有定义,但)(A 0x f ≠,则0x 称为)(x f 的可去间断点B .若极限)(lim 0x f x x +→与极限)(lim 0x f x x -→都存在但不相等,则0x 称为)(x f 的跳跃间断点C .跳跃间断点与可去间断点合称为第二类的间断点D .跳跃间断点与可去间断点合称为第一类的间断点 61.下列函数中,在其定义域内连续的为( )A .x x x f sin ln )(+=B .⎩⎨⎧>≤=00sin )(x ex xx f xC .⎪⎩⎪⎨⎧>-=<+=01011)(x x x x x x f D .⎪⎩⎪⎨⎧=≠=001)(x x xx f62.下列函数在其定义域内连续的有( ) A .x x f 1)(=B .⎩⎨⎧>≤=0cos 0sin )(x xx x x fC .⎪⎩⎪⎨⎧>-=<+=01001)(x x x x x x f D .⎪⎩⎪⎨⎧=≠=001)(x x xx f63.设函数⎪⎩⎪⎨⎧=-≠=0201a r c t a n )(x x x x f π 则)(x f 在点0=x 处( ) A .连续 B .左连续 C .右连续 D .既非左连续,也非右连续 B .64.下列函数在0=x 处不连续的有( )A .⎪⎩⎪⎨⎧=≠=-000)(2x x e x f xB .⎪⎩⎪⎨⎧=≠=010sin )(21x x x x x f C .⎩⎨⎧≥<-=00)(2x x x xx f D .⎩⎨⎧≤->+=00)1ln()(2x xx x x f65.设函数⎪⎩⎪⎨⎧=≠--=12111)(2x x x x x f , 则在点)(1x f x 处函数=( )A .不连续B .连续但不可导C .可导,但导数不连续D .可导,且导数连续66.设分段函数⎩⎨⎧<+≥+=0101)(2x x x x x f ,则)(x f 在0=x 点( )A .不连续B .连续且可导C .不可导D .极限不存在67.设函数)(x f y =,当自变量x 由0x 变到y x x ∆∆+相应函数的改变量时,0=( ) A .)(0x x f ∆+ B .x x f ∆)('0 C .)()(00x f x x f -∆+ D .x x f ∆)(068.已知函数⎪⎩⎪⎨⎧>+=<=01200)(x x x x e x f x ,则函数)(x f ( ) A .当0→x 时,极限不存在 B .当0→x 时,极限存在C .在0=x 处连续D .在0=x 处可导 D . 69.函数)1ln(1-=x y 的连续区间是( )A .),2[]2,1[+∞⋃B .),2()2,1(+∞⋃C .),1(+∞D .),1[+∞70.设nxnxx f x -=∞→13lim)(,则它的连续区间是( )A .),(+∞-∞B .处为正整数)(1n nx ≠C .)0()0,(∞+⋃-∞D .处及nx x 10≠≠D . 71.设函数⎪⎪⎩⎪⎪⎨⎧=≠-+=031011)(x x x x x f , 则函数在0=x 处( )A .不连续B .连续不可导C .连续有一阶导数D .连续有二阶导数B .72.设函数⎪⎩⎪⎨⎧=≠=00x x xx y ,则)(x f 在点0=x 处( )A .连续B .极限存在C .左右极限存在但极限不存在D .左右极限不存在73.设11cot )(2-+=x arc x x f ,则1=x 是)(x f 的( )A .可去间断点B .跳跃间断点C .无穷间断点D .振荡间断点74.函数2xy e x z y-+=的间断点是( ) A .)1,1(),1,1(),0,1(-- B .是曲线y e y -=上的任意点 C .)1,1(),1,1(),0,0(- D .曲线2x y =上的任意点 75.设2)1(42-+=xx y ,则曲线( ) A .只有水平渐近线2-=y B .只有垂直渐近线0=x C .既有水平渐近线2-=y ,又有垂直渐近线0=x D .无水平,垂直渐近线76.当0>x 时, xx y 1sin=( ) A .有且仅有水平渐近线 B .有且仅有铅直渐近线C .既有水平渐近线,也有铅直渐近线D .既无水平渐近线,也无铅直渐近线二、一元函数微分学77.设函数)(x f 在点0x 处可导,则下列选项中不正确的是( ) A .x yx f x ∆∆=→∆00lim)(' B .xx f x x f x f x ∆-∆+=→∆)()(lim )('0000C .000)()(lim )('0x x x f x f x f x x --=→D .h x f h x f x f h )()21(lim )('0000--=→78.若e cos x y x =,则'(0)y =( )A .0B .1C .1-D .279.设x x g e x f x sin )(,)(==,则=)]('[x g f ( )A .x e sinB .x e cos -C .x e cosD .x e sin -80.设函数)(x f 在点0x 处可导,且2)('0=x f ,则hx f h x f h )()21(lim 000--→等于( )81.A .1-B .2C .1D .21-B .81.设)(x f 在a x =处可导,则xx a f x a f x )()(lim--+→=( )A .)('a fB .)('2a fC .0D .)2('a f 82.