第一部分:热管及热管换热器
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 在上述过程中,存在11种传热热阻,热阻用R表示
• R1: 热源与热管外表面的传热热阻 • R2: 蒸发段管壁径向传热热阻 • R3: 蒸发段毛细芯径向传热热阻 • R4: 汽—液交界面蒸发传热热阻 • R5: 蒸汽轴向流动传热热阻 • R6: 汽—液交界面冷凝传热热阻 • R7: 冷凝段毛细芯径向传热热阻 • R8: 冷凝段管壁径向传热热阻 • R9: 管壁外表面与热汇传热热阻 • R10:管壁轴向传热热阻 • R11:吸液芯轴向传热热阻 • R10、R11与R1—R9相比很大,通常看作断路。 • 总热阻:R=R1+….+R9 • 从热源到热汇的总温降△T也是这9个温降的总和, △T= △T1 +… +
热管内质量流、压力和温度分布
热管液汽分界面的形状
(a)管起动前的液—汽交界面 (b)热管工作时的液—汽交界面 (c)吸液芯内液—汽界面参数
注意:热管中的水会
因为内部低压而在100℃ 以下就沸腾蒸发。
热管工作过程动画
热量散失
水蒸汽流 热量输入
水蒸汽冷凝
液态水蒸发
液体由于重力 或吸附力回流
热管的传热极限
• 我国的热管技术工业化应用的开发研究发展迅速,学术交流 活动也十分活跃。 1983年哈尔滨第一届全国热管会议直到 2010年深圳第十二届全国热管会议,推动我国热管事业发展。
• 热管骗子例子
1. 3 吉林大学(原吉林工大)研究进展
• 1983年开始研究,参加第一届热管会议,东北热管协 会理事单位。
按管壳与工作液体的组合方式分: 铜-水热管、碳钢-水热管、铝-丙酮热管、碳钢-萘热管、不锈钢-钠热管。
按结构形式分: 普通热管、分离式热管、毛细泵回路管、微型热管、平板热管、径向热管
按热管的功用分: 传输热量的热管、热二极管、热开关、热控制用热管、仿真热管、制冷热
管
6 热管的相容性及寿命
• 相容性指热管在预期的设计寿命内,管内工作液体同壳体不发生显著的 化学反应或物理变化。影响热管寿命及工作的重要因素之一产生不凝性 气体
由于工作液体与管壳材料发生化学反应或电化学反应,产生不凝性气体, 在热管工作时,该气体被蒸汽流吹扫到冷凝段聚集起来形成气塞,从而使有 效冷凝面积减小,热阻增大,传热性能恶化。这种不相容的最典型例子就是 碳钢-水热管,由于碳钢中的铁与水发生以下的化学反应:
• Fe + 2 H2O ==== Fe(OH) 2 + H2↑ • 3Fe + 4 H2O Fe3O4 + 4 H2↑ • Fe(OH) 2 Fe3O4 + H2O + H2↑ • 所产生的不凝性氢气将使热管性能恶化,传热能力降低甚至失效。
• ① 重力热管的特点: • • * 不需要吸液芯,制作简单,成本低廉 • * 减少了吸液芯本身产生的热阻R3与R7, • ——具有良好的传热性能 • * 一切由吸液芯引起的故障,均可避免, • ——工作可靠
②重力热管应用场合:
• 只能应用于重力场中,而不能用于空间(无重力场); • 只能将热管的下部作为加热段,而上部作为冷凝段; • 主要用于传热,不能用于均温; • 可以作为热二极管。 根据重力热管具有的特点,国内作为余热回收用的热管换热器大多
热管的管芯是一种紧贴管壳内壁的毛细结构, 通常用多层金属丝网或纤维、布等以衬里形式 紧贴内壁以减小接触热阻,衬里也可由多孔陶 瓷或烧结金属构成。如右图所示为几种不同的 管芯的结果示意图
热管的工作液要有较高的汽化潜热、导热系数,合适的饱和压力及沸 点,较低的粘度及良好的稳定性。工作液体还应有较大的表面张力和 润湿毛细结构的能力,使毛细结构能对工作液作用并产生必须的毛细 力。工作液还不能对毛细结构和管壁产生溶解作用,否则被溶解的物 质将积累在蒸发段破坏毛细结构。
热管的相当导热系数可达105 W/m•℃的数量级.为一般金 属材料的数百倍乃至上千倍。它可将大量热量通过很小的截 面积远距离地传输而无需外加动力。由于热管具有导热性能 好、结构简单、工作可靠、温度均匀等良好性能.
