大学物理习题课

合集下载

大学物理-磁学习题课和答案解析

大学物理-磁学习题课和答案解析
3.铜的相对磁导率μr=0.9999912,其磁化率χm= 它是 磁性磁介质. -8.8×10-6 抗 ,
2. 均匀磁场的磁感应强度 B 垂直于半径为r的圆面.今
4. 如图,在面电流线密度为 j 的均匀载流无限大平板附近, 有一载流为 I 半径为 R的半圆形刚性线圈,其线圈平面与载流 大平板垂直.线圈所受磁力矩为 ,受力 0 0 为 .
μ
5、(本题3分) 长直电缆由一个圆柱导体和一共轴圆筒状导体组成,两导体 中有等值反向均匀电流I通过,其间充满磁导率为μ的均匀磁介 质.介质中离中心轴距离为r的某点处的磁场强度的大小H I =________________ ,磁感强度的大小B =__________ . I 2 r 2 r
B (A) B (B) √ R B x (D) O 圆筒 电流 O x
B
0 I (r R) 2r
(r R)
O B
R
x O (C) x O
B
(E)
B0
O
R
R
x
R
x
2、(本题3分)一匀强磁场,其磁感强度方向垂直于纸面(指 向如图),两带电粒子在该磁场中的运动轨迹如图所示,则 (A) 两粒子的电荷必然同号. (B) 粒子的电荷可以同号也可以异号. (C) 两粒子的动量大小必然不同. (D) 两粒子的运动周期必然不同.
(C) B dl B dl , BP BP 1 2
(D) B dl B dl , BP1 BP2
L1 L2
L1
L2
L1
L2
[ ]
5.有一矩形线圈 AOCD ,通以如图示方向的电流 I,将它置 于均匀磁场 B 中,B 的方向与X轴正方向一致,线圈平面与X 轴之间的夹角为 , 90 .若AO边在OY轴上,且线圈可 绕OY轴自由转动,则线圈 (A)作使 角减小的转动. (B)作使 角增大的转动. (C)不会发生转动. (D)如何转动尚不能判定.

《大学物理》(下2010.12.9)习题课

《大学物理》(下2010.12.9)习题课

第11章光的量子效应及光子理论一、 选择题1. 金属的光电效应的红限依赖于: 【 C 】(A)入射光的频率; (B)入射光的强度;(C)金属的逸出功; (D)入射光的频率和金属的逸出功。

2. 已知某单色光照射到一金属表面产生了光电效应,若此金属的逸出电势是U 0(使电子从金属逸出需做功eU 0),则此单色光的波长λ必须满足: 【 A 】hceU )D (;hceU )C (;eU hc )B (;eU hc)A (0≥≤≥≤λλλλ 3. 关于光电效应有下列说法:(1) 任何波长的可见光照射到任何金属表面都能产生光电效应;(2) 对同一金属如有光电子产生,则入射光的频率不同,光电子的初动能不同; (3) 对同一金属由于入射光的波长不同,单位时间内产生的光电子的数目不同; (4) 对同一金属,若入射光频率不变而强度增加一倍,则饱和光电流也增加一倍。

其中正确的是: 【 D 】(A) (1),(2),(3); (B) (2),(3),(4); (C) (2),(3); (D)(2),(4)二、填空题1. 当波长为300 nm 光照射在某金属表面时,光电子的能量范围从0到.J 100.419-⨯在作上述光电效应实验时遏止电压为V 5.2U a =;此金属的红限频率Hz 104140⨯=ν。

2. 频率为100MHz 的一个光子的能量是J 1063.626-⨯,动量的大小是s N 1021.234⋅⨯-。

3. 如果入射光的波长从400nm 变到300nm ,则从表面发射的光电子的遏止电势增大(增大、减小)V 03.1U =∆。

4. 某一波长的X 光经物质散射后,其散射光中包含波长大于X 光和波长等于X 光的两种成分,其中大于X 光波长的散射成分称为康普顿散射。

三、计算题1. 已知钾的红限波长为558 nm ,求它的逸出功。

如果用波长为400 nm 的入射光照射,试求光电子的最大动能和遏止电压。

由光电方程2m mv 21A h +=ν,逸出功0h A ν=,0chA λ=,eV 23.2A =用波长为400nm 的入射光照射,光电子的最大动能:A h mv 212m -=ν A chE km -=λ,将nm 400=λ和eV 23.2A =代入得到:eV 88.0E km =遏止电压:a 2m eU mv 21=,2m a mv e21U =,V 88.0U a = 2. 从铝中移出一个电子需要4.2 eV 的能量,今有波长为200 nm 的光投射至铝表面。

大学物理(第四版)课后习题及答案_电介质

大学物理(第四版)课后习题及答案_电介质

电解质题8.1:一真空二极管,其主要构件是一个半径R 1 = 5.0⨯10-4 m 的圆柱形阴极和一个套在阴极外,半径m 105.432-⨯=R 的同轴圆筒形阳极。

