第三章变压器
第3章变压器
1.二次绕组电流的折算
根据折算前后磁势保持不变的原则,有:
N1 I 2 N 2 I2
则
N2 I2 I2 I2 N1 K
2.二次绕组电动势的折算
根据折算前后主磁通和漏磁通保持不变的原则,有:
4.44 fN1m E2 N1 K E2 4.44 fN 2m N 2
E1
2
在相位上滞后主磁通 m 90°相角
同理写出二次
绕组感应电动势的有效值
二次绕组感应电势的有效值为:
E 2 =4.44 fN 2m
E 2 在相位上滞后主磁通 m 90°相角
漏磁通1 在一次侧绕组中产生的 漏磁感应电动势为:
L1 定义为漏磁电感 L1
d 1 L di e1 =-N1 = 1 dt dt
K 2 x2 x2
负载阻抗也有同样的关系,即:
2 ZL K ZL
4.二次侧电压的折算
根据二次侧电压平衡方程式,折算后的二次 侧电压值仍应等于折算后的二次绕组的感应 电动势减去折算后二次侧的漏阻抗压降
=E - - U I Z = k ( E I Z )= k U 2 2 2 2 2 2 2 2
S9 型配电变压器(10 kV)
大型油浸电力变压器
大连理工大学电气工程系
干式变压器
大连理工大学电气工程系
附录1 变压器图片
调压器(自耦变压器)
控制变压器
3.1.3 变压器的基本结构
铁心 器身绕组 引线和绝缘 和箱底) 油箱油箱本体(箱盖、箱壁 小车、接地螺栓、铭牌 等) 油箱附件(放油阀门、 变压器调压装置-无励磁分接 开关或有载分接开关 却器 冷却装置-散热器或冷 保护装置-储油柜、油 位计、安全气道、释放 阀、吸湿器、测温 元件、气体继电器等 压套管,电缆出线等 出线装置-高、中、低 变压器油
第三章 变压器
铁芯形状
“口”形:芯式变压器, 绕组包围铁芯,大容量变压器
环形变压器,其铁芯由低铁损 冷轧硅钢带绕,具有损耗小、 效率高以及电磁干扰小的特点 在相同的参数下,环形变压器铁芯的体积最小
变压器的冷却:变压器工作时铁芯和绕组都会发热,因此必 须考虑冷却问题
小容量变压器:采用自然风冷,即依靠空气的自然对流 和辐射将热量散发
大容量变压器:采用油冷方式,将变压器浸入变压器油 内,使其产生的热量通过变压器油传给外壳而散发,变 压器油还具有良好的绝缘性能 • 在X线机设备中,高压变压器副绕组输出几十千伏以上的 高压,无论是副绕组对原绕组还是对铁芯等绝缘都有非常 高的要求。 • X线机的高压变压器就采用了油冷方式
(3-4)
Z1 K 2 Z 2
选取适当的变比K,可以把负载阻抗Z2等效变换到原绕组一 侧所需要的阻抗值Z1 在电子电路中,常使用变压器来实现阻抗匹配,以获得较高 的功率输出
四、变压器的主要参数 大型变压器的外壳通常附有铭牌来标明其型号及参数, 它是正确使用变压器的依据
1.原绕组的额定电压U1N:指当变压器按规定工作方式运行时 在原绕组上应加的电源电压值
(a)抽头式
(b)滑动式
(c)混合式
图3-7 x线机控制台的电源变压器
六、变压器绕组的同极性端
变压器的同极性端:变压器不同绕组在同一变化的磁通作用 下,其感应电动势的极性相同端,用符号“·”表示 在实际运用当中,有时需要将变 压器的两个(或多个)绕组连接起来 使用来适应不同的输入电压与满 足不同的输出电压要求
电机与拖动大学课程 第三章 变压器1
变压器是一种静止的电气设备, 通过电磁耦合作用,把 电能或信号从一个电路传递到另一个电路。通常用来改变 电压的大小,故叫变压器,有时用于电气隔离。
分类
本章学 习重点
电力变压器(升压、降压、配电)
按用途
特种变压器(电炉、整流)
仪用互感器(电压、电流互感器、 脉冲变压器,阻抗匹配变压器)
(2)额定电压U1N/U2N U1N为额定运行时原边接线端点间应施加的电压。U2N为原边施
加额定电压时副边出线端间的空载电压。单位为V或者kV。三 相变压器中,额定电压指的是线电压。指有效值。
(3)额定电流I1N/I2N 是变压器在额定容量和额定电压下所应提供的电流,在三相变 压器指线电流。单位为A/kA。指有效值。
考虑漏磁通和原边绕组的电阻时,变压器空载运行时相 量形式表示的电压平衡方程式:
U1 I0R1 (E1 ) (E1) I0R1 jI0 x1 (E1)
I0 (R1 jx1 ) (E1) I0Z1 (E1)
U20 E2
R1:原边绕组电阻;
Z1=R1+jX1σ为原边绕组漏阻抗
五、空载运行的等效电路和相量图
E2m N2m
有效值:
E2 E2m / 2 4.44 f1N2m
相量表示:
E2 j4.44 f1N2m
.
m
.
. E2 E1
变压器中,原、副绕组电动势E1和E2之比称为变压器 的变比k.
k E1 4.44 N1 f1 m N1 E2 4.44 N2 f1 m N2
由于.