热管是传热领域的重大发明和科技成果,给人类社会带来 巨大的实用价值。
卫星传热例子
1 热管技术回顾(发展史)
• 1980年后,热管研究重点转向节能及能源利用领域。相继开 发了气气式热管换热器、热管余热锅炉、高温热管蒸汽发生 器、高温热管热风炉等。从1987到1991年.我国先后在四川、 福建、北京、浙江、河北等地8台130t/h以上电站锅炉上应 用了大型热管换热器,回收烟气余热加热锅炉鼓风空气。
• 1990年后,碳钢——水两相闭式热虹吸管研究走在世界前列。 热管研究及应用领域不断拓宽,航天、化工、动力、冶金、 建筑、食品等几乎各个领域。
热管虽然是一种传热性能极好的元件,但也不可能无限加大热负荷, 其传热能力的上限值会受到一种或几种因素的限制,如毛细力、声 速、携带、冷冻启动、连续蒸气、蒸气压力及冷凝等,因而构成热 管的传热极限(或叫工作极限)。这些传热极限与热管尺寸、形状、工 作介质、吸液芯结构、工作温度等有关,限制热管传热量的级限类 型是由该热管在某种温度下各传热极限的最小值所决定的。具体来 讲,这些极限主要有(如图所示):
2.2 热管的三个区段的划分
* 根据热管外部热交换情况分:加热段、绝热段、冷却段
* 根据热管内部工质传热传质情况分:蒸发段、绝热段、冷 凝段
2.3 热管的传热
热管在实现其热量转移过程中,包含了六个相互关联的主要过程: ① 热量从热源通过热管管壁和充满工作液体的吸液芯传递到液—汽分界面 ② 液体在蒸发段内的液—汽分界面上蒸发 ③ 蒸汽腔内的蒸汽从蒸发段到冷凝段 ④ 蒸汽在冷凝段内的汽—液分界面上凝结 ⑤ 热量从汽—液分界面通过吸液芯、 液体和管壁传给冷源 ⑥ 在吸液芯内由于毛细作用使冷凝后工作液体回流到蒸发段
1.1 国际情况
• 1944年,美国通用发动机公司,R.S Gaugler首先提出 热管设想及概念。用于冷冻装置专利。
• 1963年,Los Alamos国家实验室的G.M.Grover独立发 明类似传热元件,并付诸实践,测试、64年发表论文 正式命“Heat Pipe”。证明了其“超导热性”。实验 为5200W不锈钢——钠有芯热管。
• 汽车热管采暖装置 • 热管式锅炉节能消烟装置 • 硫酸工业热管换热器 • 内燃机排气蒸发喷射节能装置 • 热管式可控硅散热器研究 • 热管热风炉 • 平板及多槽道微热管研究 • 真空相变供热装置及系统 • 热管锅炉及真空相变锅炉 • 异形分离式热管研究
2 热管工作原理
2.1 热管的组成(典型热管)管壳、吸液芯、工质
• 从论文来看,环路热管、脉动热管和特殊热管等仍然 是当今热管研究的热点,热管的结构和工质改进等仍 是提高热管性能和适用性的重要议题。
1. 2 中国情况
• 1970年后,热管性能研究。空间飞行器、高温热管及可控硅 散热方面应用研究。 1976年12月7日,在卫星上首次应用热 管取得了成功;我国气象卫星也应用了热管,取得了预期的 效果。
第一部分
热管及热管换热器
热管——简单讲,以真空相变原理工作的一种极其 高效的传热元件
实验对 比
热管的研究背景
当今传热工程面临两大问题:研究高绝热材料和高导热 材料。
具有良好导热性的材料有铝[(λ=202W/m•℃)]、柴铜[λ= 385W/ m•℃]、和银:λ=410W/ m•℃)],但其导热系数只能 达到 102W/m•℃的数量级,远不能满足某些工程中的快速散 热和传热需要,热管的发明就解决了这一问题。
在蒸发段内,由于液体不断蒸发,使汽液
分界面缩回到管芯里,即向毛细孔一侧下陷, 使毛细结构的表面上形成弯月形凹面。而在 冷凝段,蒸汽逐渐凝结的结果使液汽分界面 高出吸液芯,故分界面基本上呈平面形状, 即界面的曲率半径为无穷大(见右上图上部 及右下图)。曲率半径之差提供了使工质循 环流动的毛细驱动力(循环压头),用以克服 循环流动中作用于工质的重力、摩擦力以及 动量变化所引起的循环阻力。
• 1990年后热管在理论、实验、结构、应用等方面长足 发展,尤其今天,节能减排中发挥巨大作用。
