2013年考研数学一试题及答案解析
2013年考研数一真题答案解析
考点:矩阵分块、等价向量组及逆矩阵的理论.
解 将矩阵 A, C 按列分块,令 A (a1, a2,…, an ),C (c1, c2,…, cn ),
b11, b12 …b1n
由于
AB
C
,故(
a1,
a2
…an
)
b21
,
b22
……
…b2
n
=( c1, c2 …cn )
注:此题如果作为解答题出现,使用洛必达法则来讨论严格地说是错误的.
2.曲面 x2 cos(xy) yz x 0 在点 (0,1, 1) 处的切平面方程为( )
A. x y z 2 B. x y z 0 C. x 2y z 3 D. x y z 0
解 当 x 0 时, y 1,将方程两端对 x 求导,有 y '1 (1 y)ex(1y) ,故 y '(0) 1,从而
lim n(
f
(1) 1)
lim
f
(1) n
f
(0)
f
'(0)
y '(0)
1
n
n
n
1
n
典型错误:没有发现 lim n( f (1) 1) f '(0)
n
n
10.已知 y1=e3x –xe2x,y2=ex –xe2x,y3= –xe2x 是某二阶常系数非齐次线性微分方程的 3 个解, 则该方程的通解 y= 。
答: C1ex C2e3x xe2x 考点:线性常微分方程解的结构.
解 由题意, y2 y3 ex 为该二阶常系数非齐次线性微分方程所对应的齐次方程的一个解,
2013年考研数学一真题及答案解析(全国硕士研究生入学统一考试数学一试题)
2013年全国硕士研究生入学统一考试数学一试题一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1)已知极限0arctan limkx x xc x →-=,其中,c k 为常数,且0c ≠,则( )(A )12,2k c ==-(B )12,2k c ==(C )13,3k c ==-(D )13,3k c ==(2)曲面2cos()0x xy yz x +++=在点(0,1,1)-处的切平面方程为( ) (A )2x y z -+=- (B )2x y z ++= (C )23x y z -+=- (D )0x y z --=(3)设1()2f x x =-,102()sin (1,2,...)n b f x n xdx n π==⎰,令1()sin n n S x b n x π∞==∑,则9(4S -=( ) (A )34 (B )14(C )14-(D )34-(4)设222222221234:1,:2,:22,:22,l x y l x y l x y l x y +=+=+=+=为四条逆时针的平面曲线,记33((2)(1,2,3,4)63ii l y x I y dx x dy i =++-=⎰Ñ,则()i MAX I =( )(A )1I (B )2I (C )3I (D )3I(5)设矩阵A,B,C 均为n 阶矩阵,若,B AB C =则可逆,则 (A )矩阵C 的行向量组与矩阵A 的行向量组等价 (B )矩阵C 的列向量组与矩阵A 的列向量组等价 (C )矩阵C 的行向量组与矩阵B 的行向量组等价 (D )矩阵C 的行向量组与矩阵B 的列向量组等价(6)矩阵1111a a b a a ⎛⎫ ⎪ ⎪ ⎪⎝⎭与2000b 0000⎛⎫⎪⎪ ⎪⎝⎭相似的充分必要条件为 (A )a 0,b 2== (B )为任意常数b a ,0= (C )0,2==b a(D )为任意常数b a ,2=(7)设123X X X ,,是随机变量,且22123~N(0,1)~N(~(5,3)X N ,X 0,2),X ,{22}(1,2,3),j j P P X j =-≤≤=则( )(A )123P P P >> (B )213P P P >> (C )312P P P >> (D )132P P P >>(8)设随机变量~(),~(1,),X t n Y F n 给定(00.5),a a <<常数c 满足{}P X c a >=,则2{}P Y c >=( ) (A )α (B )1α-(C )2α (D )12α-二、填空题:9-14小题,每小题4分,共24分,请将答案写在答题纸...指定位置上. (9)设函数()f x 由方程(1)x y y x e --=确定,则1lim (()1)n n f n→∞-= .(10)已知321xx y exe =-,22x x y e xe =-,23x y xe =-是某二阶常系数非齐次线性微分方程的3个解,该方程的通解为y = .(11)设sin sin cos x t y t t t=⎧⎨=+⎩(t 为参数),则224t d y dx π== .(12)21ln (1)xdx x +∞=+⎰.(13)设ij A (a )=是三阶非零矩阵,|A |为A 的行列式,ij A 为ij a 的代数余子式,若ij ij a A 0(i,j 1,2,3),____A +===则(14)设随机变量Y 服从参数为1的指数分布,a 为常数且大于零,则{1|}P Y a Y a ≤+>=________。
2013考研数学一数学二数学三(真题及答案)完美打印word版