阳极电势比阴极电势高300 V ,阴极与阳极的长度均为L = 2.5⨯10-2 m 。

假设电子从阴极射出时的速度为零。

求:(1)该电子到达阳极时所具有的动能和速率;(2)电子刚从阳极射出时所受的力。

题8.1分析:(1)由于半径L R <<1,因此可将电极视作无限长圆柱面,阴极和阳极之间的电场具有轴对称性。

从阴极射出的电子在电场力作用下从静止开始加速,电于所获得的动能等于电场力所作的功,也即等于电子势能的减少。

由此,可求得电子到达阳极时的动能和速率。

(2)计算阳极表面附近的电场强度,由E F q =求出电子在阴极表面所受的电场力。

解:(1)电子到达阳极时,势能的减少量为J 108.417ep -⨯-=-=∆eV E由于电子的初始速度为零,故 J 108.417ep ek ek -⨯=∆-=∆-E E E因此电子到达阳极的速率为17eks m 1003.122-⋅⨯===meVmE v (2)两极间的电场强度为r 02e E r πελ-=两极间的电势差1200ln 2d 2d 2121R R r r V R R R R πελπελ-=-=⋅=⎰⎰r E 负号表示阳极电势高于阴极电势。

阴极表面电场强度r 121r 10ln 2e e E R R R V R =-=πελ电子在阴极表面受力N e E F r 141037.4-⨯=-=e这个力尽管很小,但作用在质量为9.11⨯10-31 kg 的电子上,电子获得的加速度可达重力加速度的5⨯1015倍。

题8.2:一导体球半径为R 1,外罩一半径为R 2的同心薄导体球壳,外球壳所带总电荷为Q ,而内球的电势为V 0。

求此系统的电势和电场的分布。

题8.2分析:不失一般情况,假设内导体球带电q ,导体达到静电平衡时电荷的分布如图所示,依照电荷的这一分布,利用高斯定理可求得电场分布。

大学物理习题课1

大学物理习题课1
v0
v 0 与水平方向夹角
19.如图所示,小球沿固定的光滑的 1/4圆弧从A点由静止开始下滑,圆弧半 径为R,则小球在A点处的切向加速度 at =______________________,小球 在B点处的法向加速度 an =_______________________.
θ
A R
B
三.计算题
t 0 .96 0 mg , t 0 .20 1 9 .8 0 .96 1s
此后合力为 第2秒内冲量
I
t 0 .96 mg
t 0 .96 0 .14 1 9 .8 dt
2 1
1 t 0 .412 dt
2

1 2
t
2 2 1
(B)
(C)
a g sin

a g
a 4 g (1 cos ) g sin
2 2 2 2
(D) . [ ] 4. 将细绳绕在一个具有水平光滑轴的飞轮边缘上,现 在在绳端挂一质量为m的重物,飞轮的角加速度 为 .如果以拉力2mg代替重物拉绳时,飞轮的角加 速度将 (A) 小于 . (B) 大于 ,小于2 . (C) 大于2 . (D) 等于2 .[ ]
二.填空题 13.如图所示,质量为m的小球系在劲度系数为k 的轻弹簧一端,弹簧的另一端固定在O点.开始时弹 簧在水平位置A,处于自然状态,原长为l0.小球由 位置A释放,下落到O点正下方位置B时,弹簧的长度 为l,则小球到达B点时的速度大小为v=____
O l0 A k l m
O′
P
B m
Q R
R
F
F Ft
2 n
2
s 2 as 1 R

大学物理课后习题及答案(1-4章)含步骤解

大学物理课后习题及答案(1-4章)含步骤解
液面下降的速度,即
,根据流量守恒
,
(2)当
(3)当
时,
时,

,整理可得:
可得
,即
,
图1-34所示为输液的装置。设吊瓶的截面积为1 ,针孔的截面积为2 ,且1 ≫ 2 ,开始时( = 0),吊瓶内上下
液面距针孔的高度分别为ℎ1 和ℎ2 ,求吊瓶内药液全部输完时需要的时间。
,则针孔的流量为
液体总体积为
Ԧ =


= 2Ԧ − 2 Ԧ = −2Ԧ


1s末和2s末质点的速度为: 1 = 2Ԧ − 2Ԧ(m ∙ s−1 ),2 = 2Ԧ − 4Ԧ(m ∙ s −1 );
1s末和2s末质点的加速度相等:Ԧ = −2Ԧ (m ∙ s−2 )
已知一质点做直线运动,其加速度Ԧ = 4 + 3 m ∙ s−2 , 开始运动时,0 = 5 m,



= 0.06(m)
(2)设弹簧最大压缩量为∆′ , 与碰撞粘在一起的速度为 ′,0 = ( +
) ′,代入已知条件可得 ′ = 4Τ11, + 压缩弹簧的过程中,机械能守恒,则
1
(
2
1
+ ) 2 = 2 ∆′2 ,得∆′ =
+


≈ 0.04(m)
(1)角加速度 =
由 =




=
0−2×1500÷60
50
由 =


=
2×1500
60
= 50 (rad ∙ s −1 )
= − (rad ∙ s−2 )
= −,得 = −,两边进行积分
得到 − 50 = − − 0,