• 1973年德国斯图加特(Stuttgart)第一届国际热管会议, 以后分别在不同国家举行,现已召开十五次,其中两 次在中国举行。
• 2010年4月,第十五届国际热管会议(15thInternational Heat Pipe Conference)在美国南卡罗来纳州召开。本 届会议论文大会报告:1、环路热管;2、芯结构和工 质;3、环路热管的建模;4、热虹吸管;5、热管的基 础和建模;6、空间热管和技术;7、小型热管;8、平 板热管和蒸汽腔;9、特殊热管和技术;10、脉动热管; 11、热管的工业应用。
数采用这种形式的热管。
5 热管分类
按照热管管内工作温度分: 低温热管(-273~0℃)、常温热管(0~250℃)、中温热管(250~450℃)、 高温热管(450~1000℃)。
按照工作液体回流动力分: 有芯热管、两相闭式热虹吸管(又称重力热管)、重力辅助热管、旋转热管、 电流体动力热管、磁流体动力热管、渗透热管。
图2.1 热管示意图 1—管壳;2—管芯;3—蒸汽腔;4—工作液
从传热状况看,热管沿轴向 可分为蒸发段,绝热段和冷凝段 三部分。
热管的管壳是受压部件,要求由高导热率、耐压、耐热应力的材料制 造。在材料的选择上必须考虑到热管在长期Biblioteka Baidu行中管壳无腐蚀,工质与 管壳不发生化学反应,不产生气体。
管壳材料有多种,以不锈钢、铜、铝、镍等较多,也可用贵重金属铌、 钽或玻璃、陶瓷等。管壳的作用是将热管的工作部分封闭起来,在热端 和冷端接受和放出热量,并承受管内外压力不等时所产生的压力差。
△T9 • 热管的传热过程: • 总热流量Q与总温降△T、总热阻R的关系为: • Q= △T / R
热管的工作特性
对于普通热管,其液体和蒸汽循环的主
要动力是毛细材料和液体结合所产生的毛细 力。假设热管中沿蒸发段蒸发率是均匀的, 沿冷凝段冷凝率也是均匀的,则其质量流率、 压力分布、温度分布及弯月面曲率的分布如 右上图所示。
从图中可以看出:当工作温度低时,最易出现粘性极限及声速极限。 而在高温下 则应防止出现毛细极限及沸腾极限。故热管的工作点必须选择在包络线的下方。
3 热管基本特性
• 相变传热,热阻小→极高的导热性→换热效率高,节能效果 显著
• 汽液处于饱和状态→优良的等温性→温度展平 • 蒸发段、冷凝段换热面积可变→热流密度的可变性→调节管
• 1965年,美Cotter首次提出较完整的热管理论
• 1967年, Los Alamos国家实验室将一不锈钢——水热 管放入人造卫星,空间零重力传热试验成功。从此 , 各国科学家纷纷研究,热管技术大发展。
• 1969年,日本、前苏联发明不同种类热管,如可变导 热管,旋转热管等。
• 1970年,美国出现商品热管。空间到地面,开始应用。 最著名:阿拉斯加输油管线支撑,112000根氨热管, 9——23米,保证永冻土。
• 1974年后,热管换热器应用于节能及新能源开发,美、 日领先。
• 1980年,美Q-Dot公司热管余热锅炉,日帝人公司锅 炉给水预热器,然后回转式、分离式等新结构出现, 日趋大型化及工业化。
• 1984年,Cotter 微型热管理论。出现毛细泵热管、回 路热管等应用航天及电子工业。长距离挠性热管等应 用特殊场合。
壁温度(避免露点腐蚀) • 热流方向的可逆性 • 单向导热→热二极管→(太阳能、地土永冻) • 热开关性能→控制热管工作温度范围 • 加热量变化→热阻改变→控制温度 →可控热管(可变导热管) • 汇源分隔→环境适应性好
4 两相闭式热虹吸管——重力热管、热虹吸管
• 与有芯热管的区别在于冷凝液回流的机理不同 • 热虹吸管是依靠冷凝液自身重力回流 • 有芯热管是依靠毛细抽吸力使冷凝液回流
热管:是一种传热性极好的人工 构件,常用的热管由三部分组成: 主体为一根封闭的金属管(管 壳),内部空腔内有少量工作介 质(工作液)和毛细结构(管 芯),管内的空气及其他杂物必 须排除在外。热管工作时利用了 三种物理学原理:
⑴在真空状态下,液体的沸点降低; ⑵同种物质的汽化潜热比显热高的多; ⑶多孔毛细结构对液体的抽吸力可使 液体流动。