化工原理第三章机械分离与固体流态化.ppt

合集下载

第三章-第5节-固体流态化技术课件

第三章-第5节-固体流态化技术课件
20
校核雷诺数 由于不希望夹带直径大于60mm的颗粒,因此最大气速不 能超过60mm的颗粒的带出速度ut。假设颗粒沉降属于滞流 区,其沉降速度用斯托克斯公式计算,即
21
(3)流化数
颗粒沉降速度和临界流化速度之比为29:1,最大颗 粒能够流化。一般情况下,所选气速不应太接近ut 或umf。通常取操作流化速度为(0.4-0.8)ut。
二者压降相等
带出开始 C
log u
D(带出速度)
Umf为流化 床操作范围 下限
17
常见小颗粒的起始流化速度 umf :
(非均匀颗粒)
如颗粒直径相差 6 倍以上,当大颗粒起动,而小颗粒已 被带走;公式不适用于粒径变化很大的颗粒床层。此公 式计算的 umf 偏差较大(±34%),实际 umf 应以实验测定 值为准;但公式提供了影响 umf 的变量,当实验条件与 操作条件不同时,可用来对实验结果进行修正。
散式流化 液-固系统 固体颗粒均匀分布、上界面清晰
聚式流化
气-固系统 存在空穴(气泡)的移动和合并 空穴破裂→ 界面起伏 界面以下 浓相区 界面以上 稀相区
散式流化床
聚式流化床
8
三、流化床的主要特性
1、液体样特性
流化床的一般特性
2、固体颗粒的均匀混合
流化床的主要优点
9
3、气流的不均匀分布和气-固的不均匀接触 P174
11
4、恒定的压降
流化床的重要优点
流化床床层压降 =(重量-浮力)/单位床截面积
ΔP
流化阶段,压降与气速无关,始终保持定值
固定床
流化床 C
带出开始
B
A
¢ 起始流化速度
u D(带出速度)
表观速度

第三章 机械分离与固体流态化1

第三章 机械分离与固体流态化1

u 空床气速(表观速度)
u
L p1
le
浙江大学本科生课程 化工原理
de
u 真实速度
第三章 机械分离与固体流态化
8/34
二、过滤基本方程
u
3
p1
2Ca 2 1 2 L
令 r 2Ca 2 1 2
3
过滤速度
u
p1
rL
dV
Ad
dq
d
过滤推动力 过滤阻力
---单位时间内通 过单位过滤面
积的滤液体积
四、滤饼洗涤
2、洗涤时间w
洗涤液量
w
Vw dV
d w
浙江大学本科生课程 化工原理
第三章 机械分离与固体流态化
18/34
五、过滤设备及过滤计算
过滤 设备
以压力差为推动力:如板框压滤机、叶滤机、 回转真空过滤机等;
以离心力为推动力:如各种离心机。
浙江大学本科生课程 化工原理
第三章 机械分离与固体流态化
浸没于滤浆中的过滤面积约占全部面积的3040% 转速为0.1至23(转/分) 一个操作循环: 过滤、洗涤、吹松、刮渣
特点: 属连续式 置换洗涤:Lw=L
浙江大学本科生课程 化工原理
第三章 机械分离与固体流态化
28/34
五、过滤设备及过滤计算
操作周期: 操作周期 1 T n
生产能力: Q V nV
第三章 机械分离与固体流态化
21/34
五、过滤设备及过滤计算
1、板框过滤机
最佳操作周期: 生产能力最大时的操作周期
Q V V
悬浮液
w D
入口


其中: V 2 2VVe
KA 2

化工原理课件 3 机械分离和固体流态化-128页PPT资料

化工原理课件 3 机械分离和固体流态化-128页PPT资料
直径,可先令
Ret1 4(3s2ut3)g
查 Ret1 Ret 曲线图,可求直径 d ,即 d R et ut
39
40
2
1
4.沉降速度的计算
3)用量纲为1的数群K 值判别流型
K d 3 (s )g 2
K ≤2.62为斯托克斯定律区; 2.62< K <69.1为艾仑定律区; K ≥69.1为牛顿定律区。
30
1.沉降速度
沉降速度 u t
等速阶段中颗粒相对于流体的运动速度ut称
为沉降速度。由于这个速度是加速阶段终了时颗
粒相对于流体的速度,故又称为“终端速度”。
ut
4gd(s ) 3
31
2. 阻力系数
f(Rte, s)
Ret

dut ρ μ

Re t
32
2. 阻力系数
ut
41
2. 重力沉降设备
降尘室——气固体系 沉降槽——液固体系
42
1)降尘室
2.重力沉降设备
气流水平通 过降尘室速