江西理工大学大学物理(下)习题册及答案详解

江西理工大学大学物理(下)习题册及答案详解

班级_____________ 学号___________姓名________________ 简谐振动1. 一质点作谐振动, 振动方程为X=6COS (8πt+π/5) cm, 则t=2秒时的周相为:π5116, 质点第一次回到平衡位置所需要的时间为:s 0375.0.2. 一弹簧振子振动周期为T 0, 若将弹簧剪去一半, 则此弹簧振子振动周期T 和原有周期T 0之间的关系是:022T T =.3. 如图为以余弦函数表示的谐振动的振动曲线, 则其初周相φ=3π-,P 时刻的周相为:0.4. 一个沿X 轴作谐振动的弹簧振子, 振幅为A , 周期为T , 其振动方程用余弦函数表示, 如果在t=0时, 质点的状态分别是:(A) X 0=-A; (B) 过平衡位置向正向运动;(C) 过X=A/2 处向负向运动; (D) 过A x 22-= 处向正向运动.2 1 0 P t(s) X(m)试求出相应的初周相之值, 并写出振动方程.)2cos()(ππ+=t TA x A ; )22cos()(ππ-=t T A x B)32cos()(ππ+=t T A x C ; )452cos()(ππ+=t T A x D5.一质量为0.2kg 的质点作谐振动,其运动议程为:X=0.60 COS(5t -π/2)(SI)。

求(1)质点的初速度;(2)质点在正向最大的位移一半处所受的力。

解(1))5sin(00.32π--==t dtdxv 10.00.3,0-==s m v t(2)x x dtdv a 2520-=-==ω 22.5.7,30.0--===s m a m x AN ma F 5.1-==班级_____________ 学号___________姓名________________简谐振动的合成1. 两个不同的轻质弹簧分别挂上质量相同的物体1和2, 若它们的振幅之比A 2 /A 1=2, 周期之比T 2 / T 1=2, 则它们的总振动能量之比E 2 / E 1 是( A )(A) 1 (B) 1/4 (C) 4/1 (D) 2/11)()(;)(2222221122112=⋅==A A T T E E T A m E π2.有两个同方向的谐振动分别为X 1=4COS(3t+π/4)cm ,X 2 =3COS(3t -3π/4)cm, 则合振动的振幅为:cm A 1=, 初周相为:4πφ=. 3. 一质点同时参与两个同方向, 同频率的谐振动, 已知其中一个分振动的方程为X 1=4COS3t cm, 其合振动的方程为分振动的振幅为A 2 =cm 44. 动方程分别为X 1=A COS(ωt+π/3), X 2 =A COS (ωt+5π/3), X 3 =A COS(ω程为:)6cos(3πω+=t A x5. 频率为v 1和v 2的两个音叉同时振动时,可以听到拍音,可以听到拍音,若v 1>v 2,则拍的频率是(B )(A)v 1+v 2 (B)v 1-v 2 (C)(v 1+v 2)/2 (D)(v 1-v 2)/26.有两个同方向,同频率的谐振动,其合成振动的振幅为0.20m ,周相与第一振动周相差为π/6。

大学普通物理--习题答案(程守洙-江之勇主编--第六版)省公开课获奖课件市赛课比赛一等奖课件

大学普通物理--习题答案(程守洙-江之勇主编--第六版)省公开课获奖课件市赛课比赛一等奖课件

2hw 2sec 2wt
tg
wt
结束 目录
1-14滑雪运动员离开水平滑雪道飞入空 中时旳速率v =110km/h,着陆旳斜坡与水
平面成 q = 450角,如图所示。
(1)计算滑雪运动员着陆时沿斜坡旳位 移(忽视起飞点到斜面旳距离);
(2)在实际旳跳跃中,运动员所到达旳 距离L=165m, 此成果为何
(3)式中 t 以s为单位,x、y以m为单位,
求:质点在t = 4 时旳速度旳大小和方向。
结束 目录
x =3t +5
y=
1 2
t 2+3t
4
解: (1)
r
=
(
3t
+5)
i+
(
1 2
t
2+ 3 t
4) j
(2)
y
=
1 2
(
x
5 3
)2+
3
(
x
5 3
)
4
(3) v =3 i + (t +3) j =3 i + 7 j
v/(m.s-1)
-10
o
t/s 10 20 30 40 50 60
-10
-10
结束 目录
解:由v~t 图旳总面积可得到旅程为:
S
=
1 2
(30+10)×5
+
1 2
(20×10)
=200(m)
总位移为:
Δx
=
1 2
(30+10)×5
所以平均速度也为零
1 2
(20×10)
=0
结束 目录
1-4.直线 1与圆弧 2分别表达两质点A、B

