运筹学实验报告线性规划问题的灵敏度分析
运筹学实验报告
运筹学实验报告姓名:学号:班级:指导老师:实验内容1、线性规划问题:⎪⎪⎩⎪⎪⎨⎧≥≤+≤+≤++=0,13119241171289..68max 2121212121x x x x x x x x t s x x z (1) 给出原始代码;(2) 计算结果(包括灵敏度分析,求解结果粘贴);(3) 回答下列问题(手写):a ) 最优解及最优目标函数值是多少;b ) 资源的对偶价格各为多少,并说明对偶价格的含义;c ) 为了使目标函数值增加最多,让你选择一个约束条件,将它的常数项增加一个单位,你将选择哪一个约束条件?这时目标函数值将是多少?d ) 对x 2的目标函数系数进行灵敏度分析;e ) 对第2个约束的约束右端项进行灵敏度分析;f ) 结合本题的结果解释“Reduced Cost ”的含义。
解:(1) max =8*x1+6*x2;9*x1+8*x2<=12; 7*x1+11*x2<=24; 9*x1+11*x2<=13;(2)计算结果: Objective value: 10.66667Total solver iterations: 2 Variable Value Reduced Cost X1 1.333333 0.000000 X2 0.000000 1.111111 Row Slack or Surplus Dual Price 1 10.66667 1.000000 2 0.000000 0.8888889 3 14.66667 0.000000 4 1.000000 0.000000灵敏度分析: Objective Coefficient RangesCurrent Allowable Allowable Variable Coefficient Increase Decrease X1 8.000000 INFINITY 1.250000 X2 6.000000 1.111111 INFINITY Righthand Side RangesRow Current Allowable Allowable RHS Increase Decrease 2 12.00000 1.000000 12.00000 3 24.00000 INFINITY 14.66667 4 13.00000 INFINITY 1.000000(3)a)该LP问题的最优解x={x1,x2}={1.333333,0.000000} 目标函数值z=10.66667b)第2行资源的对偶价格为0.8888889,3、4行的对偶价格为0、0.对偶价格的含义:表示当对应约束有微小变动时, 目标函数的变化率。
运筹学线性规划实验报告
实验报告一、实验名称:线性规划问题二、实验目的:通过本实验,能掌握Spreadsheet方法,会熟练应用Spreedsheet建模与求解方法。
在Excel(或其他)背景下就所需解决的问题进行描述与展平,然后建立线性规划模型,并用Excel的命令与功能进行运算与分析。
三、实验设备计算机、Excel 四、实验内容1、线性规划其中,目标函数为求总利润的最大值。
B11=SUMPRODUCT(B6:C6,B9:C9);B14=SUMPRODUCT(B3:C3,$B$9:$C$9); B15=SUMPRODUCT(B4:C4,$B$9:$C$9); B16=SUMPRODUCT(B5:C5,$B$9:$C$9); D14=D3; D15=D4; D16=D5; 用规划求解工具求解:目标单元格为B11,求最大值,可变单元格为$B$9:$C$9,约束条件为B14:B16<=D14:D16。
在【选项】菜单中选择“采用线性模型”“假定非负”。
即可进行求解得结果,即确定产品A的产量为20,产品B的产量为24,可实现最大总利润为428。
2、灵敏度分析在【可变单元格】表中:在【可变单元格】表中:“终值”表示最优解,即产品A 产量为20,产品B 产量为24。
“递减成本”表示产品的边际收入与按影子价格折算的边际成本的差,当递减成本小于0时,表示不应该安排该产品的生产,在表中的情况反映了产品A 产品、B 都进行生产,因为在产品A 与产品B 产量增加的同时利润也是在增加的。
产量增加的同时利润也是在增加的。
“目标式系数”是在目标函数中变量的系数,也是产品A 与产品B 的单位利润。
的单位利润。
“允许的增量”“允许的增量”和“允许的减量”表示在不改变最优解结构的前提下,和“允许的减量”表示在不改变最优解结构的前提下,和“允许的减量”表示在不改变最优解结构的前提下,单个目标系数可变的单个目标系数可变的上下限。
也就是说,在目标函数中,产品A 的价值系数在(3.6,9.6】内,产品B 的价值系数不变,或者产品A 的价值不变,产品B 的价值系数在【23.3,8.75】内,最有的生产方案依旧为产品A 产量为20,产品B 产量为24,以达到最大利润。
运筹学-线性规划灵敏度分析_图文
例2.1 在例1.1中新增一种产品:防盗门
例2.2 在例1.1中新增一个约束:电力限制
作业:P50—52,1,3,5
运筹学 小结: 一般信息的变化: 价值向量—市场变化 右端向量—资源变化 系数矩阵—技术进步
线性规划
C的变化只影响检验数(对偶问题的解),不影响原问题 的基本解;
格,所以它们所需要的主要原料(木材和玻璃)、制作时间、最大销售量与利润均 不相同。该厂每天可提供的木材、玻璃和工人劳动时间分别为600单位、1000单位 与400小时,详细的数据资料见下表。问: (1)应如何安排这四种家具的日产量,使得该厂的日利润最大? (2)家具厂是否愿意出10元的加班费,让某工人加班1小时? (3)如果可提供的工人劳动时间变为398小时,该厂的日利润有何变化? (4)该厂应优先考虑购买何种资源? (5)若因市场变化,第一种家具的单位利润从60元下降到55元,问该厂的生产计 划及日利润将如何变化?
表1 雅致家具厂基本数据
家具类型 1
劳动时间 (小时/件)
2
木 材(单 位/件)
4
玻 璃( 单位/件)
6
单位产品利 润(元/件)
60
最大销售量 (件)
100
2
1
2
2
20
200
3
3
1
1ห้องสมุดไป่ตู้
40
50
4
2
2
2
30
100
可提供量
400小时
600单位
1000单位
解:依题意,设置四种家具的日产量分别为决策变量 x1,x2,x3,x4,目标要求是日利润最大化,约束条件为三 种资源的供应量限制和产品销售量限制。
运筹学线性规划灵敏度分析教学案例
多个资源系数同时变动分析
例如,将 1 个小时的用工时间从3车间移到2车间,对总利润 产生什么影响?
总利润增加 3650 - 3600 = 50 元, 而目标系数未变,所以最优解肯定 发生变化,
2020/8/1
百分之百法则
如果约束右端值同时变动,计算出每一变动占允许变动量的 的百分比,如果所有的百分比之和不超过100%,那么,影子 价格依然有效;否则,就无法确定。
2020/8/1
灵敏度分析的概念
LP 问题的系数有 aij、bi 、 cj,这些系数往往是估计值 或预测值。
市场条件变化, cj 值就会变化;工艺条件和技术水平改 变, aij 就变化; bi 是根据资源投入后的经济效果决定的一种 选择,市场供应条件发生变化时,亦会改变。
提出问题:
• 当 LP 问题的系数有一个或几个发生变化时,已求得的最优 解会有什么变化; • 这些系数在什么范围内变化时,LP 问题的最优解不会变化。
再改变参数
最优解变了
2020/8/1
那么,保持最优解不变的价值系数允许 变化范围?
