七年级数学全等三角形复习题及答案经典文件

合集下载

初中数学三角形全等证明综合题(含答案)

初中数学三角形全等证明综合题(含答案)

七年级下册数学三角形全等证明综合题北师版一、单选题(共9道,每道11分)1.如图,AE=BF,AD∥BC,AD=BC,试说明DF=CE,小明是这样做的,老师扣他了3分,大家帮他找一下,他到底那个地方扣分了?证明:∵AE=BF∴AE -EF= BF-EF,即AF=EB①又∵AD∥BC∴∠C=∠D②在△ADF和△BCE中③ ∴△ADF≌△BEC(SAS)④ ∴DF=CE 上面过程中出错的序号有()A.①②③④B.②③④C.①②③D.③④答案:B试题难度:三颗星知识点:证明题的书写步骤及定理应用考察2.已知如下左图,△ABC中,AB=AC,AD是角平分线,BE=CF,图中全等的三角形有()对A.1B.2C.3D.4答案:C试题难度:三颗星知识点:全等三角形的个数3.如图,已知BD、CE是△ABC的高,点P在BD的延长线上,BP=AC,点Q在CE上,CQ=AB.判断线段AP和AQ的关系,并证明.小红在做这道题目的时候部分分析思路如下:猜测AP和AQ的数量关系应该是相等的,证明线段AP=AQ,将这两条线段放到两个三角形中,即证明__≌__,题中已知BP=AC,CQ=AB,采取的判定方法是__,此时需要找的第三组条件=__.①△APD≌△QAE ②△APB≌△QAC ③SAS ④SSS ⑤AP=AQ⑥∠ABP=∠QCA ⑦∠PAB=∠AQC ⑧∠BPA=∠CAQA.①③⑧B.②③⑦C.②③⑥D.②④⑤答案:C试题难度:三颗星知识点:三角形全等解题思路4.已知,如图∠ACE=90°,AC=CE,B为AE上一点,ED⊥CB于D,AF⊥CB交CB的延长线于F.求证:DF=CF-AF.小强在做这道题目的时候部分分析思路如下:从图中知道DF=CF-CD,只需证明AF=CD,即证明△ACF≌△CED,题中已知AC=CE,ED⊥CB,AF⊥CB,采取的判定方法是AAS,此时需要找的第三组条件__=__.因为ED⊥CB,所以__+__=90°,而∠ACE=90°,即__+__=90°,根据等量代换即可得到第三组条件.①∠CAF=∠CED ②∠ACF=∠CED ③∠DBE+∠BED=90°④∠DCE+∠DEC=90° ⑤∠ACF+∠CAF=90° ⑥∠ACF+∠FCE=90°A.①③⑤B.①③⑥C.②④⑤D.②④⑥答案:D试题难度:三颗星知识点:三角形全等解题思路5.如图,在中,,AB=12,则中线AD的取值范围是()A.7<AD<17B.C.5<AD<12D.答案:B试题难度:三颗星知识点:倍长中线法6.如图,在△ABC中,AB>AC,∠1=∠2,P为AD上任意一点.则下列式子正确的是()A.AB-AC<PB-PCB.AB-AC≧PB-PCC.AB-AC=PB-PCD.AB-AC>PB-PC答案:D试题难度:三颗星知识点:截长补短法7.已知△ABC,∠BAD=∠CAD,AB=2AC,AD=BD,下列式子中正确的是()A.AB=2ADB.AD=CDC.AD⊥BDD.DC⊥AC答案:D解题思路:利用翻折的思想来进行解决,在AB上截取AE=AC,在AB上截取AE=AC,连接DE,∵AB=2AC,∴AE=BE,又∵AD=BD,∴DE⊥AB,再证明△ADE≌ADC,∴∠ACD=∠AED=90°,即DC⊥AC.试题难度:三颗星知识点:折叠与全等8.如图,已知△ABC,BD=EC≠DE,则对于AB+AC与AD+AE的大小关系正确的是()A.AB+AC=AD+AEB.AB+AC≧AD+AEC.AB+AC>AD+AED.AB+AC≦AD+AE答案:C解题思路:利用平移的思想来进行解题,可以将△AEC平移至BD处,使EC与BD重合,假设为△BDF,DF与AB交于点G,则可先证△BDF≌△ECA,则在△BGF和△DGA中,BG+FG >BF,DG+AG>AD,即AB+AC>AD+AE.解:过点B和D作BF∥AE,DF∥AC,BF与DF交于点F,DF 与AB交于点G,则△BDF≌△ECA(ASA),∴BF=AE,DF=AC,在△BGF和△DGA中,BG+FG >BF,DG+AG>AD,二式相加可得BG+FG+ DG+AG>BF+ AD 即AB+AC>AD+AE.试题难度:三颗星知识点:平移与全等9.如图,EF分别是正方形ABCD的边BC、CD上的点,且∠EAF=45°,AH⊥EF,H为垂足,则下列说法中正确的是()A.直接证明△ABE和△AHE全等可以证明AH=ABB.EF=BE+DFC.AE=AFD.∠AEB=∠AFE答案:B解题思路:利用旋转的思想来进行解题,延长EB使得BH=DF,易证△ABH≌△ADF(SAS)可得∠EAH=∠EAF=45°,进而求证△AEH≌△AEF可得EF=BE+DF解:延长EB到点H,使得BH=DF,连接AH,可得△ABH≌△ADF(SAS),∴∠DAF=∠BAH,AF=AH,∠EAH=∠EAF=45°∴△AEG≌△AEF(SAS)∴EF=EH=BE+DF试题难度:三颗星知识点:旋转与全等。

专题02 全等三角形重难点题型(解析版)-初中数学七年级上学期重难点题型分类高分必刷题(人教版)

专题02 全等三角形重难点题型(解析版)-初中数学七年级上学期重难点题型分类高分必刷题(人教版)

专题02高分必刷题-全等三角形重难点题型分类(解析版)题型1:全等三角形的性质1.下列说法正确的是()A.两个等边三角形一定全等B.形状相同的两个三角形全等C.面积相等的两个三角形全等D.全等三角形的面积一定相等【解答】解:A、两个边长不相等的等边三角形不全等,故本选项错误;B、形状相同,边长不对应相等的两个三角形不全等,故本选项错误;C、面积相等的两个三角形不一定全等,故本选项错误;D、全等三角形的面积一定相等,故本选项正确.故选:D.2.如图,△ABC≌△DCB,△A=80°,△DBC=40°,则△DCA的度数为()A.20°B.25°C.30°D.35°【解答】解:△△ABC≌△DCB,∴∠D=△A=80°,△ACB=DBC=40°,∴∠DCB=180°﹣∠D﹣∠DBC=60°,∴∠DCA=△DCB﹣∠ACB=20°,故选:A.3.如图,△ABC≌△DEF,BE=7,AD=3,则AB=.【解答】解:△△ABC≌△DEF,∴AB=DE,∴AB﹣AD=DE﹣AD,即BD=AE,∵BE=7,AD=3,∴BD=AE==2∴AB=AD+DB=3+2=5.故答案为:5.题型2:添加一个条件,是两三角形全等4.如图,已知MB=ND,△MBA=△NDC,下列条件中不能判定△ABM≌△CDN的是()A.△M=△N B.AM∥CN C.AB=CD D.AM=CN【解答】解:A、△M=△N,符合ASA,能判定△ABM≌△CDN,故A选项不符合题意;B、AM∥CN,得出△MAB=△NCD,符合AAS,能判定△ABM≌△CDN,故B选项不符合题意.C、AB=CD,符合SAS,能判定△ABM≌△CDN,故C选项不符合题意;D、根据条件AM=CN,MB=ND,△MBA=△NDC,不能判定△ABM≌△CDN,故D选项符合题意;故选:D.5.如图,已知△ADB=△CBD,下列所给条件不能证明△ABD≌△CDB的是()A.△A=△C B.AD=BC C.△ABD=△CDB D.AB=CD【解答】解:在△ABD和△CDB中,,∴△ABD≌△CDB(AAS)∴选项A能证明;在△ABD和△CDB中,,∴△ABD≌△CDB(SAS),∴选项B能证明;在△ABD和△CDB中,,∴△ABD≌△CDB(ASA),∴选项C能证明;选项D不能证明△ABD≌△CDB;故选:D.6.如图,已知△1=△2,要使△ABC≌△CDA,还需要补充的条件不能是()A.AB=CD B.BC=DA C.△B=△D D.△BAC=△DCA 【解答】解:A、根据AB=CD和已知不能推出两三角形全等,错误,故本选项正确;B、△在△ABC和△CDA中∴△ABC≌△CDA(SAS),正确,故本选项错误;C、△在△ABC和△CDA中∴△ABC≌△CDA(AAS),正确,故本选项错误;D、△在△ABC和△CDA中∴△ABC≌△CDA(AAS),正确,故本选项错误;故选:A.题型三:尺规作图的依据7.如图,是用直尺和圆规作一个角等于已知角的示意图,则说明△A′O′B′=△AOB的依据是()A.SSS B.SAS C.AAS D.ASA【解答】解:由作法易得OD=O′D′,OC=O′C′,CD=C′D′,依据SSS可判定△COD≌△C'O'D',故选:A.8.工人师傅常用角尺平分一个任意角.做法如下:如图,△AOB是一个任意角,在边OA,OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与点M,N重合,过角尺顶点C作射线OC.由此作法便可得△MOC≌△NOC,其依据是()A.SSS B.SAS C.ASA D.AAS【解答】解:∵在△ONC和△OMC中,∴△MOC≌△NOC(SSS),∴∠BOC=∠AOC,故选:A.9.如图,红红书上的三角形被墨迹污染了一部分,她根据所学的知识很快就画了一个与书上完全一样的三角形,那么红红画图的依据是()A.SSS B.SAS C.ASA D.AAS【解答】解:根据题意,三角形的两角和它们的夹边是完整的,所以可以利用“角边角”定理作出完全一样的三角形.故选:C.题型4:角平分线的性质10.如图,在△ABC中,△C=90°,AC=BC,AD平分△CAB交BC于D,DE⊥AB于E,若AB=6cm,则△DBE的周长是()A.6 cm B.7 cm C.8 cm D.9 cm【解答】解:△AD平分△CAB,DE⊥AB,△C=90°,∴DE=CD,又△AC=BC,AC=AE,∴AC=BC=AE,∴△DBE的周长=DE+BD+EB=CD+BD+EB=BC+EB=AE+EB=AB,∵AB =6cm,∴△DBE的周长=6cm.故选:A.11.如图,△ABC中,△C=90°,AD是角平分线,AB=14,S△ABD=28,则CD的长为.【解答】解:如图,过D作DE⊥AB于E,∵∠C=90°,AD是角平分线,∴由角平分线的性质,得DE=CD.∵AB=14,S△ABD=28,∴×AB×DE=28,即×14×DE=28,解得DE=4,∴CD=4,故答案为:4.12.如图,BD是△ABC的平分线,DE⊥AB于E,S△ABC=36cm2,AB=18cm,BC=12cm,则DE=cm.【解答】解:过点D作DF⊥BC于点F,∵BD是△ABC的平分线,DE⊥AB,∴DE=DF,∵AB=18cm,BC=12cm,∴S△ABC=S△ABD+S△BCD=AB•DE+BC•DF=DE•(AB+BC)=36cm2,∴DE=2.4(cm).故答案为:2.4.题型五:全等三角形中档证明题考向1:重叠边技巧①短边相等+重叠边=长边相等②长边相等-重叠边=短边相等13.如图,点A、F、C、D在同一直线上,点B和点E分别在直线AD的两侧,且AB=DE,△A=△D,AF=DC.求证:(1)△ABC≌△DEF;(2)BC∥EF.【解答】证明:(1)△AF=DC,∴AF+CF=DC+CF,∴AC=DF,∵在△ABC和△DEF中,∴△ABC≌△DEF(SAS);(2)△由(1)知△ABC≌△DEF,∴∠BCA=△EFD,∴BC∥EF.14.已知:如图,A、C、F、D在同一直线上,AF=DC,AB=DE,BC=EF,求证:AB∥DE.【解答】证明:△AF=DC,∴AF﹣FC=DC﹣CF,即AC=DF.在△ACB和△DFE中,∴△ACB≌△DFE(SSS),∴∠A=△D,∴AB∥DE.考向2:重叠角技巧重叠角技巧:①小角相等+重叠角=大角相等②大角相等-重叠角=小角相等15.如图,AB=AD,△C=△E,△1=△2,求证:△ABC≌△ADE.【解答】证明:△△1=△2,∴∠1+∠EAC=△2+∠EAC,即△BAC=△DAE,在△ABC和△ADE中,,∴△ABC≌△ADE(AAS).16.如图,△ABC和△ADE都是等腰三角形,且△BAC=90°,△DAE=90°,B,C,D在同一条直线上.求证:BD=CE.【解答】证明:△△ABC和△ADE都是等腰直角三角形,∴AD=AE,AB=AC,又△△EAC =90°+∠CAD,△DAB=90°+∠CAD,∴∠DAB=△EAC,∵在△ADB和△AEC中,∴△ADB≌△AEC(SAS),∴BD=CE.考向三:等角的余角相等技巧:∠1+∠2=90,∠2+∠3=90, ∠1=∠3技巧:把全等三角形中一个三角形的两个锐角分别随意标上∠1、∠2,再从第二个三角形的两个锐角中挑一个和∠1或∠2互余的角标上∠3。

初一数学三角形与全等三角形知识点大全-经典练习-含答案

初一数学三角形与全等三角形知识点大全-经典练习-含答案

初一数学三角形知识点归纳一、与三角形有关的线段1、不在同一条直线上的三条线段首尾顺次相接组成的图形叫做三角形2、等边三角形:三边都相等的三角形3、等腰三角形:有两条边相等的三角形4、不等边三角形:三边都不相等的三角形5、在等腰三角形中,相等的两边都叫腰,另一边叫底,两腰的夹角叫做顶角,腰和底边的夹角叫做底角6、三角形分类:不等边三角形等腰三角形:底边和腰不等的等腰三角形等边三角形7、三角形两边之和大于第三边,两边之差小于第三边注:1)在实际运用中,只需检验最短的两边之和大于第三边,则可说明能组成三角形 2)在实际运用中,已经两边,则第三边的取值范围为:两边之差〈第三边〈两边之和3)所有通过周长相加减求三角形的边,求出两个答案的,注意检查每个答案能否组成三角形8、三角形的高:从△ABC的顶点A向它所对的边BC所在的直线画垂线,垂足为D,所得线段AD叫做△ABC的边BC上的高9、三角形的中线:连接△ABC的顶点A和它所对的边BC的中点D,所得线段AD叫做△ABC的边BC上的中线注:两个三角形周长之差为x,则存在两种可能:即可能是第一个△周长大,也有可能是第一个△周长小10、三角形的角平分线:画∠A的平分线AD,交∠A所对的边BC于D,所得线段AD叫做△ABC的角平分线11、三角形的稳定性,四边形没有稳定性二、与三角形有关的角1、三角形内角和定理:三角形三个内角的和等于180度。

证明方法:利用平行线性质2、三角形的外角:三角形的一边与另一边的延长线组成的角,叫做三角形的外角3、三角形的一个外角等于与它不相邻的两个内角的和4、三角形的一个外角大于与它不相邻的任何一个内角5、三角形的外角和为360度6、等腰三角形两个底角相等三、多边形及其内角和1、多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形2、N边形:如果一个多边形由N条线段组成,那么这个多边形就叫做N边形。