U1 E1 U2 E2
变压器原边接在电源上, 副边接上负载的运行情况,称为负载 运行。
一、物理过程
变压器接通负载 副边电流 副边磁势 原边电动势改变 原边电流改变
第三章 电力变压器(高压特种电工培训)
2021年4月27日9时0分
二、变压器的结构
中小型油浸电力变压器典型结构如图3-1所示。 1.铁芯 (1)铁芯结构 变压器的铁芯是磁路部分。 由铁芯柱和铁轭两部分组成。铁芯的机构分为
心式和壳式两种。
2021年4月27日9时0分
(2)铁芯材料 由于铁芯为变压器的磁路,所以其材料 要求导磁性能好,导磁性能好,才能使铁损小。
查一次。容量在630kVA以下的变压器,可适当延长巡视周期,但变 压器在每次合闸前及拉闸后应检查一次。 8)有人值班的变配电所,每班都应检查变压器的运行状态。 9)对于强油循环水冷或风冷变压器,不论有无值班,都应每小时巡 视一次。 10) 负荷急剧变化或变压器发生短路故障后,都应增加特殊巡视。
根据变压器的大小分为吊器身式油箱(6300kVA以下) 和吊箱壳式油箱(又称钟罩式油箱,8000kVA以上)两种。
2021年4月27日9时0分
6.冷却装置 变压器冷却装置是起散热作用的。 7.储油柜(又称油枕)主要是当油箱油面降低时给油箱 补油的装置,它通过管道和瓦斯继电继电器与油箱相连。 8.安全气道(又称防爆管,现在被压力释放阀代替) 9.吸湿器(装有变色硅胶,颜色由蓝变白,粉红色) 10.气体继电器 11.高、低压绝缘套管
5.额定容量 变压器的容量为视在功率,单位为 kVA。
单相变压器视在功率为:
S N U1N I1N U 2N I 2N
2021年4月27日9时0分
三相变压器视在功率为:
SN 3U1N I1N 3U 2N I2N
一般容量在630kVA以下的为小型电力变压器; 800~6300kVA的为中型电力变压器; 8000~63000kVA为大型电力变压器; 90000kVA及以上的为特大型电力变压器。
高中人教物理选择性必修二第3章第2节变压器
第三章 交变电流 第3节 变压器一、理想变压器及变压原理和规律1.理想变压器的特点(1)原、副线圈的电阻不计,不产生热量.(2)变压器的铁芯无漏磁,原、副线圈磁通量无差别.(3)变压器自身的能量损耗不计,原线圈的输入功率等于副线圈的输出功率. 2.工作原理原线圈上加交变电压时铁芯中产生交变磁场,即在副线圈中产生交变磁通量,从而在副线圈中产生交变电动势;当副线圈接负载时,副线圈相当于交流电源向外界负载供电.从能量转化角度看,变压器是把电能转化为磁场能,再将磁场能转化为电能的装置,一般地说,经过转化后电压、电流均发生了变化.3.电压关系由于不计原、副线圈的电阻,因此原线圈两端的电压U 1=E 1,副线圈两端的电压U 2=E 2,所以U 1U 2=n 1n 2.当有n 组线圈时,则有:U 1n 1=U 2n 2=U 3n 3…4.功率关系对于理想变压器,不考虑能量损失,P 入=P 出. 5.电流关系由功率关系,当只有一个副线圈时,I 1U 1=I 2U 2,得I 1I 2=U 2U 1=n 2n 1.当有多个副线圈时,I 1U 1=I 2U 2+I 3U 3+…,得I 1n 1=I 2n 2+I 3n 3+….[特别提醒](1)变压器只对变化的电流起作用,对恒定电流不起作用.(2)变压器只能改变交变电流的电压和电流,不能改变交变电流的周期和频率. (3)理想变压器关系中的U 1、U 2、I 1、I 2均为有效值或最大值.瞬时值和平均值不成立 (4)变压器的输入功率总等于所有输出功率之和(5)变压器匝数多的接高压,导线细;匝数少的接低压,导线粗 6.制约关系(1)电压:副线圈电压U 2由原线圈电压U 1和匝数比决定. (2)功率:原线圈的输入功率P 1由副线圈的输出功率P 2决定. (3)电流:原线圈电流I 1由副线圈电流I 2和匝数比决定.【例题1】如图所示,理想变压器原线圈与一10 V 的交流电源相连,副线圈并联两个小灯泡a 和b .小灯泡a 的额定功率为0.3 W ,正常发光时电阻为30 Ω.已知两灯泡均正常发光,流过原线圈的电流为0.09 A ,可计算出原、副线圈的匝数比为________.流过灯泡b 的电流为________A.【答案】:10∶3 0.2[解析]根据P =U 2R 和P =I 2R 得灯泡a 两端的电压U 2=PR =0.3×30 V =3 V ,通过灯泡a 的电流I a=P R=0.330 A =0.1 A ,根据U 1U 2=n 1n 2得原、副线圈匝数之比n 1n 2=U 1U 2=103,根据I 1I 2=n 2n 1,得副线圈上的电流I 2=n 1n 2I 1=103×0.09 A =0.3 A ,根据I 2=I a +I b ,得流过灯泡b 的电流为I b =I 2-I a =0.2 A.【例题2】如图,理想变压器原线圈输入电压u =U m sin ωt ,副线圈电路中R 0为定值电阻,R 是滑动变阻器.和是理想交流电压表,示数分别用U 1和U 2表示;和是理想交流电流表,示数分别用I 1和I 2表示.下列说法正确的是( )A .I 1和I 2表示电流的瞬时值B .U 1和U 2表示电压的最大值C .滑片P 向下滑动过程中,U 2不变、I 1变大D .滑片P 向下滑动过程中,U 2变小、I 1变小 【答案】C[解析]交流电压表和交流电流表显示的示数都为有效值,A 、B 错误.由于输入端电压U 1和理想变压器匝数比不变,所以U 2不变.滑片P 向下滑动过程中,电阻变小,电流I 2变大,输出功率变大,则输入功率变大,电流I 1变大,C 正确,D 错误,故选C.【例题3】.(多选)(2016·高考全国卷Ⅲ)如图,理想变压器原、副线圈分别接有额定电压相同的灯泡a 和b.当输入电压U 为灯泡额定电压的10倍时,两灯泡均能正常发光.下列说法正确的是( )A .原、副线圈匝数比为9∶1B.原、副线圈匝数比为1∶9C.此时a和b的电功率之比为9∶1D.此时a和b的电功率之比为1∶9【答案】:AD[解析]设灯泡的额定电压为U0,输入电压为灯泡额定电压的10倍时灯泡正常发光,则变压器原线圈的电压为9U0,变压器原、副线圈的匝数比为9∶1,选项A正确,选项B错误;由9U0I a=U0I b得,流过b灯泡的电流是流过a灯泡电流的9倍,根据P=UI,a、b灯泡的电功率之比为1∶9,选项C错误,选项D正确.1.关于理想变压器的工作原理,以下说法正确的是()A.通有正弦交变电流的原线圈产生的磁通量不变B.穿过原、副线圈的磁通量在任何时候都不相等C.穿过副线圈磁通量的变化使得副线圈产生感应电动势D.原线圈中的电流通过铁芯流到了副线圈2.(多选)为探究理想变压器原、副线圈电压、电流的关系,将原线圈接到电压有效值不变的正弦交流电源上,副线圈连接相同的灯泡L1、L2,电路中分别接了理想交流电压表V1、V2和理想交流电流表A1、A2,导线电阻不计,如图所示.当开关S闭合后()A.A1示数变大,A1与A2示数的比值不变B.A1示数变大,A1与A2示数的比值变大C.V2示数变小,V1与V2示数的比值变大D.V2示数不变,V1与V2示数的比值不变3.如图所示,一只理想变压器,原线圈中有一个抽头B,使n1=n2,副线圈中接有定值电阻R.当原线圈从AC端输入电压为U的正弦交流电压时,副线圈中电流为I,当原线圈从AB端输入电压为U的正弦交流电压时,副线圈中电流为I′.