改变最优解的临界值是什么呢?
敏感性报告
在“规划求解结果”中 选定“敏感性报告”。 得到一个工作表:
2020/8/1
敏感性报告
最优解
目标函数系数
“递减成本” --- 表示目标函数的系数必须改变多少,才能使 决策变量有正数解。 “允许的增量”和“允许的减量” --- 给出最优解不变的范围。 如门的系数范围: 0≤c1≤750;窗的系数范围:c2≥200
2020/8/1
资源数量变化的分析
考虑只有一个右段值 bi 改变:2 车间可用工时由原来的 12小 时增加到 13 小时,最优解如何变化呢?再变化呢?
运筹学实验
1、实验题目运筹学实验2-线性规划灵敏度分析某公司生产三种产品A1、A2、A3,它们在B1、B2两种设备上加工,并耗用C1、C2两种原材料,已知生产单位产品耗用的工时和原材料以及设备和原材料的最多可使用量如表 C -7所示。
表 C -7 生产三种产品的有关数据已知对产品A2的需求每天不低于70件,A3不超过240件。
经理会议讨论如何增加公司收入,提出了以下建议:(a )产品A3提价,使每件利润增至60元,但市场销量将下降为每天不超过210件; (b )原材料C2是限制产量增加的因素之一,如果通过别的供应商提供补充,每千克价格将比原供应商高20元;(c )设备B1和B2每天可各增加40 min 的使用时间,但相应需支付额外费用各350元; (d )产品A2的需求增加到每天100件;(e )产品A1在设备B2上的加工时间可缩短到每件2 min ,但每天需额外支出40元。
分别讨论上述各条建议的可行性,哪些可直接利用“敏感性报告”中的信息,哪些需要重新规划求解2、模型设1X 为A1的产量,2X 为A2的产量,3X 为A3的产量1)数学模型由题目可建立线性规划模型:321502030max x x x z ++=)3,2,1(0240703004204460234302323212131321=≥≤≥≤++≤+≤+≤++i x x x x x x x x x x x x x i2)用Excel 建模求解3、实验结果及敏感性分析1)实验结果以得出题得最优解 x1=0,x2=70,x3=230 时,最优值为 12900,即生产 A1,A2,A3 产品分别是 0 件, 70 件,230 件时,公司可获得最大利润 12900 元2)敏感性报告①A3 产品每件利润提到 60 元,这在灵敏度分析的最优基不变范围 A3[50-23.3333,5 0+∞]内,但市场销量下降为不超过 210 件,而从求解报告中中最优解 A3=230 时,有最大目标值,故此建议可行。
运筹学灵敏度分析
原始和对偶问题都取得最优解时,最大利润 max z=min y
单击此处添加小标题
资源价格(元/吨)
单击此处添加小标题
资源限量(吨)
对偶问题是资源定价问题,对偶问题的最优解y1、y2、...、ym称为m种资源的影子价格(Shadow Price) 影子价格为当bi有单位增量,若原最终优基不变,总收益Z的变化,也可以说yi是对第i种资源的一种价格估计,由于影子价格是指资源增加时对最优收益的贡献,所以又称它为资源的机会成本或者边际产出 当市场价格低于影子价格时,企业应该买进资源用于扩大生产,高于影子价格时,企业应该将已有资源卖掉。 影子价格的计算
CS XS b
B E N1
CB XB B-1b
E B-1 B-1N1
σ
0 CS-CB B-1 CN1-CB B-1N1
初始表
对偶的定义
max ω=-Yb s.t. -YA≤-C Y ≥0
min z’=-C X s.t. -AX≥-b X ≥0
2、其他形式问题的对偶
原始问题约束条件的性质,影响对偶问题变量的性质。 原始问题变量的性质,影响对偶问题约束条件的性质。
max z=C X s.t. AX≤b X ≥0
以B为基的单纯形表
当XS为松弛变量时CS=0,松弛变量检验数为-CB B-1 , CB B-1称为单纯形乘子
Cj
CB CN
CB XB B-1b
XB XN
b
B N
B-1b
E B-1N
例4 某工厂要用三种原材料C,P,H混合调配出三种不同规格的产品A,B,D。已知产品的规格要求、单价和原料的供应量、单价如下表。该厂应如何安排生产,能使利润最大?
物流运筹实验报告
实验报告课程名称:物流运筹学学院:专业班级:姓名:学号:管理学院课程名称物流运筹学实验项目名称线性规划问题求解、灵敏度分析、运输问题求解指导教师实验软件Exsel实验地点实验时间2019.11.21一、实验目的及要求熟练使用Exsel软件求解本课程中的线性规划问题、灵敏度分析及运输问题,结合教材中的例题,完成Exsel求解。
要求在报告中体现求解过程,对每一步过程要求有截图。
二、实验内容与步骤1、运用Exsel求解线性规划问题(1)根据题干输入相应数据,如下图(2)建模,输入相关数据实际使用=(甲)单位产品消耗定额*计划生产量生产量+(乙)单位产品消耗定额*理化生产量(E5=C5*C10+D5*D10;E6=C6*C10+D6*D10;E7=C7*C10+D7*D10) 总利润=单位利润*计划生产量(G10=C5*C10+D5*D10)(4)计算结果点击“数据”–“模拟分析”–“规划求解”如上图输入。
按“选项”按钮,勾选“采用线性模型”和“假定非负”,点击“确定”,最后点击求解后可求出所需要的解。
(5)输出结果2、运用Exsel进行灵敏度分析点击敏感性报告3、运用Exsel求解运输问题(1)根据题干输入相关数据。
(2)定义名称,选中单元格右键定义名称。
(单位运价,运输量,销量等)(3)建模,输入相关数据实际产量=销地B1+销地B2+销地B3+销地B4;实际销量=产地A1+产地A2+产地A3.G9=C9+D9+E9+F9;G10=C10+D10+E10+F10;G11=C11+D11+E11+F11;C12=C9+C10+C11; D12=D9+D10+D11; E12=E9+E10+E11; F12=F9+F10+F11点击“数据”—“模拟分析”—“规划求解”--如图输入点击选项,勾选“采用线性模型”和“假定非负”,点击确定,进行求解。
输出结果如下图。
三、实验结果(结论)注:可根据内容加页。
浅谈线性规划问题的灵敏度分析
浅谈线性规划问题的灵敏度分析符龙飞2016年5月15日摘要线性规划是运筹学的一个重要的分支,本文主要讨论有关线性规划问题的灵敏度分析,灵敏度分析顾名思义就是指对事物或者使整个系统因为其自身周围环境条件变化而表现出来的敏感程度的分析,在线性规划问题中,我们都假定技术数据、资源数据和价值数据向量或者矩阵中元素为已知常数,但是在实际的问题工作中这些数据往往只是一些预测的数据和估计值,在处理实际问题的建立线性规划模型时,这些数据并不是不会变化的,不是很精确,有可能进行了修改.因此本文讨论在实际问题中当技术系数、资源系数、价值系数以及增加一个变量和增加一个约束条件时,原问题最优解的变化,对原线性规划问题进行灵敏度分析.