大学物理光学习题课

大学物理光学习题课

(1)子波,(2)子波干涉. 所缺级次为 k=k'(a+b)/a. 2.单缝衍射由半波带法得出 4.园孔衍射爱里斑的角半径: 中央明纹: =0.61/a=1.22/d 坐标 =0, x=0; 光学仪器的最小分辩角 宽度 02/(na), =0.61/a=1.22/d x2f/(na) 分辩率 R=1/=d/(1.22) 其他条纹: 5.x射线的衍射: 暗纹 asin=k/n 布喇格公式 2dsin=k 明纹 asin(2k+1)/(2n) (d为晶格常数,为掠射角) 条纹宽度/(na), 三光的偏振 xf/(na) 1.自然光,偏光,部分偏光; 3.光栅:单缝衍射与多光束干 偏振片,偏化方向,起偏, 涉乘积效果,明纹明亮,细锐. 检偏. 光栅方程式 2.马吕期定律 I=I0cos2. (a+b)sin=k 3.反射光与折射光的偏振 缺级 衍射角同时满足 一般:反射折射光为部分偏光 (a+b)sin=k 反射光垂直振动占优势; asin=k ' 折射光平行振动占优势.
n3
4. 在如图28.4所示的单缝夫琅和 费衍射实验装置中,s为单缝,L 为透镜,C为放在L的焦面处的屏 幕,当把单缝s沿垂直于透镜光轴 的方向稍微向上平移时,屏幕上 的衍射图样( C ) (A) 向上平移. (B) 向下平移. (C) 不动. (D) 条纹间距变大.
3. 如下图所示,平行单色光垂 直照射到薄膜上,经上下两表面 反射的两束光发生干涉,若薄膜 的厚度为e,并且n1<n2>n3,1 为入射光在折射率为n1 的媒质中 的波长,则两束反射光在相遇点 的位相差为( C ) (A) 2 n2 e / (n1 1 ). (B) 4 n1 e / (n2 1 ) +. (C) 4 n2 e / (n1 1 ) +. (D) 4 n2 e / (n1 1 ). n1 n2 λ e

大学物理习题课答案

大学物理习题课答案

A O V1
B1 B2 B3
V2
A→B1等压过程 A→B2等温过程 V A→B3绝热过程
绝热过程:dQ0,T1V11
1
T2V2
V2 V1
6.一定量的某种理想气体进行如图所示的循环过程.已知气体在状态A的温度为TA= 300 K,求
(1) 气体在状态B、C的温度; (2) 各过程中气体对外所作的功; (3) 经过整个循环过程,气体从外界吸收的总热量(各过程吸热的代数和).
循环中,传给低温热源的热量是从高温热源吸取热量的
[(C)]
(A) n 倍.
(B) n-1倍.
(C) 1 倍. n
(D) n 1 倍. n
高温热源的热力学温度为T1,高温热源的热力学温度为T2,则T1 nT2,
从高温热源吸收的热量为Q1
M Mmol
RT1
lnV2 V1
传给低温热源的热量为Q2
M Mmol
2p1 A
3 2
p 1V
p1
B
O V1 2V1 V
AB过程中系统作功,即是体积功:A=p1V112p1V1 32p1V
状态方程:pV= M RT,理想气体的内能为E= M i RT
Mmol
Mmol 2
E0
6. 0.02 kg的氦气(视为理想气体),温度由17℃升为27℃.若在升温过程中,(1) 体积
Q=
M M mol
CP
(T2
T1 )
1.04103 J
理想气体的内能为E= M i RT,E 623J, M mol 2
A=Q E 417J
(3)绝热过程Q 0
E
M M mol
CV
(T2
T1)
623J

大学物理 习题课(刚体)

大学物理 习题课(刚体)

J1r1r2 10 2 2 2 J1r2 J 2 r1
11、质量为m,长为 l的均匀棒,如图, 若用水平力打击在离轴下 y 处,作用时 Ry 间为t 求:轴反力
解:轴反力设为 Rx Ry d 由转动定律: yF J y dt yF t t 为作用时间 F 得到: J 由质心运动定理: l d l 2 切向: F Rx m 法向: R y mg m 2 dt 2 2 2 2 3y 9 F y (t ) R 于是得到: x (1 ) F R y m g 2l 2l 3 m
10
r1
r2
解: 受力分析: 无竖直方向上的运动
10
o1
N1
f
r1
N2
r2
N1 f m1 g N 2 f m2 g
以O1点为参考点, 计算系统的外力矩:
o2
f
m1 g
m2 g
M ( N2 m2 g )(r1 r2 )
f (r1 r2 ) 0
作用在系统上的外力矩不为0,故系统的角动量不守恒。 只能用转动定律做此题。
r
at r
在R处:
R
at R
(2)用一根绳连接两个或多个刚体
B
C
M 2 o2 R 2
o1R1 M1
D
A
m2
m1
• 同一根绳上各点的切向加速度相同;线速度也相同;
a t A a t B a t C a t D
A B C D
• 跨过有质量的圆盘两边的绳子中的张力不相等;
TA TB TD
但 TB TC
B
C
M 2 o2 R 2
o1R1 M1