3、内角:多边形相邻两边组成的角叫做它的内角4、外角:多边形的边与它的邻边的延长线组成的角叫做多边形的外角5、对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线6、正多边形:各个角都相等,各条边都相等的多边形叫做正多边形7、多边形的内角和:n边形内角和等于(n-2)*1808、多边形的外角和:360度注:有些题,利用外角和,能提升解题速度9、从n边形的一个顶点出发,可以引n-3条对角线,它们将n边形分成n-2个△注:探索题型中,一定要注意是否是从N边形顶点出发,不要盲目背诵答案10、从n边形的一个顶点出发,可以引n—3条对角线,n边形共有对角线23)-n(n条。

全等三角形练习题含答案

全等三角形练习题含答案

.七年级全等测试一.选择题〔共3 小题〕1.如图, EB 交 AC 于 M,交 FC 于 D,AB 交 FC 于 N,∠E=∠F=90 °,∠B=∠C,AE=AF ,给出以下结论:①∠1= ∠2;② BE=CF ;③△ACN ≌△ABM ;④ CD=DN .其中正确的结论有〔〕A.4 个B.3 个 C. 2 个D.1 个2.如图,△ABC 为等边三角形, D、 E 分别是 AC 、 BC 上的点,且AD=CE ,AE 与 BD 相交于点 P,BF ⊥AE 于点 F.假设 BP=4 ,那么 PF 的长〔〕A.2 B.3 C. 1 D.23.如图,OA=OC ,OB=OD 且 OA ⊥OB ,OC ⊥OD ,以下结论:①△AOD ≌△COB ;② CD=AB ;③∠CDA= ∠ABC ;其中正确的结论是〔〕.A.①②B.①②③C.①③D.②③二.解答题〔共11 小题〕4.如图,四边形ABCD 中,对角线 AC、 BD 交于点 O, AB=AC ,点 E 是 BD 上一点,且 AE=AD ,∠EAD= ∠BAC .(1〕求证:∠ABD= ∠ACD ;(2〕假设∠ACB=65 °,求∠BDC 的度数.5.〔 1〕如图①,在四边形 ABCD 中,AB ∥DC ,E 是 BC 的中点,假设 AE 是∠BAD 的平分线,试探究AB ,AD ,DC 之间的等量关系,证明你的结论;〔 2〕如图②,在四边形ABCD 中, AB ∥DC ,AF 与 DC 的延长线交于点F, E是BC 的中点,假设 AE 是∠BAF 的平分线,试探究 AB ,AF ,CF 之间的等量关系,证明你的结论.6.:在△ABC 中, AB=AC , D 为 AC 的中点, DE⊥AB ,DF ⊥BC,垂足分别为点 E, F,且 DE=DF .求证:△ABC 是等边三角形..7.,在△ABC 中,∠A=90 °, AB=AC ,点 D 为 BC 的中点.(1〕如图①,假设点 E、F 分别为(2〕假设点 E、F 分别为 AB 、CA请利用图②说明理由.AB 、AC 上的点,且 DE ⊥DF ,求证: BE=AF ;延长线上的点,且DE ⊥DF,那么 BE=AF 吗?8.如图,在Rt △ABC ,∠ACB=90 °, AC=BC ,分别过 A、B 作直线 l 的垂线,垂足分别为 M、N.(1〕求证:△AMC ≌△CNB ;(2〕假设 AM=3 ,BN=5 ,求 AB 的长.9.,如图,在等腰直角三角形中,∠ C=90 °,D 是 AB 的中点, DE ⊥DF ,点E、 F 在 AC 、BC 上,求证: DE=DF .10 .如图, OC 是∠MON 内的一条射线, P 为 OC 上一点, PA ⊥OM ,PB ⊥ON ,垂足分别为 A,B, PA=PB ,连接 AB ,AB 与 OP 交于点 E.(1〕求证:△OPA ≌△OPB ;(2〕假设 AB=6 ,求 AE 的长.11 .如图,△ABC 和△ADE 分别是以 BC ,DE 为底边且顶角相等的等腰三角形,点D 在线段 BC 上,AF 平分 DE 交 BC 于点 F,连接 BE,EF.〔 1〕 CD 与 BE 相等?假设相等,请证明;假设不相等,请说明理由;〔 2〕假设∠BAC=90 °,求证: BF 2+CD 2=FD 2.12 .如图, OC 是∠AOB 的角平分线, P 是 OC 上一点, PD ⊥OA , PE⊥OB ,垂足分别为 D,E.F 是 OC 上另一点,连接DF,EF.求证: DF=EF .13 .如图, OP 平分∠AOB , PE⊥OA 于 E,PF ⊥OB 于 F,点 M 在 OA 上,点 N在OB 上,且 PM=PN .求证: EM=FN .14 .如图,△ABC 中,D 为 BC 边上一点, BE ⊥AD 的延长线于 E,CF ⊥AD 于 F,BE=CF .求证: D 为 BC 的中点.答案一.选择题〔共3 小题〕1.如图, EB 交 AC 于 M,交 FC 于 D,AB 交 FC 于 N,∠E=∠F=90 °,∠B=∠C,AE=AF ,给出以下结论:①∠1= ∠2;② BE=CF ;③△ACN ≌△ABM ;④ CD=DN .其中正确的结论有〔〕A.4 个B.3 个 C. 2 个D.1 个【解答】解:∵∠E=∠F=90 °,∠B=∠C,AE=AF∴△ABE ≌△ACF∴BE=CF∠BAE= ∠CAF∠BAE ﹣BAC=∠ ∠CAF ﹣BAC∠∴∠1=∠2△ABE ≌△ACF∴∠B=∠C,AB=AC又∠BAC= ∠CAB△ACN ≌△ABM .④CD=DN 不能证明成立, 3 个结论对.应选: B.2.如图,△ABC 为等边三角形, D、 E 分别是 AC 、 BC 上的点,且AD=CE ,AE 与 BD 相交于点 P,BF ⊥AE 于点 F.假设 BP=4 ,那么 PF 的长〔〕A.2 B.3 C. 1 D.2【解答】解:∵△ABC 是等边三角形,∴AB=AC .∴∠BAC= ∠C.在△ABD 和△CAE 中,,∴∠ABD= ∠CAE .∴∠APD= ∠ABP+ ∠PAB= ∠BAC=60 °.∴∠BPF= ∠APD=60 °.∵∠BFP=90 °,∠BPF=60 °,∴∠PBF=30 °.∴PF=.应选: A.3.如图,OA=OC ,OB=OD 且 OA ⊥OB ,OC ⊥OD ,以下结论:①△AOD ≌△COB ;② CD=AB ;③∠CDA= ∠ABC ;其中正确的结论是〔〕A.①②B.①②③C.①③D.②③【解答】解:∵OA ⊥OB, OC ⊥OD ,∴∠AOB= ∠COD=90 °.∴∠AOB+ ∠AOC= ∠COD+ ∠AOC ,即∠COB= ∠AOD .在△AOB 和△COD 中,,∴AB=CD ,∠ABO= ∠CDO .在△AOD 和△COB 中,∴△AOD ≌△COB 〔SAS 〕∴∠CBO= ∠ADO ,∴∠ABO ﹣CBO=∠ ∠CDO ﹣ADO∠,即∠ABC= ∠CDA .综上所述,①②③都是正确的.应选: B.二.解答题〔共11 小题〕4.如图,四边形ABCD 中,对角线 AC、 BD 交于点 O, AB=AC ,点 E 是 BD 上一点,且 AE=AD ,∠EAD= ∠BAC .(1〕求证:∠ABD= ∠ACD ;(2〕假设∠ACB=65 °,求∠BDC 的度数.【解答】证明:〔1〕∵∠BAC= ∠EAD∴∠BAC ﹣EAC=∠ ∠EAD ﹣EAC∠即:∠BAE= ∠CAD在△ABE 和△ACD 中∴△ABE ≌△ACD∴∠ABD= ∠ACD(2〕∵∠BOC 是△ABO 和△DCO 的外角∴∠BOC= ∠ABD+ ∠BAC ,∠BOC= ∠ACD+ ∠BDC∴∠ABD+ ∠BAC= ∠ACD+ ∠BDC∵∠ABD= ∠ACD∴∠BAC= ∠BDC∵∠ACB=65 °,AB=AC∴∠ABC= ∠ACB=65 °∴∠BAC=180 °﹣ABC∠ ﹣ACB=180∠ °﹣65°﹣65 °=50 °∴∠BDC= ∠BAC=50 °.5.〔 1〕如图①,在四边形 ABCD 中,AB ∥DC ,E 是 BC 的中点,假设 AE 是∠BAD 的平分线,试探究AB ,AD ,DC 之间的等量关系,证明你的结论;〔 2〕如图②,在四边形ABCD 中, AB ∥DC ,AF 与 DC 的延长线交于点F, E是BC 的中点,假设 AE 是∠BAF 的平分线,试探究 AB ,AF ,CF 之间的等量关系,证明你的结论..【解答】解:〔1〕证明:延长 AE 交 DC 的延长线于点 F,∵E 是 BC 的中点,∴CE=BE ,∵AB ∥DC ,∴∠BAE= ∠F,在△AEB 和△FEC 中,,∴△AEB ≌△FEC ,∴AB=FC ,∵AE 是∠BAD 的平分线,∴∠BAE= ∠EAD ,∵AB ∥CD ,∴∠BAE= ∠F,∴∠EAD= ∠F,∴AD=DF ,∴AD=DF=DC+CF=DC+AB,(2〕如图②,延长 AE 交 DF 的延长线于点 G,∵E 是 BC 的中点,∴CE=BE ,∵AB ∥DC ,∴∠BAE= ∠G,在△AEB 和△GEC 中,,∴△AEB ≌△GEC ,∴AB=GC ,∵AE 是∠BAF 的平分线,∴∠BAG= ∠FAG ,∵AB ∥CD ,∴∠BAG= ∠G,∴∠FAG= ∠G,∴FA=FG ,∴AB=CG=AF+CF ,6.:在△ABC 中, AB=AC , D 为 AC 的中点, DE⊥AB ,DF ⊥BC,垂足分别为点 E, F,且 DE=DF .求证:△ABC 是等边三角形.【解答】证明:∵DE ⊥AB ,DF ⊥BC ,垂足分别为点E, F,∴∠AED= ∠CFD=90 °,∵D 为 AC 的中点,∴AD=DC ,在Rt△ADE 和 Rt△CDF 中,,∴Rt△ADE ≌Rt△CDF ,∴∠A=∠C,∴BA=BC ,∵AB=AC ,∴AB=BC=AC ,∴△ABC 是等边三角形.7.,在△ABC 中,∠A=90 °, AB=AC ,点 D 为 BC 的中点.(1〕如图①,假设点 E、F 分别为 AB 、AC 上的点,且 DE ⊥DF ,求证: BE=AF ;(2〕假设点 E、F 分别为 AB 、CA 延长线上的点,且 DE ⊥DF,那么 BE=AF 吗?请利用图②说明理由.【解答】〔1〕证明:连接 AD ,如图①所示..∵∠A=90 °, AB=AC ,∴△ABC 为等腰直角三角形,∠ EBD=45 °.∵点D 为 BC 的中点,∴AD=BC=BD ,∠FAD=45 °.∵∠BDE+ ∠EDA=90 °,∠EDA+ ∠ADF=90 °,∴∠BDE= ∠ADF .在△BDE 和△ADF 中,,∴△BDE ≌△ADF 〔ASA 〕,∴BE=AF ;(2〕 BE=AF ,证明如下:连接 AD ,如图②所示.∵∠ABD=∠BAD=45 °,∴∠EBD=∠FAD=135 °.∵∠EDB+ ∠BDF=90 °,∠BDF+∠FDA=90 °,∴∠EDB= ∠FDA .在△EDB 和△FDA 中,,∴△EDB ≌△FDA 〔ASA 〕,∴BE=AF ...8.如图,在Rt △ABC ,∠ACB=90 °, AC=BC ,分别过 A、B 作直线 l 的垂线,垂足分别为 M、N.(1〕求证:△AMC ≌△CNB ;(2〕假设 AM=3 ,BN=5 ,求 AB 的长.【解答】解:〔1〕∵AM ⊥l,BN ⊥l,∠ACB=90 °,∴∠AMC= ∠ACB= ∠BNC=90 °,∴∠MAC+ ∠MCA=90 °,∠MCA+ ∠NCB=180 °﹣90°=90°,∴∠MAC= ∠NCB ,在△AMC 和△CNB 中,,.∴△AMC ≌△CNB 〔AAS 〕;(2〕∵△AMC ≌△CNB ,∴CM=BN=5 ,∴Rt△ACM 中, AC===,∵Rt△ABC ,∠ACB=90 °, AC=BC=,∴AB===2.9.,如图,在等腰直角三角形中,∠ C=90 °,D 是 AB 的中点, DE ⊥DF ,点E、 F 在 AC 、BC 上,求证: DE=DF .【解答】证明:连接 CD .∵在等腰直角三角形 ABC 中, D 是 AB 的中点.∴CD 为等腰直角三角形ABC 斜边 BC 上的中线.∴CD ⊥AB ,∠ACD= ∠BCD=45 °, CD=BD=AD .又∵DE ⊥DF∴∠EDC= ∠FDB在△ECD 和△FBD 中.∴△ECD ≌△FDB 〔ASA 〕∴DE=DF10 .如图, OC 是∠MON 内的一条射线, P 为 OC 上一点, PA ⊥OM ,PB ⊥ON ,垂足分别为 A,B, PA=PB ,连接 AB ,AB 与 OP 交于点 E.(1〕求证:△OPA ≌△OPB ;(2〕假设 AB=6 ,求 AE 的长.【解答】解:〔1〕∵PA⊥OM , PB⊥ON ,∴∠PAO= ∠PBO=90 °,又∵PA=PB ,PO=PO ,∴Rt△AOP ≌Rt△BOP ;(2〕∵△OPA ≌△OPB ,∴∠APE= ∠BPE ,又∵PA=PB ,∴AE=BE ,∴AE=AB=3 .11 .如图,△ABC 和△ADE 分别是以 BC ,DE 为底边且顶角相等的等腰三角形,点 D 在线段 BC 上,AF 平分 DE 交 BC 于点 F,连接 BE,EF.(1〕 CD 与 BE 相等?假设相等,请证明;假设不相等,请说明理由;(2〕假设∠BAC=90 °,求证: BF 2+CD 2=FD 2.【解答】解:〔1〕CD=BE ,理由如下:∵△ABC 和△ADE 为等腰三角形,∴AB=AC , AD=AE ,∵∠EAD= ∠BAC ,∴∠EAD ﹣BAD=∠ ∠BAC ﹣BAD∠,即∠EAB= ∠CAD ,在△EAB 与△CAD 中,∴△EAB ≌△CAD ,∴BE=CD ,(2〕∵∠BAC=90 °,∴△ABC 和△ADE 都是等腰直角三角形,∴∠ABF= ∠C=45 °,∵△EAB ≌△CAD ,∴∠EBA= ∠C,∴∠EBA=45 °,∴∠EBF=90 °,在Rt△BFE 中, BF 2+BE 2=EF 2,∵AF 平分 DE ,∴AF 垂直平分 DE,∴EF=FD ,由〔 1〕可知, BE=CD ,∴BF 2+CD 2=FD 212 .如图, OC 是∠AOB 的角平分线, P 是 OC 上一点, PD ⊥OA , PE⊥OB ,垂足分别为 D,E.F 是 OC 上另一点,连接DF,EF.求证: DF=EF .【解答】证明:∵OC 是∠AOB 的角平分线, P 是 OC 上一点, PD ⊥OA ,PE⊥OB ,∴∠DOP= ∠EOP ,PD=PE .在 Rt△POD 和 Rt△POE 中,,∴Rt△POD ≌Rt△POE 〔HL 〕,∴OD=OE .在△ODF 和△OEF 中,,∴△ODF ≌△OEF 〔SAS 〕,∴DF=EF .13 .如图, OP 平分∠AOB , PE⊥OA 于 E,PF ⊥OB 于 F,点 M 在 OA 上,点 N 在OB 上,且 PM=PN .求证: EM=FN .【解答】证明:∵点 P 在∠AOB 的平分线上, PE 丄 0A 于 E, PF 丄 OB 于 F,∴PF=PE ,在Rt△PEM 和 Rt△PEN 中,∴Rt△PEM ≌Rt△PEN 〔HL 〕,∴EM=FN .14 .如图,△ABC 中,D 为 BC 边上一点, BE ⊥AD 的延长线于 E,CF ⊥AD 于 F,BE=CF .求证: D 为 BC 的中点.....【解答】证明:∵BE ⊥AD 的延长线于 E,CF ⊥AD 于 F,∴∠CFD= ∠BED=90 °,在△BED 和△CFD 中,∴△CDF ≌△BDE 〔AAS 〕∴CD=BD .∴D 为 BC 的中点.....。