关键词:线性规划;灵敏度;最优解AbstractLinear programming is an important branch of operational research, this paper mainly discusses the sensitivity analysis of linear programming, sensitivity analysis of the definition refers to the analysis of the sensitivity of its own because of changes in ambient conditions and displayed on things or to make the whole system of linear programming problems, we assume that the technology of data resources the data value and data vector or matrix elements in the known constant, but in the actual problems in these data are just some forecast data and estimates, the establishment of a linear programming model to deal with practical problems, will not change the data, is not very accurate, may be modified in this paper.When discussing technical factors, in the actual problem of resource factor, value factor and add a variable and add a constraint condition, the original problem of optimal solution Sensitivity analysis of the original linear programming problem.Keywords: Linear programming; sensitivity; optimal solution目录第一章前言 (1)1.1 线性规划问题及线性规划发展史 (1)1.2 灵敏度分析的概念 (1)1.3线性规划模型 (1)1.4灵敏度分析的方法及步骤 (2)1.5 符号说明 (2)第二章技术系数a的变化分析 (3)ij2.1 非基变量系数列向量发生变化 (3)2.2 基变量系数列向量发生变化 (4)第三章资源系数b的变化分析 (7)ic的变化分析 (10)第四章价值系数i4.1 非基变量价值系数变化 (10)4.2基变量价值系数变化 (11)第五章增加新的变量的变化分析 (13)第六章增加新约束条件的变化分析 (16)总结 (18)[参考文献] (19)第一章前言1.1 线性规划问题及线性规划发展史线性规划是我们研究运筹学最基本的也是最重要的问题之一,是运筹学中相对比较成熟的一个重要分支.线性规划是近几十年发展起来的一种数学规划的方法,它主要研究在给定的线性不等式或者线性方程约束条件下,对所求的目标函数在一定意义下的极值问题,使其线性指标最优.它广泛应用于工、商、农、军事、交通运输、经济管理以及计划等各个领域.具有应用广泛、适应性强、计算技术比较简单等特点,线性规划在理论上已经也来越成熟,其应用也越来越广泛和深入[1].线性规划的发展是运筹学史上几代人智慧的结晶.1939年,原苏联数学家康托洛维奇发表了《生产组织与计划中的数学方法》学术报告,首次提出了线性规划问题,但是他没有找到一个统一的求解这类问题的方法,1941年美国学者希奇柯克独立的提出了运输问题这样一类特殊的线性规划问题,1947年,美国学者丹捷格提出求解线性规划的单纯形法和许多相关的理论,为线性规划奠定了理论基础,推动了线性规划的发展.自此以后线性规划在计算上趋向成熟,应用也更加广泛深入[2].1.2 灵敏度分析的概念灵敏度分析顾名思义就是指对事物或者使整个系统因为其自身周围环境条件变化而表现出来的敏感程度的分析.在线性规划问题中,我们都假定技术数据、资源数据和价值数据向量或者矩阵中元素为已知常数,但是在实际的问题工作中这些数据往往只是一些预测的数据和估计值,在处理实际问题的建立线性规划模型时,这些数据并不是不会变化的,不是很精确,有可能进行了修改.如果市场条件发生了变动,价值系数的值就会发生变化,技术系数会随着工艺技术条件的变化而变化,同样,在资源投入量发生变化时,资源系数也会随之发生变化,它的值会根据资源投入后能产出多大经济效果来决定的一种决策选择.因此,当这些数据发生变化时,线性规划的最优目标值或者最优解会发生怎样的变化?或者是不是这些参数在一定的范围内其线性规划问题的最优解不会发生变化?这就是本文我们研究线性规划问题的灵敏度分析所要解决的问题.1.3线性规划模型线性规划模型的标准形式如下:max z CX(0)0AX b b X =≥⎧⎨≥⎩我们在求解线性规划问题时首先就应该把数学模型转化成标准形式.1.4灵敏度分析的方法及步骤要进行灵敏度分析,首先要弄明白的就是上述问题:①当系数发生变化时,最优解或者最优目标值发生变化,我们如何简便地求出新的最优目标值和最优解;②当系数在什么一定范围内,线性规划的最优解是不变的.我们可以将灵敏度度分析归纳为:(1)将参数的改变计算反映到最终单纯形表上来,具体的计算方法是按下列公式计算出由技术参数、资源参数和价值参数的变化引起的最终单纯形表上有关数字的变化,即*1b B b -∆=∆*1j j P B P -∆=∆()()*1mj j j j ij i i c z c z a y =∆-=∆--∑(2)检查原问题是否仍为可行解; (3)检查对偶问题是否仍为可行解.(4)我们可以按照下表1-1所列出的情况得出结论或者得出继续计算的步骤[3].表1-1原问题 对偶问题 结论或者继续计算的步骤 可行解 可行解 表中的解仍为最优解 可行解 非可行解 用单纯法继续迭代求最优解 非可行解 可行解 用对偶单纯形法继续迭代求最优解 非可行解非可行解引入人工变量,编制新的的单纯形表,求最优解1.5 符号说明①ij a 技术数据; ②i b 资源数据; ③j c 价值数据; ④B 最优基; ⑤s .t . 约束条件.第二章 技术系数ij a 的变化分析2.1 非基变量系数列向量发生变化如果我们用最优基B 来说,当非基变量j x 的系数列向量j A 改变为'j j jA A A =+∆就会有变化后的检验数为()'1j j B j j j j c C B A A Y A σσ-=-++∆=+∆ ()1,2,,j n =[4]在这里,对偶可行解为1B Y C B -=,我们要使原来的线性规划最优基B 仍然保持不变的话,必须有'0j σ≥,即j j Y A σ∆≥- ()1,2,,j n =而当()0,,,,0Tj ij P a ∆=∆时,则由上式可得()10,,0im i ij j ij y y y y a a σ⎡⎤⎢⎥⎢⎥⎢⎥=∆≥-∆⎢⎥⎢⎥⎢⎥⎣⎦我们可以导出 当0i y >时,有jij ja y σ∆≥-;当0i y <时,有jij ja y σ∆≤-.例1已知线性规划问题12345max 2300Z x x x x x =---++s .t .()12341234347901,2,3,4,5j x x x x x x x x x j ⎧+++=⎪⎪+++=⎨⎪≥=⎪⎩ 23a 怎样变化时最优解保持不变?