大学物理电场强度及电势计算习题课

大学物理电场强度及电势计算习题课

0

sin 2d 0 E i dE x i 4 0 R 8 0 R 0
i
[练习2] 求均匀带电半球面(已知R, ) 球心处电场 .
y
R
思考:〈1〉用哪种方法求解?
x
d 叠加法: q dE dE
o
y y

〈2〉 dq ? 是否一定取点电荷?
(1) 由定义求
(2) 由点电荷(或典型电荷分布) E 公式
和叠加原理求
(3) 由高斯定理求
(4) 由
E 与 U
的关系求
典型静电场 点电荷:
E qr 4 0 r
3
均匀带电圆环轴线上: E
1
2
qxi
2
3 2
4 0 ( R x )
无限长均匀带电直线: E
j
0
2

0
cosd
4 0 R

2 0 R
Eo
2 0 R
dq
y
解:3)
dE

d
R

o
dE
x
0sin
dq Rd dE dq 4 0 R
2
; 沿径向
dq
有无对称性?
Ey
sin sin( - )
y
dE
U
U
U内
q 4 0 R
U外
q 4 0 r
练习5. 求无限长均匀带电圆柱体
R
( R , ) 电势分布。
解: 场强积分法
.
先由高斯定理求电场分布.

r
高 斯 面
r
高 斯 面 l

大学物理学-稳恒磁场习题课

大学物理学-稳恒磁场习题课

⑶电子进入均匀磁场B中,如图所示,当电子位于 A点的时刻,具有与磁场方向成 角的速度v,它绕螺旋 线一周后到达B点,求AB的长度,并画出电子的螺旋轨 道,顺着磁场方向看去,它是顺时针旋进还是逆时针旋 进?如果是正离子(如质子),结果有何不同?
1、均匀磁场的磁感应强度B垂直于半径为r的圆面,今以该圆面
其中 直电流 ab和cd的延长线
o dc
fI
R1 R2
eI
过o
b
电流bc是以o为圆心、以 R2为半径的1/4圆弧
I
电流de也是以o为圆心、
但,是以R1为半径的1/4 圆弧
a
直电流ef与圆弧电流de在
e点相切
求:场点o处的磁感强度 B
解:
场点o处的磁感强度是由五段
特殊形状电流产生的场的叠加,f I
o dc
磁场力的大小相等方向相反; (3)质量为m,电量为q的带电粒子,受洛仑兹力作用,
其动能和动量都不变; (4)洛仑兹力总与速度方向垂直,所以带电粒子运动的
轨迹必定是圆。
习题课 1 一电子束以速度v沿X轴方向射出,在Y轴上 有电场强度为E的电场,为了使电子束不发生偏 转,假设只能提供磁感应强度大小为B=2E/v的
df
2ds
n
2 0
2 0
i dl 单位面积受力
da
df Idl B其余
da dl 0i
B总 0i
2 其余 0i
2
df
0i 2
n
dadl 2
表三 作用力
4.应用
静电场
稳恒磁场
类比总结
电偶极子 pe
fi 0
i M pE

磁偶极子 pm
fi 0

大学物理 力学习题课

大学物理 力学习题课
和是正确的b和是正确的只有是正确的d只有是正确的5有一个小块物体置于一个光滑的水平桌面上有一绳其上一端连结此物体另一端穿过桌面中心的小孔该物体原以角速度在距孔为r的圆周上转动今将绳从小孔缓慢往下拉则物体6几个力同时作用在一个具有固定转轴的刚体上如果这几个力的矢量和为零则此刚体a动能不变动量改变b角动量不变动量不变c动量不变动能改变d角动量不变动能动量都改变a必然不会转动b转速必然不变c转速必然改变d转速可能改变也可能不变
i j y My k z Mz
4、基本概念:
1)质心:
2)惯性力: 3)力矩:
F惯 ma0
M r F
m
rc
i
M r F x Mx
4)角动量: 5)功:
L r P x
i
j y Py
k z Pz
表示速度, a
表示加速度,S表示路程,a t 表示切向加速度,下列表达式中, (1) dv / dt at (2) dv / d t a
[D (4) dr / dt v (B) 只有(2)、(4)是对的. (D) 只有(3)是对的.
]3、某人骑自行车以速率V源自正西方向行驶,遇到由北向南刮的 风(设风速大小也为V),则他感到的风是从 [C] A)东北方向吹来 B)东南方向吹来 C)西北方向吹来 D)西南方向吹来
dA F dr
b
Px
b F dr F cosds
a
A dA a 6)保守力: F dr 0
7)势能:
E p (r )
r0
r
F dr
0 z
①重力势能:
EP (m gdz m gz )