动画
图3-4 降尘室示意图 (a)沉降室 (b)尘粒在沉降室内运动情况
沉降速 度
43
2.重力沉降设备
思考1:要使颗粒除去,必须满足什么条件?
位于降尘室最高点的颗粒沉降到室底所需的时间为
on定律区)
0.44 ut 1.74 gds ( 1000Rte2000) 0 33
3.
影响沉降速度的因素
ut
4ds g
3
1) 流体的粘度
滞流区 过渡区 湍流区
表面摩擦阻力 形体阻力
34
3.
影响沉降速度的因素

第三章机械分离和固体流态化《化工原理》课件

第三章机械分离和固体流态化《化工原理》课件
5
非均相物系的分离方法
1、气-固体系
旋风分离器 :含尘气体从入口导入除尘器的外壳和排气 管之间,形成旋转向下的外旋气流。悬浮于外旋流的粉 尘在离心力的作用下移向器壁,并随外旋流旋转到除尘 器底部,由排尘孔排出。净化后的气体形成上升的内旋 流并经过排气管排出。
应用范围及特点 旋风除尘器适用于净化大于5~10微米 的非粘性、非纤维的干燥粉尘。它是一种结构简单、操 作方便、耐高温、设备费用和阻力较低(80~160毫米水 柱)的装置。 旋风除尘器广泛应用于空气净化、烟道除 尘、细小颗粒回收等领域。 例如,火力发电厂的锅炉烟 道上就装有这种装置,它有效的降低了排出的烟尘,否 则,早晨起来时,电厂附近的马路上会铺满D
u02
2
d 2
4
浮力Fb
mg s
等速段:该段的颗粒运动速度称为 沉降速度,用u0表示。
重力沉降速度:以球形颗粒为例
合 外 F cF 力 bF D0
mg1s
u02
2
d2
4
0
质m 量力或 gFm c ra
颗粒在流体中沉降时受力
频率分布曲线
9
二、颗粒群的特性
平均直径
长度平均直径
d L m n 1 d 1n 1 n 2 d n 2 2 n n 3 3 d 3 n k n k d ki k 1n id i
k
n i
i 1
表面积平均直径 ----每个颗粒平均表面积等于全部颗粒的表面积之
21
增稠器(沉降槽)
用于分离出液-固混合物
加料
结构:请点击观看动画
与降尘室一样, 水平 沉降槽的生产能 力是由截面积来 挡板
保证的,与其高

南京理工化工原理课件3 --机械分离和固体流态化

南京理工化工原理课件3 --机械分离和固体流态化
1.间歇过滤机的生产能力
操作周期为 T=θ +θ
θ
W+θ D
θ ——一个操作循环内的过滤时间,s;
W——一个操作循环内的洗涤时间,s;
θ D——一个操作循环辅助操作所需时间,s。
则生产能力
3600V 3600V Q T W D
V——一个操作循环内所获得的滤液体积,m3
二、连续过滤机的生产能力
阻力:

6
1 2 Fd Ap u 2
根据牛顿第二运动定律:
Fg Fb Fd ma

u 2 3 d s g d g d d s a 6 6 4 2 6
3 3 2


加速阶段:开始沉降瞬间,u=0,因而Fd=0,加速度a等 速阶段:u=ut时,阻力、浮力与重力三者的代数和为零, 加速度a=0。 ut——“沉降速度”,又叫“终端速度”。由于工业上沉 降操作所处理的颗粒往往甚小,阻力随速度增长甚快, 可在短时间内就达到等速运动,所以加速阶段常常可以 忽略不计。
对于不可压缩滤饼
dq p uR 常数 d r q qe
p ruR 2 ruR qe
压强差随过滤时间成直线增高。
3.先恒速后恒压 恒压阶段 :
dV KA2 d 2 V Ve
KA2 d V Ve dV 2
令VR、θ R分别代表升压阶段终了瞬间的滤液体积 及过滤时间,则上式的积分形式为
dV Ad p V Ve r A
可压缩滤饼的情况比较复杂,它的比阻是两侧压强 差的函数。考虑到滤饼的压缩性,通常可借用下面的 经验公式来粗略估算压强差增大时比阻的变化
r=r'(Δ p)s

化工原理 第三章 机械分离与固体流态化 课件解剖

化工原理 第三章 机械分离与固体流态化 课件解剖

u
V
滤饼过滤过程中,滤饼逐渐增厚,流动阻力也随之逐 渐增大,所以过滤过程属于不稳定的流动过程。故
u
dV
Ad
ddq
其中q V A
29
《化工原理》电子教案/第三章
二、过滤基本方程
1、过滤基本方程的推导
------滤液量V~过滤时间的关系
L
le
u
u
de
u 真实速度
流体在固定床内流动的简化模型
简化模型:假定:
16
《化工原理》电子教案/第三章
增稠器(沉降槽)
用于分离出液-固混合物
加料
结构:请点击观看动画
与降尘室一样, 沉降槽的生产能
水平
力是由截面积来 挡板
保证的,与其高
度无关。故沉降 槽多为扁平状。

除尘原理:与降尘室相同
稠浆 连续式沉降槽
《化工原理》电子教案/第三章
清液溢流 清液
17
增稠器(沉降槽)
(1)细管长度le与床层高度L成正比
le K0L
(2)细管的内表面积等于全部颗粒的表面积, 滤饼体积
流体的流动空间等于床层中颗粒之间的全部空隙体积。
de
4润流湿通周截边面积细 4细 管管 的的 全流 部动 内 a4BV V空 表 a间 面 14 积
aBa1
颗粒的比
表30面积
《化工原理》电子教滤案/饼第的三比章表面积
停 留 时 间 = 沉 降 时 间 r
几点假设:
❖假设器内气体速度恒定,且等于进口气速ui; ❖假设颗粒沉降过程中所穿过的气流的最大
厚度等于进气口宽度B;
❖假设颗粒沉降服从斯托克斯公式。
含 尘 ui
气体

第三章机械分离与固体流态化-44页PPT资料

第三章机械分离与固体流态化-44页PPT资料

(pc)
L
22
二、过滤速率
过滤速度 单位时间通过单位过滤面积的滤液体积,单位为m/s。
uA ddV5a2(13)2
(pc)
L
过滤速率 单位时间获得的滤液体积,单位为m3/s。
dV 3 (Apc) d 5a2(1)2 L
23
三、滤饼阻力
滤饼的比阻
r 5a2(1)2 3
42
指向中心 指向中心
6d3su R T2 6d3u R T2 4d2u 2 r20
ur
4d(s ) uT2 3 R
14
二、旋风分离器的操作原理
15
16
三、旋风分离器的性能
1、临界粒径 2、分离效率 3、压强降
0

C1 C2 C1
四、旋液分离器
17
一、过滤方式 饼层过滤
第三节 过滤
3-3-1 过滤操作基本概念
深床过滤
18
二、过滤介质 • 织物介质:棉、麻、丝、毛 • 堆积介质:砂、木炭、石棉、硅藻土 • 多孔固体介质;多孔陶瓷、多孔塑料、多孔金属
三、滤饼的压缩性和助滤剂 不可压缩滤饼: CaCO3 可压缩滤饼: 胶体物质
助滤剂:渗透性,低流动阻力,化学稳定性,不可压缩性
prvR2urvRque
pab
30
3-3-5 过滤常数的测定
一、恒压下K、qe、Өe的测定
(qqe)2K(e)
2(qqe)dq Kd
d 2 2
dq
KqKqe

q

K2 qK2 qe
31
二、压缩性指数s的测定
先在若干不同的压强差下对指定物料进行实验,求得 若干过滤压强差下的K值,然后对K-Δp数据加以处理, 即可求得s值。