2013考研数学(一、二、三)真题及答案解析第一部分:数一真题及答案解析1.已知极限arctan limkx x xc x →-=,其中k ,c 为常数,且0c ≠,则() A.12,2k c ==-B. 12,2k c ==C. 13,3k c ==-D. 13,3k c ==答案:D解析:用洛必达法则221121000011arctan 1111lim lim lim lim (1)k k k k x x x x x x x x x cx kx kx x k x ---→→→→--+-+====+因此112,k c k -==,即13,3k c ==2.曲面2cos()0x xy yz x +++=在点(0,1,1)-处的切平面方程为( ) A. 2x y z -+=- B. 0x y z ++= C. 23x y z -+=- D. 0x y z --= 答案:A 解析:法向量(0,1,1)(,,)(2sin()1,sin(),),|(1,1,1)x y z n F F F x y xy x xy z y n -==-+-+=-切平面的方程是:1(0)1(1)1(1)0x y z ---++=,即2x y z -+=-。
3.设1()2f x x =-,102()sin (1,2,)n b f x n xdx n π==⎰ ,令1()s i n n n S x b n x π∞==∑,则( )A .34 B. 14 C. 14- D. 34-答案:C解析:根据题意,将函数在[1,1]-展开成傅里叶级数(只含有正弦,不含余弦),因此将函数进行奇延拓:1||,(0,1)2()1||,(1,0)2x x f x x x ⎧-∈⎪⎪=⎨⎪-+∈-⎪⎩,它的傅里叶级数为()s x ,它是以2为周期的,则当(1,1)x ∈-且()f x 在x 处连续时,()()s x f x =。
91111()()()()44444s s s f -=-=-=-=-。
考研数一真题2013
考研数一真题20132013年的考研数学一真题涵盖了多个知识点和难度级别,本文将按照真题的顺序逐一分析解答。
首先,我们来看第一道选择题。
选择题1:已知数列{an}的通项公式为an = (-1)^(n-1)*(2n-1),n∈N+。
则数列{a1+a2+...+an}的和为()。
A. -nB. -2nC. 2nD. n解析:针对这道题,我们需要根据给定的通项公式求出前n项的和。
可以通过观察数列的规律得出:a1 = -1a1 + a2 = -1 + 3 = 2a1 + a2 + a3 = -1 + 3 - 5 = -3...可以总结出,前n项的和为(-1)^(n-1)*(2n-1)。
因此,正确答案为C选项。
接下来,我们来看第二道选择题。
选择题2:设函数f(x) = x^2 - 2ax - a + 2,g(x) = x + a - 2的图像分别为C₁,C₂,则下列结论错误的是()。
A. 对任意实数a,C₁与C₂有两个交点。
B. 对任意实数a,C₁与C₂有一个交点。
C. 当a = -1时,C₁与C₂没有交点。
D. 当a = 0时,C₁与C₂没有交点。
解析:要回答这道题,我们需要根据给定的函数来分析两个图像的交点情况。
首先,我们求解f(x) = g(x)的解。
将f(x)和g(x)代入等式中得到:x^2 - 2ax - a + 2 = x + a - 2整理可得:x^2 - 2ax - 2x = -2a - a + 4x^2 - (2a + 2)x + 3a + 4 = 0根据二次方程的求根公式,我们可以求出x的解。
当判别式为0时,代表两个图像有且仅有一个交点,当判别式大于0时,代表两个图像有两个交点,当判别式小于0时,代表两个图像没有交点。
因此,当判别式大于0时,选择A项和B项是正确的,当判别式小于0时,选择C项和D项是正确的。
而这道题要求我们选择错误的结论,因此,正确答案为C选项。
接下来,我们来看第三道选择题。
2013年考研数学一真题及答案全集解析
2013考研数学一真题及答案解析目录第一章总论............................................................. 错误!未定义书签。
1.1项目提要........................................................... 错误!未定义书签。
1.2结论与建议....................................................... 错误!未定义书签。
1.3编制依据 .......................................................... 错误!未定义书签。
第二章项目建设背景与必要性............................. 错误!未定义书签。
2.1项目背景........................................................... 错误!未定义书签。
2.2项目建设必要性 .............................................. 错误!未定义书签。
第三章市场与需求预测......................................... 错误!未定义书签。
3.1优质粮食供求形势分析 .................................. 错误!未定义书签。
3.2本区域市场需求预测 ...................................... 错误!未定义书签。
3.3服务功能 .......................................................... 错误!未定义书签。
3.4市场竞争力和市场风险预测与对策.............. 错误!未定义书签。
2013年考研数学一真题及答案
2013年考研数学一真题及答案2013年的考研数学一科目是众多考生备战考研的重要内容之一。
下面将为大家详细解析该年度的数学一真题,并提供对应的答案,帮助考生更好地复习和备考。
一、选择题1. 设函数f(x)=x^2-3,g(x)=2x+1,若f(g(x))=0,则函数g(f(x))的根是:答案:x=-2,32. 已知整数n,下列命题中正确的是:A. 若n为奇数,则n(n+1)(n+2)为偶数;B. 若n为奇数,则n^2+n为偶数;C. 若n^2+n为偶数,则n为奇数;D. 若n(n+1)(n+2)为偶数,则n为奇数。