设)(x f 在2=x 处可导,且2)2('=f ,则=--+→hh f h f h )2()2(lim 0( )A .4B .0C .2D .383.设函数)3)(2)(1()(---=x x x x x f ,则)0('f 等于( ) A .0 B .6- C .1 D .3 84.设)(x f 在0=x 处可导,且1)0('=f ,则=--→hh f h f h )()(lim 0( )A .1B .0C .2D .3 85.设函数)(x f 在0x 处可导,则0lim→h hx f f )()h - x (00-( )A .与0x ,h 都有关B .仅与0x 有关,而与h 无关C .仅与h 有关,而与0x 无关D .与0x ,h 都无关86.设)(x f 在1=x 处可导,且21)1()21(lim0=--→h f h f h ,则=)1('f ( )A . 21B . 21-C . 41D .41-87.设==-)0('')(2f e x f x 则( )A .1-B .1C .2-D .2 88.导数)'(log x a 等于( )A .a x ln 1B .a x ln 1C .x xa log 1 D .x 189.若),1()2(249102+-++=x x x x y 则)29(y =( )A .30B .29!C .0D .30×20×10 90.设',)(',)()(y x f e e f y x f x 则存在且==( )A .)()()()('x f x x f x e e f e e f +B .)(')(')(x f e e f x f x ⋅C .)(')()(')()(x f e e f e e f x f x x f x x ⋅++D .)()('x f x e e f 91.设=---=)0('),100()2)(1()(f x x x x x f 则 ( )A .100B .100!C .!100-D .100- 92.若==',y x y x 则( )A .1-⋅x x xB .x x x lnC .不可导D .)ln 1(x x x +93.处的导数是在点22)(=-=x x x f ( )A .1B .0C .1-D .不存在94.设==-',)2(y x y x 则( )A .)1()2(x x x +--B .2ln )2(x x -C .)2ln 21()2(x x x +- D .)2ln 1()2(x x x +-- 95.设函数)(x f 在区间],[b a 上连续,且,0)()(<b f a f 则 ( )A .)(x f 在),(b a 内必有最大值或最小值B .)(x f 在),(b a 内存在唯一的0)(,=ξξf 使C .)(x f 在),(b a 内至少存在一个0)(,=ξξf 使D .)(x f 在),(b a 内存在唯一的0)(',=ξξf 使96.设,)()(x g x f y =则=dx dy ( ) A .])()(')()('[2x g x g x f x f y - B .])(1)(1[2x g x f y - C .)()('21x g x f y ⋅ D .)()('2x g x f y ⋅ 97.若函数)(x f 在区间)b a,(内可导,则下列选项中不正确的是( )A .若在)b a,(内0)('>x f ,则)(x f 在)b a,(内单调增加B .若在)b a,(内0)('<x f ,则)(x f 在)b a,(内单调减少C .若在)b a,(内0)('≥x f ,则)(x f 在)b a,(内单调增加D .)(x f 在区间)b a,(内每一点处的导数都存在98.若)(y x f =在点0x 处导数存在,则函数曲线在点))(,(00x f x 处的切线的斜率为( )A .)('0x fB .)(0x fC .0D .199.设函数)(y x f =为可导函数,其曲线的切线方程的斜率为1k ,法线方程的斜率为2k ,则1k 与2k 的关系为( )A .211k k = B .121-=⋅k k C .121=⋅k k D .021=⋅k k 100.设0x 为函数)(x f 在区间()b a ,上的一个极小值点,则对于区间()b a ,上的任何点x ,下列说法正确的是( )A .)()(0x f x f >B .)()(0x f x f <C .)()(0x f x f ->D .)()(0x f x f -<专升本高等数学综合练习题参考答案1.B 2.C 3.C4.B 在偶次根式中,被开方式必须大于等于零,所以有40x -≥且20x -≥,解得24x ≤≤,即定义域为[2,4].5.A 由奇偶性定义,因为33()2()3sin()23sin ()f x x x x x f x -=---=-+=-,所以3()23sin f x x x=-是奇函数.6.解:令t x -=1,则tt t t t f 21212211)(--=---+=,所以x x x f 212)(--= ,故选D 7.解:选D 8. 解:选D 9. 解:选B 10.解:选C 11. 解:110≤+≤x ,所以01≤≤-x ,故选B12. 解:选C 13. 解:选B 14. 解:选B 15.解:选B 16. 解:)(x f 的定义域为)4,1[-,选D17.解:根据奇函数的定义知选C 18. 解:选C 19. 