国外斯伦贝谢电缆测井新技术与应用

合集下载

斯仑贝谢电缆测井新技术

斯仑贝谢电缆测井新技术

Schlumberger Private
高分辨 上天线 高分辨 下天线 主天线
<4>
多重测量深度
MAGNET
Hi-Res
Main 1
S
Main 2
Main 3
N
Main 4
Main 8
天线 测量壳型区
1.25 in. 1.5 in. 1.9 in. 2.3 in. 2.7 in. 4.0 in.
特点:
Schlumberger Private
“Rv” 15 ft
“Rh”
1
V = sand
V + shale
RR R
h
sand
shale
Rh
Rh dominated by Rsh
**把薄层当作各项异性的 一个整体来处理,通过 测量Rh,Rv来评价薄层
<13>
电阻率扫描测井(Rt Scanner)实例分析
接收器: 水诊器/ 3-C接收器
井深
7,000m+
井间距
1,000m (piezo)
1,500m+ (Z-Trac)
温度
150°C
特殊水蒸汽作业 270°C
接收器外径 43mm (1-11/16”)
震源外径
88.9mm (3 ½ ”)
震源选择
裸眼井 (piezo)
套管井 (piezo/Z-Trac)
铬套管
接收井 裸眼 玻纤 套管
钢套管 铬套管 铬套管
最大井距* 1000m
1000m
450m 500m 350m
井间电磁波测井(Cross-well EM)
Schlumberger Private

美国斯伦贝谢随钻声波测井新技术

美国斯伦贝谢随钻声波测井新技术

根 据 所 需 的 物 理 记 录, 可 将 声
波信号中识别出来 [1]。
波测井仪设计成一组发射器(声源),
很 多 物 质 都 有 各 自 具 体 的 声 波 用于产生特定形式的压力脉冲。最基
慢度(下表)。例如纵波通过钢材的 本 的 方 式, 也 是 各 种 声 波 测 井 仪 常
慢度是 187 微秒 / 米(57 微秒 / 英尺)。 用 的 类 型 是 单 极 子 声 源。 单 极 子 声
波快。
于快地层这种情况。
声源的测井仪记录的资料中提取。在
临界折射的纵波在井筒中产生的
如果地层的横波慢度大于井筒流 非常需要这些资料的井段通常也无法
头波以地层纵波速度传播 [3]。根据惠 体的纵波慢度(这种情况被称为慢地 获得。
更斯原理,井壁上每一点上的纵波都 层),纵波在到达井筒时仍然会发生折
单极子声源在测量慢地层横波资
偶极子声源也具有定向性,利用
ཀྵհ
࢙հ
ୁ༹հ
ጻհ ཀྵհ
ୁ༹հ
定向接收器阵列和两个互成 90°的声 源,工程师能够得到井筒周围的定向 横波资料。这种交叉偶极测井方法提 供了最大、最小应力方位,径向速度
‫ڇ‬टጱำᇸ
‫ڇ‬टጱำᇸ
分布和各向异性横波资料的方向。 上世纪 80 年代引入了将快地层中
使用的单极子声源纵波和横波数据与
Jeff Alford Matt Blyth Ed Tollefsen 美国得克萨斯州休斯敦
John Crowe 雪佛龙卡宾达海湾石油有限公司 安哥拉罗安达
Julio Loreto 得克萨斯州Sugar Land
Saeed Mohammed 沙特阿拉伯宰赫兰
随钻声波测井新技术
工程师根据声波测井仪记录的声波资料以更高的安全系数提 高钻井效率,优化完井方式。LWD 声波测井仪是在上世纪 90 年 代中期问世的,能够记录纵波资料,但不能记录所有地层的横波 资料。新型 LWD 声波测井仪能记录以前无法得到的横波资料,工 程师正在利用横波资料优化钻井作业,确定最佳钻进方向,识别 具有更好完井特征的岩层。