那么I′与I的比值等于()A.4∶1B.1∶4C.2∶1 D.1∶24.如图所示,在铁芯上、下分别绕有匝数为n 1=800和n 2=200的两个线圈,上线圈两端与u =51sin 314t V 的交流电源相连,将下线圈两端接交流电压表,则交流电压表的读数可能是( )A .2.0 VB .9.0 VC .12.7 VD .144.0 V5.如图所示,一理想变压器原线圈匝数n 1=1 100匝,副线圈匝数n 2=220匝,交流电源的电压u =2202·sin 100πt (V),电阻R =44 Ω,电压表、电流表为理想电表,则下列说法不正确的是( )A .交流电的频率为50 HzB .电流表A 1的示数为0.2 AC .电流表A 2的示数为2 AD .电压表的示数为44 V6.如图所示为理想变压器,三个灯泡L 1、L 2、L 3都标有“5 V 5 W ”字样,L 4标有“5 V 10 W ”字样,若它们都能正常发光,则变压器原、副线圈匝数比n 1∶n 2和ab 间电压应为( )A .2∶1,25 VB .2∶1,20 VC .1∶2,25 VD .1∶2,20 V7.如图甲、乙所示的电路中,当A 、B 接有效值为10 V 的交流电压时,C 、D 间电压的有效值为4 V ;当M 、N 接10 V 直流电压时,P 、Q 间的电压也为4 V .现把C 、D 接4 V 交流电压,P 、Q 接4 V 直流电压,下列表示A 、B 间和M 、N 间电压的是( )A. 10 V ,10 VB. 10 V ,4 VC. 4 V,10 VD. 10 V,08、(多选)心电图仪是将心肌收缩产生的脉动转化为电压脉冲的仪器,其部分电路可简化为大电阻R 1与交流电源串联,该电源输出的电压有效值为U 0,如图所示,心电图仪与一个理想变压器的初级线圈相连,一个扬声器(可等效为一个定值电阻R 2)与该变压器的次级线圈相连.若R 2的功率此时最大,下列说法正确的是( )A .大电阻R 1两端电压为U 02B .理想变压器初级线圈与次级线圈的匝数比值为R 1R 2C .交流电源的输出功率为U 202R 1D .通过扬声器的电流为U 021R 1R 29.(多选)如图所示,L 1、L 2是高压输电线,图中两电表示数分别是220 V 和10 A ,已知甲图中原、副线圈匝数比为100∶1,乙图中原、副线圈匝数比为1∶10,则( )A .甲图中的电表是电压表,输电电压为22 000 VB .甲图是电流互感器,输电电流是100 AC .乙图中的电表是电压表,输电电压为22 000 VD .乙图是电流互感器,输电电流是100 A10.(多选)调压变压器是一种自耦变压器,它的构造如图所示.线圈AB 绕在一个圆环形的铁芯上.AB 间加上正弦交流电压U ,移动滑动触头P 的位置,就可以调节输出电压.在输出端连接了滑动变阻器R 和理想交流电流表,滑动变阻器的滑动触头为Q .则( )A .保持P 的位置不动,将Q 向下移动时,电流表的示数变大B .保持P 的位置不动,将Q 向下移动时,电流表的示数变小C .保持Q 的位置不动,将P 沿逆时针方向移动时,电流表的示数变大D .保持Q 的位置不动,将P 沿逆时针方向移动时,电流表的示数变小11.如图所示,理想变压器输入的交流电压U 1=220 V ,有两组副线圈,其中n 2=36匝,标有“6 V ,9 W ”“12V ,12 W”的电灯分别接在两副线圈上均正常发光.求:(1)原线圈的匝数n 1和另一副线圈的匝数n 3; (2)原线圈中电流I 1.12.如图甲为一理想变压器,ab 为原线圈,ce 为副线圈,d 为副线圈引出的一个接头,原线圈输入正弦式交变电压的ut 图象如乙图所示.若只在ce 间接一只R ce =400 Ω的电阻,或只在de 间接一只R de =225 Ω的电阻,两种情况下电阻消耗的功率均为80 W.(1)请写出原线圈输入电压瞬时值u ab 的表达式; (2)求只在ce 间接400 Ω电阻时,原线圈中的电流I 1; (3)求ce 和de 间线圈的匝数比n cen de.1.【答案】:C【解析】:通有正弦交变电流的原线圈产生的磁场是变化的,由于面积S 不变,故磁通量Φ变化,A 错误;因理想变压器无漏磁,故B 错误;由互感现象知C 正确;原线圈中的电能转化为磁场能又转化为电能,原副线圈通过磁场联系在一起,故D 错误.2.【答案】:AD【解析】:交流电源的电压有效值不变,即V 1示数不变,因U 1U 2=n 1n 2,故V 2示数不变,V 1与V 2示数的比值不变,D 对.S 闭合使负载总电阻减小,I 2=U 2R ,所以I 2增大.因I 1I 2=n 2n 1,所以A 1示数增大,A 1与A 2示数的比值不变,A 对.3.【答案】:C【解析】:当电压由AC 端输入改为由AB 端输入后,副线圈上的电压加倍,电阻R 是定值电阻,所以副线圈中的电流加倍.4.【答案】:A【解析】:若未考虑铁芯的漏磁因素,上线圈电压有效值U 1=512V ≈36 V ,按变压器的变压比U 1U 2=n 1n 2得U 2=n 2n 1U 1=9.0 V ,而实际上副线圈磁通量Φ2<Φ1,由U =n ΔΦΔt 得U 1n 1>U 2n 2,则应选A.5【答案】:C【解析】:由交流电源的电压瞬时值表达式可知,ω=100π rad/s ,所以频率为50 Hz ,A 项说法正确;理想变压器的电压比等于线圈匝数比,即U 1U 2=n 1n 2,其中原线圈电压的有效值U 1=220 V ,U 2=n 2n 1U 1=44 V ,故D 项说法正确;I 2=U 2R =1 A, 故C 项说法错误;由电流比与线圈匝数比成反比,即I 2I 1=n 1n 2,所以I 1=n 2n 1I 2=0.2 A ,故B 项说法正确.6.【答案】:A【解析】:要使得L 1、L 2、L 3和L 4都正常发光,副线圈的电压应为10 V .若L 1也能正常发光,则原线圈的电流应是副线圈的12,所以由I 2I 1=n 1n 2可知n 1∶n 2=2∶1,再由U 1U 2=n 1n 2可知原线圈的电压为20 V ,U ab =U 1+U L1=25 V ,所以选项A 正确.7.【答案】:B【解析】:题图甲是一个自耦变压器,当A 、B 作为输入端,C 、D 作为输出端时,是一个降压变压器,两边的电压之比等于两边线圈的匝数之比.当C 、D 作为输入端,A 、B 作为输出端时,是一个升压变压器,电压比也等于匝数比,所以C 、D 接4 V 交流电压时,A 、B 间将得到10 V 交流电压.题图乙是一个分压电路,当M 、N 作为输入端时,上下两个电阻上的电压跟它们电阻的大小成正比.但是当把电压加在P 、Q 两端时,电流只经过下面那个电阻,上面的电阻中没有电流通过,M 、P 两端也就没有电势差,即M 、P 两点的电势相等.所以当P 、Q 接4 V 直流电压时,M 、N 两端的电压也是4 V .如果M 、N 或P 、Q 换成接交流电压,上述关系仍然成立,因为在交流纯电阻电路中欧姆定律仍然适用.8、【答案】:ACD【解析】:设理想变压器初级线圈和次级线圈的匝数分别为n 1、n 2,初级线圈和次级线圈的电流分别为I 1、I 2,R 2的功率为P ,则有P =I 22R 2=-I 21R 1+I 1U 0,由于此时扬声器有最大功率,则I 1=U 02R 1、I 2=U 021R 1R 2,选项D 正确;此时大电阻R 1两端电压I 1R 1=U 02,选项A 正确;理想变压器的初级和次级线圈的匝数比值为n 1n 2=I 2I 1=R 1R 2,选项B 错误;交流电源的输出功率为I 1U 0=U 202R 1,选项C 正确,故本题选A 、C 、D. 9.