解:选C20.解:因为函数)1,0(log ≠>==a a x y a y a x 与互为反函数,故它们的图形关于直线x y =轴对称,选C 21.A 22.D23.解:这是00型未定式ln 1l 1lim lim x e x e x x e x e→→-==-,故选B . 24.解:这是∞∞型未定式 22csc ln cot sin cot lim lim lim lim 11ln sin cos sin cos x x x x xx x x x x x x x x xx→→→→-==-⋅=-=-++++0000 故选D .25.解:因为2sin lim 20=+→x x b ax x 所以0)(lim 20=+→b ax x ,得0=b ,2sin lim 20=→x x ax x 所以2=a ,故选A 26.解:b b b b b a b b n n n n n n n n n ==+≤+≤=2选B27.解:选D28.解:因为∞→x lim 2121lim 21sin==∞→x x x x x ,故选B 29.解:n m nx mx nx mx x x ==→→00lim sin sin lim 故选A 30.解:因为1tan lim 230=+→x x b ax x 所以0)(lim 20=+→b ax x ,得0=b ,1tan lim 230=→x x ax x ,所以1=a ,故选B 31.解:1cos 1cos 1lim cos cos lim =+-=+-∞→∞→x x x xx x x x x x ,选A32.解:因为01lim )(lim 00=-=++→→)(x x x e x f ,11sin lim )(lim 00=+=--→→)(x x f x x 所以)(lim 0x f x →不存在,故选D 33.解:41414010])41(lim [)41(lim e x x x x x x =+=+→→,选D 34.解:极限0sin lim cotx lnx - lim )1(lim 200tan 0===+++→→→xx x x x x x ,选C 35.解:110sin 11sin lim 0-=-=⎪⎭⎫ ⎝⎛-→x x x x x ,选A 36.解:kkx x kx x x x 11lim 1sin lim ==∞→∞→选B 37.解:1sin lim 2=-→x x π,选B 38.解:选A 39. 解:选D40.解:06lim 21=++→ax x x ,7-=a ,选B 41.解:2),2(lim tan lim 00=+=-+→→a x xax x x ,选C 42.解:根据无穷小量的定义知:以零为极限的函数是无穷小量,故选C 43.解:因为22lim )2sin(lim 2020=+=+→→xx x x x x x x ,故选C 44.解:因为11ln(lim 0=+→xx x ),故选B 45.解:因为33lim )3tan(lim 2020=+=+→→xx x x x x x x ,故选C 46.解:因为21)1(21lim 1)1(21lim 11=++=-+-→→x x x x xx x ,故选C 47.解:因为021lim 11lim 00==-+++→→xx x x a x a x ,所以1>a ,故选A 48.解:因为02tan lim 20=→x x x ,故选D 49.解:由书中定理知选C50.解:因为01cos 1lim =∞→xx x ,故选C 51.解:因为6ln 13ln 32ln 2lim 232lim 00=+=-+→→x x x x x x x ,选B 52.解:选A53.解:1sin )cos 1(2lim 20=-→xx x ,选C54.解:因为1)(lim =+∞→x f x ,选A 55.解:选A56.解:0sec 1sin lim0=+→xx x ,选C 57.解:选C58.解:,11sin lim 20=+→xx x x x 选D 59.解:根据连续的定义知选B60.C61.解:选A62.解:选A 63.解:)0(2)(lim 0f x f x ≠=+→π, )0(2)(lim 0f x f x =-=-→π,选B64.解:选A65.解:因为21)1)(1(lim 11lim 21=-+-=--++→→x x x x x x x ,21)1)(1(lim 11lim 21-=-+--=----→→x x x x x x x , 选A66.解:因为)0(1)(lim 0f x f x ==+→,又)0(1)(lim 0f x f x ==-→,所以)(x f 在0=x 点连续, 但111lim )0()(lim )0('00=-+=-=--→→-xx x f x f f x x , 011lim )0()(lim )0('200=-+=-=++→→+xx x f x f f x x 所以)(x f 在0=x 点不可导,选C 67.解:选C68.解:因为)0(1)(lim 0f x f x ≠=+→,又)0(1)(lim 0f x f x ≠=-→,所以)(x f 在0=x 点不连续,从而在0=x 处不可导,但当0→x 时,极限存在,选B69.解:选B70.解:313lim )(-=-=∞→nxnx x f x ,选A 71.解:)0(2111lim 0f x x x ≠=-+→,选A 72.