大学物理习题

大学物理习题

期中习题课
例题: 将半径为R的无限长导体薄壁管沿轴向割 去一宽度为h (h<<R) 的无限长狭缝后, 再沿轴 向均匀地流有电流, 其电流密度为i, 则管轴线上 磁感应强度的大小是_____________. 0 I 0ih 解: B B0 Bh B0 0 Bh 2R 2R 例题: 有一由N匝细导线绕成的平面三角形线圈 , 边长为a, 通有电流I, 置于均匀外磁场 B中, 当线 圈平面的法向与外磁场同向时, 该线圈所受的最 大磁力矩Mm值为: ( A) 3Na 2 IB / 2. (B) 3Na 2 IB / 4.
O
R
i h
O
(C)
解: M Pm B Pm B sin 0
第14页 共24页
3Na 2 IB sin 60o.
(D) 0.
[D]
期中习题课
例题: 在通有电流I的无限长直导线所在平面, 有半径为r、 电阻为R的导线环, 环中心距直导线为a, 如图所示, 且a >> r. 当直导线的电流被切断后, 沿着导线环流过的电量约为
q E dS
S
0
dV /
V
0
E
-x
S
E x x
2 ES 0 cos xSdx 0
x
x
O
2ES 2S0 sin x 0
E 0 sin x 0
第9页 共24页
期中习题课
解: 设电容器极板的电荷线密度了. 则 E 2 0 r r R R U E dr dr ln( R2 / R1 ) R R 2 r 2 0 r 0 r U U EA 2 0 r ln( R2 / R1 ) 2 0 r RA RA ln( R2 / R1 )

大学物理 热学习题课

大学物理 热学习题课

1
Va 1 Tb ( ) Ta 424 K Vb
VcTb Tc 848 K Vb
1
c
bc为等压过程,据等压过程方程 Tb / Vb = Tc / Vc 得
O
d a Vb Vc Va V
cd为绝热过程,据绝热过程方程
TcVc
TdVd , (Vd Va )
1
第10章
理想气体模型
气体分子运动论
统计假设
k
PV vRT
P P 2 n 3 kT k k 2 3 T E
M i E RT 2
dN f ( v ) dv N
麦克丝韦 分布率
v2
3RT

vp
2 RT

8RT
v
z 2d 2 v n

v 1 z 2d 2 n
Nf ( v )dv
v0
v0
f ( v )dv

v d N vNf (v) d v
v0—— ∞间的分子数 v0—— ∞间的分子的速率和


v0
dN Nf ( v )dv
v0


v0
vdN vNf ( v )dv
v0

(3) 多次观察一分子的速率,发现其速率大于v0 的 几率= ———。 dN N v v 所求为v0—— ∞间的分子 f (v)dv 数占总分子数的百分比 N N v
M i RT 2 M i RT 2
吸收热量Q
M i RT 2
摩尔热容C
CV i R 2
等容 等压 等温
p/T=C V/T=C pV=C
pVγ=C1 Vγ-1T=C2 pγ-1T-γ=C3

(完整版)大学物理课后习题答案详解

(完整版)大学物理课后习题答案详解

r r r r r r rr、⎰ dt⎰0 dx = ⎰ v e⎰v v1122v v d tv v d tvg 2 g h d tdt [v 2 + ( g t ) 2 ] 12 (v 2 + 2 g h ) 12第一章质点运动学1、(习题 1.1):一质点在 xOy 平面内运动,运动函数为 x = 2 t, y = 4 t 2 - 8 。

(1)求质点 的轨道方程;(2)求 t = 1 s 和 t = 2 s 时质点的位置、速度和加速度。

解:(1)由 x=2t 得,y=4t 2-8可得: r y=x 2-8r 即轨道曲线(2)质点的位置 : r = 2ti + (4t 2 - 8) jr r rr r 由 v = d r / d t 则速度: v = 2i + 8tjr r rr 由 a = d v / d t 则加速度: a = 8 jrr r r r r r r 则当 t=1s 时,有 r = 2i - 4 j , v = 2i + 8 j , a = 8 j r当 t=2s 时,有r = 4i + 8 j , v = 2i +16 j , a = 8 j 2 (习题 1.2): 质点沿 x 在轴正向运动,加速度 a = -kv , k 为常数.设从原点出发时速度为 v ,求运动方程 x = x(t ) .解:dv = -kvdt v1 v 0 vd v = ⎰ t - k dt 0v = v e - k tdx x= v e -k t0 t0 -k t d t x = v0 (1 - e -k t )k3、一质点沿 x 轴运动,其加速度为 a = 4 t (SI),已知 t = 0 时,质点位于 x 0=10 m 处,初速 度 v 0 = 0.试求其位置和时间的关系式.解:a = d v /d t = 4 td v = 4 t d tv 0d v = ⎰t 4t d t v = 2 t 2v = d x /d t = 2 t 2⎰x d x = ⎰t 2t 2 d t x = 2 t 3 /3+10 (SI)x4、一质量为 m 的小球在高度 h 处以初速度 v 水平抛出,求:(1)小球的运动方程;(2)小球在落地之前的轨迹方程; d r d v d v (3)落地前瞬时小球的 ,,.d td td t解:(1)x = v t式(1)v v v y = h - gt 2 式(2)r (t ) = v t i + (h - gt 2 ) j0 (2)联立式(1)、式(2)得y = h -vd r(3) = v i - gt j而落地所用时间t =0 gx 22v 22hgvd r所以 = v i - 2gh jvd vdv g 2t= - g j v = v 2 + v 2 = v 2 + (-gt) 2= =x y 0 0vv v d rv d v 2) v = [(2t )2+ 4] 2 = 2(t 2+ 1)2t t 2 + 1, V a = a - a = m + M m + Mvg gvv v 5、 已知质点位矢随时间变化的函数形式为 r = t 2i + 2tj ,式中 r 的单位为 m , 的单位为 s .求:(1)任一时刻的速度和加速度;(2)任一时刻的切向加速度和法向加速度。