江苏师范大学《化工原理》教学PPT第3章机械分离

江苏师范大学《化工原理》教学PPT第3章机械分离
作用:分离气体中的尘粒。 操作:在气体从降尘室入口流向出口的过程中,气体中的颗粒随气体 向出口流动,同时向下沉降。如颗粒在到达降尘室出口前已沉到室底 的集尘斗内,则颗粒从气体中分离出来,否则将被气体带出。
26
降尘室是一个大空箱, 含尘气体从一端进入,以流
气体入口
速u水平通过降尘室,尘埃以
自由沉降速度ut 向室底沉降,
3.1.1 流体绕过颗粒的流动
当流体以一定速度绕过颗粒流动时,流体与颗粒之间产生一对大小 相等、方向相反的作用力,将流体作用于颗粒上的力称为曳力,而将 颗粒作用于流体上的力称为阻力。 一、颗粒的特性 描述一个颗粒至少要有3个参数:密度、大小、形状。 1.球形颗粒
密度 m
V
体积
V
d3
6
表面积 S d 2
的作用下沿重力方向作沉降运动,此时颗粒受到哪些力的作用呢?
Fg
mg
6
d
3s g
d
Fb
6
d
3
g
Fd
AP
1 2
u 2
4
d
2
1 2
u 2
17
根据牛顿第二定律得:
F
Fg
Fb
Fd
ma
6
d 3s g
6
d 3g
4
d
2
1 2
u 2
6
d
3s
du
d
整理得 :
du ( s )g 3 u2
d
s
4d s
开始瞬间,u 0,du 最大,颗粒作加速运动。
13
可查P108图3-3,也可用公式计算(φ=1)
• Ret<2, 称斯托克斯区 ζ=24/Ret Fd∝u λ=64/Re Hf∝u

机械分离与固体流态化

机械分离与固体流态化
工业用过滤介质主要有:
滤饼 过滤介质
滤液
织物介质,如棉、麻、丝、毛、 合成纤维、金属丝
滤饼过滤操作示意图
等编织成的滤布;
多孔性固体介质,如素瓷板或
管、烧结金属等。
浙江大学本科生课程 化工原理
第三章 机械分离与固体流态化
4/36
一、概述
滤饼的压缩性和助滤剂:
空隙结构易变形的滤饼为可压缩滤饼
滤浆
助滤剂:
第三章 机械分离与固体流态化
2p 1 s K
r0 c
2Ca 2 1 2
r
3
u 表观速度
13/36
2、恒压过滤
特点: K 为常数
u
dV
Ad
过滤推动力
过滤阻力
KA
2V Ve
积分得: 或者
V 2 2VVe KA2
q 2 2qqe K
2p 1 s K
r0 c
若过滤介质阻力可忽略不计,则
V 2 KA2
是不可压缩的粉状或纤维状固体,
如硅藻土、纤维粉末、活性炭、 石棉。
滤饼 过滤介质
滤液
使用时,可预涂,也可以混入待 滤的滤浆中一起过滤。
滤饼过滤操作示意图
浙江大学本科生课程 化工原理
第三章 机械分离与固体流态化
5/36
二、过滤基本方程
过滤过程流动的特点: •流体在固定床中同一截面上的流速分布很不均匀 •产生压降的主要原因:
3.1 滤饼过滤 一、概述 二、过滤基本方程 三、过滤常数的测定 四、滤饼洗涤 五、过滤设备及过滤计算
浙江大学本科生课程 化工原理
第三章 机械分离与固体流态化
1/36
第三章 机械分离与固体流态化
分离