解:最终单纯形表如下表2-1j c2- 3- 1-0 0bB C B X 1x2x3x 4x5x2-1x 1 0 1-43 13- 1 3-2x0 1 2 13- 13 2j σ353138Z =-由此表可得[]133323234113312,311331233B cC B p a a σ-⎡⎤-⎢⎥⎡⎤=-=----⎢⎥⎢⎥⎣⎦⎢⎥-⎢⎥⎣⎦=+ 32323120233a a σ=+≥⇒≥-所以[232,)a ∈-+∞原最优解保持不变.2.2 基变量系数列向量发生变化仍然对于最优基B 来说,当基变量j x 的系数列向量j A 发生变化的时候,对于基向量B 和它的逆矩阵1B -都会有一定的影响,则线性规划的解的可行性、最优性以及它的最优目标值都会随之发生变化.我们要求出一个一般公式是很难的,因此,我们会用单纯形法重新求解变化后的线性规划问题.对于重新的求解可以在原来的单纯形终表上变换数据后进行迭代[5].例2已知线性规划问题1234max 534Z x x x x =+++s .t .()123412341234232800543412003453100001,2,3,4jx x x x x x x x x x x x x j +++≤⎧⎪+++≤⎪⎨+++≤⎪⎪≥=⎩如果非基变量3x 的系数由135⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦变为141⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦,那么原线性规划的最优解是否还是最优?如果不是求出最优.解:由3110431154A ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥∆=-=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦则330115110,,114444Y A σ⎡⎤⎛⎫⎢⎥∆==-<-=- ⎪⎢⎥⎝⎭⎢⎥-⎣⎦因此不满足j j Y A σ∆≥-,那么原线性规划的最优解就不再是最优解了,根据灵敏度分析的步骤,求新的最优解我们应该先求出新的检验数'1'3330130,,111044B c C B A σ-⎡⎤⎛⎫⎢⎥=-+=-+=-< ⎪⎢⎥⎝⎭⎢⎥-⎣⎦所以可以取3x 为进基变量,然后计算1'311111401143312014B A -⎡⎤-⎢⎥⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=-=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦-⎢⎥⎣⎦用它去替换原线性规划最优单纯形表表2-1的第3列,从而得到表2-2,继续迭代可以得到表2-3,如下表2-1 原线性规划最优单纯形表15341x2x3x4x5x6x7x5x 100 140 134- 0 1 141- 4x20022-111-2x100 34-1 114 0 0 34-1 1300134114141表2-2 改变后的单纯形表15341x2x3x4x5x6x7x5x 100 140 1 0 1 141- 4x 200 20 31 0 11-2x100 34-1 2- 0 0 34-1 13001341-141表2-3 迭代后的单形表15341x2x3x4x5x6x7x5x 1003 512- 0 0 13- 1 112-23- 4x 2003 23 0 1 13 0 13 13- 2x7003 712 1 0 23 0 112- 13 41003471213712 23我们由上表就可以看得出来,求得的最优解*7002001000,,,0,,0,0333X ⎛⎫= ⎪⎝⎭以及改变后的最优值*41003z =.第三章 资源系数i b 的变化分析我们知道,资源系数发生变化的问题关键就是怎样把i b 的变化直接的反映到原来线性规划问题的最终单纯形表,对于单纯形法的迭代过程,其实就是矩阵的初等变换过程,用所学的知识我们知道,对于分块矩阵[]BI我们进行初等变换时,把矩阵B 变成单位矩阵I ,会有单位矩阵I 变成矩阵1B -,即1IB -⎡⎤⎣⎦因此我们可以知道,若在已知的最终单纯形表中基可行解所对应的基“B ”(最终单纯形表中的基变量在初始单纯形表中的列向量所构成的矩阵),即可在最终单纯形表中找到“1B -”(初始单纯形表中的单位矩阵I 在最终单纯形表中所对应的矩阵),我们可以有'1b B b -=[6].例3对于线性规划问题12max 2z x x =+s .t .212121251562245,0x x x x x x x ≤⎧⎪+≤⎪⎨+≤⎪⎪≥⎩ 如果把第二个约束条件的右端项增大到32,那么分析一下最优解如何让变化.解:由最终单纯形表表3-1表3-1 最终单纯形表1x2x3x4x5x3x 152 0 0 1 54 152- 1x 72 1 0 0 14 12- 2x32114- 32i i z c -0 0 014 12因为003224880b ⎡⎤⎡⎤⎢⎥⎢⎥∆=-=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦,由*1b B b -∆=∆,得*51514201011082420213042b ⎡⎤-⎢⎥⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥∆=-=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦⎣⎦⎢⎥-⎢⎥⎣⎦将其加到表3-1一列数字上的最终单纯形表的基变量解,得表3-2.表3-21x2x3x4x5x3x 352 0 0 1 54 152- 1x 112 1 0 0 14 12- 2x12- 0 1 0 14- 32 i i z c -1412又因为上表中原问题是非可行解,因此我们需继续计算,采用对偶单纯形法可以得到表3-3表3-31x2x3x4x5x3x 15 0 5 1 0 0 1x 5 1 10 0 12x20 4-0 1 6-i i z c -12从表中我们可以看出新的最优解15x =,*2510z =⨯=.第四章 价值系数i c 的变化分析4.1 非基变量价值系数变化假设()12n A p p p =.若j j j c c c =+∆,j N ∈,则1T j j B j j j c c B p c σσ-=-=+∆如果使最优基不变,则必须有0j σ≤,因此非基变量价值系数j c ,j N ∈的变动范围应该满足j j c σ∆≤-例4已知线性规划问题123max 234Z x x x =---s .t .123412341234523234,,,,0x x x x x x x x x x x x x ---+=-⎧⎪-+-+=-⎨⎪≥⎩求解价值系数在什么范围变化时,最优解不变.解:表4-1是最终单纯形表表4-1j c →2-3- 4- 0 0b cB X b1x2x3x4x5x3-2x 25 0 0 15- 25- 15 2-1x1151 0 75 15- 25- j σ95- 85- 15- 由单纯形法计算可得表4-2表4-2j c →2-3-34c -+∆0 0b cb x b1x2x3x4x5x3-2x 25 0 0 15- 25- 15 2-1x115175 15- 25- j σ0 0395c -+∆85- 15- 从表4-2中我们可以看出当395c ∆≤时,最优解不变. 