大学物理上册一二章习题公开课一等奖优质课大赛微课获奖课件

大学物理上册一二章习题公开课一等奖优质课大赛微课获奖课件
6.劲度系数为k弹簧,上端固定,下端悬挂重物.当弹 簧伸长x0,重物在O处达到平衡,现取重物在O处时各 种势能均为零,则当弹簧长度为原长时,系统重力势 能为_为_____________k__x__02.;12 k系x(02 统答弹案性用势k和能x为0表_示__)____;12系kx统02 总势能
k
xB 0.6R
vC2 0.8gR N 0.8mg
第24页
第三章 习题课
5. 如图所表示,质量为m木块,从高为h,倾角为q 光滑斜 面上由静止开始下滑,滑入装着砂子木箱中,砂子和木箱 总质量为M,木箱与一端固定, 劲度系数为k水平轻弹簧 连接,最初弹簧为原长,木块落入后,弹簧最大压缩量为l,
sinq 1 0.64 0.6
2mg sinq cosq 0.6mg sinq mat
at 0.6g 5.88 m/s2 N N F cosq mg cos 2q 0.2mg
第23页
第三章 习题课
mg sin 2q F sinq mat
N F cosq mg cos 2q man
一.选择题
第三章 习题课
1. 对于一个物体系来说,在下列条件中,哪种情 况下系统机械能守恒?
(A) 合外力为0; (B) 合外力不作功; (C) 外力和非保守内力都不作功; (D) 外力和保守内力都不作功。
2.两个质量相等小球由一轻弹簧相连接,再用一细绳
悬挂于天花板上,处于静止状态,如图所表示.将绳
第31页
试求木箱与水平面间摩擦系数.
解: m落入木箱前瞬时速度 v0 2gh
m
h
q
M
k
以M、m为系统,m落入木箱时沿水平方 l 向m与M间冲力(内力)远不小于地面 与木箱间摩擦力(外力),在水平方向 动量守恒 mv0 cosq (M m)v

大学物理静电场习题课

大学物理静电场习题课

的电场 Ex
4 0a
(sin 2
sin 1 )
Ey
4 0a
(cos1
cos2 )
特例:无限长均匀带电(dài diàn)直线的
场强
E 20a
(2)一均匀带电圆环轴线上任一点 x处的电场
xq
E
4 0 (
x2
a2
3
)2
i
(3)无限大均匀带电平面的场强
精品文档
E 2 0
五、高斯定理可能应用(yìngyòng)的
搞清各种(ɡè zhǒnɡ) 方法的基本解题步 骤
4、q dV Ar 4r 2dr
精品文档
6.有一带电球壳,内、外半径分别为a和b,电荷体 密度r = A / r,在球心处有一点电荷Q,证明当A = Q / ( 2pa2 )时,球壳区域内的场强的大小(dàxiǎo) 与r无关.
证:用高斯定理求球壳内场强:
一、一个实验(shíyàn)定律:库仑定F律12
二、两个物理(wùlǐ)概念:场强、电势;
q1q2
4 0r122
e12
三、两个基本定理:高斯定理、环流定理
有源场
E
dS
1
0
qi
LE dl 0
( qi 所有电荷代数和)
(与
VA VB
B
E
dl等价)
A
(保守场)
精品文档
四、电场(diàn c1h.ǎ点n电g)荷强的度电的场计(d算iàn
b
Wab qE dl q(Ua Ub ) qUab (Wb Wa )
a
3. 电势叠加原理
(1)点电荷的电势分布:
q
U P 4 0r
(2)点电荷系的电势分布:

大学物理习题课

大学物理习题课

小球在O '点产生电场:Ev2O' 0
v EO

r3 3 0 a3
ar
v EO'

ar 3 0
(2)空腔内任取一点P点,O’P为b,OP为r
大球在P点产生电场:
Ò v r E1P dS
v E1P

rr 3 0
v E1P
4πr2

1
0
4 3
πr3
小球在P点产生电场:
dl'
AO
E

1
4 0
(a2
Qz z2 )3 2
解:将圆盘分割成许多同心的圆环:
dq 2 rdr
该圆环在P点的场强方向沿z轴,大小为:
dE=
z 2 0

(r 2
rdr z2
)3
2
因此,P点的总场强积分如下:
E
R dE z
0
2 0
R rdr 0 (r2 z2 )3 2
(2)场强叠加原理:
vv v
v
E E1 E2 ... En
nv Ej
j 1
1
4 0
n j 1
qj rj2
rvj0
(3)电荷连续分布:
v
E
1
4 0
dq r2
rv0
静电场的高斯定理:
通过任意闭合曲面S的电通量Φe,等于该闭合曲面内所有 电荷电量的代数和∑q除以ε0,与闭合曲面外的电荷无关。
当z

l,E=
l 2 0
z
2
Q
4 0
z
2
即点电荷
• 一均匀带电薄圆盘,半径为R,电荷面密度为σ.试求:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、一飞轮以角速度ω0绕轴旋转,飞轮对轴的转动惯量为I ;另一个转动惯量为2I 的静止飞轮突然被啮合到同一轴上,啮合后整个系统的角速度ω= 。