第三章 机械分离及固体流态化

第三章 机械分离及固体流态化

(2)摩擦数群法---- ζ Ret2—Ret ,ζ Ret-1—Ret 4d(ρs -ρ) g 3ρ ut2
ζ=
(3)用K值判别流型
将沉降速度公式带入雷诺数的定义式,再经过换算,可以 得到Ret与K的关系式,将Ret的上、下限数值带入,可求得
K值。
K=2.62,是层流区的上限; K=69.1,是湍流区的下限。 这样,计算已知直径的球形颗粒的沉降速度时,可根据K 值选用相应的公式计算ut,从而避免采用试差法。
下来的最小颗粒的直径计算。
2.沉降槽
沉降槽是利用重力沉降来提高悬浮液浓度并同时得到澄清 液体的设备。所以,沉降槽又称为增浓器和澄清器。
颗粒被分离下来的条件:
φS――颗粒的球形度或形状系数; S――与该颗粒体积相等地球体的表面积,m2; SP――颗粒的表面积,m2。
由于同体积不同形状的颗粒中,球形颗粒的表面积最小, 因此对非球形颗粒,总有φS﹤1,颗粒的形状越接近球形, φS越接近1;对球形颗粒,φS=1。
2.颗粒的当量直径
经常将非球形颗粒以某种“当量”的球形颗粒来代替,以 使非球形颗粒的某种特性与球形颗粒等效,这一球粒的直 径为当量直径。当量直径表示非球形颗粒的大小。 1. 等体积当量直径 颗粒的等体积当量直径为 与该颗粒体积相等的直径,即de = 36Vp/π 2. 等比表面积当量直径 即与非球形颗粒比表 Vp=π de 3/6
Sp= πde 2
a=S/V=6/de
面积相等的直径,即da=6/a
二、颗粒群的特性
工业中遇到的颗粒群可分为两类:
1.
若颗粒群是由大小不同的粒子组成的集合体,称为非均
一性粒子或多分散性粒子;
2.
而将具有同一粒径的颗粒群称为单一性或单分散性粒子

化工原理课件第三章机械分离和固体流态化

化工原理课件第三章机械分离和固体流态化

川 理 工
§3.1.1 颗粒的特性 一 、单一颗粒的大小和形状
学 1、球形颗粒

材 化
体积 :V d 3
6

化 学
直径 : d
表面积 : s d 2
工 程
比表面积 : a 6

d


化工原理
机械分离和固体流态化
第五页,编辑于星期六:十八点 十分。
四 2、非球形颗粒
川 以某种特性相当的球形颗粒代表,相应的球的直径称当量直径。 理
工 数值上等于空隙率,即床层中自由截面的大小与床层的轴向高度无关。

床层直径
教 研
壁效应
颗粒直径

化工原理
机械分离和固体流态化
12 第十二页,编辑于星期六:十八点 十分。
四 §3.2 沉降过程
川 沉降操作:在某中力的作用下,利用分散相与连续相间的密度差异,使 理 之发生相对运动而实现分离的操作过程。分为:重力沉降、离心沉降。

L

u
B

气体
程 教
ut
H

多层降尘室

颗粒在降尘室中的运动
化工原理
机械分离和固体流态化
20 第二十页,编辑于星期六:十八点 十分。
四 思考 2:要想使某一粒度的颗粒在降尘室中
川 被 100%除去,必须满足什么条件?
理 工 学
t
H ut
ut
d
2 p
p 18
g
院 思考 3:能够被 100%除去的最小颗粒,必须满足什么条件?
于 1.7μm,则简单表示为 d50 =1.7μm。
工 程 教
2.在该批颗粒的最大直径 d pmax

考研 化工原理 必备课件第三章 机械分离与固体流态化

考研 化工原理 必备课件第三章 机械分离与固体流态化

考研化工原理必备课件第三章机械分离与固体流态化.txt25爱是一盏灯,黑暗中照亮前行的远方;爱是一首诗,冰冷中温暖渴求的心房;爱是夏日的风,是冬日的阳,是春日的雨,是秋日的果。

本文由821240550贡献ppt文档可能在WAP端浏览体验不佳。

建议您优先选择TXT,或下载源文件到本机查看。

第三章机械分离与固体流态化3.1 颗粒及颗粒床层的特性 3.2 3.3 3.4 3.5 沉降过程过滤离心机固体流态化3.1颗粒及颗粒床层的特性(1)床层空隙率ε固定床层中颗粒堆积的疏密程度可用空隙率来表示,其定义如下:ε=空隙体积床层体积V ? 颗粒所占体积v v = = 1? 床层体积床层体积V Vε的大小反映了床层颗粒的紧密程度,ε对流体流动的阻力有极大的影响ε↓, ∑ h f ↑。