【答案】:AD【解析】:甲图是电压互感器,电表是电压表,故B 错误;根据匝数比U 1U 2=n 1n 2,有U 1=n 1n 2U 2=1001×220V =22 000 V ,故A 正确;乙图是电流互感器,电表是电流表,故C 错误;只有一个副线圈的变压器,电流比等于匝数的反比I 1I 2=n 2n 1,有I 1=n 2n 1I 2=101×10 A =100 A ,故D 正确.10.【答案】:BC【解析】:当P 的位置不动时,U 2=n 2n 1U 1不变,将Q 向下移动,R 接入电路的阻值变大,由I 2=U 2R 知I 2减小,故选项B 正确;保持Q 的位置不动,R 接入电路的阻值就不变,将P 沿逆时针方向移动,则n 2增多,U 2增大,所以I 2也增大,故选项C 正确.11.【答案】:(1)1 320匝 72匝 (2)0.095 A 【解析】:(1)由于两灯泡均正常发光, 所以有U 2=6 V ,U 3=12 V根据原、副线圈电压与匝数的关系,由U 1U 2=n 1n 2,U 2U 3=n 2n 3得n 1=U 1U 2n 2=2206×36=1 320匝n 3=U 3U 2n 2=126×36=72匝.(2)由于P 入=P 出,P 出=P 2+P 3 所以P 入=P 2+P 3,即I 1U 1=P 2+P 3则I 1=P 2+P 3U 1=9+12220A ≈0.095 A.12.【答案】:(1)u ab =400sin 200πt V (2)0.28 A(3)43【解析】:(1)由乙图知ω=200π rad/s , 电压瞬时值 u ab =400sin 200πt V. (2)电压有效值U 1=U m2=200 2 V ,理想变压器P 1=P 2,原线圈中的电流I 1=P 1U 1≈0.28 A.(3)设ab 间匝数为n 1,根据变压器规律有 U 1n 1=U ce n ce ,U 1n 1=U den de , 由题意有U 2ce R ce =U 2deR de ,联立可得n cen de=R ce R de =43.。
第三章 变压器的结构
二、铁心的有关概念
(4)填充系数:又称利用系数,是指由阶梯形组成
的铁心柱的截面积与芯柱外接圆面积之比值。在 一定的直径下,铁心柱的截面积越大,即阶梯级 数越多,则填充系数越大。但阶梯的级数越多, 叠片的规格也越多,从而使铁心的制造工艺复杂化。
三、铁心的装配方法
(1)直接缝 特点:是加工和叠片 都比较方便,搭接面 积大,因此所叠装的 铁心结构强度好、整 体性强、不易变形。 但只能用于热轧硅钢 片。
6、铁心用硅钢片简述
对硅钢片的表面处理 硅钢片涂绝缘漆,其目的是限制涡流回路,使涡流只能在一 片中流动,这样涡流回路阻抗较大,限制了涡流的数值。 对硅钢片的绝缘漆层要求是: 1)涂刷均匀,漆膜光滑不宜过厚(漆膜过厚要降低叠片系 数),附着力强,能抗冲击和弯曲。 2)要求漆膜具有良好的绝缘性、耐热性、防潮性,并且要 求干燥快。 对硅钢片的厚度选用: 通常在0.23~0.5mm左右。ABB公司常用有0.23mm和0.3mm 两种,目的是为了限制硅钢片的涡流损耗以及由此而引起主磁 通的削弱。
4、常用铁心的结构特征及其适用范围
(3)单相二柱旁轭式叠铁心(四柱铁心) 应用:高压和超高压大容量单相电 力变压器。
(4)三相三柱式叠铁心 应用:各种三相变压器。它是三相 变压器最广泛应用的典型结 构。
4、常用铁心的结构特征及其适用范围
(5)三相三柱旁轭式 叠铁心(五柱铁心) 应用:大容量三相电力 变压器。主要是 用来降低铁心的 高度,便于运输
变压器叠片全斜接缝
三、铁心的装配方法
全斜接缝
四、铁心的夹紧
1、夹紧的目的 铁心的夹紧主要是为了能承受器身起吊时 的重力及变压器在发生短路时,绕组作用 到铁心上的电动力; 可以防止变压器在运行中,由于硅钢片松 动而引起的振动噪声。
第三章 三相变压器及运行
第三章 三相变压器及运行目录第一节 三相变压器的磁路 (1)第二节 三相变压器的连接组 (2)第三节 三相变压器绕组连接法及其磁路系统对电动势波形的影响 (5)第四节 变压器的并联运行 (7)小结 (11)思考题 (12)第一节 三相变压器的磁路三相变压器的磁路系统可分为各相磁路彼此独立和各相磁路彼此相关两类。
一、各相磁路彼此独立如把三个完全相同的单相变压器的绕组按一定方式作三相连接便构成为三相变压器,常称为三相变压器组,如图3-1所示。
这种变压器的各相磁路是彼此独立的,各相主磁通以各自铁芯作为磁路。
因为各相磁路的磁阻相同,当三相绕组接对称的三相电压时,各相的励磁电流也相等。
图3-1 三相变压器组的磁路系统二、各相磁路彼此相关如果把图3-1的三个单相铁芯合并成如图3-2(a)所示的结构,图中,通过中间三个芯柱的磁通便等于三相磁通的总和。
当外施电压为对称三相电压,三相磁通也对称,其总和,即在任意瞬间,中间芯柱磁通为零。
因此,在结构上可省去中间的芯柱,如图3-2(b)所示。
这时,三相磁通的流通情形和星形接法的电路相似,在任一瞬间各相磁通均以其它两相为回路,仍满足了对称要求。
为生产工艺简便,在实际制作时常把三个芯柱排列在同一平面上,如图3-2(c)所示。
人们称这种变压器为三相三铁芯柱变压器,或简称为三相铁芯式变压器。
三芯柱变压器中间相的磁路较短,即使外施电压为对称三相电压,三相励磁电流也不完全对称,其中间相励磁电流较其余两相为小。
但是与负载电流相比励磁电流很小,如负载对称,仍然可以认为三相电流对称。
图3-2 三相铁芯式变压器的磁路系统第二节三相变压器的连接组一、三相变压器绕组的接法在三相变压器中,我们用大写字母A、B、C表示高压绕组的首端,用X、Y、Z表示高压绕组的末端,用小写字母a、b、c表示低压绕组的首端,用x、y、z表示低压绕组的末端。
对于电力变压器,不论是高压绕组或是低压绕组,我国电力变压器标准规定只采用星形接法或三角形接法。
第三章 变压器
Zk
Uk Ik
Rk
pk
I
2 k
Xk
Z
2 k
Rk2
绕组的电阻时随温度而变的,故经过计算的到的短路参数应 根据国家标准规定折算到参考温度。
三 、相量图
根据T形等效电 路,可以画出相应 的相量图。
四 、近似等效电路图
RK、XK和ZK分别称为短路电阻、短路电抗和短路阻抗。
单相变压器基本方法总结
分析计算变压器运行的方法:
基本方程式:变压器电磁关系的数学表达式。 等效电路:基本方程式的模拟电路。 相量图:基本方程式的图示表示。
三者是统一的,一般定量计算用等效电路,讨论各 物理量之间的相位关系用相量图。
E2 KE2
E2 KE2
U 2 KU 2
(二)电流的归算 电流归算的原则:归算前后二次侧磁动势保持不变。
N2'I2' N2I2
(三)阻抗的归算
I 2
I2 K
阻抗归算的原则:归算前后电阻铜耗及漏感中无功功率不变。
I 22 R2
I
2 2
R2
I22 X 2
I
2 2
X
2
R2
I
2 2
I22
R2
K 2R2
S7-315/10 三相(S)铜芯10KV变压器,容量315KVA,设计序号7为节 能型.