2、一飞轮以600转/分的转速旋转,转动惯量为2.5kg ·m 2,现加一恒定的制动力矩使飞轮在1s 内停止转动,则该恒定制动力矩的大小M= 。

3、质量为m=0.1kg 的质点作半径为r=1m 的匀速圆周运动,速率为v=1m/s ,当它走过2
1圆周时,动量增量P ∆= ,角动量增量L ∆= 。

4 半径为R 的圆盘绕通过其中心且与盘面垂直的水平轴以角速度ω转动,若一质量为m 的小碎块从盘的边缘裂开,恰好沿铅直方向上抛,小碎块所能达到的最大高度h= 。

5某冲床上的飞轮的转动惯量为4.0×103kg ·m 2,当它的转速达到每分钟30转时,它的转动动能是多少?每冲一次,其转速降为每分钟10转。

求每冲一次飞轮所做的功。

6一长为2L 的轻质细杆,两端分别固定质量为m 和2m 的小球,此系统在竖直平面内可绕过中点O 且与杆垂直的水平光滑固定轴转动,开始时杆与水平成60°角静止,释放后此刚体系统绕O 轴转动,系统的转动惯量I= 。

当杆转到水平位置时,刚体受到的合外力矩M= ;角加速度β= 。

7 一飞轮以角速度ω0绕轴旋转,飞轮对轴的转动惯量为I ,另一个转动惯量为3I 的静止飞轮突然被啮合到同一个轴上,啮合后整个系统的角速度ω= 。

8 两个质量相同半径相同的静止飞轮,甲轮密度均匀,乙轮密度与对轮中心的距离成正比,经外力矩做相同的功后,两者的角速度ω满足ω甲 ω乙(填<、=或>)。

1、一根质量为M 长为L 的均匀细棒,可以在竖直平面内绕
通过其一端的水平轴O 转动。

开始时棒自由下垂,有一质量
为m 的小球沿光滑水平平面以速度V 滚来,与棒做完全非弹
性碰撞,求碰撞后棒摆过的最大角度θ。

1、 如图所示,长为l 的匀质细杆,一端悬于O 点,自由下
垂。

在O 点同时悬一单摆,摆长也是l ,摆的质量为m ,单
摆从水平位置由静止开始自由下摆,与自由下垂的细杆作
完全弹性碰撞,碰撞后单摆恰好静止。

求:
(1)细棒的质量M ;(2)细棒摆动的最大角度 。

1、如图所示,一个质量为m 的物体与绕在定滑轮上的绳子相联,绳子质量可以忽略,它与定滑轮之间无滑动,假定一滑轮质量为M ,半径为R ,滑轮轴光滑,试求该物体由静止开始下落的过程中,下落速度与时间的关系。

2、如图所示,两个圆轮的半径分别为R 1和R 2,质量分别为M 1
和M 2。

二者都
可视为均匀圆盘而且同轴(通过两个圆轮的中心)固结
在一起,可以绕一水平固定轴自由转动,今在两轮上各
绕以细绳,绳端分别挂上质量m 1和m 2的两个物体。


在重力作用下,m 2下落时轮的角加速度。

1、一质量为m 的物体悬挂于一条轻绳的一端,绳另一端绕在一轮轴的轴上,轴水平且垂直于轮轴面,其半径为r ,整个装置架在光滑的固定轴承之上。

当物体从静止释放后,在时间t 内下降了一段距离s ,试求整个轮轴的转动惯量(用m,r,t 和s 表示)
1、一静止的均匀细棒,长为l ,质量为M ,可绕O 轴(棒的一端)在水平面内 无摩擦转动。

一质量为m ,速度为v 设击穿后子弹的速度为v/2如图。

求:(1)棒的角速度。

(2)子弹给棒的冲量矩。

2、一质量为0m 均质方形薄板,其边长为L ,铅直放置着,它可以自由地绕其一固定边转动。

若有一质量为m ,速度为v 的小球垂直于板面撞在板的边缘上。

设碰撞是弹性的,问碰撞结束瞬间,板的角速度和小球的速度各是多少。

板对转轴的转动惯量为203
1L m 。

(解:由角动量守恒:Iw L mv mvL +=1, 由动能守恒:22122
12121Iw mv mv += 可能得:L m m mv I mL mLv m m v m m v I mL I mL v )3(62,)3()3(0200221+=+=+-=⋅+-=ω )。

相关文档
最新文档