鲁教版数学七年级下册10.1全等三角形 习题及答案

鲁教版数学七年级下册10.1全等三角形 习题及答案

鲁教版数学七年级下册10.1全等三角形 习题及答案一、单选题1.如图,△ABD ≌△CDB ,下面四个结论中,不正确的是( )A .△ABD 和△CDB 的面积相等 B .△ABD 和△CDB 的周长相等C .∠A +∠ABD =∠C +∠CBD D .AD ∥BC ,且AD =BC2.如图,ABC R t ∆沿直角边BC 所在的直线向右平移得到DEF ∆,下列结论中错误的是( )A.△ABC ≌△DEFB. ︒=∠90DEFC.DF AC =D.CF EC =3.如图,将矩形纸片ABCD 沿对角线BD 折叠一次,则图中全等三角形有( )A.2对B. 3对C. 4对D.5对4.如图,已知AB =DC ,AD =BC ,E ,F 是DB 上两点且BF =DE ,若∠AEB =100°,∠ADB =30°,则∠BCF =( )A .150°B .40°C .80°D .70°5.如图,∠B=∠E=90°,AB=DE ,AC=DF ,则△ABC ≌△DEF 的理由是( )A.SASB.ASAC.AASD.HL6.如图,在四边形ABCD 中,E 是BC 边的中点,连接DE 并延长,交AB 的延长线于F 点,AB =BF.添加一个条件,使四边形ABCD 是平行四边形.你认为下面四个条件中可选择的是( )A、AD=BCB、CD=BFC、∠A=∠CD、∠F=∠CDE7.如图所示,△ABD≌△CDB,下面四个结论中,不正确的是()A.△ABD和△CDB的面积相等B.△ABD和△CDB的周长相等C.∠A+∠ABD=∠C+∠CBDD.AD∥BC,且AD=BC8.如图所示,BE⊥AC于点D,且AD=CD,BD=ED,若∠ABC=54°,则∠E=()A.25°B.27°C.30°D.45°9.如图,在△ABC和△AED中,已知∠1=∠2,AC=AD,添加一个条件后,仍然不能证明△ABC≌△AED,这个条件是()A.AB=AE B.BC=ED C.∠C=∠D D.∠B=∠E10.如图,AD是△ABC的角平分线,DE⊥AB于E,已知△ABC的面积为28.AC=6,DE=4,则AB的长为()A.6 B.8 C.4 D.1011.如图,在△ABC中,点E在边AC上,D E是AB的垂直平分线,△ABC的周长为19,△BCE 的周长为12,则线段AB的长为()A .9B .8C .7D .612.如图,已知AB =AC =BD ,则∠1与∠2的关系是( )A .3∠1﹣∠2=180°B .2∠1+∠2=180°C .∠1+3∠2=180°D .∠1=2∠2二、填空题13.如图为6个边长相等的正方形的组合图形,则∠1+∠3=________ .14. 已知ABC DEF ∆∆≌,AC AB =,且ABC ∆的周长为22cm ,BC=4cm ,则DEF ∆的边=DE cm .15. 在△ABC 中,∠C=90°,BC=4cm ,∠BAC 的平分线交B C 于D ,且BD ︰DC=5︰3,则D 到AB 的距离为_____________.16.如图,已知△ABC 中,∠ABC ,∠ACB 的角平分线交于点O ,连接AO 并延长交BC 于D ,OH ⊥BC 于H ,若∠BAC =60°,OH =5 cm ,则∠BAD =_____________,点O 到AB 的距离为____________ cm.17.△ABC ≌△BAD ,A 和B ,C 和D 是对应顶点,如果AB=8cm ,BD=•6cm ,AD=5cm ,则BC=________cm .18.已知,如图,AD=AC ,BD=BC ,O 为AB 上一点,那么,图中共有 对全等三角形.三、解答题19.如图,已知∠AOB=20°.(1)若射线OC⊥OA,射线OD⊥OB,请你在图中画出所有符合要求的图形;(2)请根据(1)所画出的图形,求∠COD的度数.20.如图,AB=DC,AD=BC,DE=BF.求证:BE=DF.21. 在ABC∆中,︒=∠90ACB,BCAC=,直线MN经过点C,且MNAD⊥于D,MNBE⊥于E.(1)当直线MN绕点C旋转到图1的位置时,求证:①ADC∆≌CEB∆;②BEADDE+=;(2)当直线MN绕点C旋转到图2的位置时,(1)中的结论还成立吗?若成立,请给出证明;若不成立,说明理由.22.已知:如图,在直线MN上求作一点P,使点P到∠AOB两边的距离相等(要求写出作法,并保留作图痕迹,写出结论)ONMBA23.(8分)已知: BE ⊥CD ,BE =DE ,BC =DA ,求证:△BEC ≌△DAE24.已知:如图,AB=AC ,BD ⊥AC ,CE ⊥AB ,垂足分别为D 、E ,BD 、CE 相交于点F ,求证:BE =CD .25.如图,点C 、E 分别在直线AB 、DF 上,小华想知道∠ACE 和∠DEC 是否互补,但是他没有带量角器,只带了一副三角板,于是他想了这样一个办法:首先连结CF ,再找出CF 的中点O ,然后连结EO 并延长EO 和直线AB 相交于点B ,经过测量,他发现EO =BO ,因此他得出结论:∠ACE 和∠DEC 互补,而且他还发现BC =EF .小华的想法对吗?为什么?26.如图,已知CA =CD ,CB =CE ,∠ACB =∠DCE ,试说明△ACE ≌△DCB 的理由.27. 如图,四边形ABCD 中,E 点在AD 上,其中∠BAE =∠BCE =∠ACD =90°,且BC =CE ,求证:△ABC ≌△DEC .BDF AAC BDE F28.如图,在△ABC中,∠C=90°,D、E分别为AC、AB上的点,且AD=BD,AE=BC,DE=DC,求证:DE⊥AB.29.如图,在△ABC和△ABD中,∠BAC=∠ABD=90°,点E为AD边上的一点,且AC=AE,连接CE交AB于点G,过点A作AF⊥AD交CE于点F.(1)求证:△AGE≌△AFC;(2)若AB=AC,求证:AD=AF+BD.30.△ABC中,AB=AC,∠A=40°,D、E分别是AB,AC上的不动点.且BD+CE=BC,点P 是BC上的一动点.(1)当PC=CE时(如图1),求∠DPE的度数;(2)若PC=BD时(如图2),求∠DPE的度数还会与(1)的结果相同吗?若相同,请写出求解过程;若不相同,请说明理由.31.已知:如图,O为△ABC的∠BAC的角平分线上一点,∠1=∠2,求证:△ABC是等腰三角形.32.如图,在等边△ABC中,∠ABC与∠ACB的平分线相交于点O,且OD∥AB,OE∥AC (1)试判定△ODE的形状,并说明你的理由;(2)若BC=10,求△ODE的周长.33.如图,A、B、C三点在同一直线上,分别以AB、BC为边,在直线AC的同侧作等边△ABD 和等边△BCE,连接AE交BD于点M,连接CD交BE于点N,连接MN得△BMN.(1)求证:△ABE≌△DBC.(2)试判断△BMN的形状,并说明理由.参考答案一、单选题1-5 CDDDD 6-10 DCBBB 11-12 CA二、填空题13、 90°14. 915. 5.116. 30° 517. 518. 3三、解答题19、解:(1)如图1、如图2,OC (或OC ′)、OD (或OD ′)为所作;(2)如图1,∵OC ⊥OA ,OD ⊥OB ,∴∠BOD=∠AOC=90°,∴∠COD=360°﹣90°﹣90°﹣20°=160°,∠COD ′=∠BOC ﹣∠AOC=90°+20°﹣90°=20°,如图2,同理可得∠COD=160°,∠COD ′=20°,∴∠COD=20°或160°.(2)如图1,由于OC ⊥OA ,OD ⊥OB ,则∠BOD=∠AOC=90°,于是利用周角的定义可计算出∠COD=160°,利用∠COD ′=∠BOC ﹣∠AOC 可得到∠COD ′=20°,如图2,同理可得∠COD=160°,∠COD ′=20°.20. 解:连接BD.∵AD =BC ,AB =CD ,BD =BD ,∴△ABD ≌△CDB(SSS),∴∠ADB =∠DBC ,∴180°-∠ADB =180°-∠DBC ,∴∠BDE =∠DBF ,易证△BDE ≌△DBF(SAS),∴BE =DF21.(1)证明①︒=∠+∠90BCE ACD Θ︒=∠+∠90ACD DAC BCE DAC ∠=∠∴ 又︒=∠=∠=90,BEC ADC BC AC CEB ADC ∆∆∴≌.②CEB ADC ∆∆≌ΘCE AD BE CD ==∴,BE AD CD CE DE +=+=∴.(2)CEB ADC ∆∆≌成立,BE AD DE +=不成立,此时应有BE AD DE -=.22.作∠BOA 的平分线交MN 于P 点,就是所求做的点。