SJL-1000/10 三相油浸自冷式铝线、双线圈电力变压器,额定容量为 1000千伏安、高压侧额定电压为10千伏。
我国生产的各种变压器主要系列产品有:S7、SL7、S9、 SC8等。其中SC8型为环氧树脂浇注干式变压器。
同心式绕组 1—铁心柱 2—铁轭 3—高压线圈 4—低压线圈
交叠式绕组 1—低压绕组 2—高压绕组
第三章 变压器习题答案
第三章 变压器一、填空:1. 变压器空载运行时功率因数很低,其原因为 。
答:激磁回路的无功损耗比有功损耗大很多,空载时主要由激磁回路消耗功率。
2. 变压器的副端是通过 对原端进行作用的。
答:磁动势平衡和电磁感应作用。
3. 引起变压器电压变化率变化的原因是 。
答:负载电流的变化。
4. 联接组号不同的变压器不能并联运行,是因为 。
答:若连接,将在变压器之间构成的回路中引起极大的环流,把变压器烧毁。
5. 变压器副边的额定电压指 。
答:原边为额定电压时副边的空载电压。
6. 通过 和 实验可求取变压器的参数。
答:空载和短路。
7. 变压器的结构参数包括 , , , , 。
答:激磁电阻,激磁电抗,绕组电阻,漏电抗,变比。
8. 在采用标幺制计算时,额定值的标幺值为 。
答:1。
9. 既和原边绕组交链又和副边绕组交链的磁通为 ,仅和一侧绕组交链的磁通为 。
答:主磁通,漏磁通。
10. 变压器的一次和二次绕组中有一部分是公共绕组的变压器是 。
答:自耦变压器。
11. 并联运行的变压器应满足(1) ,(2) ,(3) 的要求。
答:(1)各变压器的额定电压与电压比应相等;(2)各变压器的联结组号应相同;(3)各变压器的短路阻抗的标幺值要相等,阻抗角要相同。
12. 变压器运行时基本铜耗可视为 ,基本铁耗可视为 。
答:可变损耗,不变损耗。
二、选择填空1. 三相电力变压器带电阻电感性负载运行时,负载电流相同的条件下, cos 越高,则 。
A :副边电压变化率Δu 越大,效率η越高,B :副边电压变化率Δu 越大,效率η越低,C :副边电压变化率Δu 越大,效率η越低,D :副边电压变化率Δu 越小,效率η越高。
答:D2. 一台三相电力变压器N S =560kVA ,N N U U 21 =10000/400(v), D,y 接法,负载时忽略励磁电流,低压边相电流为808.3A 时,则高压边的相电流为 。
A : 808.3A , B: 56A ,C: 18.67A , D: 32.33A 。
变压器工作原理
2.为有功分量,用来供给变压器铁心损耗,其相位超
前主磁通约900。即
第三节 单相变压器的负载运行
变压器的负载运行:是指变压器在一次绕组加上额定正弦
交流电压,二次绕组接负载ZL的情况下的运行状态,如图所
示。
一、负载运行时的各物理量 负载运行时一、二次电流关系
I1 ( N 2 N1 ) . I 2
种联结方式,其中大写字母表示一次绕组的联结方式,小
写字母表示二次绕组的联结方式。
第五节 其他用途的变压器
本节介绍常用的自耦变压器、仪用互感器和弧焊变压器 的工作原理及特点。 一、自耦变压器 1.自耦变压器的结构特点是:一、二次绕组共用一个绕
组。如下图所示。 对于降压自耦变压器,一次绕组的一部分充当二次绕组;
对于升压自耦变压器,二次绕组的一部分充当一次绕组。 因此自耦变压器一、二次绕组之间既有磁的联系,又有电 的直接联系。将一、二次绕组共用部分的绕组称为公共绕组 。下面以降压自耦变压器为例分析其工作原理。
2.自耦变压器的电压比
3.自耦变压器的变流公式
4.自耦变压器的输出视在功率(即容量)为
5.种类:自耦变压器有单相和三相两种。 一般三相自耦变压器采用星形接法。图1-21为 三相自耦变压器原理图。 如果将自耦变压器的抽头做成滑动触头,就成
第三章 变 压 器
本章以一般用途的电力变压器为主要研究对象,着重
分析单相变压器的工作原理、基本结构和运行情况,对其
他用途的变压器作简单介绍。以期掌握变压器变电压、变 电流、变阻抗的原理,理解变压器铭牌数据含义;学会正 确使用各种变压器。 1.变压器:是一种静止的电气设备。它是根据电磁感应的
原理,将某一等级的交流电压和电流转换成同频率的另一
第3章 三相变压器
C A B A B 0 A B C C A B C
三铁心柱变压器的形成
、U 、U 三相对称 U A B C
、 、 三相对称 A B C
c
y
E b
A E a
a
C
x z b
E ab
x
y
z
联结组标号:Yy6
2)Yd联结
低压绕组的联结顺序:ax→cz→by→ax
A E AB B E A E B E C
C
B
E AB
E B
X
Y
Z
a E ab b E a E b E c
c
E Eab b
4.YDy联结
大容量电力变压器需要 采 用 Yy 联 结 时 , 可 另 加一个接成三角形的第 三绕组,以改善相电动 势波形。
A
a
I 3 c I 3
I 3
b
C
B
带附加D联结绕组的Yy联结变压器
三相变压器绕组联结方式和磁 路系统对相电动势波形的影响
Yy(包括Yyn)
三相变压器组 三铁心柱式
2)Yd联结
i0(正弦波)
A
E 23
a
(接近正
弦波)
I 23
E 23 E 23
b
C
c
B
1 (正弦波) 3 (正弦波)
e1 (正弦波) e13(正弦波)
e23(正弦波)
YD联结二次绕组中的3次谐波电流 与3相位基 本相反
i23 (正弦波)
23 (正弦波)
3
第3章 变压器
3.1 概述
2.变压器的分类
1)按用途分类: 特种变压器(如调压变压器、试验变压器、电炉变压器、整 流变压器、电焊变压器、控制变压器等)
电焊变压器(专用) 给电焊机供电。
3-18
3.1 概述
2.变压器的分类
1)按用途分类: 仪用互感器(电压互感器和电 流互感器) 电子变压器:用在电子线路中
3-19
U1N / U 2 N 35kV / 0.4kV
试求一次、二次绕组的额定电流。
解:
I1N
SN 3U 1N
SN 3U 2 N
160103 3 35 10
160 103 3 0.4 10
3
3
A 2.64A
I 2N
A 230.9 A
3.1.3 本章主要内容
1)本章主要对单相变压器进行分析,所得的基本方程式、等 效电路、相量图以及运行特性分析等方法完全适用于三相变压 器。 2)因为电力系统中三相电压是对 称的,如果三相变压器带对称负载, 则三相变压器的三相原、副边的电 压,电流都是对称的。电力变压器 正常的工作状态基本是对称运行。 但三相变压器也有其特殊的问题需 要研究,例如三相变压器的磁路系 统、三相变压器绕组的连接方法和 联结组等问题。 3)本章只分析变压器的稳态运行, 不考虑过渡过程。
变 压 器
3、双击原理图元件库文档图标,就可以进入原 理图元件库编辑工作界面,如下图所示。
二、 元件库编辑器界面简介
原理图元件库编辑器界面主要由元件管理器 、主工具栏、菜单、常用工具栏、编辑区等组成 。