4.2基变量价值系数变化如果B B B c c c =+∆,则对于j N ∀∈,11TT B j j j j B j c c B p c B p σσ--=-=-∆这时,若保持最优基不变,一定要使得0j σ≥,j N ∀∈.所以基变量价值系数Bc 满足不等式组的取值范围为1T B j jc B p j N σ-∆≤∀∈例5已知线性规划问题123max 2z x x x =-++s .t .1231241234624,,,0x x x x x x x x x x ++=⎧⎪-+=⎨⎪≥⎩当1c 变为4时,求新问题的最优解.解:这个线性规划模型的最终单纯形表为表4-3 .表4-31x2x3x4x2x 6 1 1 1 0 4x1030 11 i i 1c 是非基变量的系数,则()1133,132c c ∆≤--=≤-+=所以,1c 在12c ≤的范围内变化时,最优解不变.当1c 变为4时,超出范围,则重新计算()()1'1241144,42,003TB j c B p c c p σ-⎛⎫=-=-=-> ⎪⎝⎭把表4-3中13σ=-变为2,选择1x 为入基变量,4x 为出基变量,进行迭代,得到的最终单纯形表,表4-4表4-41x2x3x 4x2x83 0123 13- 4x 1031 013 13 i i c z - 0 053- 23- 新的最优解为:1234108,,033x x x x ====;最优值:*563z =.第五章 增加新的变量的变化分析增加一个新的变量实际上就是在单纯形表中增加一列,假如增加一个新的变量1n x +,1n c +是它所对应的价值系数,()111211,,,Tn n n mn A a a a ++++=是它在约束矩阵中的对应系数列向量,则增加一列'11'''2111'1n n n n mn a a A B A a +++++⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎣⎦其检验数1111n n B n c C B A σ-+++=-+那么就得到了新问题的单纯形表,如果10n σ+≥,则原线性规划问题的最优解不变.我们通过具体例题来讨论增加新的约束条件.例6某生产加工厂计划用两种不同的原料生产四种商品,四种商品的收益和消耗的原料数以及消耗的原料定量如表5-1表5-1产品(万件)/原料(kg )甲 乙 丙 丁 提供量 第一种原料3 2 104 18 第二种原料 0 0 2 1/2 3 求:如果增加第一种原料,增加多少原最优基不变?解:设生产甲、乙、丙、丁四种产品各1x ,2x ,3x ,4x 万件,则线性规划模型为1234max 985019Z x x x x =+++s .t .()1234343210418123201,2,3,4j x x x x x x x j ⎧+++≤⎪⎪+≤⎨⎪⎪≥=⎩增加第一种原料时,1b 就会发生变化,设1118b b =+∆,1(18,3)b b =+∆,则1111210221833314311636b b B b b -⎡⎤⎡⎤-+∆⎢⎥⎢⎥+∆⎡⎤==⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎢⎥--∆⎢⎥⎢⎥⎣⎦⎣⎦则需满足12203b +∆≥,11106b -∆≥原最优基不变,得136b -≤∆≤,即11524b ≤≤.函数1112(0,0,1,2)63t X b b =-∆+∆,113883Z b =+∆是1b ∆最优值和最优解,当16b ∆>,13b ∆<-时,原来的最优基就会改变,原问题的最优基如下表表5-2.表5-2j c9 8 50 19 0 0bB cB x 1x2x3x4x5x6x19 4x 243 0 1 23 103-2 503x12- 13- 1 0 16- 43 1j σ4- 23- 0133- 103- 88Z =当16b ∆>时,情形如下,常数项用111223116b B b b -⎡⎤+∆⎢⎥=⎢⎥⎢⎥-∆⎢⎥⎣⎦代替,用对偶单纯法得表5-3.表5-3j c9 8 50 19 0 0bB cB x 1x2x3x4x5x6x19 4x 243 0 1 23 103-1223b +∆503x12- 13- 116- 43 1116b -∆j σ4-23- 0 0133- 103-113883Z b =+∆用对偶单纯形法求解,第二行需乘以3-,第一行加上第二行乘以43-,可以得到单纯形表表5-4.表5-4j c9 8 50 19 0 0bB cB x 1x2x3x4x5x6x19 4x 00 41 02683x321 3-0 124-1132b ∆- j σ3- 02- 04-6-1904Z b =+∆当11302b ∆-≥,即16b ∆>,新的最优基42(,)B P P =,最优解为11(0,3,0,6)2b ∆-,最大收益为1904b +∆万元.第六章 增加新约束条件的变化分析我们在处理实际问题时,往往会遇到在其问题的基础上增加新的约束条件,如果新添加的约束条件能够使原来的最优解得到满足,那么它的最优解一定不变,反之,则需对问题继续进行分析.例7对于线性规划问题 12max 2z x x =+s .t .212121251562245,0x x x x x x x ≤⎧⎪+≤⎪⎨+≤⎪⎪≥⎩增加一个新的约束条件123212x x +≤,分析最优解的变化.解:把原来线性规划问题最优解带入新的约束条件中,因为 73273212222⨯+⨯=> 则约束条件可以写成1263212x x x ++=,6x 为基变量,反映到表3-1中得表6-1.表6-11x2x 3x 4x5x6x 0 3x 152 0 0 1 54 152- 0 2 1x 72 1 0 0 14 12- 0 1 2x 320 1 0 14- 320 06x12 3 2 0 01 i i c z -14121将1x ,2x 列系数变为单位向量,用对偶单纯法进行迭代,得最终单纯形表,表6-2.表6-21x2x 3x 4x5x 6x0 3x 15 0 0 1 52 0 5-2 1x 4 1 0 0 13 0 13-1 2x 0 0 1 0 12- 0 16x13 2 0 16 1 23- i i c z -16- 013-则新的最优解为*124,0,8x x z ===.总结从本文中讨论我们可以看出,在线性规划问题中,一些数据发生变化时,特别是当数据变化的幅度较小时,用灵敏度分析新的问题要比从头求解新问题简便的多,因此我们要学会掌握线性规划问题的灵敏度分析并加以推广.[参考文献][1] 李小光.线性规划中的灵敏度分析[J].2000,20(3),15-20.[2] 张伯声.运筹学[M].北京:科学出版社,2008,65-75.[3] 党耀国,李邦义.运筹学[M].北京:科学出版社,2009,61-73.[4] 施泉生.运筹学[M].北京:中国电力出版社,2004,44-50.[5] 孙麟平.运筹学[M].北京:科学出版社,2005,32-38.[6] 吕蓬,潘志.运筹学数学规划篇[M].北京:清华大学出版社,2011,32-40.。
Lingo灵敏度分析实验报告
信息技术学院
运筹学课程实验报告
姓名
专业
班级
学号
实验题目
在LINGO中求解LP问题
实验环境
LINGO软件
实验目的
(1)使学生了解Lingo软件特点及其使用方法