斯伦贝谢-测井岩性识别技术与应用(1)共32页

斯伦贝谢-测井岩性识别技术与应用(1)共32页

地层对比
对比深度以补心海 拔深度对齐。第一 道为ECS 计算的铁 元素的含量;第二 道为ECS 计算的钙 元素的含量;第三 道为ECS 计算的岩 性剖面。图中可以 明显看出,白垩系 与侏罗系以一套砂 岩、泥质砂岩为界 ,在钙曲线上表现 为上高下低,是一 个明显的界面。头 屯河组和西山窑组 的界面在铁曲线上 表现为上低下高, 在钙曲线上表现为 上高下低,特征非 常明显,头屯河组 以砂岩、泥质砂岩 结束。
采集NPLC-B
伽马谱
Maximum Tool Dia
3-3/8 in.
Pressure, Temperature
20 kpsi, 175 oC
剥谱处T理ool length, Weight
元素产额 8 ft, 128 lb
Power
50 W
闭合氧环分析
干元素比重
Si, Ca, Fe, S, Ti, Gd
沉积分析
铁元素的变化与沉积的关系
沉积岩中铁的来源主要为母岩的风化、剥蚀产物,其主要以胶体溶液 搬运,在化学和生物化学作用下沉积下来。湖泊是其较重要的沉积场所, 尤其是湖岸沼泽地带更为富集。我国“沼铁矿”常与煤系地层共生。选择 每口井各层系泥岩段铁值的变化做交会图 。
为什么选泥岩段? 1、微量元素含量高。 2、泥岩中的元素是母岩化学风化的产物选择性沉积的结果,所以, 可以利用元素的特征推测沉积环境。 3、砂岩元素的组成主要反映岩石的岩屑、矿物的成分,一定程度上 可反映母岩的性质和搬运距离,而不反映沉积环境对元素聚散的影响。
岩性识别
碳酸盐岩
岩心分析数据表明: XX13~XX20米层段碳 酸盐岩含量最高达75% ;粘土类型以伊蒙间层 为主,个别段含有少量 高岭石和绿泥石。

国外斯伦贝谢电缆测井新技术与应用

国外斯伦贝谢电缆测井新技术与应用
0 0 0 0.072 0
0 0 0.088 0 0 0 0 0 0.0007 0.004 0.007 0.001
0.001 0.005
0 0 0 0.005 0
0 0.141
0 0 0 0 0 0 0.001 0.045 0.006 0.004
0.059 0.078
0 0 0 0 0
0 0 0 0 0 0 0.164 0.482 0.008 0.048 0.020 0.208
孔隙大小
粘度
扩散效应
Schlumberger Private
T1
T2
D
32
核磁共振测量的T2谱与岩石润湿性的相关关系
CMR-A F Total 1995 - SNR
2002
- Real-time
- F NMR - BFV -K
- GeoSteering - Fluid ID
NML
- T2 dist
1968…
-FFI
- K?
Wyman, et al
典型流体的核磁共振特征参数
墨西哥湾流体的核磁特征参数
核磁共振测井的测量信号与储层参数的关系
海相
陆相
海陆过渡相
复杂储层的地层测井解释模型
矿物骨架
孔隙
流体类型
体积模型
骨架(>90%) 流体-水/油气(<10%)
传统的9条曲线三组合测 井
自然伽玛-自然电位-井径:储层 密度-中子-声波:孔隙度 电阻率(深/中/浅):饱和度 岩性密度-核磁
岩心刻度 线性关系

孔隙度小、孔隙结构复杂降低了 常规曲线对岩性、孔隙度响应的 灵敏度;
新的信息重新刻度和标定
斯伦贝谢测井技术的主要发展阶段 -适应油气藏勘探开发的需要

斯仑贝谢成像测井技术

斯仑贝谢成像测井技术

成像测井技术目录1电成像测井 (2)1.1 地层微电阻率扫描成像测井技术[1] (2)1.2 阵列感应成像测井技术 (3)1.3方位电阻率成像测井技术 (4)2声波成像测井 (4)2.1超声波成像测井 (5)2.2偶极横波成像测井 (6)3核磁共振成像测井 (6)4成像测井技术的应用 (7)4.1岩性识别 (7)4.2沉积构造识别[4] (10)4.3沉积微相研究[5] (12)4.4裂缝系统的分析 (14)4.5地应力分析[11] (29)5成像测井的发展趋势 (32)参考文献 (33)成像测井技术测井起源于1927年的法国,当时只有测量视电阻率、自然电位、井温等仪器,经过近80年的发展,如今发展成为以电法测井仪、声波测井仪与核磁共振测井仪等系列的测井仪器。

回顾测井技术的发展历程,测井技术经历了从模拟测井到数字测井、数控测井、成像测井的发展历程。

成像测井技术是美国率先推出的具有三维特征的测井技术,是当今世界最新的测井技术。

它是在井下采用阵列传感器扫描测量或旋转扫描测量,沿井眼纵向、径向大量采集地层信息,利用遥传将采集到的地层信息从井下传到地面,通过图像处理技术得到井壁二维图像或井眼周围某一探测范围内的三维图像。

因此,成像测井图像比以往的曲线表达方式更精确、更直观、更方便。

传统的测井只能获取井下地层井眼周向和径向上单一的信息,它适用于简单的均质地层。

而实际上地层是非均质的,尤其是裂缝性油气层的非均质性最为明显,在地层的周向和径向上的非均质性也非常突出。

这促使人们开始利用非均质和非线性理论来设计测井仪器。

成像测井技术就是在此理论基础上发展起来的,它能获取井下地层井眼周向方位上和径向上多种丰富的信息,能够在更复杂、更隐蔽的油气藏勘探和开发方面有效的解决一系列问题:薄层、薄互层、裂缝储层、低孔隙低渗透层、复杂岩性储层评价;高含水油田开发中剩余油饱和度及其分布的确定;固井质量、压裂效果、套管井损坏等工程测井问题以及地层压力、地应力等力学参数的求取等等。