在编辑区有一个十字坐标轴,将元件编辑区 划分为四个象限。象限的定义和数学上的定义相 同,即右上角为第一家限,左上角为第二象限, 左下角为第三象限,右下角为第四象限,一般我 们在第四象限进行元件的编辑工作。
• (1)空载运行及电压比一次绕组接交流电源,二次绕组开路的运行方 式称为空载运行,如图3一2所示。此时,一次绕组的电流i01称为励磁 电流,由于im是按正弦规律变化的,因此由它在铁芯中产生的磁通中 也是按正弦规律变化的,在交变磁通中的作用下,在一、二次绕组中 分别产生感应电动势e1、e2
•设
,则可根据电磁感应定律计算出
上一页 下一页 返回
第二节 单相变压器
• 解 已知U1= 220V ,U2=22V,戈=2 100匝 • 所以 •又 • 所以
上一页 下一页 返回
第二节 单相变压器
• 例3一2某晶体管收音机输出变压器的一次绕组匝数N1= 230匝,二次 绕组匝数N2 = 80匝,原来配有阻抗为8Ω的扬声器,现在要改接为4Ω 的扬声器,问输出变压器二次绕组的匝数应如何变动(一次绕组匝数 不变)。
• 解设输出变压器二次绕组变动后的匝数为N'2 • 当R'L= 4Ω时
• 根据题意Ri=R'i,即
上一页 下一页 返回
第二节 单相变压器
• 2.额定值 • (1)额定电压U1N和U2N(V)额定电压U1N是指根据变压器的绝缘强度
和允许发热而规定的一次绕组的正常工作电压。额定电压U2N是指一 次绕组加额定电压时,二次绕组的开路电压。 • (2)额定电流I1N和I2N(A)指根据变压器的允许发热条件而规定的绕组长 期允许通过的最大电流值。 • (3)额定容量SN ( VA)指变压器在额定工作状态下,二次绕组的视 在功率。忽略损耗时,额定容量 • 二、单相变压器的同名端及其判断 • 所谓同名端是指在同一交变磁通的作用下,两个绕组上所产生的感 应电压瞬时极性始终相同的端子,同名端又称同极性端,常以“*” 或“·”标记。判断同名端可根据如下方法:
《电机与拖动》第3章 变压器
19
3.2
变压器的结构和工作原理
二、变压器的基本工作原理
变压器的结构是在一个闭合铁芯上套有两个绕组,其原理如图 3-14所示。 这两个绕组具有不同的匝数且互相绝 缘,两绕组间只有磁的耦合而没有电的联 系。其中,接于电源侧的绕组称为原绕组 或一次绕组,一次绕组各量用下标“1” 表示;用于接负载的绕组称为副绕组或二 次绕组,二次绕组各量用下标“2”表示。 图3-14 变压器工作原理示意图 两个绕组中感应出同频率的电动势e1和e2。
任务3
变压器参数测试
6
任务1
变压器的外形观察与铭牌解读
1、观察变压器的外观
(1)电力变压器
图3-1为干式电力变压器,图3-2为油浸式电力变压器。
图3-1 干式变压器
图3-2 油浸式电力变压器
7
任务1
变压器的外形观察与铭牌解读
(2)特殊变压器
图3-3为自耦变压器,图3-4为电压互感器,图3-5为电流互感器。
1 表示。 或油)穿过而形成闭合磁通,用
28
3.3
单相变压器的运行分析
主磁通和漏磁通的区别:
与
与
呈非线性关系;而漏磁通磁路由非铁磁材料组成,磁路不饱和, I 0 1 呈线性关系。 I
0
(1)在性质上,主磁通磁路由铁磁材料组成,具有饱和特性,
0
(2)在数量上,铁芯的磁导率较大,磁阻小,所以总磁通的绝大
图3-13 变压器交叠式绕组 1-低压绕组 2-高压绕组 3-铁芯 4-铁轭
18
3.2
变压器的结构和工作原理
2.变压器的分类
(1)按用途分类:分为电力变压器和特种变压器两类。 (2)按绕组数目分类:分为单绕组变压器、双绕组变压器、三绕组 变压器。
《第三章3变压器》教学设计教学反思-2023-2024学年高中物理人教版19选择性必修第二册
《变压器》教学设计方案(第一课时)一、教学目标本节课的教学目标是让学生掌握变压器的基本概念、工作原理及其在电力传输中的应用。
通过学习,学生能够理解变压器的电压、电流、功率关系,并能解释变压器在实际生活中的作用。
同时,培养学生观察实验现象、分析实验数据的能力,提高其物理学科的综合素养。
二、教学重难点教学重点:变压器的工作原理及其在电力传输中的应用。
通过实验演示和理论分析,使学生深刻理解变压器的基本原理和电压、电流、功率的关系。
教学难点:变压器的内部构造和工作过程的深入理解。
需要引导学生通过图示、模型等教学手段,逐步剖析变压器的内部结构,理解其工作过程。
三、教学准备教学准备包括教材、教具、实验器材等。
教材需准备《高中物理》相关章节内容;教具包括多媒体课件、变压器模型等,用于展示变压器的工作原理和结构;实验器材包括变压器、电压表、电流表等,用于学生进行实验操作,观察实验现象。
同时,教师需提前熟悉教材内容,准备好教案和讲义。
四、教学过程:一、引入新课在课程的开始,教师首先通过一个生动的实例来吸引学生的注意力。
教师可以展示一个变压器在实际生活中的应用场景,如家庭电路中的电压变换,或者工厂中大型设备的电力供应等。
通过这个实例,让学生明白变压器在日常生活和工业生产中的重要性,从而激发学生对本节课的兴趣和好奇心。
二、新课内容展示1. 基础知识讲解首先,教师需要详细讲解变压器的基本概念、工作原理和结构特点。
通过图示、模型或者多媒体课件,让学生直观地了解变压器的外观和内部构造。
同时,教师还需要解释变压器中电压、电流、电功率等基本概念,为后续的深入学习打下基础。
2. 变压器的工作原理在讲解了基础知识之后,教师需要详细解释变压器的工作原理。
通过分析电磁感应现象、互感等现象,让学生理解变压器是如何通过磁场来传递能量的。
同时,教师还可以利用物理实验或者模拟软件,让学生更加直观地了解变压器的运行过程。
3. 变压器的类型和应用在了解了变压器的工作原理之后,教师需要向学生介绍不同类型的变压器以及它们的应用场景。
第三章 变压器
不考虑空载损耗时的空载电流
一般变压器铁芯工作在具有一定饱和程度 的状态下,所以当电源电压为正弦波,感应电 势为正弦波,主磁通为正弦波时,磁化电流为 尖顶波,读者可通过平均磁化曲线Φ=ƒ(iμ)和 主磁通曲线Φ=ƒ(ωt),画出磁化电流曲线 iμ=ƒ(ωt),证明磁化电流为尖顶波。
2.考虑空载损耗时的空载电流
电路和相量图等。
思考题:
1.P89 3-1、3-2、3-3
2.试证明磁路饱和条件下,当磁通为正弦波时, 励磁电流为尖顶波。(画图证明)
3-3 单相变压器的负载运行
变压器负载运行是指原边接电源,副边接负载zL 时的工作状态。如下图所示,这时副边有负载电 流运I行2通时过相,同原。边电流为I1,各量正方向规定与空载
式中: E1mN1m
同理可得副边感应电势为:
e 2 N 2d d t N 2 m co t E s 2 m sit n 9 ) ( (0 1-22)
用相量式表示为:
E1
j
N1 m
2
j4.44fN1 m
E2
j
N2 m
2
j4.44fN2
m
(1-13) (1-25)
可见,感应电势的大小与匝数和主磁通幅值成
主磁通产生的电抗。这样,变压器原方的电动势
方程可写成
•
•