答案:B3. 已知复数z满足|z-1+i|=2,则z可能的值为:答案:z=3, -1-i4. 设等差数列{a_n}的公差不为0,若lim(n→∞)(a_n+a_{n+1})=2,则lim(n→∞)a_n的值是:答案:15. 设函数f(x)=x^3-3x+p,若f(x)在区间[-2,2]上有且仅有一个零点,则p的值为:答案:-4二、填空题1. 已知向量a=(1,2,3),b=(4,5,6),则|a+b|的值为:答案:√992. 设随机变量X的概率密度函数为f(x)={k(x^2-x+1), 0<a≤x≤b; 0, 其他},则k的值为:答案:1/(b^2-b-a^2+a)3. 设y=f(x)是定义在R上的奇函数,若f(e^3)=2,则f(ln2)的值为:答案:-24. 设f(x)是定义在[-1,1]上的连续函数,且f(0)=0,当x≠0时,|f(x)|≤x^2,则f(x)的最大值是:答案:15. 设f(x)=a_0+a_1x+a_2x^2+…+a_nx^n,若f(1)=f'(1)=f''(1)=0,则f(0)的值为:答案:0三、解答题1. 已知数列{a_n}的通项公式为a_n=(-1)^{n+1}/n,试求其前n项和S_n。
解答:数列{a_n}的前n项和可以表示为S_n=∑_{k=1}^n a_k,代入通项公式,得到S_n=∑_{k=1}^n (-1)^(k+1)/k。
2013年考研数学一真题及答案解析(完整版)
2013硕士研究生入学考试数学一真题及解析1. 已知极限0arctan lim k x x xc x →-=,其中k ,c 为常数,且0c ≠,则()A. 12,2k c ==-B. 12,2k c ==C. 13,3k c ==-D. 13,3k c ==答案(D )解析:用洛必达法则2221121000011arctan 1111lim lim lim lim (1)k k k k x x x x x x x x x c x kx kx x k x ---→→→→--+-+====+ 因此112,k c k -==,即13,3k c ==2.曲面2cos()0x xy yz x +++=在点(0,1,1)-处的切平面方程为( ) A. 2x y z -+=- B. 0x y z ++= C. 23x y z -+=- D. 0x y z --= 答案(A )解析:法向量(0,1,1)(,,)(2sin()1,sin(),),|(1,1,1)x y z n F F F x y xy x xy z y n -==-+-+=-切平面的方程是:1(0)1(1)1(1)0x y z ---++=,即2x y z -+=-。
3.设1()2f x x =-,102()sin (1,2,)n b f x n xdx n π==⎰ ,令1()s i n n n S x b n x π∞==∑,则( ) A .34 B. 14 C. 14- D. 34- 答案(C )解析:根据题意,将函数在[1,1]-展开成傅里叶级数(只含有正弦,不含余弦),因此将函数进行奇延拓:1||,(0,1)2()1||,(1,0)2x x f x x x ⎧-∈⎪⎪=⎨⎪-+∈-⎪⎩,它的傅里叶级数为()s x ,它是以2为周期的,则当(1,1)x ∈-且()f x 在x 处连续时,()()s x f x =。
91111()()()()44444s s s f -=-=-=-=-。
2013年考研数学一真题与解析完整版
2013硕士研究生入学考试数学一真题及解析来源:文都教育1. 已知极限0arctan limkx x xc x→-=,其中k ,c 为常数,且0c ≠,则()A. 12,2k c ==-B. 12,2k c ==C. 13,3k c ==-D. 13,3k c ==答案(D )解析:用洛必达法则2221121000011arctan 1111limlimlim lim (1)kk k k x x x x x xx x x cx kx kx x k x ---→→→→--+-+====+因此112,k c k-==,即13,3k c ==2.曲面2cos()0x xy yz x +++=在点(0,1,1)-处的切平面方程为( )A. 2x y z -+=-B. 0x y z ++=C. 23x y z -+=-D. 0x y z --=答案(A )解析:法向量(0,1,1)(,,)(2sin()1,sin(),),|(1,1,1)x y z n F F F x y xy x xy z y n -==-+-+=-切平面的方程是:1(0)1(1)1(1)0x y z ---++=,即2x y z -+=-。
3.设1()2f x x =-,102()sin (1,2,)n b f x n xdx n π==⎰,令1()sin n n S x b n x π∞==∑,则( )A .34 B. 14 C. 14- D. 34-答案(C )解析:根据题意,将函数在[1,1]-展开成傅里叶级数(只含有正弦,不含余弦),因此将函数进行奇延拓:1||,(0,1)2()1||,(1,0)2x x f x x x ⎧-∈⎪⎪=⎨⎪-+∈-⎪⎩,它的傅里叶级数为()s x ,它是以2为周期的,则当(1,1)x ∈-且()f x 在x 处连续时,()()s x f x =。
91111()()()()44444s s s f -=-=-=-=-。
2013年考研数学一真题及答案解析
2013考研数学一真题及答案解析目录第一章总论........................................................... 错误!未定义书签。