解:选C73.解:因为0)11cot (lim )(lim 211=-+=++→→x arc x x f x x , π=-+=--→→)11cot (lim )(lim 211x arc x x f x x 故选B 74.解:选D75.解:因为2lim ,lim 0-=∞=∞→→y y x x ,曲线既有水平渐近线2-=y ,又有垂直渐近线0=x ,选C 76.解:因为11sin lim =+∞→xx x ,所以有水平渐近线1=y ,但无铅直渐近线,选A 77.D 78.C 解:e cos e sin x x y x x '=-,(0)101y '=-=.选C .79.C 解:x x g cos )('=,所以x e x g f cos )]('[=,故选C .80.解:=--→h x f h x f h )()21(lim 000 1)('21)21(21)()21(lim 0000-=-=----→x f h x f h x f h ,选C 81.解:)('2])()()()([lim )()(lim 00a f xa f x a f x a f x a f x x a f x a f x x =---+-+=--+→→,选B 82.解:因为=--+→h h f h f h )2()2(lim 0 +-+→h f h f h )2()2([lim 0 ])2()2(hf h f ---=)2('2f ,故选A 83.解:)0('f 6)3)(2)(1(lim )0()(lim 00-=---=-=→→xx x x x x f x f x x ,故选B 84.解:因为=--→h h f h f h )()(lim 0 +-→h f h f h )0()([lim 0 ])0()(hf h f ---=)0('2f ,故选C 85.解:因为0lim →h )(')()h - x (000x f hx f f -=-,故选B 86.解:因为=--→h f h f h )1()21(lim 0 21)1('222)1()21(lim 0=-=----→f h f h f h )( ,故选D 87.解:222242)('',2)('x x x e x e x f xe x f ---+-=-=,2)0(''-=f 选C88.解:选B 89.解:01282829.....a x a x a x y ++++=,所以!29)29(=y ,选B90.解:)(')()('')()(x f e e f e e f y x f x x f x x ⋅+=+,选C91.解:!100)100()2)(1(lim )0()(lim )0('00=---=-=→→xx x x x x f x f f x x ,选B 92.解:)'('ln x x e y =)ln 1(x x x +=,选D93.解:,1202lim 2)2()(lim )2('22=---=--=++→→+x x x f x f f x x ,1202lim 2)2()(lim )2('22-=---=--=--→→-x x x f x f f x x 选D 94.解:[]]1)2ln([)2('')2ln(--==--x x e y x x x ,选D95.解:选C 96.解:])()(')()('[21,)](ln )([ln 21x g x g x f x f y y e y x g x f -⋅='=-,选A 97.C 98.A 99.B 100.A。
专升本高数考试题及答案
![专升本高数考试题及答案](https://img.taocdn.com/s3/m/6c66b07ffe00bed5b9f3f90f76c66137ef064f73.png)
专升本高数考试题及答案一、单项选择题(每题2分,共10分)1. 函数f(x)=x^2-4x+3的零点个数是()。
A. 0个B. 1个C. 2个D. 3个答案:C2. 极限lim(x→0) (sin x)/x等于()。
A. 0B. 1C. πD. 2答案:B3. 以下哪个函数是奇函数?()A. y=x^2B. y=x^3C. y=x^4D. y=x答案:B4. 曲线y=2x-x^2在点(1,1)处的切线斜率是()。
A. 1B. -1C. 0D. 2答案:A5. 以下哪个级数是收敛的?()A. 1+1/2+1/3+...B. 1-1/2+1/3-1/4+...C. 1+1/4+1/9+...D. 1/2+1/4+1/8+...答案:C二、填空题(每题3分,共15分)6. 微分方程dy/dx=2x的通解是y=_________。
答案:x^2+C7. 函数f(x)=x^3-3x在x=1处的导数是_________。
答案:08. 定积分∫_0^1 x dx的值是_________。
答案:1/29. 曲线y=x^2与直线y=4x相切的切点坐标是_________。
答案:(4,16)10. 函数f(x)=e^x的原函数是_________。
答案:e^x+C三、计算题(每题10分,共20分)11. 计算定积分∫_0^π/2 sin x dx。
答案:112. 求函数f(x)=x^2-6x+8在区间[2,4]上的定积分。
答案:-4四、证明题(每题15分,共30分)13. 证明:函数f(x)=x^3在R上是增函数。
答案:略14. 证明:对于任意正实数a和b,有a^2+b^2≥2ab。