七年级数学下册《第十二章全等三角形-角的平分线的性质》练习题

七年级数学下册《第十二章全等三角形-角的平分线的性质》练习题

七年级数学下册《第十二章全等三角形-角的平分线的性质》练习题(含答案解析)学校:___________姓名:___________班级:___________一、填空题1.如图,点C 在AOB ∠的平分线上,CD OA ⊥于点D ,且1CD =,如果E 是射线OB 上一点,那么CE 长度的最小值是______.2.如图,点P 在AOB ∠内,因为PM OA ⊥,PN OB ⊥,垂足分别是M 、N ,PM PN =,所以OP 平分AOB ∠,理由是______.3.如图,ABC 的三边AB ,BC ,CA 的长分别是10,15,20,其三条角平分线相交于点O ,连接OA ,OB ,OC ,将ABC 分成三个三角形,则::ABO BCO CAO S S S 等于__________.4.如图所示,点O 在一块直角三角板ABC 上(其中30ABC ∠=︒),OM AB ⊥于点M ,ON BC ⊥于点N ,若OM ON =,则ABO ∠=_________度.5.如图,BE、CF都是ABC的角平分线,且110∠=︒,则ABDC∠=___________.二、单选题6.如图,OB平分∠AOC,D、E、F分别是射线OA、射线OB、射线OC上的点,D、E、F与O点都不重合,连接ED、EF若添加下列条件中的某一个.就能使DOE≅FOE,你认为要添加的那个条件是()A.OD=OE B.OE=OF C.∠ODE =∠OED D.∠ODE=∠OFE<,将ABC以点A为中心逆时针旋转得到ADE,点D在BC边上,DE交7.如图,在ABC∆中,AB AC∠=∠,其中所有正确结论的AC于点F.下列结论:∠AFE DFC△△;∠DA平分BDE∠;∠CDF BAD序号是()A.∠∠B.∠∠C.∠∠D.∠∠∠8.如图,三条公路两两相交,现计划在∠ABC中内部修建一个探照灯,要求探照灯的位置到这三条公路的距离都相等,则探照灯位置是∠ABC()的交点.A.三条角平分线B.三条中线C .三条高的交点D .三条垂直平分线9.如图,Rt∠ABC 中,∠C =90°,AD 平分∠BAC ,交BC 于点D ,AB =10,S △ABD =15,则CD 的长为( )A .2B .3C .4D .5三、解答题10.已知40AOB ∠=︒.(1)用直尺和圆规作出AOB ∠的平分线OD (不写作法,但保留作图痕迹,写出结论);(2)已知AOB ∠与BOC ∠互为补角,画出符合条件的所有可能的图形,并求出COD ∠的度数.11.如图,在由边长为1的小正方形组成的正方形网格中,一段圆弧经过网格的格点A 、B 、C .(1)请完成如下操作:∠以点O 为原点,竖直和水平方向所在的直线为坐标轴,小正方形的边长为单位长,建立平面直角坐标系; ∠用直尺和圆规画出该圆弧所在圆的圆心D 的位置,不写作法,保留作图痕迹,并连接AD 、CD .(2)请在(1)的基础上,解答下列问题:∠写出点的坐标:C ______、D ______;∠D 的半径为______(结果保留根号);∠若扇形DAC 是一个圆锥的侧面展开图,则该圆锥的底面积为______(结果保留π);∠若点E 的坐标为()7,0,试判断直线EC 与D 的位置关系,并说明理由.12.如图,已知AOC BOC ∠=∠,点P 在OC 上,PD OA ⊥,PE OB ⊥,垂足分别为D ,E .求证:OPD OPE ≌.13.如图,∠ABC 中,∠ACB =90°,AB =10,BC =6,若点P 从点A 出发,以每秒1个单位长度的速度沿折线A -C -B -A 运动,设运动时间为t 秒(t >0).(1)若点P 在AC 上,且满足P A =PB 时,求此时t 的值;(2)若点P 恰好在∠BAC 的平分线上,求t 的值.14.如图,在∠ABC 中,AD 是它的角平分线,且BD =CD ,DE ∠AB ,DF ∠AC ,垂足分别为E 、F ,求证:AB =AC参考答案:1.1【分析】过点C 作CE ∠OB 于点E ,根据角平分线的性质解答即可.【详解】解:过点C 作CE ∠OB 于点E ,∠点C 在∠AOB 的平分线上,CD ∠OA 于点D ,且CD =1,∠CE =CD =1,即CE 长度的最小值是1,故答案为:1.【点睛】本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.2.角的内部到角两边距离相等的点在角的角平分线上【分析】根据角平分线判定定理即可得到结果.【详解】解:∠PM∠OA ,PN∠OB ,PM=PN∠OP 平分∠AOB (在角的内部,到角的两边距离相等的点在这个角的平分线上)故答案为:角的内部到角两边距离相等的点在角的角平分线上.【点睛】本题考查角平分线判定定理,掌握角平分线判定定理的内容是解题的关键.3.2:3:4【分析】过点O 分别向三边作垂线段,通过角平分线的性质得到三条垂线段长度相等,再通过面积比等于底边长度之比得到答案.【详解】解:过点O 分别向BC 、BA 、AC 作垂线段交于D 、E 、F 三点.∠CO 、BO 、AO 分别平分、、ACB CBA BAC ∠∠∠∠OD OE OF == ∠12ABO SAB OE =,12△BCO S BC OD =,12△CAO S AC OF = ∠::::10:15:202:3:4ABO BCO CAO S S S AB BC AC ===故答案为:2:3:4【点睛】本题考查了角平分线的性质,往三角形的三边作垂线段并得到面积之比等于底之比是解题关键.4.15【分析】根据ON BC ⊥,OM AB ⊥,OM ON =判断OB 是ABC ∠的角平分线,即可求解.【详解】解:由题意,ON BC ⊥,OM AB ⊥,OM ON =,即点O 到BC 、AB 的距离相等,∠ OB 是ABC ∠的角平分线,∠ 30ABC ∠=︒, ∠1152ABO ABC ∠=∠=︒. 故答案为:15.【点睛】本题考查角平分线的定义及判定,熟练掌握“到一个角的两边距离相等的点在这个角的平分线上”是解题的关键.5.40°##40度【分析】根据三角形的内角和定理以及角平分线的定义,列出算式计算即可.【详解】解:∠BE 、CF 都是∠ABC 的角平分线,∠∠A =180°−(∠ABC +∠ACB ),=180°−2(∠DBC +∠BCD )∠∠BDC =180°−(∠DBC +∠BCD ),∠∠A =180°−2(180°−∠BDC )∠∠BDC =90°+12∠A ,∠∠A =2(110°−90°)=40°.【点睛】本题考查的是三角形内角和定理和角平分线的定义,用已知角表示出所求的角是解题的关键.6.D【分析】根据OB 平分∠AOC 得∠AOB =∠BOC ,又因为OE 是公共边,根据全等三角形的判断即可得出结果.【详解】解:∠OB 平分∠AOC∠∠AOB =∠BOC当∠DOE ∠∠FOE 时,可得以下结论:OD =OF ,DE =EF ,∠ODE =∠OFE ,∠OED =∠OEF .A 答案中OD 与OE 不是∠DOE ∠∠FOE 的对应边,A 不正确;B 答案中OE 与OF 不是∠DOE ∠∠FOE 的对应边,B 不正确;C 答案中,∠ODE 与∠OED 不是∠DOE ∠∠FOE 的对应角,C 不正确;D 答案中,若∠ODE =∠OFE ,在∠DOE 和∠FOE 中,DOE FOE OE OEODE OFE =⎧⎪=⎨⎪=⎩∠∠∠∠ ∠∠DOE ∠∠FOE (AAS )∠D 答案正确.故选:D .【点睛】本题考查三角形全等的判断,理解全等图形中边和角的对应关系是解题的关键.7.D【分析】根据旋转的性质可得对应角相等,对应边相等,进而逐项分析判断即可求解.【详解】解:∠将ABC 以点A 为中心逆时针旋转得到ADE ,∠ADE ABC ≌,E C ∴∠=∠,AFE DFC ∠=∠,∴AFE DFC △△,故∠正确;ADE ABC ≌,AB AD ∴=,ABD ADB ∴∠=∠,ADE ABC ∠=∠,ADB ADE ∴∠=∠,∴DA 平分BDE ∠,故∠正确;ADE ABC ≌,BAC DAE ∴∠=∠,BAD CAE ∴∠=∠,AFE DFC△△,CAE CDF∴∠=∠,CDF BAD∠=∠∴,故∠正确故选D【点睛】本题考查了性质的性质,等边对等角,相似三角形的性质判定与性质,全等三角形的性质,掌握以上知识是解题的关键.8.A【分析】根据角平分线的性质即可得到探照灯的位置在角平分线的交点处,即可得到结论.【详解】解:∠探照灯的位置到这三条公路的距离都相等,∠探照灯位置是∠ABC的三条角平分线上,故选:A.【点睛】此题考查了角平分线的性质,数据角平分线的性质定理是解题的关键.9.B【分析】过点D作DE∠AB于E,根据角平分线上的点到角的两边距离相等可得DE=CD,然后利用∠ABD 的面积列式计算即可得解.【详解】解:如图,过点D作DE∠AB于E,∠∠C=90°,AD平分∠BAC,∠DE=CD,∠S△ABD=12AB•DE=12×10•DE=15,解得:DE=3,∠CD=3.故选:B.【点睛】本题考查了三角形的面积和角平分线的性质,能熟记角平分线上的点到角两边的距离相等是解此题的关键.10.(1)见解析(2)图见解析,60°或120°【分析】(1 )根据角平分线的定义作出图形即可;(2)分两种情形,分别画出图形求解即可.(1)解:如图,射线OD即为所求.(2)解:如图,∠BOC与∠AOB、∠BOC'与∠AOB都互为补角,∠∠AOB=40°,且OD平分∠AOB,∠∠BOC=140°,∠BOC'=140°,∠AOD=∠BOD=12∠AOB=20°,当射线OA在∠BOC的外侧时,∠COD=∠BOC+∠BOD=140°+20°=160°;当射线OA在∠BOC'内部时,∠C'OD=∠BOC'-∠BOD=140°-20°=120°.综上,∠COD的度数为60°或120°.【点睛】本题考查作图 复杂作图,角平分线的定义,补角的定义等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.11.(1)答案见详解(2)∠62(,);20(,);∠∠54π;∠相切,理由见详解 【分析】(1)∠根据叙述,利用正方形的网格即可作出坐标轴;∠利用过三点的圆可得圆心为圆上任意两条弦的垂直平分线的交点,即可得到D .(2)∠利用(1)中所作的坐标系,即可表示出点的坐标;∠在Rt OAD 中,利用勾股定理即可求得半径长;∠理由直角三角形全等可证得∠ADC =90°,则可求得AC 的长度,AC 的长就是圆锥的底面圆的周长,在利用圆的周长公式即可求得答案;∠利用勾股定理逆定理证明DCE 为直角三角形即可证得DC CE ⊥,从而即可得出结论.(1)∠如图,建立平面直角坐标系;∠利用过三点的圆可得圆心为圆上任意两条弦的垂直平分线的交点,即可得到D ,如图所示:(2)∠根据平面直角坐标系可得C (6,2);D (2,0);故答案为:C (6,2);D (2,0);∠在Rt AOD △中,90AOD ∠=︒,4AO =,2OD =,AD =故答案为:∠由∠得AD =在Rt DCF △中,90DFC ∠=︒,4DF =,2CF =,DC ∴在Rt AOD △和Rt DFC 中,AD DC OA DF=⎧⎨=⎩, ()Rt AOD Rt DFC HL ≅,DAO CDF ∴∠=∠,90DAO ADO ∠+∠=︒,90CDF ADO ∴∠+∠=︒,18090ADC ADO CDF ∴∠=︒-∠-∠=︒,AC ∴==,由2r π=,解得r =2254S r πππ∴===⎝⎭, ∴该圆锥的底面积为54π, 故答案为:54π. ∠直线EC 与D 相切,由图可知,在Rt CEF 中,90CFE ∠=︒,1EF =,2CF =,22222125CE EF CF ∴=+=+=,又由∠得DC =2220DC ==,2220525DC CE +=+=,22525DE ==,222DC CE DE ∴+=,∴DCE 为直角三角形,90DCE ∠=︒,DC CE ∴⊥,∴直线EC 与D 相切.【点睛】本题考查了不共线的三点确定圆心的方法、直线与圆相切的判定、根据平面直角坐标系写出点的坐标、勾股定理和圆锥的侧面展开图的弧长即为圆锥的底面圆的周长,垂径定理,圆锥的计算,正确求出弧长是难点.12.见解析【分析】根据角平分线的性质得PD PE =,再用HL 证明OPD OPE ≌.【详解】证明:∠AOC BOC ∠=∠,∠OC 为AOB ∠的角平分线,又∠点P 在OC 上,PD OA ⊥,PE OB ⊥,∠PD PE =,90PDO PEO ∠=∠=︒,又∠PO PO =(公共边),∠()HL OPD OPE ≌.【点睛】本题考查角平分线的性质,全等三角形的判定,利用合适的条件证明三角形全等是本题的关键. 13.(1)254 (2)323【分析】(1)连接PB ,在Rt ∠ABC 中,根据勾股定理得AC =6,由于AP =PB =t ,则PC =8-t ,在Rt ∠PCB 中,根据勾股定理得222PC BC PB +=,进行计算即可得;(2)由题意得,PC =t -8 , PB =14-t ,过点P 作PE ∠AB ,由于AP 平分∠BAC ,且∠ACB =90°得PC =PE ,根据HL 得Rt ∠ACP ∠Rt ∠AEP ,即可得AC =AE =8, BE =2,在 Rt ∠PEB 中,根据勾股定理得222PE BE PB +=,进行计算即可得.(1)解:如图所示,连接PB ,∠在Rt ∠ABC 中,AB =10,BC =6,∠8AC =由于AP =PB =t ,则PC =8-t ,在Rt ∠PCB 中,根据勾股定理得:222PC BC PB +=222(8)6t t -+= 解得254t =, 即此时t 的值为254. (2)解:由题意得,PC =t -8 , PB =14-t ,如图所示,过点P 作PE ∠AB ,由于AP 平分∠BAC ,且∠ACB =90°,∠ PC =PE ,在Rt ∠ACP 与Rt ∠AEP 中,PC PE AP AP =⎧⎨=⎩∠Rt ∠ACP ∠Rt ∠AEP (HL ),∠AC =AE =8, BE =2,在 Rt ∠PEB 中,根据勾股定理得,222PE BE PB +=,222(8)2(14)t t -+=- 解得:323t =, ∠当点P 在∠BAC 的平分线上时,t 的值为323. 【点睛】本题考查了勾股定理,角平分线的性质,全等三角形的判定和性质,解题的关键是掌握这些知识点.14.证明见解析【分析】根据角平分线的性质得到DE=DF,证明Rt∠BDE≅Rt∠CDF(HL),根据全等三角形的性质得到结论.【详解】证明:∠AD是∠ABC的角平分线又∠DE∠AB于E,DF∠AC于F∠DE=DF,∠BED=∠CFD=90°又∠BD=CD∠Rt∠BED∠Rt∠CFD(HL)∠∠B=∠C∠AB=AC.【点睛】本题考查全等三角形的性质和判定,角平分线的性质,解题的关键是掌握这些性质定理进行证明.。

全等三角形的基础和经典例题含有答案

全等三角形的基础和经典例题含有答案

第十一章:全等三角形一、基础知识1.全等图形的有关概念 (1)全等图形的定义能够完全重合的两个图形就是全等图形。

例如:图13-1和图13-2就是全等图形图13-1图13-2 (2)全等多边形的定义两个多边形是全等图形,则称为全等多边形。

例如:图13-3和图13-4中的两对多边形就是全等多边形。

图13-3 图13-4(3)全等多边形的对应顶点、对应角、对应边两个全等的多边形,经过运动而重合,相互重合的顶点叫做对应顶点,相互重合的边叫做对应边,相互重合的角叫做对应角。

(4)全等多边形的表示例如:图13-5中的两个五边形是全等的,记作五边形ABCDE ≌五边形A ’B ’C ’D ’E ’(这里符号“≌”表示全等,读作“全等于”)。

图13-5表示图形的全等时,要把对应顶点写在对应的位置。

(5)全等多边形的性质全等多边形的对应边、对应角分别相等。

A B DC E B ’A ’ C ’ D ’ E ’(6)全等多边形的识别多边形相等、对应角相等的两个多边形全等。

2.全等三角形的识别(1)根据定义若两个三角形的边、角分别对应相等,则这两个三角形全等。

(2)根据SSS如果两个三角形的三条边分别对应相等,那么这两个三角形全等。

相似三角形的识别法中有一个与(SSS)全等识别法相类似,即三条边对应成比例的两个三角形相似,而相似比为1时,就成为全等三角形。

(3)根据SAS如果两个三角形有两边机器夹角分别对应相等,那么这两个三角形全等。

相似三角形的识别法中同样有一个是与(SAS)全等识别法相类似,即一角对应相等而夹这个角的两边对应成比例的两个三角形相似,当相似比为1时,即为全等三角形。

(4)根据ASA如果两个三角形的两个角及其夹边分别对应相等,那么这两个三角形全等。

(5)根据AAS如果两个三角形有两个角及其中一角的对边分别对应相等,那么这两个三角形全等。

3.直角三角形全等的识别(1)根据HL如果两个直角三角形的斜边及一条直角边分别对应相等,那么这两个直角三角形全等。

七年级数学下册期中期末专题07 全等三角形(真题测试)(解析版)

七年级数学下册期中期末专题07 全等三角形(真题测试)(解析版)