1.1项目提要......................................................... 错误!未定义书签。
1.2结论与建议..................................................... 错误!未定义书签。
1.3编制依据 ........................................................ 错误!未定义书签。
第二章项目建设背景与必要性........................... 错误!未定义书签。
2.1项目背景......................................................... 错误!未定义书签。
2.2项目建设必要性 ............................................ 错误!未定义书签。
第三章市场与需求预测....................................... 错误!未定义书签。
3.1优质粮食供求形势分析 ................................ 错误!未定义书签。
3.2本区域市场需求预测 .................................... 错误!未定义书签。
3.3服务功能 ........................................................ 错误!未定义书签。
3.4市场竞争力和市场风险预测与对策............ 错误!未定义书签。
第四章项目承担单位情况................................... 错误!未定义书签。
2013年考研数学真题及参考答案(数学一)
⑻ 设随机变量 X t ( n) ,Y F (1, n) ,给定 (0 0.5) ,常数 c 满足 P X c , 则P Y c
2
(
)
(A) (B) 1 (C) 2 (D) 1 2 二、填空题:9~14 小题,每小题 4 分,共 24 分.请将答案写在答题纸 指定位置上. ... ⑼ 设函数 y f ( x) 由方程 y x e ⑽ 已知 y1 e
x3 x y )e 的极值. 3
z 0 , z 2 所围成的立体为 . (Ⅰ)求曲面 的方程; (Ⅱ)求 的形心坐标.
(20) (本题满分 11 分) 设A
1 a 0 1 ,B ,当 a, b 为何值时,存在矩阵 C 使得 AC CA B ,并 1 0 1 b
ቤተ መጻሕፍቲ ባይዱ
(1 x 2
Di
y2 )dxdy . 2
2
1 2 1 y 0 x2 y 2 1 , 所 以 被 积 函 数 在 2 2 1 1 D1 : x 2 y 2 1 内,恒有 f ( x, y ) 0 ;且 x 2 y 2 1 时,有 f ( x, y ) 0 2 2
(0,1, 1)
{1, 1,1} ,
于是切平面方程为 x ( y 1) ( z 1) 0 ,故应选(A). ⑶ 应选(C) . 【分析】本题考查傅里叶级数的收敛定理.先将函数延拓成 ( 1,1) 上的奇函数 F ( x) .对
9 F ( x) 使用傅里叶级数的收敛定理(狄里赫雷定理)得到 S ( ) 的值. 4
(D) a 2, b 为任意常数
N (0,1) , X 2
N (0, 22 ) , X 3
2013年考研数学一真题与解析完整版
2013硕士研究生入学考试数学一真题及解析来源:文都教育1. 已知极限0arctan lim k x x xc x→-=,其中k ,c 为常数,且0c ≠,则() A. 12,2k c ==- B. 12,2k c == C. 13,3k c ==- D. 13,3k c ==答案(D )解析:用洛必达法则2221121000011arctan 1111limlimlim lim (1)kk k k x x x x x xx x x c x kx kx x k x ---→→→→--+-+====+因此112,k c k-==,即13,3k c ==2.曲面2cos()0x xy yz x +++=在点(0,1,1)-处的切平面方程为( ) A. 2x y z -+=- B. 0x y z ++= C. 23x y z -+=- D. 0x y z --= 答案(A )解析:法向量(0,1,1)(,,)(2sin()1,sin(),),|(1,1,1)x y z n F F F x y xy x xy z y n -==-+-+=- 切平面的方程是:1(0)1(1)1(1)0x y z ---++=,即2x y z -+=-。
3.设1()2f x x =-,102()sin (1,2,)n b f x n xdx n π==⎰,令1()sin n n S x b n x π∞==∑,则( )A .34 B. 14 C. 14- D. 34- 答案(C )解析:根据题意,将函数在[1,1]-展开成傅里叶级数(只含有正弦,不含余弦),因此将函数进行奇延拓:1||,(0,1)2()1||,(1,0)2x x f x x x ⎧-∈⎪⎪=⎨⎪-+∈-⎪⎩,它的傅里叶级数为()s x ,它是以2为周期的,则当(1,1)x ∈-且()f x 在x 处连续时,()()s x f x =。
91111()()()()44444s s s f -=-=-=-=-。
2013考研数一真题答案及详细解析
—勹 B = fxy (1,
= e-½'
—勹 C = fyy (1,
= e-½
(1.-f) 因为 A>o,AC — B2 =2e气>O, 所以
是极小值点,极小值为
(-+ !(1, —:片) =
+½)e··½ = -e勹 .