•
•
U1 E1ImZ1Im(ZmZ1)
等值电路
励磁参数
它们可通过实验测得,由于铁芯有饱和现 象,rm和xm不是常数,是随铁芯饱和程度增 大而减小的参数,但实际上,电源电压可近 似认为稳定,故励磁参数也可近似认为常数。
课后复习要点与思考题
复习要点: 变压器空载运行时电磁关系、工作原理、等值
变压器工作原理
当变压器的一次绕组加上交流电压u1时,一次绕组内便有一 个交变电流i0(即空载电流)流过,并建立交变磁场。
根据电磁感应原理,分别在一、二次绕组产生电动势e1、eσ1和 e2。
根据基尔霍夫电压定律,按上图所示电压、电流和电动势的正 方向,可写出一、二次绕组的电动势方程式为:
u1=i0R1-e1-eσ1≈i0R1+N1dφ/dt
为Z 1=R1+jX1;
另一个是带有铁心 的线圈,其阻抗为
Zm=Rm+jXm
即
E 1 I 0 ( R m j X m ) I 0 Z m
一次侧的电动势平衡方程为
U 1 ( m R E j1 X m I ) 0 Z I 0 1 (1 R jX 1)I 0
R m,Xm,Zm励磁电阻、励磁电抗、励磁阻抗。由于磁路具有饱 和特性,所以ZmRm不j是X m常数,随磁路饱和程度增大而减小。
制而成。
如下图所示有两组:一个绕组与电源相连,称为一次绕组(或 原绕组),这一侧称为一次侧(或原边);另一个绕组与负载相 连,称为二次绕组(或副绕组),这一侧称为二次侧(或副边)。
U1 一次侧接电源
U2
u1 二次侧接负载
u2
对于三相变压器,根据两组绕组的相对位置,绕组可分为同心 式和交叠式两种,如以下两图所示。
按相数分:单相变压器、三相变压器和多相变压器。 按铁心结构分:心式变压器和壳式变压器。
按调压方式分:无励磁调压变压器和有载调压变压器。
按冷却介质和冷却方式分:干式变压器、油浸式变压器和 充气式变压器。
按容量分:小型、中型、大型和特大型变压器。
我国变压器的主要系列:SJL1(三相油浸铝线电力变压器)、 SEL1(三相强油风冷铝线电力变压器)、SFPSL1(三相强油风 冷三线圈铝线电力变压器)、SWPO(三相强油水冷自耦电力变 压器)等。
第三章 变压器的基本运行原理
e1的有效值为: E1 E1m / 2 N1m / 2 2 fN1m 2 即 E1 4.44 fN1m 式(3-3)
E1 j 4.44 fN1 m
式(3-6)
11
(2)由主磁通φ将在二次磁绕组上产生的感应电势
d e2 N 2 N 2m cos t dt
19
(3)空载运行时铁耗较铜耗大很多,所以励磁电阻较一 次绕组的电阻大很多;由于主磁通也远大于一次绕组的漏 磁通,所以励磁阻抗远大于漏电抗。则在对变压器分析时, 可以忽略一次绕组的阻抗。 (4)从等效电路可知,空载励磁电流的大小主要取决于 励磁阻抗。从变压器运行的角度,希望其励磁电流小一些, 所以要求采用高磁导率的铁心材料,以增大励磁阻抗。励 磁电流减小,可提高变压器的效率和功率因数。
图3-6 变压器空载 运行时的相量图
可得U1的正方向。 注意:一次绕组电阻压降i0rl与i0同 相位,一次漏抗压降i0x1σ(此项实 际很小,夸大以便作图)超前i090°;
21
?例3-1 一台三相变压器(还没讲到)
22
第二节
变压器的负载运行
变压器一次绕组接交流电源,二次绕组接有负载的运 行方式,为变压器的负载运行方式。如图3-7所示(可与 图3-1空载运行示意图对比看一看)。
式(3-22)
式中,i1L= -i2/K 被称为一次侧绕组励磁电流的负载分 量,其大小随负载变化而变化。显然,空载时,一次侧的 电流i1=i0 ,负载时,一次侧的电流i1>i0 。
25
*讨论: 变压器空载时,二次绕组电流为零,二次侧输出功率为 零;一次绕组电流为空载电流很小,变压器从电源吸收很 小的功率提供空载损耗。 负载时,二次侧电流不为零,有功率输出,一次电流发 生变化,在一、二次侧电压基本一定时,如果二次绕组电 流增大,表明二次输出功率增大,则一次电流也增大,变 压器从电源吸收的功率增加。一、二次绕组之间没有电的 直接联系,但由于两个绕组共用一个磁路,共同交链一个 主磁通,借助于主磁通的变化,通过电磁感应作用,实现 了一、二次绕组间的电压变换和功率传递。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章变压器3.1 变压器中主磁通和漏磁通的性质和作用有什么不同?在分析变压器时怎样反映其作用?它们各由什么磁动势产生?[答案]3.2 变压器的Rm、Xm各代表什么物理意义?磁路饱和与否对Rm、Xm有什么影响?为什么要求Xm大、Rm小?[答案]3.3 变压器额定电压为220/110V,如不慎将低压侧误接到220V电源后,将会发生什么现象?[答案]3.4 变压器二次侧接电阻、电感和电容性负载时,从一次侧输入的无功功率有何不同?为什么?[答案]3.5 变压器的其它条件不变,在下列情况下, X1σ, Xm各有什么变化?(1) 一次、二次绕组匝数变化±10%;(2) 外施电压变化±10%;(3) 频率变化±10%。
[答案]3.6 变压器的短路阻抗Zk、Rk、Xk的数值,在短路试验和负载运行两种情况下是否相等?励磁阻抗Zm、Rm、Xm的数值在空载试验和负载运行两种情况下是否相等?[答案]3.7 为什么变压器的空载损耗可以近似地看成铁损耗?为什么短路损耗可以近似地看成铜损耗?负载时,变压器真正的铁损耗和铜损耗分别与空载损耗、短路损耗有无差别?为什么?[答案]3.8 当负载电流保持不变,变压器的电压变化率将如何随着负载的功率因数而变化?[答案]3.9 两台完全相同的单相变压器,一次侧额定电压为220/110V ,已知折合到一次侧的参数为:一、二次侧漏抗的标么值Z1*=Z2*=0.025∠60ο,励磁电抗的标么值Zm*=20∠60ο,如图所示把两台变压器一次侧串联起来,接到440∠0οV的电源上,求下述三种情况一次侧电流的大小(用标么值表示)。
[答案]题3.9图(1)端点1和3 相连,2和4相连;(2)端点1和4 相连,2和3相连;(3)第Ⅰ台变压器二次侧开路,第Ⅱ台变压器二次侧短路。
3.10 三相变压器变比和线电压比有什么区别?折算时用前者还是后者?[答案]3.11 Yd接法的三相变压器,一次侧加额定电压空载运行,此时将二次侧的三角打开一角,测量开口处的电压,再将三角闭合测量电流,试问当此三相变压器是三相变压器或三相心式变压器时,所测得的数值有无不同?为什么?[答案]3.12 变压器并联运行的最理想情况有哪些?如何达到最理想的情况?[答案]3.13 在三相变压器中,零序电流和零序磁通与三次谐波电流和3次谐波磁通有什么相同点和不同点?[答案]3.14 为什么三相变压器组不宜采用Yyn联结,而三相心式变压器又可采用Yyn联结?[答案]3.15 Yy连接的变压器,一次侧接对称三相电压,二次侧二线对接短路,如图所示。