专题07 全等三角形【真题测试】 一、选择题1.(长宁2019期末18)下列所叙述的图形中,全等的两个三角形是( ) A. 含60︒角的两个直角三角形; B.腰对应相等的两个等腰三角形; C.边长均为5厘米的两个等边三角形; D.一个钝角对应相等的两个等腰三角形. 【答案】C ;【解析】含60度角的两个直角三角形的对应边不一定相等,因此不一定全等,A 错误;腰对应相等的两个等腰三角形的顶角不一定相等,故B 错误;边长为5厘米的两个等边三角形全等,因此C 正确;一个钝角对应相等的两个等腰三角形的对应边不一定相等,因此D 错误;故此题选C.2.(长宁2018期末18)在ABC ∆中,已知点D 、E 分别在AB 、AC 上,BE 与CD 相交于点O ,依据下列各个选项中所列举的条件,不能说明AB=AC 的是( ) A. BE=CD ,EBC DCB ∠=∠; B. AD=AE ,BE=CD ; C. OD=OE ,ABE ACD ∠=∠; D. BE=CD ,BD =CE .O D C BA E【答案】B ;【解析】 A 、因为EBC DCB ∠=∠,所以OB=OC ,又BE=CD ,故OD=OE ,可证DOB EOC ∆∆≌,得ABE ACD ∠=∠,可得ABC ACB ∠=∠,即得AB=AC ;B 、已知两边及一边的对角对应相等,不一定能得出ABE ACD ∆∆≌,故不一定能得AB=AC ;C 、由OD=OE ,ABE ACD ∠=∠及DOB EOC ∠=∠得DOB EOC ∆∆≌,所以OB=OC ,所以OBC OCB ∠=∠,因此ABC ACB ∠=∠,所以AB=AC ; D 、由BE=CD ,BD =CE 胶BC=CB 得出DBC ECB ∆∆≌,所以ABC ACB ∠=∠即AB=AC ;故此题选B.二、填空题3.(普陀2018期末14)如图,四边形ABCD 的对角线AC 、DB 交于点E ,AB=CD ,AC=DB ,图中全等的三角形共有 对.DC BAE【答案】3;【解析】解:∵AB=CD ,AC=DB ,BC=BC ,∴△ABC ≌△DBC ,∴∠BAC=∠BDC ,∵∠AEB=∠DEC ,AB=DC ,∴△ABE ≌△DEC ,∴BE=CE ,AE=DE ,∵AB=DC , BD=AC ,AD=AD ,∴△ABD ≌△ADC ,∴图中全等的三角形共有3对,故答案为:34.(松江2018期末16)如图,已知ABC ∆与DEF ∆全等,且724563A B E ∠=︒∠=︒∠=︒、、、BC=10、EF=10,那么D ∠= 度.1045°72°C BA【答案】72;【解析】因为7245A B ∠=︒∠=︒、,所以180724563C ∠=︒-︒-︒=︒,又63E ∠=︒,故E C ∠=∠,又BC=EF=10,依题得ABC DFE ∆∆≌,故72D A ∠=∠=︒.5.(浦东四署2019期末16)如图,ABC DCB ∆∆≌,A 、B 的对应顶点分别为点D 、C ,如果AB=6cm ,BC=12cm ,AC=10cm ,DO=3cm ,那么OC 的长是 cm.OD CBA【答案】7;【解析】因为ABC DCB ∆∆≌,所以AC=BD ,ACB DBC ∠=∠,所以OB=BC ,所以AO=DO=3cm ,所以OC=AC-AO=10-3=7cm. 三、解答题6.(闵行2018期末24)如图,在△ABC 中,已知点D 、E 、F 分别在边BC 、AC 、AB 上,且FD =ED ,BF =CD ,∠FDE =∠B ,那么∠B 和∠C 的大小关系如何?为什么? 解:因为∠FDC =∠B +∠DFB ,即∠FDE +∠EDC =∠B +∠DFB . 又因为∠FDE =∠B (已知), 所以∠=∠ . 在△DFB 和△EDC 中,所以△DFB ≌△EDC . 因此∠B =∠C .DFBA E【答案与解析】解:因为∠FDC =∠B +∠DFB (三角形的一个外角等于与它不相邻的两个内角的和), 即∠FDE +∠EDC =∠B +∠DFB .又因为∠FDE =∠B (已知),所以∠DFB =∠EDC . 在△DFB 和△EDC 中,()(FB ED DFB EDC BF CD =⎧⎪∠=∠⎨⎪=⎩已知已知),所以△DFB ≌△EDC (SAS ).因此∠B =∠C .7.(黄浦2018期末26)如图,在ABC V 中,点D 在AC 边上,AE//BC ,联接ED 并延长交BC 于点F. 若AD=CD ,请说明ED=FD 的理由.DFCB AE【答案与解析】解:如图所示,Q AE//BC ,1,2C E ∴∠=∠∠=∠,在AED CFD ∆∆和中,12C E AD CD ∠=∠⎧⎪∠=∠⎨⎪=⎩,AED CFD ∴∆∆≌(AAS ),ED FD ∴=.21DF CBA E8.(宝山2018期末27)如图,已知点D、E、F分别在AB、BC、CA上,DEF∆是等边三角形,且123∠=∠=∠,ABC∆是等边三角形吗?试说明理由.【答案与解析】解:ABC∆是等边三角形.因为DEF∆是等边三角形,可知60DEF∠=︒(等边三角形每个内角是60︒),因为31DEC DEF B∠=∠+∠=∠+∠(三角形的一个外角等于与它不相邻的两个内角之和),又13∠=∠,所以60B DEF∠=∠=︒(等式性质),同理可证:60,60A C∠=︒∠=︒,所以A B C∠=∠=∠,所以ABC∆是等边三角形(三个内角都相等的三角形是等边三角形).9.(松江2018期末27)如图,在ABC∆中,已知AB=AC,点D、E、F分别在BC、AC、AB上,且BD=CE,BF=CD. (1)说明BDF CED∆∆≌的理由;(2)说明FDE=B∠∠的理由.DFCBAE【答案与解析】(1)因为在ABC∆中,已知AB=AC,所以B C∠=∠,在BDF CED∆∆与中,BF CDB CBD CE=⎧⎪∠=∠⎨⎪=⎩,所以BDF CED∆∆≌(SAS);(2)因为BDF CED∆∆≌,所以BFD CDE∠=∠,又FDC B BFD∠=∠+∠,所以FDE CDE B BFD∠+∠=∠+∠,所以FDE B∠=∠.10.(浦东2018期末25)如图,在ABC∆中,已知点D、E、F分别在边BC、AC、AB上,且FD=DE,BF=CD,FDE=B∠∠,那么B C∠∠与的大小关系如何?为什么?【答案与解析】因为FDC B BFD ∠=∠+∠即FDE CDE B BFD ∠+∠=∠+∠,又因为FDE=B ∠∠,所以CDE BFD ∠=∠,在BFD CDE ∆∆与中,BF CD BFD CDE FD DE =⎧⎪∠=∠⎨⎪=⎩,所以BFD CDE ∆∆≌(SAS ),所以B=C ∠∠.11.(普陀2018期末25)如图,在△ABC 中,∠B=∠C ,D 、E 、F 分别在AB 、BC 、AC 上,且BD=CE ,∠DEF=∠B ,问:DE 和EF 是否相等?并说明理由.【答案与解析】解:∵∠B=∠C ,∵∠DEF=∠B ,∵∠DEC=∠B +∠BDE (三角形的外角定理), ∴∠BDE=∠FEC ,在△BDE 与△CEF 中,∵,∴△BDE ≌△CEF (ASA ),得DE=EF .12.(普陀2018期末26)如图,∠1=∠2,AD=AE ,∠B=∠ACE ,且B 、C 、D 三点在一条直线上. (1)试说明△ABD 与△ACE 全等的理由.(2)如果∠B=60°,试说明线段AC 、CE 、CD 之间的数量关系,并说明理由.【答案与解析】解:(1)理由:∵∠1=∠2,∴∠1+∠CAD=∠2+∠CAD ,即∠BAD=∠CAE , 在△ABD 与△ACE 中,,∴△ABD ≌△ACE (AAS );(2)由(1)△ABD ≌△ACE 可得:BD=CE ,AB=AC ,∵∠B=60°,∴△ABC 是等边三角形,∴AB=BC=AC ,∴BD=CE=BC +CD=AC +CD ,即CE=AC +CD .13.(杨浦2018期末25)如图,已知90,B C AE ED ∠=∠=︒⊥,AB=EC ,点F 是AD 的中点,说明EF AD ⊥的理由.解:AE ED ⊥Q (已知),90AED ∴∠=︒(垂直的意义), 又90B ∠=︒Q (已知),B AED ∴∠=∠(等量代换).AEC B BAE ∠=∠+∠Q()即AED DEC B BAE ∠+∠=∠+∠Q ,DEC BAE ∴∠=∠(等式性质)在ABE ECD ∆∆与中,B CAB EC DEC BAE ∠=∠⎧⎪=⎨⎪∠=∠⎩,ABE ECD ∴∆∆≌( )AE ED ∴=( )Q (已知)EF AD ∴⊥( )【答案与解析】解:三角形的一个外角等于与它不相邻的两个内角之和);ASA ;全等三角形对应边相等;点F 是AD 的中点;等腰三角形的三线合一.14.(松江2018期末26)阅读并补充完成下列解题过程:如图:用尺规作线段中点的方法,作出了线段AB 的中点C ,请说明这种方法正确的理由. 解:联结AE 、BE 、AF 、BF.在AEF BEF ∆∆与中,(______________)(________EF EF AE BE =⎧⎪=⎨⎪=⎩画弧时所取的半径相等)(画弧时所取的半径相等),所以AEF BEF ∆∆≌( ). 所以AEF=BEF ∠∠( ).又因为AE=BE ,所以AC=BC ( ).即点C 是线段AB 的中点.【答案与解析】公共边; AF=BF ;SSS ;全等三角形对应角相等; 等腰三角形的三线合一. 15.(闵行2018期末26)已知∠AOB =120°,OC 平分∠AOB ,点P 是射线OC 上一点. (1)如图1,过点P 作PD ⊥OA ,PE ⊥OB ,说明PD 与PE 相等的理由;(2)如图2,如果点F 、G 分别在射线OA 、OB 上,且∠FPG =60°,那么线段PF 与PG 相等吗?请说明理由;(3)在(2)的条件下,联结FG ,△PFG 是什么形状的三角形,请说明理由.【答案与解析】解:(1)∵OC 是∠AOB 的平分线,∴∠AOC =∠BOC ,∵PD ⊥OA ,PE ⊥OB ,∴∠PDO =∠PEO =90°,在△POD 和△POE 中,90PDO PEO POD POE OP OP ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,∴△POD ≌△POE ,∴PD =PE ;(2)相等,理由:如图2,过点P 作PM ⊥OA 于M ,PN ⊥OB 于N ,∴∠PMO =∠PNO =90°, 同(1)的方法得,PM =PN ,在四边形PMON 中,∠MPN =360°﹣90°﹣90°﹣120°=60°,∵∠FPG =60°,∴∠FPG =∠MPN ,∴∠MPF =∠NPG ,在△PMF 和△PNG 中,90FPM NPG PM PN PMF PNG ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩,∴△PMF ≌△PNG ,∴PF =PG ;(3)△PFG 是等边三角形,理由:如图2,连接FG ,由(2)知,PF =PG ,∵∠FPG =60°, ∴△PFG 是等边三角形.16.(杨浦2019期末30)在ABC ∆中,90,60C BAC ∠=︒∠=︒,ABC ∆绕点C 顺时针旋转,旋转角为(0180)αα︒<<︒,点A 、B 的对应点分别是点D 、E.(1)如图1,当点D 恰好落在边AB 上时,试判断DE 与AC 的位置关系,并说明理由.(2)如图2,当点B 、D 、E 三点恰好在一直线上时,旋转角α=︒,此时直线CE 与AB 的位置关系是 .(3)在(2)的条件下,联结AE ,设BDC ∆的面积为1S ,AEC ∆的面积为2S ,则12S S 与的数量关系是 .(4)如图3,当点B 、D 、E 三点不在一直线上时,(3)中的12S S 与的数量关系仍然成立吗?试说明理由.【答案与解析】解:(1)DE//AC. 理由:ABC ∆Q 旋转后与DCE ∆全等,,A CDE AC DC ∴∠=∠=,60,BAC AC DC ∠=︒=Q ,DAC ∴∆是等边三角形. 60DCA ∴∠=︒. 又60CDE BAC ∠=∠=︒Q ,60DCA CDE ∴∠=∠=︒,DE AC ∴∥.(2)如图4所示:延长EC 交AB 于点F. 由旋转的性质可知:CB=CE ,30CBE E ∴∠=∠=︒.120BCE ∴∠=︒,即旋转角120α=︒,30,30ABC CBE ∠=︒∠=︒Q ,60FBE ∴∠=︒,306090E FBE ∴∠+∠=︒+︒=︒,90BFE EC AB ∴∠=︒∴⊥. 故旋转角120α=︒,EC AB ⊥(3)如图5所示,延长EC 交AB 于点F ,过点D 作DG BC ⊥于G . Q 由(2)可知CE AB ⊥,120BCE ∠=︒,9030CFA BCD ∴∠=︒∠=︒,6030FAC FCA ∠=︒∴∠=︒Q ,30FCA DCG ∴∠=∠=︒. 由旋转的性质可知:AC=CD ,在FCA GCD ∆∆和中,90FCA DCG CFA DGC AC CD ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩,FCA GCD ∆∴∆≌,AF GD ∴=,又因BC=CE , 1122EC AF CB DG ∴=g g 即12S S =. (4)12S S =仍然成立;理由:如图6所示:过D 作DH BC ⊥于H ,过A 作AG EC ⊥交EC 的延长线于G.,DH BC AG EC ⊥⊥Q ,90AGC DHC ∴∠=∠=︒,ABC ∆Q 旋转后与DCE ∆全等,90ACB DCE ∴∠=∠=︒,AC=DC ,BC=CE. 180,ACE BCD ∠+∠=︒Q180,GCA ECA ∠+∠=︒Q ACG DCH ∴∠=∠.在AGC DHC ∆∆和中,AGC DHCACG DCHAC DC ∠=∠⎧⎪∠=∠⎨⎪=⎩, AGC DHC ∴∆∆≌,AG DH ∴=,1122EC AF CB DG ∴=g g ,即12S S =.。

七年级数学下册《探索三角形全等的条件》专项练习(含答案)

七年级数学下册《探索三角形全等的条件》专项练习(含答案)

4.3 探索三角形全等的条件第1题. 如图,M 是AB 的中点,MC =MD ,∠1=∠2,请说明△AMC ≌△BMD 的理由.答案:SAS .第2题. 如图,90,E F ∠=∠=∠B =∠C ,AE =AF ,△ABE ≌△ACF 吗?说明理由.答案:全等,AAS .第3题. 如图,∠ADB =∠CBD ,∠A =∠C ,△ABD ≌△CDB 吗?说明理由.答案:全等,AAS .第4题. 如图,AB =DF ,AC =DE ,BC =FE ,△ABC 和△DFE 全等吗?请说明理由.答案:全等,SSS .第5题. 如图,C ,D 两点分别在∠EAF 的两边上,且∠ABC =∠ABD ,∠BCE =∠BDF ,请你说明△ABC ≌△ABD 的理由.答案:AAS 或AS A .ABCDM 1 2ABCEFA BCDA BF CEDADBC EF第6题. 如图,点C ,E ,B ,F 在同一条直线上,AB =DE ,AC =DF ,CE =BF ,△ABC 和△DEF 全等吗?∠A =∠D 吗?请说明理由.答案:全等,SSS ,∠A =∠D (全等三角形的对应角相等).第7题. 如图,AB =AC ,BD =CD ,请说明△ABD ≌△ACD 的理由.答案:SSS .第8题. 如图,CD ⊥AB ,BE ⊥AC ,垂足分别为D ,E ,∠1=∠2,则图中全等三角形有( )A .1对B .2对C .3对D .4对答案:D .第9题. 如图,若AB 平分∠DAC ,要用SAS 条件确定△ABC ≌△ABD ,再需有条件( ) A .DB =CB B .AB =AB C .AD =AC D .∠D =∠C答案:C .第10题. 如图,已知△ABC 中,∠C =90°,D 、E 分别为AC 、AB 上的点,若AD =BD ,AE =BC ,DE =DC ,则∠AED =( ) A .45° B .60° C .75° D .90°答案:D .AB FCE DABDCA BCDE 1 2ABC DA BC DE第11题. 下列条件中,能判断两个三角形全等的是( ) A .有两条边对应相等B .有三个角对应相等C .有两角及一边对应相等D .有两边及一角对应相等答案:C .第12题. 已知,AB A B ='',A A ∠=∠',B B ∠=∠',则△ABC ≌△A 'B C ''的根据是( )A .SASB .SSAC .ASAD .AAS 答案:C .第13题. 已知AB A B ='',A A ∠=∠',若△ABC ≌△A 'B C '',还需条件( ) A .B B ∠=∠' B .C C ∠=∠' C .AC A C ='' D .以上均可以 答案:D .第14题. 如图,AC 、BD 相交于点E ,BE =DE ,AB ∥DC ,那么AE 与CE 的关系是____.答案:相等.第15题. 如图,AB 与CD 相交于点O ,DO =BO ,则需要加______条件(填上一个你认为合适的),可得△DOA ≌△BOC .答案:AO =OC 或∠A =∠C 或∠B =∠D .第16题. 在△ABC 和△DEF 中,如果AB =DE ,BC =EF ,只要找出∠________=∠________,就可以得出△______≌△______. 答案:ABC ,DEF ,ABC ,DEF .A BED CA BCDO第17题. 如图,AD ⊥BC 于D ,BD =CD .△ABD 和△ACD 全等吗?为什么?答案:全等,SAS .第18题. 如图,△ABC ≌△A ′B ′C ′,AD 、A ′D ′分别是△ABC 和△A ′B ′C ′的中线,你能得出AD =A ′D ′吗?答案:能,提示:由△ABC ≌△A ′B ′C ′,得AB =A ′B ′,∠B =∠B ′,BC =B ′C ′,而BD =B ′D ′=12BC =12B ′C ′,则可得△ABD ≌△A ′B ′D ′故AD =A ′D ′.第19题. 木工师傅在做完门框后,为防止变形常常像图中所示那样钉上两条斜拉的木板条.这样做是为什么?答案:提示:根据三角形的稳定性.第20题. 如图,已知∠1=∠2,∠ABC =∠DCB ,那么△ABC 与△DCB 全等吗?为什么?答案:全等,理由ASA 或AAS .第21题. 如图所示,已知B 点是AC 中点,BE =BF ,AE =CF ,那么△ABE 和△CBF 全等吗?说明理由.答案:全等,理由SSS .ABD CABCDA ′B ′C ′D ′A BCD1 2AB CFE第22题. 如图,AD ,BE 是两条高,AD =BD ,H 是高AD 与BE 的交点,BH 与AC 相等吗?说明你的理由.答案:∠HBD +∠C =90°,∠CAD +∠C =90°,所以,∠HBD =∠CAD ,显然,∠BDH =∠ADC ,由于AD =BD ,△BDH ≌△ADC (ASA ),所以BH =AC .第23题. 如图,已知CD AB ⊥,BE AC ⊥,垂足分别为D 、E ,BE 、CD 交于点O ,且AO 平分BAC ,那么图中全等三角形共有 对. 答案:4第24题. 如图2,某人把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,最省事的办法是 A .带①去 B .带②去 C .带③去D .带①和②去答案:C第25题. 如图,已知△_的六个元素,下面甲、乙、丙三个三角形中标出了某些元素,则与△_全等的三角形是B CDA E H AD BOCE图2①②③ABCabc ___ ba _甲_ cb 乙__a丙(A )只有乙 (B )只有丙 (C )甲和乙 (D )乙和丙 答案:D第26题. 如图,已知:在△ABC 中,F AC 为中点,E AB D EF 为上一点,为延长线上一点,A ACD ∠=∠. 求证:CD AE 平行且等于.答案:证明:A ACD ∠=∠∵AE CD ∴∥A ACD AF CF AFE CFD ∠=∠=∠=∠∵,,∴△AFE ≌△()CFD ASA CD AE =∴CD AE ∴平行且等于第27题. 如图,ABC △中,AB AC =,过点A 作GE BC ∥,角平分线BD 、CF 相交于点H ,它们的延长线分别交GE 于点E 、G .试在图中找出3对全等三角形,并对其中一对全等三角形给出证明.答案:解:.BCF CBD △≌△(注意答案不唯一).BHF CHD △≌△ .BDA CFA △≌△ 证明.BCF CBD △≌△.AB AC =.ABC ACB ∴∠=∠BD 、CF 是角平分线.11.22BCF ACB CBD ABC ∴∠=∠∠=∠,BCF CBD ∴∠=∠,.BC CB =又.BCF CBD △≌△ 还有答案供参考:.BAE CAG AGF AED △≌△,△≌△AFDCBEAGED F HB C第28题. 如图,四边形ABCD中,AC垂直平分BD于点O.(1)图中有多少对全等三角形?请把它们都写出来;(2)任选(1)中的一对全等三角形加以证明.答案:.解:(1)图中有三对全等三角形:△COB≌△COD,△AOB≌△AOD,△ABC≌△ADC.(2)证明△ABC≌△ADC.证明:AC∵垂直平分BD,AB AD=∴,CB CD=.又AC AC=∵,∴△ABC≌△ADC.第29题. 如图,已知AB DC=,AC DB=.求证:A D∠=∠.答案:在△ABC和△DCB中,AB DC=∵,AC DB=,BC CB=,∴△ABC≌△DCB,∴A D∠=∠AB DCOADBC。