(18) 证 CI)设F(x)= f(x)-.1::, xE[—1,l].
·; f(x) 是奇函数,:. f(O)=0.
解 记A�[�: �'考察矩阵A的特征值为2,b,O的条件.
首先,显然1At�:, 因L是A的特征值.
其次,矩阵A的迹tr(A) =2 -t-b, 因此如果2是矩阵A的特征值,则b就是矩阵A的另一个 特征值于是 “ 充要条件 ” 为2是A的特征值.由
lzE —Al = — a 2-b —a = — 4a 2 =O气=O.
故应选C.
二、填空题
(9) 1
解 把 X = O代入方程有八0)=1 . 方程y-X = exO-y)两端同时对x求导有 f'(工)-1= e[l-f(x)] [1-f(x)-xf'(x)J.
把 X =O代入上式得厂(0)=2 - f(O)=l.
f 又 lim 釭) - ]-= f'(O)=l,
x-o
厂 +厂 1
O
lnx +x)
2
dx=
_
lnx l+x
+=
1
1
dx
=O+ln
x
+=
1 =O — ln_l= ln2
O+x)x
l+x 1
2
(13) -1
2013年考研数学一真题完整版【带答案word版】
2013硕士研究生入学考试数学一真题及解析1. 已知极限0arctan lim k x x xc x →-=,其中k ,c 为常数,且0c ≠,则()A. 12,2k c ==-B. 12,2k c ==C. 13,3k c ==-D. 13,3k c ==答案(D )解析:用洛必达法则2221121000011arctan 1111limlimlim lim (1)kk k k x x x x x xx x x c x kx kx x k x ---→→→→--+-+====+因此112,k c k -==,即13,3k c ==2.曲面2cos()0x xy yz x +++=在点(0,1,1)-处的切平面方程为( ) A. 2x y z -+=- B. 0x y z ++= C. 23x y z -+=- D. 0x y z --= 答案(A )解析:法向量(0,1,1)(,,)(2sin()1,sin(),),|(1,1,1)x y z n F F F x y xy x xy z y n -==-+-+=-切平面的方程是:1(0)1(1)1(1)0x y z ---++=,即2x y z -+=-。
3.设1()2f x x =-,102()sin (1,2,)n b f x n xdx n π==⎰ ,令1()s i n n n S x b n x π∞==∑,则( ) A .34 B. 14 C. 14- D. 34- 答案(C )解析:根据题意,将函数在[1,1]-展开成傅里叶级数(只含有正弦,不含余弦),因此将函数进行奇延拓:1||,(0,1)2()1||,(1,0)2x x f x x x ⎧-∈⎪⎪=⎨⎪-+∈-⎪⎩,它的傅里叶级数为()s x ,它是以2为周期的,则当(1,1)x ∈-且()f x 在x 处连续时,()()s x f x =。
91111()()()()44444s s s f -=-=-=-=-。
2013年考研数一真题答案解析
一、选择题(1) D解用洛必达法则 1 l—x arctanx 1 + x 2 1 + x 2—11X l im· =l im =l i m =—hm =c #-O ,x 丑X, 一-ok x k -lx-0 k x k -l (1 +X z) k x 勺x k -11因此k -1 =Z, 一-c ,即k=3,c -一故应选D.k3CZ) A解F:=zx-ys i n(xy)+L F:=-xs i n(xy)+z, F:=y曲面x 2+c os(xy) + y z十X =0在点(0'1,—1)处的切平面的法向晕n={l ,-1,1},切平面方程为:1• (x—0)—(y—1) + 1• (z + 1)= 0, 即x—y +z --Z故应选A.(3)C解观察到S(x)是f(x)的正弦函数,对J进行奇延拓,其周期为z 故S(x)f(x). 9 1 1 s (-—) =S(--—s -=- 1 144) (4)1(了)=勹一故应选C(4)D解由格林公式得I ,-f (y +f )山+(Zx -�) d y =』(1—x 2-f )心d y'其中D 1:x z+y z冬1,D 2:x 2+y 2�z,D3:f +y 2冬1,yD 口x z+��l.z显然在几内有y y l-x 2 -—>O , 在队外有l -x 2-—<O ,z z又如图有D1C D4 ,D4 C D z 由重积分性质知I1>I1,I4>Iz.y 又D4=几+D4\D 5,几=D5+D3\D 5,在D3\D 5上l -x 2--<0,在D4\D5上z1 2 y-x -—z>O ,2013年(数一)真题答案解析故J4=II (1-x 2—f)dxd y + II (1—X 2 --f )dxd y D5D八D s>13=』(1y —x 2勹)dxdy + I I (1—.