试用对称分量法分析出一、二次侧电流的对称分量,这种情况是否有中点位移?为什么?题3.15图[答案]3.16 一台三相电力变压器: SN=31500kVA,U1N/U2N=220/11kV, YNd11联接,f =50Hz, R1=R2′=0.038Ω, X1σ=X′2σ=8Ω, Rm=17711Ω,Xm=138451Ω,负载三角接,每相阻抗Z=11.52+j8.64Ω。
当高压方接额定电压时,试求:(1)高压方电流,从高压方看进去cosφ1;(2)低压方电动势E2;(3)低压方电压、电流、负载功率因数、输出功率。
[答案]3.17一台S9系列的三相电力变压器,高低压方均为Y接,SN=200kVA,U1N/U2N=10/0.4kV。
在低压方施加额定电压做空载试验,测得P0=470W,I0=0.018×I2N=5.2A,求励磁参数。
[答案]3.18 对习题3-20的变压器在高压方做短路试验:Uk=400V、Ik=11.55A、Pk=3500W,求短路参数。
[答案]3.19 一台三相电力变压器铬牌数据为:SN=20000kVA,U1N/U2N=110/10.5 kV,高压方Y接、低压方Δ接, f =50Hz , Zk*=0.105, P0=23.7kW, I0*=0.65%, PkN=104kW。
若将此变压器高压方接入110kV电网、低压方接一对称三角形联接的负载,每相阻抗为16.37+j7.93Ω,试求低压方电流、电压、高压方电流及从高压方看进去的功率因数。
[答案]3.20 仍采用习题3.19变压器的数据,当高压方施加额定电压,低压方负载电流为953.5A,负载功率因数(滞后),求电压变化率,低压方电压,效率。
[答案]3.21 试画出图所示各变压器的高、低压方电动势相量图,并判断其联接组。
题3.21图[答案]3.22 一台三相变压器,高低压绕组同名端和高压绕组的首末端标记如图所示。
试将该变压器联接成Yd7、Yy4和Dy5。
并画出它们的电动势相量图。
题3.22图[答案]参考答案3.1 答主磁通:沿铁心闭合,同时与一次绕组和二次绕组相交链,并在所交链的绕组中感应电动势,它是实现能量转换的媒介,是变压器的工作磁通,占总磁通的绝大部分。
漏磁通:主要沿非铁磁材料闭合,仅与一次绕组或二次绕组交链,在所交链绕组中感应电动势,起漏抗压降作用,在数量上远小于主磁通。
分析变压器时常以励磁电抗Xm反映主磁通的作用。
由于主磁通的磁路是非线性的,故Xm 不是常数,随铁心饱和程度的提高而减小。
另外以漏电抗Xσ反应漏磁通的作用。
由于漏磁通基本上是线性的,故Xσ基本上为常数。
主磁通由一次绕组和二次绕组磁动势共同产生,漏磁通仅由一次绕组或二次绕组磁动势单独产生。
[返回]3.2 答 Rm代表变压器的励磁电阻,它是反映变压器铁耗大小的等效电阻,不能用伏安法测量。
Xm代表变压器的励磁电抗,反映了主磁通对电路的电磁效应。
Rm、Xm都随磁路饱和程度增加而下降。
Xm越大、Rm越小时,当主磁通一定时,铁耗越小,所以希望 Xm大、Rm小。
为此变压器铁心材料都用导磁性能好(磁导率高)、铁损小、0.27mm、0.3mm、0.35mm厚冷轧硅钢片叠成。
[返回]3.3 答此时主磁通增加接近2倍,磁路饱和程度大增,励磁电流大大增加,铜耗增大,铁耗可能增加3~4倍,而Rm、Xm减小。
此时将出现下列现象:电流过大,噪声过大,振动过大,变压器过热。
[返回]3.4 答因为变压器等效电路是感性的,因此当二次侧接电感性负载时,从一次侧输入的无功功率最大,电阻性负载次之,电容性负载时最小,若负载电容足够大时甚至可能向电网发送感性无功功率。
[返回]3.5 答漏电抗,励磁电抗,在忽略漏阻抗压降的情况下,U1≈E1=4.44fN1Фm 。
(1)当N1增加时,由于N1Φm=常数,因此主磁通减小,磁路饱和程度下降,Λm上升,Λ1σ而与磁路饱和程度无关,Λ1σ不变。
因此,当N11=1.1N1时,X1σ1=1.21X1σ,Xm1>1.21Xm;当N11=0.9N1时,X1σ1=0.81X1σ,Xm1<0.81Xm。
N2变化,X1σ、Xm不变。
(2)当外施电压增加时,由于Φm增加,磁路饱和程度上升,Λm下降,Λ1σ而与磁路饱和程度无关,Λ1σ不变。
因此,当U11=1.1U1时,X1σ不变,Xm下降;当U11=0.9U1时,X1σ不变,Xm上升。
(3)当频率增加时,由于fΦm =常数,因此主磁通Φm下降,磁路饱和程度下降,Λm上升,而Λ1σ与磁路饱和程度无关,Λ1σ不变。
因此,当f11=1.1f1时,X1σ1=1.1X1σ,Xm1>1.1Xm;当f11=0.9f1时,X1σ1=0.9X1σ,Xm1<0.9Xm。
[返回]3.6 答: 变压器的短路阻抗和运行状态无关。
无论是短路试验状态还是负载运行状态,也无论两种状态下的电流是否相等,变压器的短路阻抗的数值相等。
因为短路电阻实质上是绕组的导线电阻,其数值仅与导线的长度、截面及材料的电导率有关,与各运行状态下的电流大小无关。
短路阻抗,实质上是由漏磁通决定的漏电抗,漏磁通的路径主要经过空气、油等介质,其磁导率是常数,与外施电压的大小或电流的大小无关。
所以,短路阻抗、短路电阻、短路电抗在短路试验及负载运行时的数值是相等的。
变压器的励磁电阻是由铁心损耗决定的等值电阻,当铁心中磁通量变化(即铁心磁密变化)时,其等效电阻值也跟着变化。
变压器的励磁电抗是与铁心中主磁通对应的电抗,其数值大小决定于铁心磁路的特性,当铁心中磁通量变化时,饱和程度变化,磁导率变化,励磁电抗值跟着变化。
可见,变压器在空载试验和负载运行两种情况下,若一次侧外施电压相同,忽略漏阻抗压降时,E1近似认为不变,主磁通Фm 也没有变化,则励磁阻抗基本相等。
[返回]3.7 答: 变压器空载运行时,其损耗,即包括铁损耗、铜损耗两部分,但由于空载电流很小,,所以可以忽略铜损耗。
一般把空载损耗近似地看成铁损耗。
变压器短路试验时,其短路损耗中本来也有铁损耗、铜损耗两部分,但由于试验电压很低,铁心中磁通很小,短路时的励磁电流比额定电压时的空载电流更小,而短路电流很大,铜耗很大,所以相比较而言,铁损耗很小,可忽略。
一般把短路损耗近似看成铜损耗。
负载时和空载试验时外施电压都是额定值,两者的铁耗差不多。
严格分析起来,负载铁损耗略小于空载时的铁损耗,这是由于负载时,负载电流在一次漏阻抗上的压降比空载试验时大,这表明铁心内的磁通密度比空载时的稍低,因此铁损耗也就少些。
另外,所谓空载时的损耗,是包含少量铜损耗在内的,因此负载下的真正铁损耗比空载试验时测得的铁损耗略小。
负载和短路两种情况下的铜损耗比较,应该在同一电流(比如额定电流)下进行。
铜损耗就是电流在短路电阻上的功率损耗,因两种情况下的电流近似相等,所以两者的铜损耗也相差不大。
如果考虑到短路损耗包含少量铁损耗在内这一情况,那么负载时真正的铜损耗也比短路试验时测得的铜损耗略小。
[返回]3.8 答: 当负载的功率因数等于1时,即纯电阻负载时,变压器的电压变化率很小。
当负载呈电阻电感性时,即功率因数滞后,一般随着负载阻抗角ψ2落后的越多,电压变化率越大,当。