(完整word版)七年级数学全等三角形证明精选题

(完整word版)七年级数学全等三角形证明精选题

先做几道基础题:1、如图(1) : AD 丄BC,垂足为 D, BD=CD 求证:△ ABD^A ACD2. 如图(8): A 、B C 、D 四点在同一直线上, AC=DB BE// CF , AE// DF 。

求证:△ ABE^A DCF 。

3、如图(10)/ BAC=/ DAE / ABD 玄 ACE BD=CE 求证:AB=AC4.女口图:AB=DC BE=CF AF=DE 求证:△ ABE^A DCF 。

一.解答题(共16小题)1. 如图,已知 AB // DE , AB=DE , AF=DC .(1)求证: △ ABF ◎△ DEC ; 2)请你找出图中还有的其他几对全等三角形.(只要直接写出结果,不要证明)AAE2. 如图,在Rt△ ABC中,/ ACB=90 ° AC=BC , D是斜边AB上的一点,AE丄CD于E, BF丄CD交3.如图,点E在厶ABC外部,点D在BC边上,DE交AC于点F,若/仁/ 2= / 3, AC=AE .试说明下列结论正确的理由:/ D= / C .求证:△ AED BFC .(1)/ C= / E;5. 如图,在△ ABC中,AB=AC , D是BC的中点,连接AD,在AD的延长线上取一点E,连接BE , CE . △ ABE与厶ACE全等吗?为什么?6. (2010?顺义区)已知:如图,AB=AC,点D是BC的中点,AB平分/ DAE , AE丄BE,垂足为E.37. (2010?十堰)如图, △ ABC 中,AB=AC , BD 丄 AC , CE 丄AB .求证:BD=CE .8 ( 2008?南宁)如图,在 △ ABC 中,D 是BC 的中点,DE 丄AB , DF 丄AC ,垂足分别是 E 、F , (1)图中有几对全等的三角形请一一列出; 2)选择一对你认为全等的三角形进行证明.9. (2005?新疆)在△ ABC 中,/ ACB=90 ° AC=BC ,直线 MN 经过点 C ,且 AD 丄 MN 于 D , 于 E ,求证:DE=AD+BE .10 .如图,AD // BC , / A=90 ° E 是 AB 上的一点,且 AD=BE , / 1 = / 2. 求证:△ ADE △ BEC .BE=CF . BE 丄 MN 11.如图,在 △ ABC 中,AC=BC ,直线I 经过顶点 C , 过A , B 两点分别作I 的垂线AE , BF , E , F 为12. (2002?湛江)如图,有一池塘.要测池塘两端A、B的距离,可先在平地上取一个可以直接到达A和B的点C,连接AC并延长到D,使CD=CA •连接BC并延长到E,使CE=CB •连接DE,那么量出DE 的长,就是A、B的距离.请说明DE的长就是A、B的距离的理由.如图, / 仁/2, BD=BC .求证:/ 3= /4.13. (2010?广安)已知:如图,在矩形ABCD中,BE=CF,求证:AF=DE .15 .如图,△ ABC和厶ADE都是等腰直角三角形,CE与BD相交于点M , BD交AC于点N . 证明:(1)BD=CE ; (2)BD 丄CE .14. (2005?三明)已知:DCD=BE .答案与评分标准一.解答题(共16小题)1. 如图,已知AB // DE, AB=DE , AF=DC .(1)求证:△ ABF ◎△ DEC ;(2)请你找出图中还有的其他几对全等三角形. (只要直接写出结果,不要证明)考点:全等三角形的判定。

七年级数学三角形全等之动点问题(框架)(北师版)(专题)(含答案)

七年级数学三角形全等之动点问题(框架)(北师版)(专题)(含答案)

三角形全等之动点问题(框架)(北师版)(专题)一、单选题(共11道,每道9分)1.已知:如图,AB=16cm,动点P从点A出发,沿AB以2cm/s的速度向点B运动.设点P 运动的时间为t秒,请解答下列问题:(1)运动状态分析图如下:空缺处依次所填正确的是( )A.①1cm/s;②A;③BB.①2cm/s;②B;③AC.①2cm/s;②A;③BD.①2cm/s;②A;③P答案:C解题思路:点A速度已知,可判断此题为动点问题,按照动点问题的解决方法解决:①研究基本图形,标注:②研究动点运动状态,包括起点,终点,状态转折点,速度,时间范围,如图:③表达线段长,建等式.根据运动状态分析,选C.试题难度:三颗星知识点:动点问题2.(上接第1题)(2)用含t的式子表达线段AP,PB长分别为( )cm.A.t;16-tB.t;16-2tC.2t;16-tD.2t;16-2t答案:D解题思路:由1题可知,线段AP为已走路程,故AP=2t,PB为未走路程,故BP=16-2t.故选D.试题难度:三颗星知识点:动点问题3.(上接第1,2题)(3)点P出发____秒到达AB的中点.( )A.2B.4C.5D.8答案:B解题思路:点P到达AB中点,即AP=8建等式得,2t=8解得t=4故选B.试题难度:三颗星知识点:动点问题4.已知:如图,AB=18cm,动点P从点A出发,沿AB以2cm/s的速度向点B运动,动点Q 从点B出发,沿BA以1cm/s的速度向点A运动.P,Q两点同时出发,当点P到达点B时,点P,Q同时停止运动.设点P运动的时间为ts,请解答下列问题:(1)运动状态分析图如下空缺处依次所填正确的是( )A.①9s;②18s;③0≤t≤9B.①9s;②9s;③0≤t≤18C.①9s;②18s;③0≤t≤18D.①18s;②9s;③0≤t≤9答案:A解题思路:点P,Q的速度已知,可判断此题为动点问题,按照动点问题的解决方法解决:①研究基本图形,标注:②研究动点运动状态,包括起点,终点,状态转折点,速度,时间范围,如图:③表达线段长,建等式.根据运动状态分析,选A.试题难度:三颗星知识点:动点问题5.(上接第4题)(2)用含t的式子表达线段AP,QB长分别为( )cm.A.18-2t;2tB.t;18-tC.t;2tD.2t;t答案:D解题思路:由4题可知,线段AP为点P已走路程,故AP=2t,BQ为点Q已走路程,故BQ=t.故选D.试题难度:三颗星知识点:动点问题6.(上接第4,5题)(3)在P,Q相遇之前,若P,Q两点相距6cm,则此时t的值为( )A.4B.6C.8D.9答案:A解题思路:由4,5题可知,当P,Q相遇时,AB+BQ=AB,即:2t+t=18,解得t=6,因此,在P,Q相遇之前,即:0≤t<6,PQ=6,即:2t+t=18-6,解得t=4.(符合题意)故选A.试题难度:三颗星知识点:动点问题7.已知:如图,在直角三角形ABC中,AB=6 cm,BC=4 cm.点P从点A出发,以2 cm/s的速度沿AB-BC向点C运动,设点P运动的时间为ts,请回答下列问题:(1)运动状态分析图如下:空缺处依次所填正确的是( )A.①6s;②4s;③0≤t≤10B.①3s;②2s;③0≤t≤3C.①3s;②2s;③0≤t≤5D.①3s;②5s;③0≤t≤5答案:C解题思路:点P速度已知,可判断此题为动点问题,按照动点问题的解决方法解决:①研究基本图形,标注:②研究动点运动状态,包括起点,终点,状态转折点,速度,时间范围,如图:③表达线段长,建等式.根据运动状态分析,选C.试题难度:三颗星知识点:动点问题8.(上接第7题)(2)在点P运动的过程中,当△BCP的面积为时,对应的t的值为( )A.2sB.1sC.sD.s答案:A解题思路:有状态转折,根据状态转折点进行分类:(1)点P在AB上时,即:0≤t≤3,画图,可得:AP=2t,BP=6-2t,当△BCP的面积为时,即:,解得:t=2;(2)点P在BC上时,不符合题意,舍去.故选A.试题难度:三颗星知识点:动点问题9.已知:如图,在长方形ABCD中,AB=6厘米,BC=9厘米.点P从点A出发,沿AB边向终点B以1厘米/秒的速度移动,同时点Q从点B出发沿BC边向终点C以2厘米/秒的速度移动,连接PQ.如果P,Q两点同时出发,当其中一点到达终点后,另一点也随之停止运动,设点P的运动时间为t秒,请回答下列问题:(1)运动状态分析图如下:空缺处依次所填正确的是( )A.①6s;②9s;③0≤t≤6B.①6s;②4.5s;③0≤t≤6C.①3s;②4.5s;③0≤t≤4.5D.①6s;②4.5s;③0≤t≤4.5答案:D解题思路:点P,Q速度已知,可判断此题为动点问题,按照动点问题的解决方法解决:①研究基本图形,标注:②研究动点运动状态,包括起点,终点,状态转折点,速度,时间范围,如图:③表达线段长,建等式.根据运动状态分析,选D.试题难度:三颗星知识点:动点问题10.(上接第9题)(2)用含t的式子表达线段BP,BQ的长分别为( )厘米.A.t;9-2tB.t;2tC.6-t;2tD.6-t;9-2t答案:C解题思路:由9题可知,AP为点P已走路程,故AP=t,∴BP=6-tBQ为点Q已走路程,故BQ=2t.故选C.试题难度:三颗星知识点:动点问题11.(上接第9,10题)(3)当△BPQ为等腰直角三角形时,t=( )A.1秒B.2秒C.3秒D.4秒答案:B解题思路:由9,10题可知,△BPQ为等腰直角三角形,∠B=90°,只需BP=BQ,即6-t=2t,解得t=2.故选B.试题难度:三颗星知识点:动点问题。

七年级数学全等及全等三角形(北师版)(基础)(含答案)

七年级数学全等及全等三角形(北师版)(基础)(含答案)