亢2飞)dxdy. 故应选D.D5D叭D5(5) B解由千A B =C,那么对矩阵A,C按列分块,有,、`丿,,“` , . . . , 2”, ,1”, ( _ --n nn 12…nb b b ��…�22212…”b b b11112…n b b b) "" , . . . ,2", 1 "( Y1 =b 11a1 +b心+…+b.1a.,即{了:,�b ,,a +b 心+…+b .,a.,r. =b1na1 +b z.az +…+ b n.an. 这说明矩阵C的列向最组r 口rz '…,r. 可由矩阵A的列向量组a1,a2, …, a. 线性表出.又矩阵B可逆,从而A=CB飞那么矩阵A的列向量组也可由矩阵C的列向械组线性表出.由向量组等价的定义可知,应选B .(6) B解记A�[�:�'考察矩阵A的特征值为2,b ,O的条件.首先,显然1At �:,因L是A的特征值.其次,矩阵A的迹t r (A )=2 t -b, 因此如果2是矩阵A的特征值,则b就是矩阵A的另一个特征值于是“充要条件”为2是A的特征值.由lzE—A l=—a 2-b—a =—4a 2 =O 气=O .—l -al因此充要条件为a =O,b为任意实数,故应选B.(7) A解将随机变量义和x3化成标准正态后再比较其大小.P 1 =P {—2�X1�2} =<P (2) -中(—2)'—2X z2Pz=P {-2�X三2}=P {—《—《—}气(1)-<P (-1)'22 2 p3 =P {-2�X3�2} -2—5 x3—5 2-5 =P {3� —3� 2 } =iP (-1)—叶习=<P行)-<P(l )'由右图正态分布曲线下的面积所代表的概率可知P1 > Pz > p 3.故应选A .x7l 3(8)C解当X-t(n)时,X 2-FO,n),又Y-FO,n),故Y与xz同分布.当C > 0时,由t 分布的对称性有P{Y>c 2}=P{X 2>c 2}==P{ X >c}=P{X>cUX<—c}=2P{X>c}=2a.故应选C.二、填空题(9)1解把X =O 代入方程有八0)=1. 方程y -X = e xO -y )两端同时对x 求导有f'(工)-1 = e [l -f(x )] [1-f (x ) -x f'(x ) J . 把X =O 代入上式得厂(0)=2 -f(O) =l.又limf 釭)-]-=f '(O)=l,x-oX1三卢—1]飞巴!(-;;}—l气尸�1nOO)C 1e 立+c z 产-xe红解由常系数非齐次线性微分方程解的性质可得Y 1 -Y 3 = e3x,Y 2 -Y 3 = ex是相应二阶齐次线性微分方程的两个特解.故相应二阶齐次线性微分方程的通解为Y O = C I e 3·x + C 2 e .所以所求非齐次方程的通解可表示为y = C1e x + C 2芒—X e2x•(11)心解•• dxdy· —= cost , -= t c ost ,dt dt. dy tcost•• -= =t,dxcost 叶店)d 2y d dy dt -=--(—)=—一=-1 c!x2 dx cl x clxcostc!t心1从而dx 2,-f =亢=迈.cos—4(12)lnZ解厂l n x2dx = _ l n x += +厂dx =O+l n x1+==O —l n _l =ln 2 1O+x)l+x 1 2 l+x 1 1O+x)x(13) -1解题设条件"a ;;+A ;; = 0 "即A T =—A*'于是A =—[Al'可见A只可能是0或—1.又r(A)= r (A T ) = r (-A *) = r (A 天),则rCA)只可能为3或0.而A为非零矩阵,因此r (A)不能为o ,从而r(A) = 3 , A [ #-0 , [ A [ = -1.或,用特例法.取一个行列式为—1的正交矩阵满足A T=-A勹故应填-1.104)1——e解由于X�E(l),a>O,则由指数分布的分布函数有P{Y冬a+IY>a}=P{Y>a,Y,s;:;a+l } =P{a<Y,s;:;a+l}P {Y >a}1—P{Y冬a}1-e 一(a +])—0-e -")e -a —e -a -1 1 = = =l —e -1 = 1—— l —(1—e -a )-a e e 三、解答题05)解由条件显然有J(l )=O, J'(x)=由分部积分法及换元积分法有『八x)d x =2f J(x)d 左。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
当 a = 0 时,
λ E − A = λ ( λ − 2 )( λ − b ) ,
A 的特征值分别为 2, b, 0 所以 b 为任意常数即可. 故选 B.