ε < 1。

3.1颗粒及颗粒床层的特性(2)床层自由截面积分率AA0 =。

A 流动截面积床层截面积A-颗粒所占的平均截面积A P = = 1? P 床层截面积床层截面积A A空降率与床层自由截面积分率之间有何关系?假设床层颗粒是均匀堆积(即认为床层是各向同性的)。

想象用力从床层四周往中间均匀压紧,把颗粒都压到中间直径为长为L的圆柱中(圆柱内设有空隙)。

ε = 1?v ?D ? = 1? 4 = 1? ? 1 ? π 2 V ?D? D L 4πD1 L222 D12 AP ? D1 ? 4 A0 = 1 ? = 1? = 1? ? ? π 2 A ?D? D 4π所以对颗粒均匀堆积的床层(各向同性床层),在数值上ε = A03.1颗粒及颗粒床层的特性(3)床层比表面aB = 颗粒表面积S 床层体积V颗粒比表面S aB , = 1a=颗粒表面积S 颗粒体积V取V =的床层考虑, 1m3a=S S = v 1? εaB = a(1 ? ε ) * 所以此式是近似的,在忽略床层中固颗粒相互接触而彼此覆盖使裸露的颗粒表面积减少时成立。

化工原理 第三章 非均相物系的分离和固体流态化.

化工原理 第三章 非均相物系的分离和固体流态化.

' 4.17 0.29
Reb
pf L
1 2 a2u
4.17
3
1 au2
0.29 3
6 a
sde
pf L
1 2 u 150 3 sde 2
1 u2
1.75
3 sde
Reb
3
pf L
1 2 u 150 3 sde 2
Reb
100
pf L
1 u2 1.75 3 sde
第三章 非均相物系分离和固体流态化
目的→基于流体 力学(颗粒与流 体间的相对运 动),掌握非均 相物系的机械分 离方法、过程计 算及其典型设备 的结构、特性和 选型。
非均相物系 概念
颗粒和颗粒床层特性
非均相物系的
沉降
分离和固体流 机械分离
态化
过滤
固体流态化
概念-非均相物系
1. 非均相物系 ① 非均相物系
均相混合物 (均相物系)
溶液与混合气体
混合物
分散物质 固体颗粒、液滴或气泡
非均相混合物 (分散相)
(非均相物系) 分散介质 气态非均相物系(含尘气体)
(连续相) 液态非均相物系(悬浮液)
概念-非均相物系
② 非均相物系的分离方法 沉降→颗粒相对于流体(静止或运动)运动而实现悬 浮物系分离,作用力是重力或离心力。
1/100 0.0042 0.0058 in或147 μm
概念-颗粒
② 颗粒群的平均粒径 颗粒群的平均粒径→常用平均比表面积直径,即Sauter直径。
k
da2
6
da3
ni di2
i 1
k i 1
ni
6
di3
xi K nisdi3