答案:略结束语:以上为本次专升本高数考试的试题及答案,希望同学们通过本次考试能够检验自己的学习成果,查漏补缺,为未来的学习打下坚实的基础。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
全国教师教育网络联盟入学联考(专科起点升本科)高等数学备考试题库2007秋一、填空题。
(本题共60小题,把答案填在题中横线上。
)1.函数)1lg(2x x y -+=的定义域为_______________。
2.设x x x f 4)1(2+=+,则=)(x f _____________________。
3.设cos arcsin y x x=-,则)0(y '=_____________________。
4.设,sin x e y = 则=dy _______________。
5.曲线xx y 1-=在点)0,1(-处的切线斜率为_______________。
6.函数x x x f 2ln )(=的极小值为__________,极大值为_________。
7.⎰=_____________5cos xdx 。
8.20sin d x x π=⎰________________。
9.设y x z = , 则=∂∂x z ____________。
10.交换二次积分次序1220010(,)(,)y y dy f x y dx dy f x y dx -+⎰⎰⎰⎰=_________________。
11.函数1142-+-=x x y 的定义域为____________________。
12.设()1f x x =+,则(())f f x = 。
13.设23sin x y =,则=dx dy 。
14.d dx e x x =323 。
15.曲线3x y =在21=x 处的斜率是_________。
16.函数362)(3+-=x x x f 的极小值为_______________,极大值为_____________。
17.⎰=dx e x 2 。
18. =⎰dx xx e 12ln _________________。
19.设x y z =,则yz ∂∂= 。
20. 交换二次积分的次序⎰⎰=ydx y x f dy 010),( 。
21.函数242--=x x y 的定义域为_______________。
22.设6)(2+=x x x f ,则=⎪⎭⎫ ⎝⎛x f 1________________。
23.设x x x y cos )1ln(2++=,则=dy __________________。
24.设)13sin(2+=x y ,则=dy 。
25.曲线1y x=-在点(1,-1)处的切线斜率是__________。
26.函数31292)(23-+-=x x x x f 的单调递减区间为________________。
27.⎰=+-dx e ex x )(33________________。
28.20cos3xdx π⎰=_______________。
29.设y x xy z ln +=,则=∂∂xz 。
30.交换二次积分次序⎰⎰⎰⎰-=+10203130),(),(y y dx y x f dy dx y x f dy 。
31.设0=-+xy e y x ,则d d y x=__________________。
32. 设()1f x x =+,则)sin (2x f -=________________。
33.设2ln(4)xy x e -=-+,则(3)y '_____________________。
34. 设x y 3sin =,则=dy _____________________。
35.=--→32111lim x x x _____________________。
36. 函数x x x f 3)(3-=的极小值为_____________,极大值为___________。
37. dx xe x ⎰2= 。
38. 232||d x x -=⎰______________________。
39.设xy z ln =,则=∂∂x z _______________. 40. 交换二次积分次序 ⎰⎰=2010),(x dy y x f dx 。
41.函数2lg(2)y x =-的定义域为____________。
42.设1)(+=x x x f ,则=+⎪⎭⎫ ⎝⎛)(1x f x f ________________。
43.设()2sin )(2-=x x x f ,则=')2(f 。
44.设x e y cos =,则='y 。
45.xx x 11lim 20-+→=____________________。
46.函数x e x x f -=2)(的极小值为 ,极大值为 。
47.=⎰xdx x 2cos sin 。
48.=⎰dx x 203 。
49.设)ln(32y x z +=,则=∂∂yz _______________。
50.交换二次积分的次序⎰⎰-x xdy y x f dx3220),(=___________________。
51.设)(x f 的定义域为[]1,0,则)12(-x f 的定义域为___________________。