(7) 设 X 1 , X 2 , X 3 是随机变量,且 X 1 ~ N (0,1) , X 2 ~ N (0, 2 ) , X 3 ~ N (5,3 ) ,
又因为 A ≠ O ,所以至少有一个 aij ≠ 0 ,所以
A = ai1 Ai1 + ai 2 Ai 2 + ai 3 Ai 3 = − ( ai21 + ai22 + ai23 ) < 0
从而 A = −1. (14) 设随机变量 Y 服从参数为1的指数分布, a 为常数且大于零,则
【答案】A 【解析】曲面在点 (0,1,-1) 处的法向量为
→
n =(Fx′,Fy′,Fz′)
(0,1,-1)
=(2x-y sin (xy )+1,-x sin (xy )+z ,y )
(0,1,-1)
=(1,-1,1)
故曲面在点 (0,1,-1) 处的切面方程为 即
1 ⋅ (x-0)-(y -1)+(z +1)=0,
−1
1 a 1 2 0 0 (6) 矩阵 a b a 与 0 b 0 相似的充要条件为 1 a 1 0 0 0
(A) a = 0, b = 2 (C) a = 2, b = 0 【答案】B (B) a = 0, b 为任意常数 (D) a = 2, b 为任意常数
2 2
pi = P {−2 ≤ X i ≤ 2} (i = 1, 2,3) ,则
(A) p1 > p2 > p3 (B) p2 > p1 > p3 (C) p3 > p1 > p2 (D) p1 > p3 > p2
(
)
【答案】A 【解析】
p1 = P{−2 ≤ X 1 ≤ 2} = Φ (2) − Φ (−2) = 2Φ (2) − 1, −2 − 0 X 2 − 0 2 − 0 p2 = P{−2 ≤ X 2 ≤ 2} = P ≤ ≤ = Φ(1) − Φ(−1) = 2Φ(1) − 1, 2 2 2 −2 − 5 X 3 − 5 2 − 5 7 7 p3 = P{−2 ≤ X 3 ≤ 2} = P ≤ ≤ = Φ (−1) − Φ − = Φ − Φ(1), 3 3 3 3 3
所以3 − k = 0, k = 3, c =
1 1 = , 故选D k 3
( (D) x − y − z = 0 )
(2) 曲面 x 2 + cos( xy ) + yz + x = 0 在点 ( 0,1, −1) 的切平面方程为 (A) x − y + z = −2 (B) x + y + z = 0 (C) x − 2 y + z = −3
用 D 表示 L 所围区域,则有 I1 = π ,I 2 = π ,I 3 =
i
i
5 8
1 2
3 2 2 , I4 = π ,I 4 > I1 > I 3 > I 2 . 8 2
( )
故选 D (5)设 A, B, C 均为 n 阶矩阵, 若 AB = C ,且 B 可逆, 则 (A)矩阵 C 的行向量组与矩阵 A 的行向量组等价 (B)矩阵 C 的列向量组与矩阵 A 的列向量组等价 (C)矩阵 C 的行向量组与矩阵 B 的行向量组等价 (D)矩阵 C 的列向量组与矩阵 B 的列向量组等价 【答案】B 【解析】将 A, C 按列分块, A = (α1 ,..., α n ), C = (γ 1 ,..., γ n ) 由于 AB = C ,故
y3 x3 的 平 面 曲 线 , 记 I i = ∫ ( y + )dx + (2 x − ) dy (i = 1, 2,3, 4) . 则 max { I1 , I 2 , I 3 , I 4 } = Li 6 3
( ) (A) I1 【答案】D 【解析】记 P = y + (B) I 2 (C) I 3 (D) I 4
{
}
) (B) 1 − α (C) 2α (D) 1 − 2α
【解析】 X ~ t ( n) ,则 X 2 ~ F (1, n)
P {Y > c 2 } = P { X 2 > c 2 } = P { X > c} + P { X < −c} = 2 P { X > c} = 2α ,选 C.