(2)使学生掌握Lingo软件求解线性规划模型的编程与结果分析
实验原理和方案:
实验原理:
利Байду номын сангаасLingo软件求解线性规划模型以及相应的灵敏度分析问题
分析与体会:
认真的好好听课,不玩手机,细心的做老师布置的作业。积极向上的学习,乐观向上的生活。
实验日期:指导老师:成绩:
实验方案:
通过分析线性规划对应的数学模型,利用Lingo软件进行求解
实验内容与过程:
1、 用公式编辑器打印相应的数学模型
2、打开Lingo软件,在模型窗口输入程序
3、运行程序,结果如下
4、结果分析
该线性规划问题的最优解为:x1=2;x2=3;最优值maxS=13
5、实验总结
通过本次试验,我掌握线性规划的灵敏度分析。
LINGO软件灵敏度分析灵敏度分析实验报告
. . . ... ..2011——2012学年第二学期合肥学院数理系实验报告课程名称:运筹学实验项目:线性规划的灵敏度分析实验类别:综合性□设计性□验证性□√专业班级: 09级数学与应用数学(1)班姓名:王秀秀学号: 0907021006 实验地点: 9#503实验时间: 2012-4-25 指导教师:管梅成绩:一.实验目的熟悉LINDO软件的灵敏度分析功能;二.实验内容1、求解线性规划。
12121212max z x2x2x5x12 s.t.x2x8x,x0=++≥⎧⎪+≤⎨⎪≥⎩并对价值系数、右端常量进行灵敏度分析2、已知某工厂计划生产I,II,III三种产品,各产品需要在A、B、C设备上加工,有关数据如下:试问答:(1)如何发挥生产能力,使生产盈利最大?(2)若为了增加产量,可租用别工厂设备B,每月可租用60台时,租金1.8万元,租用B设备是否合算?(3)若另有二种新产品IV 、V ,其中新产品IV 需用设备A 为12台时、B 为5台时、C 为10台时,单位产品盈利2.1千元;新产品V 需用设备A 为4台时、B 为4台时、C 为12台时,单位产品盈利1.87千元。
如A 、B 、C 的设备台时不增加,这两种新产品投产在经济上是否划算? (4)对产品工艺重新进行设计,改进结构。
改进后生产每件产品I 需用设备A 为9台时、设备B 为12台时、设备C 为4台时,单位产品盈利4.5千元,这时对原计划有何影响? 三. 模型建立 1、数学模型为12121212max z x 2x 2x 5x 12s.t.x 2x 8x ,x 0=++≥⎧⎪+≤⎨⎪≥⎩ 2、设分别生产I ,II ,III 三种产品1x ,2x ,3x 件, (1)数学模型为:123122123123123123max z 3x 2x 2.9x 8x 2x 10x 30010x 5x 8x 400s.t.2x 13x 10x 420x x x 0x ,x x =++++≤⎧⎪++≤⎪⎪++≤⎨⎪≥⎪⎪⎩,,,,为整数(2)数学模型为:123122123123123123max z 3x 2x 2.9x 188x 2x 10x 30010x 5x 8x 460s.t.2x 13x 10x 420x x x 0x ,x x =++-++≤⎧⎪++≤⎪⎪++≤⎨⎪≥⎪⎪⎩,,,,为整数(3)设分别生产I ,II ,III 、IV 、V 的件数为1x ,2x ,3x ,4x ,5x 数学模型为:123451224512345123451234512345max z 3x 2x 2.9x 2.1x 1.87x 8x 2x 10x 12x 4x 30010x 5x 8x 5x 4x 400s.t.2x 13x 10x 10x 12x 420x x x x x 0x ,x x x x =++++++++≤⎧⎪++++≤⎪⎪++++≤⎨⎪≥⎪⎪⎩,,,,,,,,为整数(4)设分别生产I ,II ,III 三种产品1x ,2x ,3x 件, 数学模型为:123122123123123123max z 4.5x 2x 2.9x 9x 2x 10x 30012x 5x 8x 400s.t.4x 13x 10x 420x x x 0x ,x x =++++≤⎧⎪++≤⎪⎪++≤⎨⎪≥⎪⎪⎩,,,,为整数四. 模型求解(含经调试后正确的源程序) 1、求解:model:max=x1+2*x2; 2*x1+5*x2>=12; x1+2*x2<=8; end结果显示:2、求解:(1)model:max=3*x1+2*x2+2.9*x3; 8*x1+2*x2+10*x3<=300; 10*x1+5*x2+8*x3<=400; 2*x1+13*x2+10*x3<=420; gin(x1);gin(x2);gin(x3);end结果显示:(2)model:max=3*x1+2*x2+2.9*x3-18; 8*x1+2*x2+10*x3<=300;10*x1+5*x2+8*x3<=460;2*x1+13*x2+10*x3<=420; gin(x1);gin(x2);gin(x3);end结果显示:(3)model:max=3*x1+2*x2+2.9*x3+2.1*x4+1.87*x5; 8*x1+2*x2+10*x3+12*x4+4*x5<=300;10*x1+5*x2+8*x3+5*x4+4*x5<=400;2*x1+13*x2+10*x3+10*x4+12*x5<=420; gin(x1);gin(x2);gin(x3);gin(x4);gin(x5);End结果显示:(4)model:max=4.5*x1+2*x2+2.9*x3;9*x1+2*x2+10*x3<=300;12*x1+5*x2+8*x3<=400;4*x1+13*x2+10*x3<=420;gin(x1);gin(x2);gin(x3);End结果显示:五.结果分析第一题该线性规划问题的最优解为:X*=(0,4),最优值为:z*=8 c1=1c1在(0, +∞)内原最优解不变,但最优值是要变的c2=2c2在(-∞,0)内原最优解不变,但最优值是要变的b1=12b1在(8, +∞)内原最优基不变,但最优解和最优值是要变的b2=6b2在(-∞,3.2)内原最优基不变,但最优解和最优值是要变的第二题(1)最优解:x1=24;x2=24;x3=5 最优值max=134.5;(2)最优解: x1=31;x2=26;x3=0 最优值max=127;所以租用B设备不合算(3)最优解: x1=26;x2=19;x3=1;x4=1;x5=8 最优值max=135.96;所以增加新产品投产在经济上是划算的(4)最优解: x1=22;x2=24;x3=2 最优值max=152.8;改进后生产利益增大了。
运筹学灵敏度分析目标规划
3 灵敏度分析
例3 7:
例3 4增加3x1+ 2x2≤15;原最优解不 满足这个约束 于是
Ci
2 3000
0
CB XB b X1 X2 X3 X4 X5
X6
2 X1 4 1 0 0 1/4 0
0
0 X5 4 0 0 -2 1/2 1
0
3 X2 2 0 1 1/2 -1/8 0
0
0 X6 -1 0 0 -1 -1/2 0
故恒有d+×d=0
目标规划问题及其数学模型
2 统一处理目标和约束
对有严格限制的资源使用建立系统约束;数学形式同线性规划中 的约束条件 如C和D设备的使用限制
4 x 1 16 4 x 2 12