52.设1)(+=x x f , 则=+)1(x f _______________。
53.设 y =xx x 12++ , 则=')1(y 。
54.设2arctan y x =,则=dy __________________。
55.设0sin 21=+-y y x ,则d d y x = 。
56. =-→x x x 111lim。
57.sin(1)x dx -⎰= ________________。
58.=+⎰dx e e x x101 。
59.设,sin cos y e z x =则x z ∂∂= 。
60.交换二次积分次序=+⎰⎰⎰⎰-dy y x f dx dy y x f dx xx ),(),(1002120 。
二、计算题。
(本大题共60小题。
)1. 若函数⎩⎨⎧=<≥+0,0,cos 12)(x ke x x x x f 在点0=x 处连续,求k 的值。
2. 求x x x ⎪⎭⎫ ⎝⎛+∞→51lim 。
3. 求133lim 22451--+-→x x x x x 。
4. 设),ln(22a x x y -+= (a >0), 求y '。
5. 求由方程 0=-+xy e y x 所确定的函数)(x f y =的导数。
6. 求dx x ⎰2ln 。
7. 求⎰+4011dx x 。
8. 设,ln 22y x z +=求22)()(y z x z ∂∂+∂∂。
9. 求xydxdy D⎰⎰,其中D 为x 轴、y 轴和直线1=+y x 围成的闭区域。
10.设由z e yz x y x =-++2222确定(,)z z x y =, 求yz x z ∂∂∂∂,。
11.设2,1ln(1),1f(), ()1,11x x x x x g x x x <-⎧⎧-<⎪⎪==⎨≥≥-⎪⎩, 求f()()x g x +。
12. 求 2120lim x x e x → 。
13.求极限lim f()d ,x a x a x t t x a→-⎰其中f()x 连续。
14.求曲线332x y =在点(1,32)处的切线方程。
15.求由方程0sin 21=+-y y x 所确定的函数)(x f y =的导数。
16.求 ⎰xdx arctan 。
17.求⎰+211ln e x x dx18.设),sin(y x x z +=求yz x z ∂∂∂∂,。
19.求22()Dx y dxdy +⎰⎰,:11,11D x y -≤≤-≤≤ 。
20.求⎰⎰+→xx x dtt t t dt t 0020)sin (lim 。
21.判断函数⎪⎩⎪⎨⎧=≠-=-0,1cos 0,12)(x x xx x f 在0=x 处是否连续。
22.求x x x x )1212(lim -+∞→。
23.求 )111(lim 0--→x x e x 。
24.设x e y x2sin 3-=, 求y '。
25.求由方程0322=-+axy y x 所确定的函数)(x f y =的导数。
26.求⎰+dx x x )1ln(2。
27. 设1,01f(),101xx x x x e ⎧≥⎪⎪+=⎨⎪<⎪+⎩ 求 2 0f(1)d x x -⎰。
28.设),ln(22y x z +=求y z x z ∂∂∂∂,。
29.计算dxdy xy D⎰⎰2,其中{}11,1:≤≤-≤≤-x y x D 。
30.在曲线()222-=x x y 上,哪一点的切线与横轴平行?31. 若函数⎪⎩⎪⎨⎧=≠=+0,2sin 0,)(x x x x x a x f 在点0x =处连续,求a 的值。
32.求221lim sin x x x →∞。
33. 求11lim 31--→x x x 。
34. 求函数 )1ln(x x y +-=的极值。
35. 设),(y x f z =由方程01=---xyz e xz 确定,求yz ∂∂。
36. 求ln(1)x dx +⎰。
37.求xdx x ⎰203cos sin π。
38. 设 y e z x sin =,求 y z x z ∂∂∂∂,。
39. 求 dxdy yeD xy ⎰⎰ D : 11≤≤-x , 10≤≤y 。
40.求曲线x x y ln =的平行于直线0322=+-y x 的切线方程。
41.若函数⎩⎨⎧>-≤+=1,,1,)(2x x b x a x x f 在点1=x 处连续,求常数b a ,应满足的关系式。
42.求xx x 11lim 20-+→。
43.求)1211(lim 21---→x x x 。
44.求曲线3x y =在(1,1)处的切线方程。
45.设),(y x f z =由方程01=-+xyz e xyz 确定,求xz y z ∂∂+∂∂。
46.求dx x e x x )(2⎰+。
47.求dx xe x ⎰102。
48.设,ln x y z =求y z x z ∂∂∂∂,。
49.求dxdy e D x ⎰⎰-2, 其中D 由1,,0===x x y y 所围成的区域。
50.设11-+=x x e e y ,求'y . 51确定函数31292)(23-+-=x x x x f 的单调区间。
52.求430sin sin lim x x x →. 53.求x x xx 3)2(lim -∞→。
54.在曲线x y =上求一点0M ,使过0M 的切线平行于直线052=+-y x ,并求过点0M 的曲线的切线方程。