全等及全等三角形(北师版)(基础)一、单选题(共10道,每道10分)1.下列说法中正确的是( )A.面积相等的两个图形是全等图形B.周长相等的两个图形是全等图形C.所有正方形都是全等图形D.能够完全重合的两个图形是全等图形答案:D解题思路:全等图形的定义:能够完全重合的两个图形称为全等图形.所以D选项正确.选项A:面积相等的两个图形不一定能完全重合,故A选项错误;选项B:周长相等的两个图形不一定能完全重合,故B选项错误;选项C:所有正方形都是全等图形说法错误,边长不相等时两个正方形不能完全重合,故C 选项错误;故选D.试题难度:三颗星知识点:全等图形2.下列说法不正确的是( )A.全等三角形的对应边相等,对应角相等B.图形全等,只与形状、大小有关,而与它们的位置无关C.全等三角形的面积相等D.形状相同的两个三角形全等答案:D解题思路:全等三角形的定义:能够完全重合的两个三角形叫做全等三角形.全等三角形的性质:全等三角形的对应边相等,对应角相等.所以选项A、C正确.选项B:图形全等,只与形状、大小有关,而与它们的位置无关,正确.选项D:形状相同的两个三角形不一定是全等三角形,比如一张照片,放大以后还是原来的形状,但是不全等,所以选项D错误.故选D.试题难度:三颗星知识点:全等三角形3.如图,已知△ABC≌△CDE,其中AB=CD,那么下列结论中,不正确的是( )A.AC=CEB.∠BAC=∠ECDC.∠ACB=∠ECDD.∠B=∠D答案:C解题思路:全等三角形的性质:全等三角形的对应边相等,对应角相等.因为△ABC≌△CDE,对应边相等,所以AC=CE;对应角相等,所以∠BAC=∠ECD,∠B=∠D,故选项A、B、D正确.选项C:∠ACB和∠ECD不是对应角,不能证明两个角相等.故选项C错误.故选C.试题难度:三颗星知识点:全等三角形的性质4.如图,△ABC≌△DEF,则此图中相等的线段有( )A.1对B.2对C.3对D.4对答案:D解题思路:全等三角形的性质:全等三角形的对应边相等,对应角相等.因为△ABC≌△DEF,全等三角形对应边相等,所以AB=DE,AC=DF,BC=EF.因为BC=EF,所以BC-EC=EF-EC,即BE=CF.所以图中相等的线段有4对.故选D.试题难度:三颗星知识点:全等三角形的性质5.如图,已知△ABE≌△ACD,下列结论不一定成立的是( )A.AB=ACB.∠BAD=∠CAEC.∠ADB=∠AECD.AD=DE答案:D解题思路:本题考查全等三角形的性质:全等三角形对应边相等,对应角相等.A选项:由△ABE≌△ACD可得AB=AC,依据是全等三角形对应边相等,所以A选项正确;B选项:由△ABE≌△ACD可得∠BAE=∠CAD,依据是全等三角形对应角相等.等式两边同时减去∠DAE,可得∠BAD=∠CAE,所以B选项正确;C选项:由△ABE≌△ACD可得∠BEA=∠CDA,依据是全等三角形对应角相等.然后利用补角的定义可得∠AEC=∠ADB,所以C选项正确;D选项:AD的对应边是AE,和DE不是对应边,因此AD=DE不一定成立,所以D选项错误.故选D.试题难度:三颗星知识点:全等三角形的性质6.如图,△ADB≌△EDB,△BDE≌△CDE,B,E,C在一条直线上.下列结论:①BD是∠ABE 的平分线;②点E是BC的中点;③DE⊥BC.其中正确的有( )A.0个B.1个C.2个D.3个答案:D解题思路:本题考查全等三角形的性质:全等三角形对应边相等,对应角相等.因为△ADB≌△EDB,全等三角形对应角相等,可得∠ABD=∠EBD,即BD是∠ABE的平分线;故①正确;因为△BDE≌△CDE,全等三角形对应边相等,可得BE=CE,所以点E是BC的中点;对应角相等,∠BED=∠CED=90°,所以DE⊥BC;故②③正确;故选D.试题难度:三颗星知识点:全等三角形的性质7.如图,若△ABC≌△DEF,∠A=45°,∠F=35°,则∠E等于( )A.35°B.45°C.60°D.100°答案:D解题思路:全等三角形的性质:全等三角形对应边相等,对应角相等.因为△ABC≌△DEF,所以∠D=∠A=45°.在△DEF中,依据三角形内角和等于180°,∠D+∠E+∠F=180°,可得∠E=180°-45°-35°=100°.故选D.试题难度:三颗星知识点:全等三角形的性质8.已知△ABC的三边长分别为3,4,5,△DEF的三边长分别为3,3x-2,2x+1,若这两个三角形全等,则x的值为( )A.2B.C. D.答案:A解题思路:本题考查全等三角形的性质:全等三角形对应边相等,对应角相等.根据全等三角形对应边相等,可知△DEF的三边长也分别为3,4,5.而题中条件给出△DEF的三边长分别为3,3x-2,2x+1,3和3对应,但4是和还是和对应,无法确定,所以要分两种情况进行讨论:①,解得;②,x不存在.综上,.故选A.试题难度:三颗星知识点:全等三角形的性质9.如图,若△ABC≌△DEF,BE=22,BF=5,则FC的长度是( )A.10B.12C.8D.16答案:B解题思路:要求线段FC的长度,首先由△ABC≌△DEF可得BC=EF.则BC-FC=EF-FC,即BF=CE.由已知条件BE=22,BF=5可得CE=5,FC=BE-BF-CE=22-5-5=12.故选B.试题难度:三颗星知识点:全等三角形的性质10.如图,N,C,A三点在同一直线上,△ABC中,∠A:∠ABC:∠ACB=3:5:10.若△MNC≌△ABC,则∠BCM的度数为( )A.20°B.25°C.28°D.30°答案:A解题思路:要求∠BCM的度数.首先由三角形内角和180°,∠A:∠ABC:∠ACB=3:5:10得∠A=30°,∠ABC=50°,∠ACB=100°.由△MNC≌△ABC可得∠MCN=∠ACB=100°.观察图形,可以利用平角是180°,求出∠BCN=80°.∴∠BCM=∠MCN-∠BCN=100°-80°=20°故选A.试题难度:三颗星知识点:全等三角形的性质。

七年级下册数学专题:三角形全等专题复习

七年级下册数学专题:三角形全等专题复习

OED CBA七年级(下)期复习(三)——三角形全等班级_____________ 姓名_____________一 全等三角形判定定理与性质 二 对称式全等1.如图,CE ⊥AB 于点E,BD ⊥AC 于点D,BD 、CE 交于O 点,且AO 平分∠BAC ,试说明OB=OC.2.如图,∠E=∠F= 090 , ∠B=∠C,AE=AF,试说明EM=FN.3.如图,在△ABC 中,AB=AC,BD 、CE 分别是∠ABC 、∠ACB 的平分线,AD ⊥BD ,AE ⊥CE ,D 、E 为垂足,BD 、CE 交于O 点.(1)求证:△AB D ≌△ACE(2)求证:OE=OD4.如图,AB=AC,点D 、E 分别在AC 、AB 上, AG ⊥BD ,AF ⊥CE ,垂足分别为是G 、F ,且AG=AF ,求证:AD=AE三 角平分线的运用10.,..180ABC AD A E F AB AC EDF BAF ∆∠∠+∠=中是的平分线,分别是上的点,且求证:DE=DF2.如图,已知在△ABC 中,∠B=60°,△ABC 的角平分线AD,CE 相交于点O ,求证:AE+CD=AC3.已知,在四边形ABCD 中,B C >AB,DA=DC,BD 平分∠ABC,求证:∠A+∠C=1804.在△ABC 中,∠A=100°,∠ABC=40°,BD 是∠ABC 的平分线,延长BD 至E ,使DE=AD,求证:BC=AB+CEA CDE FBGCBCFEDCBA5.在五边形ABCDE 中,AB=AE,BC+DE=CD, ∠ABC+∠AED=180°,求证AD 平分∠CDE四 倍长中线法的运用1. 已知在三角形ABC 中,AB=10,BC=8,求第三边AC 边上的中线BD 的取值范围。

2. 已知△ABC ,AD 是BC 边上的中线,分别以AB 边、AC 边为直角边各向形外作等腰直角三角形,如图, 求证EF =2AD 。

最新北师大版七年级下册数学期末复习三角形全等证明练习试题以及答案

最新北师大版七年级下册数学期末复习三角形全等证明练习试题以及答案

七年级下册数学期末复习试题1、已知:如图,∠A=∠B,∠3=∠4,求证:AC=BD.2、如图,D在AB上,E在AC上,BD、CE交于O,若AB=AC,∠B=∠C.求证:AD=AE.3、已知:如图,D是△ABC的边AB上一点,DF交AC于点E,DE=FE,FC∥AB。

求证:AE=CE。

5、已知:如图,点E、F在BC上,BE=CF,AB=DC,∠B=∠C .求证:AF=DE。

6、将两个大小不同的等腰直角三角形三角板如图①所示放置,图②是由它抽象出的几何图形,B,C,E在同一条直线上,连接DC,求证:(1)DC=BE;(2)(2)DC⊥BE。

7、已知:如图,AD=AE,点D、E在BC上,BD=CE,∠1=∠2。

求证:△ABD≌△ACE.8、已知:如图,△ABC中,∠BAC=90°,AB=AC,直线DE经过点A,BD⊥DE,CE⊥DE,垂足为D、E.求证:BD=AE。

9、如图,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于点E.AD⊥CE于点D.求证:BE+DE=AD.10、已知:如图3,AB∥CD,AD∥BC.求证:AB=CD,AD=BC.11、如图,已知AB=CD,AC=BD,求证:∠A=∠D.12、已知:如图,在△ABC和△DBC中,∠1=∠2,∠3=∠4,P是BC上任意一点.求证:PA=PD.13、14、15、16、如图所示,C是线段AB的中点,CD平分∠ACE,CE平分∠BCD,CD=CE.(1)试说明:△ACD≌△BCE;(2)若∠D=50°,求∠B的度数.17、把两个含有45°角的直角三角板如图放置,点D在AC上连接AE、BD,试判断AE与BD的关系,并说明理由。

18、如图:E在线段CD上,EA、EB分别平分∠DAB和∠CBA, 点F在线段AB上运动,AD=4㎝,BC=3㎝, 且AD∥BC(1)你认为AE和BE有什么位置关系?并验证你的结论;(2)当点F运动到离点A多少㎝时,△ADE才能和△AFE全等?为什么?(3)在(2)的情况下,此时BF=BC吗?为什么?并求出AB的长。

人教五四学制版七年级下册数学第18章 全等三角形含答案(有一套)

人教五四学制版七年级下册数学第18章 全等三角形含答案(有一套)

人教五四学制版七年级下册数学第18章全等三角形含答案一、单选题(共15题,共计45分)1、如图,已知在△ABC中,CD是AB边上的高线,BE平分∠ABC,交CD于点E,BC=5,DE=2,则△BCE的面积等于()A.10B.7C.5D.42、如图,PB⊥AB于B,PC⊥AC于C,且PB=PC,则△APB≌△APC的理由是()A.SASB.ASAC.HLD.AAS3、如图,在△ABC中,∠C=90°,DE⊥AB于D,BC=BD,如果AC=3m,那么AE+DE等于()A.2.5mB.3mC.3.5mD.4m4、如图,B、E、C、F在同一直线上,BE=CF,AB∥DE,请你添加一个合适的条件,使△ABC≌△DEF,其中不符合三角形全等的条件是()A.AC=DFB.AB=DEC.∠A=∠DD.∠ACB=∠F5、如图,△ABC≌△DEF,若AB=DE,∠B=∠E,则下列结论错误的是()A.AC=DFB.∠ACB=∠DFEC.BC=EFD.∠BAC=∠EDF6、如图,三角形ABC中,∠A的平分线交BC于点D,过点D作DE⊥AC,DF⊥AB,垂足分别为E,F,下面四个结论:①∠AFE=∠AEF;②AD垂直平分EF;③;④EF一定平行BC.其中正确的是()A.①②③B.②③④C.①③④D.①②③④7、在△ABC中,∠B=∠C,与△ABC全等的三角形有一个角是100°,那么△ABC中与这个角对应的角是()A.∠AB.∠BC.∠CD.∠D8、根据下列已知条件,能够画出唯一△ABC的是()A.AB=5,BC=6,∠A=70°B.AB=5,BC=6,AC=13C.∠A=50°,∠B=80°,AB=8 D.∠A=40°,∠B=50°,∠C=90°9、如图,在Rt△ABC中,∠C=90°,AD是△ABC的角平分线,DC=3,则点D到AB的距离是()A.1B.2C.3D.410、下列命题的逆命题是假命题的是()A.两直线平行,同位角相等B.全等三角形的对应角相等C.等边三角形三个角相等D.直角三角形中,斜边的平方等于两直角边的平方和11、如图,在正方形中,点E,F分别在,上,,与相交于点G.下列结论:① 垂直平分;② ;③当时,为等边三角形;④当时,.其中正确的结论是()A.①③B.②④C.①③④D.②③④12、如图,在锐角△ABC中,AB=4,∠ABC=45°,∠ABC的平分线交AC于点D,点P,Q分别是BD,AB上的动点,则AP+PQ的最小值为()A.4B.4C.2D.213、将矩形OABC如图放置,O为原点.若点A(﹣1,2),点B的纵坐标是,则点C的坐标是()A.(4,2)B.(2,4)C.(,3)D.(3,)14、如图,AC平分∠DAB,AD=AC=AB,如下四个结论:①AC⊥BD;②BC=DE;③∠DBC=∠DAC;④△ABC是正三角形,正确的结论有()A.1个B.2个C.3个D.4个15、如图,已知AD平分∠BAC,AB=AC,则此图中全等三角形有( )A.2对B.3 对C.4对D.5对二、填空题(共10题,共计30分)16、如图,∠1=∠2,如果添加一个条件,即可得到△ABE≌△ACE,那么这个条件可以是________(要求:不添加其他辅助线,写出一个条件即可)17、如图,Rt△ABC中,∠C=90°,AC=2,BC=1,以斜边为一边向右上方作正方形ABDE,连接CD,则CD的长为________.18、已知抛物线y= x2-2x- m-1(m为常数,nm>0)与x轴交于A、B两点(点B在点A的右侧),点P为抛物线在第四象限上的一点,抛物线的对称轴与x轴交于点H,点D在对称轴上,PD=m,取HD的中点C,连结CP、P若PR平分∠BPC;BP=2PC;则m=________.19、在直角△ABC中,已知∠ACB=90°,AB=13,AC=12,BC=5.在△ABC的内部找一点P,使得P到△ACB的三边的距离相等,则这个距离是________.20、如图,已知AC=BD,要使△ABC≌△DCB,只需增加的一个条件是________.21、如图,在中,,平分,,,那么的长是________.22、如图,点E,F在AC上,AD=BC,DF=BE,要使△ADF≌△CBE,还需要添加的一个条件是________(添加一个即可)23、如图所示,与被所截,且,平分,平分,与相交于点,过点做于点,下列说法正确有________(填上正确序号)① 与互余;② ;③ ;④24、两条平行线被第三条直线所截,一对内错角的角平分线的位置关系是________.25、如图,已知△ABC的周长是16,OB、OC分别平分∠ABC和∠ACB,OD⊥BC 于D且OD=2,△ABC的面积是________.三、解答题(共5题,共计25分)26、如图在△ABC中,∠BAC=90°,AB=AC,AE是过点A的直线,CD⊥AE,BE⊥AE,若BE=2,CD=6,求DE的长度.27、如图,是的角平分线,于点B,于点C,D是上一点.求证:.28、已知:如图,A、C、F、D在同一直线上,AF=DC,AB=DE,BC=EF,求证:△ABC≌△DEF.29、如图,在菱形ABCD中,∠A=110°,点E是菱形ABCD内一点,连结CE绕点C顺时针旋转110°,得到线段CF,连结BE,DF,若∠E=86°,求∠F的度数.30、如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD、等边△ABE.已知∠BAC=30º,EF⊥AB,垂足为F,连结DF.(1)求证:AC=EF;(2)求证:四边形ADFE是平行四边形.参考答案一、单选题(共15题,共计45分)1、C2、C3、B4、A5、A6、A7、A8、C9、C10、B11、A12、D14、B15、C二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、28、29、30、。

人教五四学制版七年级下册数学第18章 全等三角形含答案(满分必刷)

人教五四学制版七年级下册数学第18章 全等三角形含答案(满分必刷)