对不严格限制的约束;连同原线性规划建模时的目标;均通过目 标约束来表达 1例如要求甲 乙两种产品保持1:1的比例;系统约束表达为: x1=x2 由于这个比例允许有偏差; 当x1<x2时;出现负偏差d;即: x1+d =x2或x1x2+d =0 当x1>x2时;出现正偏差d+;即: x1d+ =x2或x1x2d+ =0
-z
m
f
0…
m
0 σm+1 … σn
其中:f = ∑ ci bi’ j = cj ∑ ci aij’ 为检验数 向量 b’ = B1 b
i=1
i=1
A= p1; p2; …; pn ; pj’ = B1 pj; pj’ = a1j’ ; a2j’ ; … ; amj’ T ; j = m+1; … ; n
0
0
-1.5-ΔC2/2 -1/8+ΔC2/8
0
σj=cjc1×a1j+c5 × a5j+c2+Δc2 ×a2jj=3;4 可得到 3≤Δc2≤1时;原最优解不变
lingo灵敏度分析实验报告
竭诚为您提供优质文档/双击可除lingo灵敏度分析实验报告篇一:lingo灵敏度分析实例一个实例理解Lingo的灵敏性分析线性规划问题的三个重要概念:最优解就是反应取得最优值的决策变量所对应的向量。
最优基就是最优单纯形表的基本变量所对应的系数矩阵如果其行列式是非奇异的,则该系数矩阵为最优基。
最优值就是最优的目标函数值。
Lingo的灵敏性分析是研究当目标函数的系数和约束右端项在什么范围(此时假定其它系数不变)时,最优基保持不变。
灵敏性分析给出的只是最优基保持不变的充分条件,而不一定是必要条件。
下面是一道典型的例题。
一奶制品加工厂用牛奶生产A1,A2两种奶制品,1桶牛奶可以在甲车间用12小时加工成3公斤A1,或者在乙车间用8小时加工成4公斤A2。
根据市场需求,生产的A1,A2全部能售出,且每公斤A1获利24元,每公斤A2获利16元。
现在加工厂每天能得到50桶牛奶的供应,每天正式工人总的劳动时间480小时,并且甲车间每天至多能加工100公斤A1,乙车间的加工能力没有限制。
试为该厂制订一个生产计划,使每天获利最大,并进一步讨论以下3个附加问题:1)若用35元可以买到1桶牛奶,应否作这项投资?若投资,每天最多购买多少桶牛奶?2)若可以聘用临时工人以增加劳动时间,付给临时工人的工资最多是每小时几元?3)由于市场需求变化,每公斤A1的获利增加到30元,应否改变生产计划?模型代码:max=72*x1+64*x2;x1+x2 12*x1+8*x2 3*x1 运行求解结果:objectivevalue:3360.000VariableValueReducedcostx120.000000.000000x230.000000.000000RowslackorsurplusDualprice13360.0001.00000020.00000048.0000030.0000002.000000440.000000.000000这个线性规划的最优解为x1=20,x2=30,最优值为z=3360,即用20桶牛奶生产A1,30桶牛奶生产A2,可获最大利润3360元。
灵敏度分析实验例子
灵敏度分析实验例子实验报告课程名称:运筹学实验工程名称:应用Excel对线性规划进行灵敏度分析班级与班级代码:实验室名称〔或课室〕:专业:任课教师:学号:姓名:实验日期: 2022 年 10 月 18 日广东商学院教务处制姓名实验报告成绩评语:指导教师〔签名〕年月日说明:指导教师评分后,实验报告交院〔系〕办公室保存。
实验二应用Excel对线性规划的灵敏度分析一、实验目的与要求1. 了解线性规划模型中各参数的变化对最优解的影响。
2. 会用Excel中提供的敏感性报告对目标函数系数进行灵敏度分析。
3. 会用Excel中提供的敏感性报告对约束条件右端值的灵敏度分析。
二、实验步骤与方法1. 可以在电子表格中采取试验的方法,不断增加或减少的cj值,直到最优解发生改变,以找到最优解发生变化时对应的cj值.但是,这样计算太麻烦了。
2. 在Excel求得最优解之后,在其右边列出了它可以提供的三个报告。
选择第二项敏感性报告的选项,就可以得到灵敏度的分析报告,它显示在模型的工作表之前。
3. 当几个价值系数同时变动时,注意使用百分之百法那么。
4. 对约束条件限定数的灵敏度分析同上:选择第二项“敏感性报告〞的选项,就可以得到灵敏度的分析报告,其中“约束〞表即是。
5. 假设几个约束限定数同时变动,也要注意使用百分之百法那么。
三、实验内容第1题.A医院放射科目前可以开展X线平片检查和CT检查业务,现拟购置磁共振仪,以增设磁共振检查业务。
为此A医院收集了有关信息,从医院获取最大利润角度出发,问是否应购置磁共振仪?经过资料收集,A医院估计今后放射科如果开展此3项业务,在现有放射科医务人员力量和病人需求的情况下,每月此3项业务的最多提供量为1800人次。
平均每人次检查时间、每月机器实际可使用时间、平均每人次检查利润如下表项目平均每人次检查时间〔小时/次〕每月机器实际可使用时间〔小时〕平均每人次检查利润〔元/次〕放射科业务X线平片检查0.1 300 20CT检查0.25 120 60磁共振检查0.5 120 101、建立模型设x1,x2,x3分别表示进行X线平片检查,CT检查,磁共振检查的人次,z表示总利润,建立模型为:maxz?20x1?60x2?10x3?0.1x1 ?300? ? 0.25x2 ?120?s.t.? 0.5x3?120? x? x? x?1800123???x1,x2,x3?0〔1〕Excel规划求解过程得到规划求解结果及敏感性报告表如下: 规划求解结果敏感性报告表〔2〕灵敏度分析1)、目标函数系数变动分析①单个目标函数系数变动情况:由以上得到的灵敏度报告表中可以看到: c1 的现值: 20 c1 允许的增量:40 c1 允许的减量:10c1 的允许变化范围:10≤c1≤60所以在目标函数系数c2、c3不变时,c1在10≤c1≤60范围内变化,问题最优解不变;同理,目标函数系数c1、c3不变时,c2在20≤c2范围内变化,问题的最优解不变;由灵敏度报告表可看出,核共振工程的终值为0,即不增设这个工程的检查,系数c3在c3≤20 的范围内变化都不影响最优解。
实验二运筹学
实验二线性规划模型的对偶问题及灵敏度分析一、实验目的:进一步掌握线性规划模型的基本原理,理解线性规划的对偶问题,掌握R软件在线性规划问题灵敏度分析中的运用。
二、实验内容:(1)教材P127 习题1。
利用线性规划的最终单纯形表,对目标函数系数和约束方程的常数项进行灵敏度分析,并在R软件中验证你的计算结果;(2)教材P131 习题11。
写出该问题的对偶问题,并用R 软件求解原问题和对偶问题。
指出二者最优解与对偶价格之间的联系。
(3)建立教材P130 习题7的数学模型并用R软件分析。
三、实验要求:(1)利用线性规划基本原理对所求解问题建立数学模型;(2)熟练写出线性规划问题的对偶问题;(3)给出R软件中的输入并求解;(4)对目标函数系数及约束方程的常数项进行灵敏度分析四、实验报告要求:实验过程描述(包括变量定义、分析过程、分析结果及其解释、实验过程遇到的问题及体会)。