化工原理上册课件第三章 非均相混合物分离及固体流态化 (3)课件

化工原理上册课件第三章 非均相混合物分离及固体流态化 (3)课件

陈尧咨(善射)
神态 忿然 笑而遣之
卖油翁(善酌)
睨之
汝亦知射乎 语言
吾射不亦精乎 动作 尔笑安而敢遣轻之吾射
性格: 自矜(骄傲)
无他,但手熟尔
以我酌油知之
我亦释无担他而,立惟但手微熟颔尔之
取置覆酌沥
对比
谦虚
道理: 熟能生巧,即使有什么长处也不必骄傲自满。
课外延伸
1、联系生活、学习,说说熟能生巧 的事例。
1、正视自己的长处,扬长避短, 2、正视自己的缺点,知错能改, 3谦虚使人进步, 4、人应有一技之长, 5、自信是走向成功的第一步, 6强中更有强中手,一山还比一山高, 7艺无止境 8、宝剑锋从磨砺出,梅花香自苦寒来,刻苦
训练才能有所收获,取得成效。 9、骄傲自大、不可一世者往往遭人轻视; 10、智者超然物外
过滤速度
单位时间通过单位过滤面积的滤液体积,单位m/s。
u
dV
Ad
3 5a2 (1 )2
( pc )
L
(3-59a)
过滤速率 单位时间获得的滤液体积,单位为m3/s。
dV
3
( Apc )
d 5a2 (1 )2 L
(3-59b)
3
三、滤饼的阻力
滤饼的比阻
r
5a2
(1
3
)2
(3-60)
反映了颗粒形状、尺寸及床层的空隙率对滤液 流动的影响,为单位厚度床层的阻力,单位1/m2。
3.2 过滤分离原理及设备 3.2.1 流体通过固体颗粒床层的流动 3.2.2 过滤操作的原理 3.2.3 过滤基本方程式 3.2.4 恒压过滤 3.2.5 恒速过滤与先恒速后恒压的过滤
20
恒速过滤与先恒速后恒压的过滤
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
固体颗粒被过滤介质截留后,逐渐累积成饼 (称 2.过滤推动力
在过滤过程中,滤液通过过滤介质和 滤饼层流动时需克服流动阻力,因此, 过滤过程必须施加外力。外力可以是重 力、压力差,也可以是离心力,其中以 压力差和离心力为推动力的过滤过程在 工业生产中应用较为广泛。
3.1.2 过滤基本方程
令颗粒比表面积a=颗粒表面积/颗粒体积,则:
de4 a 1
将上述几式式代入式3-1,整理得:
dV 3
p1
Ad 2Ca212 L
(3-2)
r2C2a 12 3
r称为滤饼的比阻,与滤饼的结构有关。r r0ps
可压缩滤饼的s大约为0.20.8。不可压缩滤饼s=0。于是
式3-2可写成:
若过滤介质阻力可忽略不计,则以上两式简化为:
V2 KA2
q2 K
3.1.2 过滤基本方程
• 2.恒速过滤
若过滤时保持过滤速度不变,则过滤过程为恒速过滤。
对恒速过滤,有 dV V 常数
Ad A
代入式3-5中得:
V2
VVe
K 2
A2

q2
qqe
K
2
若过滤介质阻力可忽略不计,则以上两式简化为:
V 2 K A2
第三章 机械分离与固体流态化
• 3.1 过 滤 • 3.2 沉 降 • 3.3 固体流态化
3.1 过 滤
• 3.1.1 概述 • 3.1.2 过滤基本方程 • 3.1.3 过滤常数的测定 • 3.1.4 滤饼洗涤 • 3.1.5 过滤设备及过滤计算
3.1.1 概 述
• 滤饼过滤其基本原理是在外力(重力、压力、离心 力)作用下,使悬浮液中的液体通过多孔性介质,而 固体颗粒被截留,从而使液、固两相得以分离,如图 3-1所示。
过滤时间 s 滤液体积V l
表3-1 恒压过滤试验中的V 数据
6.8 19.0 34.5 53.4 76.0
102.0
0.5 1.0
1.5
2.0
2.5
3.0
3.1.4 滤饼洗涤
• 1.洗涤速度
洗涤速度:
dV
Ad
w
洗涤推动力 洗涤阻力
若洗涤压力与过滤终了时的操作压力相同
dV
Ad
w
dV
3.1.1 概 述
• 3.滤饼的压缩性和助滤剂 (1)压缩性
若形成的滤饼刚性不足,则其内部空 隙结构将随着滤饼的增厚或压差的增大 而变形,空隙率减小,称这种滤饼为可 压缩滤饼,反之,若滤饼内部空隙结构 不变形,则称为不可压缩滤饼。
3.1.1 概 述
• 3.滤饼的压缩性和助滤剂 (2)助滤剂
若滤浆中所含固体颗粒很小,或者所形成的滤饼孔 道很小,又若滤饼可压缩,随着过滤进行,滤饼受压 变形,都使过滤阻力很大而导致过滤困难。可采用助 滤剂以改善滤饼的结构,增强其刚性。
Ad
e
L w Lw
式中、w分别为滤液、洗涤 液的粘度,L、Lw分别为过滤终
了时滤饼厚度、洗涤时穿过的 滤饼厚度。
由过滤基本方程可知:
dV KA2
d 2V Ve
(3-5)

