相交线与平行线综合探究型题-(1)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016年七年级下学期期末备考之《相交线与平行线综合探究型题》

难得一见的数学精品题,把相交线这简单的问题推向极致,结合阅读理解,充分体现了图形处理技能和几何推理能力。诚邀所教学生,一展材华,共克对关,所解题目,如属精品,在班群推荐。时间5月13日至期末

一.解答题(共16小题)

1.(2014春•栖霞市期末)如图1,直线MN与直线AB、CD分别交于点E、F,∠1与∠2互补.

(1)试判断直线AB与直线CD的位置关系,并说明理由;

(2)如图2,∠BEF与∠EFD的角平分线交于点P,EP与CD交于点G,点H是MN上一点,且GH⊥EG,求证:PF∥GH;

(3)如图3,在(2)的条件下,连接PH,K是GH上一点使∠PHK=∠HPK,作PQ平分∠EPK,问∠HPQ的大小是否发生变化?若不变,请求出其值;若变化,说明理由.

2.(2014春•西城区期中)已知,BC∥OA,∠B=∠A=100°,试回答下列问题:

(1)如图①,求证:OB∥AC.

(2)如图②,若点E、F在线段BC上,且满足∠FOC=∠AOC,并且OE平分∠BOF.则∠EOC的度数等于;(在横线上填上答案即可).

(3)在(2)的条件下,若平行移动AC,如图③,那么∠OCB:∠OFB的值是否随之发生变化?若变化,试说明理由;若不变,求出这个比值.

(4)在(3)的条件下,如果平行移动AC的过程中,若使∠OEB=∠OCA,此时∠OCA度数等于.(在横线上填上答案即可).

3.(2014春•渝北区校级期中)如图,已知两条射线OM∥CN,动线段AB的两个端点A、B分别在射线OM、CN上,且∠C=∠OAB=108°,F在线段CB上,OB平分∠AOF,OE

平分∠COF.

(1)请在图中找出与∠AOC相等的角,并说明理由;

(2)若平行移动AB,那么∠OBC与∠OFC的度数比是否随着AB位置的变化而发生变化?若变化,找出变化规律;若不变,求出这个比值;

(3)在平行移动AB的过程中,是否存在某种情况,使∠OEC=2∠OBA?若存在,请求出∠OBA度数;若不存在,说明理由.

4.(2014春•新洲区期中)已知E,F分别是AB、CD上的动点,P也为一动点.

(1)如图1,若AB∥CD,求证:∠P=∠BEP+∠PFD;

(2)如图2,若∠P=∠PFD﹣∠BEP,求证:AB∥CD;

(3)如图3,AB∥CD,移动E,F使得∠EPF=90°,作∠PEG=∠BEP,求的值.

5.(2014春•江阴市期中)(1)如图1,AC平分∠DAB,∠1=∠2,试说明AB与CD的位置关系,并予以证明;

(2)如图2,在(1)的结论下,AB的下方点P满足∠ABP=30°,G是CD上任一点,PQ 平分∠BPG,PQ∥GN,GM平分∠DGP,下列结论:①∠DGP﹣∠MGN的值不变;②∠MGN 的度数不变.可以证明,只有一个是正确的,请你作出正确的选择并求值.

6.(2013春•甘井子区期末)已知:∠A=(90+x)°,∠B=(90﹣x)°,∠CED=90°,射线EF∥AC,2∠C﹣∠D=m.

(1)判断AC与BD的位置关系,并说明理由.

(2)如图1,当m=30°时,求∠C、∠D的度数.

(3)如图2,求∠C、∠D的度数(用含m的代数式表示).

7.(2013春•金平区校级期末)(1)如图(1),EF⊥GF,垂足为F,∠AEF=150°,∠DGF=60°.试判断AB和CD的位置关系,并说明理由.

(2)如图(2),AB∥DE,∠ABC=70°,∠CDE=147°,∠C=.(直接给出答案)

(3)如图(3),CD∥BE,则∠2+∠3﹣∠1=.(直接给出答案)

(4)如图(4),AB∥CD,∠ABE=∠DCF,求证:BE∥CF.

8.(2013春•江岸区校级期中)如图1,点E在直线BH、DC之间,点A为BH上一点,且AE⊥CE,∠DCE﹣∠HAE=90°.

(1)求证:BH∥CD.

(2)如图2:直线AF交DC于F,AM平分∠EAF,AN平分∠BAE.试探究∠MAN,∠AFG 的数量关系.

9.(2013春•江岸区期中)如图,直线EF∥GH,点B、A分别在直线EF、GH上,连接AB,在AB左侧作三角形ABC,其中∠ACB=90°,且∠DAB=∠BAC,直线BD平分∠FBC 交直线GH于D.

(1)若点C恰在EF上,如图1,则∠DBA=.

(2)将A点向左移动,其它条件不变,如图2,则(1)中的结论还成立吗?若成立,证明你的结论;若不成立,说明你的理由.

(3)若将题目条件“∠ACB=90°”,改为:“∠ACB=120°”,其它条件不变,那么

∠DBA=.(直接写出结果,不必证明)

10.(2013春•相城区期中)平面的两条直线有相交和平行两种位置关系.

(1)如图1,若AB∥CD,点P在AB、CD外部,求证:∠BPD=∠B﹣∠D;

(2)将点P移到AB、CD部,如图2,(1)中的结论是否成立?若成立,说明理由:若不成立,则∠BPD、∠B、∠D之间有何数量关系?不必说明理由;

(3)在图2中,将直线AB绕点B逆时针方向旋转一定角度交直线CD于点Q,如图3,则∠BPD、∠B、∠D、∠BQD之间有何数量关系?并证明你的结论;

(4)在图4中,若∠A+∠B+∠C+∠D+∠E+∠F+∠G=n×90°,则n=.

11.(2013春•洪山区期中)在平面直角坐标系中,D(0,﹣3),M(4,﹣3),直角三角形ABC的边与x轴分别交于O、G两点,与直线DM分别交于E、F点.

(1)将直角三角形ABC如图1位置摆放,请写出∠CEF与∠AOG之间的等量关

系:.

(2)将直角三角形ABC如图2位置摆放,N为AC上一点,∠NED+∠CEF=180°,请写出∠NEF与∠AOG之间的等量关系,并说明理由.

12.(2013春•新洲区月考)(1)如图1,AC平分∠DAB,∠1=∠2,试说明AB与CD的位置关系,并予以证明;

(2)如图2,在(1)的条件下,AB的下方两点E,F满足∠EBF=2∠ABF,CF平分∠DCE,若∠F的2倍与∠E的补角的和为190°,求∠ABE的度数;

(3)如图3,在前面的条件下,若P是BE上一点,G是CD上任一点,PQ平分∠BPG,PQ∥GN,GM平分∠DGP,下列结论:①∠DGP﹣∠MGN的值不变;②∠MGN的度数

相关文档
最新文档