(1)maxz=20X1+8X2+6X38X1+3X2+2X3<=2502X1+X2<=504X1+3X3<=150X 1,X2,X3>=0> library(lpSolve)> obj<-c(20,8,6)> mat<-matrix(c(8,3,2,2,1,0,4,0,3),nrow=3,byrow=T) > dir<-c("<=","<=","<=")> rhs<-c(250,50,150)> x<-lp("max",obj,mat,dir,rhs,compute.sens=1)> x$status;x$solution;x$objval[1] 0[1] 0 50 50[1] 700> x$sens.coef.from;x$sens.coef.to[1] -1e+30 6e+00 3e+00[1] 2.4e+01 1.0e+30 1.0e+30C1范围是(-∞,24),C2范围是(6,+∞),C3范围是(3,+∞)> library(lpSolve)> obj<-c(20,8,6)> mat<-matrix(c(8,3,2,2,1,0,4,0,3),nrow=3,byrow=T) > dir<-c("<=","<=","<=")> rhs<-c(250,50,150)> x<-lp("max",obj,mat,dir,rhs,compute.sens=1)> x$status;x$solution;x$objval[1] 0[1] 0 50 50[1] 700> x$duals;x$duals.from;x$duals.to[1] 0 8 2 -4 0 0[1] -1.000000e+30 7.105427e-15 -2.842171e-14 0.000000e +00 -1.000000e+30 -1.000000e+30[1] 1.0e+30 5.0e+01 1.5e+02 2.5e+01 1.0e+30 1.0e+30b1,b2,b3的对偶价格分别为0、8、2;b1范围为(250,∞),b2范围为(0, 50),b3范围为(0, 150)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
时间
所需人数
班次
时间
所需人数
1
6:00~10:00
60
4
18:00~22:00
50
2
10:00~14:00
70
5
22:00~2:00
20
3
14:00~18:00
60
6
2:00~6:00
30
设司机和乘务人员分别在各时间段开始时上班,并连续工作8小时,问该公交线路应怎样安排司机和乘务人员,既能满足工作需要,又使配备司机和乘务人员的人数最少?
1、问每天生产多少甲、乙产品,可使利润最大?
2、以每小时10元价格聘请临时工人,是否划算,?租用另外一个工厂A设备每小时10元,是否划算?
3、该工厂打算开发一种新产品丙,生产一个单位的丙产品消耗A设备1小时和工人劳动时间3小时,并可带来47元盈利。问开发这种新产品是否给工厂带来好处?
4若将问题3中消耗A设备一小时改为消耗B设备一小时,其余不变,是否应该开发新产品
7、某工厂生产甲乙两种产品,每生产一个单位甲产品需使用A设备1小时,工人劳动时间是一小时,可盈利20元,生产一个单位乙产品需要使用B设备一小时,工人劳动时间为2小时,可盈利30元,由于受工厂条件的限制,每天的总劳动时间不能超过120小时,A设备每天使用时间不超过60小时,B设备使用时间不超过50小时
运筹学实验报告
实验课程:运筹学实验日期:任课教师:
班级:应数1班姓名:陈国灿学号:0201120101
一、实验名称:线性规划模型的对偶问题和灵敏度分析
二、实验目的:
进一步掌握Lingo软件的基本功能。熟悉LINDO软件的灵敏度分析功能,增强自身的动手能力,提高实际应用能力
三、实验要求:
1、熟悉Lingo软件的用户环境,了解Lingo软件的一般命令
Objective value: 8.500000
Infeasibilities: 0.000000
Total solver iterations: 2
Variable Value Reduced Cost
X1 3.500000 0.000000
X2 1.500000 0.000000
Row Slack or Surplus Dual Price
1 8.500000 1.000000
2 7.500000 0.000000
3 0.000000 0.2500000
4 0.000000 0.5000000
原问题与对偶问题都可以达到最优解,最优解为8.5。当y1.y2.y3分别取0,0.25.0.5时达到,当y1.y2.y3分别减少一个单位时最优解分别减少0.0.25.0.5
5、对问题1和4所建立的数学模型进行灵敏度分析,并进行比较。
总结和注意问题
1.要特别注意Lingo中数学模型的输入:
(1)max z→max,min z→min;
(2)每一行(包括目标函数)用英文的分号结束;
(3)数与变量的乘积用*表示;
(4)不等号≤和≥用<=和>=或<和>表示;
(5)LINGO系统默认所有的变量非负,因此非负变量的约束可省略,而非正变量和自由变量要用x1<=0和@free(x2)表示;
(6)LINGO中不能输入下标x1→x1。
2.注意理解解的结构,明确各行的含义。
1.No feasible solution found.
Infeasibilities: 50.00000
Total solver iterations: 2
Variable Value Reduced Cost
X1 -10.00000 0.000000
6投资计划问题
某地区在今后三年内有四种投资机会,第一种是在3年内每年年初投资,年底可获利润20%,并可将本金收回。第二种是在第一年年初投资,第二年年底可获利50%,并可将本金收回,但该项投资金额不超过2百万元。第三者是在第二年年初投资,第三年年底收回本金,并获利润60%,但该项投资金额不超过1.5百万元.第四种是在第三年年初投资,第三年年底收回本金,并获利润40%,但该项投资金额不超过1百万元。现在为该地区准备了3百万元资金,如何制定投资方案,使得到第三年年末的本利和最大。
2求解下面线性规划模型和对偶问题模型的最优解,并指出对偶问题的解情况。
3、某工厂利用三种原料生产五种产品,其有关数据如下表。
原料
可利用数(千克)
每万件产品所用材料数(千克)
A
B
C
D
E
甲
10
1
2
1
0
1
乙
24
1
0
1
3
2
丙
21
1
2
2
2
2
每万件产品的利润(万元)
8
20
10
20
21
(l)建立该问题的运筹学模型。
X2 60.00000 0.000000
Row Slack or Surplus Dual Price
1 60.00000 1.000000
2 0.000000 9.000000
3 -50.00000 0.000000
4 0.000000 -8.000000
因为原问题无最优解,所以对偶问题无可行解
2.Global optimal solution found.
(2)利用lingo软件求出最优解,得出最优生产计划
4:现有15米长的钢管若干,生产某产品需4米、5米、7米长的钢管各为100、150、120根,问如何截取才能使原材料最省?(建立线性规划模型并利用lingo软件求解)
5人力资源分配问题
某昼夜服务的公交线路每天各时间段内所需司机和乘务人员人数如表1所示。
2、给出Lingo中的输入,能理解Solution Report中输出的四个部分的结果。
3、能够对线性规划问题进行灵敏度分析;
4、能正确解读灵敏度分析的求解结果,并能应用到实际问题中。
四、报告正文(文挡,数据,模型,程序,图形):
1.在Lingo中求解下面的线性规划数学模型;并指出对偶问题的解情况。