dq K
d 2q qe 式中 qe Ve / A
——过滤基本方程
3.1.2 过滤基本方程
• 1.恒压过滤
若过滤过程中保持过滤推动力(压差)不变,则称为恒 压过滤。对于指定滤浆的恒压过滤,K为常数,积分式
3-5得:
V22VeVK2A
或 q22qq e K
滤浆
滤饼 过滤介质 滤液
图 3-1 过 滤 操 作 示 意 图
3.1.1 概 述
• 1.过滤介质
过滤过程所用的多孔性介质称为过滤介质, 过滤介质应具有下列特性:多孔性、孔径大小适 宜、耐腐蚀、耐热并具有足够的机械强度。
工业用过滤介质主要有织物介质(如棉、麻、 丝、毛、合成纤维、金属丝等编织成的滤布)、 多孔性固体介质(如素瓷板或管、烧结金属等)。
用上述方法可以测出不同压差条件下的K值,再根据K与p 关系
式3-4a,有 loK g (1s)lop g B
可见logK与logp 成直线关系,由直线的斜率可求出压缩指数s。
3.1.3 过滤常数的测定
• 例3-1 过滤常数测定
CaCO3粉末与水的悬浮液在恒定压差1.17105Pa及 25℃下进行过滤,试验结果列于表3-1,过滤面积为 400cm2,求此压差下的过滤常数K和qe。
助滤剂通常是一些不可压缩的粉状或纤维状固体,能 形成结构疏松的固体层。
常用的助滤剂有:硅藻土、纤维粉末、活性炭、石棉等。
3.1.2 过滤基本方程
L
le
u1 u
u
图3-3 流体在滤饼中流动的简化模型
• 将孔道视为长度均为le的一组平行细管,流体
在细管中的平均流速u1,同时考虑到滤饼较薄, 广义压力降可近似用压力降代替,则:
式中 q 单位过滤面积所得的滤液量,q=V/A,m3/m2;
A 过滤面积,m2。 V——滤液量
令表示滤饼层空隙率( = 空隙体积/滤饼层体积),则:
u1
u
dV
Ad
取le=CL,式3-1中的de采用水力当量直径,则:
de 4润流湿通周截边面长 积 细 4管 细的 管全 的部 流内 动表 空面 间积
式中 u1 流体的真实流速,m/s;
u1
p1 32le
de2
p1 通过滤饼的压力降,N/m2;
(3-1) 滤液的粘度,Ns/m2;
de 滤饼层孔道的当量直径,m;
le 孔道的平均长度,m。
3.1.2 过滤基本方程
• 在单位时间内通过单位过滤面积的滤液量为瞬
时过滤速度u:
u
dV
Ad
ddq
2
q2 K
2
3.1.3 过滤常数的测定
• 过滤计算要有过滤常数K、qe或Ve作依据。由不同物料形成的悬浮液,其 过滤常数差别很大。即使是同一种物料,由于操作条件不同、浓度不同,
其过滤常数亦不尽相同。过滤常数一般要由实验来测定。
将恒压过滤积分方程改写成:
1 2
q K q K qe
此式表明,/q与q之间具有线性关系,实验中记录不同过滤 时间 内的单位面积滤液量q,将 /q对q作图,得一直线, 直线的斜率为1/K,截距为2qe/K,由此可求出K、qe。
dV
Ad
p1 rL
过滤推动力 过滤阻力
(3-3)
式中p1 为过滤推动力, rL可视为滤饼阻力。
3.1.2 过滤基本方程
• 将介质阻力折合成厚度为Le的滤饼阻力,式3-3成为:
dV
Ad
rLpLe
(3-4)
滤饼层厚度L为 LcV/A

Le cVe / A
2p 2p1s
K
rc r0c
(3-4a)
代入(3-4)中得
相关文档
最新文档