人教五四学制版七年级下册数学第18章全等三角形含答案一、单选题(共15题,共计45分)1、如图,△ABC中,AB=AC,三条高AD,BE,CF相交于O,那么图中全等的三角形有()A.5对B.6对C.7对D.8对2、如图,在中,,,D为BC的中点,,垂足为过点B作交DE的延长线于点F,连接CF,现有如下结论:平分;;;;.其中正确的结论有A.5个B.4个C.3个D.2个3、如图,矩形台球桌ABCD,其中A,B,C,D处有球洞,已知DE=4,CE=2,BC=6 ,球从E点出发,与DC夹角为α,经过BC,AB,AD三次反弹后回到E点,求tanα的取值范围()A. ≤tanα<B. <tanα<C.tanα=D. <tanα<34、如图,AB=AC,BE⊥AC于点E,CF⊥AB于点F,BE,CF交于点D,则下列结论中不正确的是()A.△ABE≌△ACFB.点D在∠BAC的平分线上 C.△BDF≌△CDE D.D是BE的中点5、如图,在△ABC中,AB=AC,∠ABC=40°,BD是∠ABC的平分线,延长BD至E,使DE=AD,则∠ECA的度数为()A.30°B.35°C.40°D.45°6、如图,AB∥CD,AC∥DB,AD 与 BC 交于点 O,AE⊥BC 于点 E,DF⊥BC 于点 F,那么图中全等的三角形有( )对A.5B.6C.7D.87、如图,在菱形ABCD中,∠A=60°,E、F分别是AB、AD的中点,DE、BF相交于点G,连接BD、CG.给出以下结论:①∠BGD=120°;②BG+DG=CG;=AB2.其中正确的有()③△BDF≌△CGB;④S△ADEA.1个B.2个C.3个D.4个8、如图,在矩形ABCD中,P是BC上一点,E是AB上一点,PD平分∠APC,PE⊥PD,连接DE交AP于F,在以下判断中,不正确的是()A.当P为BC中点,△APD是等边三角形B.当△ADE∽△BPE时,P为BC 中点C.当AE=2BE时,AP⊥DED.当△APD是等边三角形时,BE+CD=DE9、如图,在矩形ABCD中,E,F分别是边AB,CD上的点,AE=CF,连接EF,BF,EF与对角线AC交于点O,且BE=BF,∠BEF=2∠BAC,FC=2,则AB的长为()A.8B.8C.4D.610、如图,OC是∠AOB的平分线,P是OC上一点,PD⊥OA于点D,PD=6,则点P到边OB的距离为()A.5B.6C.3D.411、若△ABC≌△DEF,且△ABC的周长为20,AB=5,BC=8,则DF长为()A.5B.8C.7D.5或812、对于△ABC嘉淇用尺规进行了如下操作:如图:⑴分别以点B和点C为圆心,BA,CA为半径作弧,两弧相交于点D;⑵作直线AD交BC边于点E.根据嘉淇的操作方法,可知线段AE是()A.△ABC的高线B.△ABC的中线C.边BC的垂直平分线 D.△ABC的角平分线13、如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连结AG、CF.下列结论:=3.其中正确结论的个数是①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC( )A.1B.2C.3D.414、正方形ABCD、正方形BEFG和正方形RKPF的位置如图所示,点G在线段DK 上,正方形BEFG的边长为4,则△DEK的面积为()A.10B.12C.14D.1615、如图,△ABC≌△DCB,若AC=7,BE=5,则DE的长为()A.2B.3C.4D.5二、填空题(共10题,共计30分)16、如图,在△ABC中,AC=BC,∠C=90°,BD为∠ABC的平分线,若A点到直线BD的距离为a,则BE的长为________17、如图,在△ABC和△DEF中,已知:AC=DF,,BC=EF,要使△ABC≌△DEF,还需要的条件可以是________ ;(只填写一个条件)18、如图,△ABC≌△DCB,A、B的对应顶点分别为点D、C,如果AB=6cm,BC =12cm,AC=10cm,DO=3cm,那么OC的长是________cm.19、如图,有一池塘,要测池塘两端A、B两点的距离,可先在平地上取一个可以直接到达A、B两点的C,连接AC并延长AC到点D,使CD=CA,连结BC并延长BC到点E,使CE=CB,连接DE,那么量出DE的长就等于AB的长. 这是因为可根据________方法判定△ABC≌△DEC;20、如图,A、C、B、D在同一条直线上,MB=ND,MB∥ND,要使△ABM≌△CDN,还需要添加一个条件为________21、如图,∠AOE=∠BOE=15°,EF∥O B,EC⊥OB,若EC=3,则EF的长为________22、如图,在△ABC中,AB=AC,AD平分∠BAC,则________≌________,理由是________.23、如图,在正方形ABCD中,E为BC上的点,F为CD边上的点,且AE=AF,AB=4,设EC=x,△AEF的面积为y,则y与x之间的函数关系式是________.24、如图,在平面直角坐标系中,直线与轴、轴分别交于A、B两点,以AB为边在第一象限作正方形,点D恰好在双曲线上,则值为________.25、正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB 于F,则EF的长为________.三、解答题(共5题,共计25分)26、如图,点D是AB上一点,DF交AC于点E,DE=FE,FC∥AB,AB=6,FC=4,求线段DB的长.27、如图,已知:AB⊥BD,ED⊥BD,AB=CD,BC=DE,那么AC与CE有什么关系?写出你的猜想并说明理由.28、如图,AE=DB,BC=EF,BC∥EF,求证:△ABC≌△DEF.29、如图,CA=CD,∠B=∠E,∠BCE=∠ACD.求证:AB=DE.30、如图,,,.求证:.参考答案一、单选题(共15题,共计45分)1、C2、B3、C4、D5、C6、C7、B8、B9、D10、B11、C12、A13、C14、D15、A二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、30、。

北师大版七年级数学下册第三章《全等三角形》测试卷含答案3套

北师大版七年级数学下册第三章《全等三角形》测试卷含答案3套

全等三角形一.填空题(每题3分,共30分)1。

如图,△ABC ≌△DBC,且∠A 和∠D,∠ABC 和∠DBC 是对应角,其对应边:_______、2。

如图,△ABD ≌△ACE ,且∠BAD 和∠CAE ,∠ABD 和∠ACE,∠ADB 和∠AEC 是对应角,则对应边_________.3、 已知:如图,△ABC ≌△FED ,且BC=DE 、则∠A=__________,A D=_______.4、 如图,△ABD ≌△ACE,则AB 的对应边是_________,∠BAD 的对应角是______。

5、 已知:如图,△ABE ≌△ACD ,∠B=∠C,则∠AEB=_______,AE=________。

6.已知:如图 , AC ⊥BC 于 C , DE ⊥AC 于 E , AD ⊥AB 于 A , BC=AE 。

若AB=5 , 则AD=___________.7。

已知:△ABC ≌△A ’B ’C', △A'B ’C ’的周长为12cm ,则△ABC 的周长为、 8.如图, 已知:∠1=∠2 , ∠3=∠4 , 要证BD=CD , 需先证△AEB ≌△A EC , 根据是_________再证△BDE ≌△______ , 根据是__________。

4321E D BA9。

如图,∠1=∠2,由AAS 判定△ABD ≌△ACD,则需添加的条件是____________、10。

如图,在平面上将△ABC 绕B 点旋转到△A ’BC ’的位置时,AA ’∥BC ,∠ABC=70°,则∠CBC'为________度、二.选择题(每题3分,共30分)11、下列条件中,不能判定三角形全等的是 ( )A 、三条边对应相等B 、两边和一角对应相等C 、两角的其中一角的对边对应相等D 、两角和它们的夹边对应相等12、 如果两个三角形全等,则不正确的是 ( )A B CD 12AA'BC C'A、它们的最小角相等B、它们的对应外角相等C、它们是直角三角形D、它们的最长边相等13、如图,已知:△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是()A、AB=ACB、∠BAE=∠CADC、BE=DCD、AD=DE14、图中全等的三角形是( )A、Ⅰ和ⅡB、Ⅱ和ⅣC、Ⅱ和ⅢD、Ⅰ和Ⅲ15、下列说法中不正确的是( )A、全等三角形的对应高相等B、全等三角形的面积相等C、全等三角形的周长相等D、周长相等的两个三角形全等16、 AD=AE , AB=AC , BE、CD交于F ,则图中相等的角共有(除去∠DFE=∠BFC) ( )A、5对B、4对C、3对D、2对CEDBOA17.如图,OA=OB,OC=OD, ∠O=60°, ∠C=25°则∠BED的度数是( )A、70°B、 85°C、 65°D、以上都不对18、已知:如图,△ABC≌△DEF,AC∥DF,BC∥EF、则不正确的等式是 ( )A、AC=DF B 、AD=BE C、DF=EF D、BC=EF19。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

全等三角形综合复习
切记:“有三个角对应相等”和“有两边及其中一边的对角对应相等”的两个三角形不一定全等。

例1. 如图,,,,A F E B 四点共线,AC CE ⊥,BD DF ⊥,AE BF =,AC BD =。

求证:ACF BDE ∆≅∆。

例2. 如图,在ABC ∆中,BE 是∠ABC 的平分线,AD BE ⊥,垂足为D 。

求证:21C ∠=∠+∠。

例3. 如图,在ABC ∆中,AB BC =,90ABC ∠=。

F 为AB 延长线上一点,点E 在BC 上,BE BF =,连接,AE EF 和CF 。

求证:AE CF =。


例4. 如图,AB CD AD BC AB CD =如图,,AP CP 分别是ABC ∆外角MAC
∠和NCA ∠的平分线,它们交于点P 。

求证:BP 为MBN ∠的平分线。

例6.如图,D是ABC
=,ADB BAD
∆的边BC上的点,且CD AB
∆的中线。

∠=∠,AE是ABD
求证:2
=。

AC AE
/
例7.如图,在ABC
∆中,AB AC
>,12
->-。

∠=∠,P为AD上任意一点。

求证:AB AC PB PC

同步练习
一、选择题:
1. 能使两个直角三角形全等的条件是( )
A. 两直角边对应相等
B. 一锐角对应相等
C. 两锐角对应相等
D. 斜边相等
2. 根据下列条件,能画出唯一ABC ∆的是( ) @ A. 3AB =,4BC =,8CA = B. 4AB =,3BC =,30A ∠=
C. 60C ∠=,45B ∠=,4AB =
D. 90C ∠=,6AB =
3. 如图,已知12∠=∠,AC AD =,增加下列条件:①AB AE =;②BC ED =;③C D ∠=∠; ④B E ∠=∠。

其中能使ABC AED ∆≅∆的条件有( )
A. 4个
B. 3个
C. 2个
D. 1个
4. 如上图2,12∠=∠,∠A=∠D ,,AC BD 交于E 点,下列不正确的是( ) A. DAE CBE ∠=∠
B. CE DE =
C. DEA ∆不全等于CBE ∆
D. EAB ∆是等腰三角形
5. 如上图3,已知AB CD =,BC AD =,23B ∠=,则D ∠等于( ) 。

A. 67 B. 46 C. 23 D. 无法确定 二、填空题:
6. 如图,在ABC ∆中,90C ∠=,ABC ∠的平分线BD 交AC 于点D ,且:2:3CD AD =,10AC cm =,则点D 到AB 的距离等于__________cm ;
7. 如图,已知AB DC =,AD BC =,,E F 是BD 上的两点,且BE DF =,若100AEB ∠=,
30ADB ∠=,则BCF ∠=____________;
8. 将一张正方形纸片按如图的方式折叠,,BC BD 为折痕,则CBD ∠的大小为_________;
9. 如图,在等腰Rt ABC ∆中,90C ∠=,AC BC =,AD 平分BAC ∠交BC 于D ,DE AB ⊥于E ,若10AB =,则BDE ∆的周长等于____________;
10. 如图,点,,,D E F B 在同一条直线上,AB CD AE CF AE CF =10BD =2BF =EF =如图,ABC ∆为等边三角形,点,M N 分别在,BC AC 上,且BM CN =,AM 与BN 交于Q 点。

求AQN ∠的度数。


12. 如图,90ACB ∠=,AC BC =,D 为AB 上一点,AE CD ⊥,BF CD ⊥,交CD 延长线于F 点。

求证:BF CE =。

全等三角形综合复习答案
例1. 解答过程:AC CE ⊥,BD DF ⊥∴90ACE BDF ∠=∠=;在Rt ACE ∆与Rt BDF ∆中

AE BF
AC BD =⎧⎨
=⎩
∴Rt ACE Rt BDF ∆≅∆(HL)∴A B ∠=∠AE BF =∴AE EF BF EF -=-,即AF BE =
在ACF ∆与BDE ∆中
AF BE
A B AC BD =⎧⎪
∠=∠⎨⎪=⎩
∴ACF BDE ∆≅∆(SAS) 例2.解答过程:延长AD 交BC 于F 在ABD ∆与FBD ∆中
90
ABD FBD BD BD
ADB FDB ⎧∠=∠⎪
=⎨⎪
∠=∠=⎩∴ABD FBD ∆≅∆(ASA ;∴2DFB ∠=∠又1DFB C ∠=∠+∠;∴21C ∠=∠+∠。

例3.解答过程:90
ABC
∠=,F为AB延长线上一点∴90
ABC CBF
∠=∠=
在ABE
∆与CBF
∆中;
AB BC
ABC CBF
BE BF
=


∠=∠

⎪=

;∴ABE CBF
∆≅∆(SAS);∴AE CF
=。

例 4.解答过程:连接AC;
AB CD AD BC∴12
∠=∠34
∠=∠ABC
∆CDA

12
43
AC CA
∠=∠


=

⎪∠=∠

∴ABC CDA
∆≅∆∴AB CD
=解答过程:过P 作PD BM
⊥于D,PE AC
⊥于E,PF BN
⊥于F
AP平分MAC
∠,PD BM
⊥于D,PE AC
⊥于E;∴PD PE
=
CP平分NCA
∠,PE AC
⊥于E,PF BN
⊥于F;∴PE PF
=;PD PE
=,PE PF
=
;
∴PD PF
=;PD PF
=,且PD BM
⊥于D,PF BN
⊥于F;∴BP为MBN
∠的平分线。

例6.解答过程:延长AE至点F,使EF AE
=,连接DF;在ABE
∆与FDE
∆中
AE FE
AEB FED
BE DE
=


∠=∠

⎪=

;∴ABE FDE
∆≅∆(SAS);∴B EDF
∠=∠;ADF ADB EDF
∠=∠+∠,
ADC BAD B
∠=∠+∠;又ADB BAD
∠=∠;∴ADF ADC
∠=∠;AB DF
=,AB CD
=
∴DF DC
=;在ADF
∆与ADC
∆中;
AD AD
ADF ADC
DF DC
=


∠=∠

⎪=

;∴ADF ADC
∆≅∆(SAS)
∴AF AC
=;又2
AF AE
=;∴2
AC AE
=。

例7. 解答过程:法一:在AB 上截取AN AC =,连接PN ;在APN ∆与APC ∆中
12AN AC AP AP =⎧⎪
∠=∠⎨⎪=⎩
;∴APN APC ∆≅∆(SAS);∴PN PC =;在BPN ∆中,PB PN BN -< {
∴-<-PB PC AB AC ,即AB -AC>PB -PC 。

法二:延长AC 至M ,使AM AB =,连接PM ;在ABP ∆与AMP ∆中
12AB AM AP AP =⎧⎪
∠=∠⎨⎪=⎩
;∴ABP AMP ∆≅∆(SAS);∴PB PM =;在PCM ∆中,CM PM PC >- ∴AB AC PB PC ->-。

<
同步练习的答案
一、选择题: 1. A
2. C
3. B
4. C
5. C
二、填空题: 6. 4
7. 70
8. 90
9. 10
10. 6
三、解答题: 11. 解:
ABC ∆为等边三角形;∴AB BC =,60ABC C ∠=∠=;在ABM ∆与BCN ∆中
AB BC ABC C BM CN =⎧⎪
∠=∠⎨⎪=⎩
;∴ABM BCN ∆≅∆(SAS);∴NBC BAM ∠=∠
∴60AQN ABQ BAM ABQ NBC ∠=∠+∠=∠+∠=。

12. 证明:AE CD ⊥,BF CD ⊥;∴90F AEC ∠=∠=;∴90ACE CAE ∠+∠=
90ACB ∠=;∴90ACE BCF ∠+∠=;∴CAE BCF ∠=∠
在ACE ∆与CBF ∆中
F AEC CAE BCF AC BC ∠=∠⎧⎪
∠=∠⎨⎪=⎩
;∴ACE CBF ∆≅∆(AAS);∴BF CE =。

相关文档
最新文档