二、填空题: 填空题:9 14 小题, 小题,每小题 4 分,共 24 分.请将答案写在答题纸 请将答案写在答题纸 指定位置上. 指定位置上. ...
x − y + z = −2 ,选 A
∞ 1 1 , bn = 2 ∫ f ( x) sin nπ xdx(n = 1, 2,L) . 令 s ( x) = ∑ bn sin nπx , 则 0 2 n =1
(3) 设 f ( x ) = x −
9 s(− ) = 4
( (A) )
3 4
(B)
1 4
由下图可知, p1 > p2 > p3 ,选 A. y
y = ϕ ( x)
O 1 2 7/3 x
(8) 设随机变量 X ~ t ( n) , Y ~ F (1, n) ,给定 α (0 < α < 0.5) ,常数 c 满足 P { X > c} = α , 则 P Y > c2 = ( (A) α 【答案】C
b11 ... b1n (α1 ,..., α n ) . ... . = (γ 1 ,..., γ n ) b ... b nn n1
即 γ 1 = b11α1 + ... + bn1α n ,..., γ n = b1nα1 + ... + bnnα n 即 C 的列向量组可由 A 的列向量线性表示 由于 B 可逆,故 A = CB , A 的列向量组可由 C 的列向量组线性表示,选 B
(9) 设函数 y = f ( x) 由方程 y − x = e x (1− y ) 确定,则 lim n f ( ) − 1 = ___________
n →∞
1 n
【答案】1 【解析】 x = 0 时, y = 1 方程两边对 x 求导得 y′ − 1 = e x (1− y ) (1 − y − xy′) 所以 y′(0) = 1
则 F (x ) 在点 x = −
9 处连续,从而 4 9 9 1 1 1 1 S ( − )=F ( − ) = F ( − )= − F ( )= − f( )= − 4 4 4 4 4 4
2 2 2 2 2 2 2 2
故选 C (4) 设 L1 : x + y = 1, L2 : x + y = 2, L3 : x + 2 y = 2, L4 : 2 x + y = 2 为四条逆时针方向
1 f ( ) − f (0) 1 lim n f ( ) − 1 = lim n = f ′(0) = 1 n →∞ 1 n n →∞ n
(10)已知 y1 = e
3x
− xe 2 x , y2 = e x − xe 2 x , y3 = − xe2 x 是某二阶常系数非齐次线性微分方程的 3
dy d 2 d y dx ⋅ dt = 1 = 1 , d y = dx 2 dt dx dx cos t dx 2 dt
2
t=
π
4
=
1 cos
π
4
= 2
(12)
∫
+∞
1
ln x dx = (1 + x) 2
+∞
.
【答案】 ln 2 【解析】
∫
1
ln x ln x dx = − 2 (1 + x) (1 + x)
3x
− e x ) + c2 e x
− e x ) + c2 e x − xe2 x
2
d y x = sin t (11) 设 ( t 为常数) ,则 2 y = t sin t + cos t dx
【答案】 2 【解析】
{
t=
π
4
=__________来自dy dy 1 sin t + t cos t − sin t = ⋅ = =t , dx dt dx cos t dt
−a
−1
λ
−a
−1 −a λ −1
a −1 −a
λ −b
−a −1
−a = 0 λ − 1 −λ
λ −b
−a
2 = 0 λ − b −a = λ ( λ − 2 )( λ − b ) − 2a , 0 −a λ − 1
λ
因为 λ = 2 是 A 的特征值,所以 2 E − A = 0 所以 −2a = 0 ,即 a = 0 .
(
)
1 a 1 2 0 0 【解析】令 A = a b a , B = 0 b 0 , 1 a 1 0 0 0
因为 A 为实对称矩阵, B 为对角阵,则 A 与 B 相似的充要条件是 A 的特征值分别为 2, b, 0
λ −1
A 的特征方程 λ E − A =
个解,则该方程的通解 y = __________ 【答案】 y = c1 (e
3x
− e x ) + c2 e x − xe2 x
3x
【解析】 y1 − y2 = e