基础研究是石油工程高质量发展基石——斯伦贝谢测井科技发展剖析及启示

基础研究是石油工程高质量发展基石——斯伦贝谢测井科技发展剖析及启示

n stries行业422023 / 08 中国石化基础研究是石油工程高质量发展基石——斯伦贝谢测井科技发展剖析及启示斯伦贝谢(SLB)公司的测井技术一直是当今世界测井技术的前沿,世界上第一套数字测井仪、第一套数控测井仪和第一套成像测井仪都出自斯伦贝谢。

科技是斯伦贝谢最重要的发展基石,斯伦贝谢从建立之初就高度重视基础研究和前瞻研究,斯伦贝谢道尔研究中心在电磁学、地声学、核学等方面的基础研究有力支撑了斯伦贝谢测井技术的发展。

剖析研究斯伦贝谢在基础研究方面的布局经验,可为中国石化石油工程在基础研究和前瞻研究方面“下好先手棋、打好主动仗”提供经验借鉴。

斯伦贝谢基础研究的沿革及特点斯伦贝谢高度重视基础前瞻研究,在公司业务稳定后就设立了研究中心开展基础研究和前瞻研究。

1948年,斯伦贝谢在美国康涅狄格州里奇菲尔德成立了研究中心(后更名为斯伦贝谢道尔研究中心),是斯伦贝谢最早开展基础研究的机构,时至今日仍是斯伦贝谢最重要、核心的研究中心,从最初的4个测井学科研究部门发展成为3个测井研究中心。

构建多层级基础研发体系,设立稳定的基础研究机构。

为保证技术的先进性和前瞻性,斯伦贝谢构建多层级研发体系,从事不同层次的基础研究和前瞻研究,分别设立美国道尔研究中心、英国剑桥研究中心和挪威斯塔万格研究中心,主要研究10~50年内不同技术方向不同层次的石油工程技术的基础研究和前瞻研究:道尔研究中心主要进行传感器、数学和建模、油气藏储层、地球科学、机械学和材料科学、碳捕获与封存、机器人等领域基础研究;英国剑桥研究中心主要开展钻完井技术、流体技术、地震以及岩石力学等方面应用研究;挪威斯塔万格研究中心主要致力于地震图像解释、地表和地下测量数据的自动分析和建模等应用研究。

此外,斯伦贝谢在全球还设有11个技术研发中心(包括北京地球科学中心BGC),主要从事石油工程领域10年内的技术和产品研发。

持续打造高水平基础研究团队。

道尔研究中心基础研究团队由来自全球多个国家的科学家和工程师组成,多数都已拿到博士学位,并且具备多年相关行业研究经验。

斯伦贝谢-测井岩性识别技术与应用(1)32页PPT文档

斯伦贝谢-测井岩性识别技术与应用(1)32页PPT文档

井眼流C体o:nveyanc任e 何流体 仪器尺E M 寸Ca:S ximum T5o.0oilnDOia. D. 长度: 6.6 ft Pressure, Temperature
Maximum Internal Temp
最大温T度oo: l length3,50WoeFi(gh1t 75 oC) 最大压M M 力ain:xim imuummHH2o0ol,el0e0SS0izipzeesi
斯伦贝谢 数据与咨询服务
2019.02.21
主要内容
ECS原理及仪器 ECS资料用于岩性识别 ECS资料用于地层对比 ECS资料用于沉积分析 DecisionXpress简介
ECS 的伽马能谱 非弹性散射与俘获
Log Scale
Gd
H
Si
Fe
Cl In e la s tic 非弹性散射
501
彩501井岩性识别图版(Fe-Si-clay)
横轴为硅曲线,纵轴为铝曲线 ,Z轴为铁曲线,图中彩色点 由蓝到红的变化,表示铁值由 小到大的变化,反映岩性由砂 岩到泥岩的变化。图中右下角 的点为煤层的反映。
地层对比
从ECS 结果可以看出 :以2892m为 界,上部地层 铁含量大于下 部地层;钙含量 大于大于下部 地层。上部铝 (泥质)含量 较高,下部相 对较低,薄砂 层发育。
0
50
100
150
200
250
ECS 仪器和数据处理流程
6.6 ft
AmBe Source
BGO Crystal and PMT
Boron Sleeve
Electronics Heat Sink
Internal Dewar Flask
测速:

大斜度水平井生产测井技术(斯伦贝谢)

大斜度水平井生产测井技术(斯伦贝谢)

大斜度/水平井生产测井技术Schlumberger Private斯伦贝谢Schlumberger Private水平井生产所面临的挑战•初期产量较高•含水上升快•产量递减快•产液剖面测量难•井段产液不均匀•措施作业难•有效期较短…主要难点:¾井下多相流态复杂¾产液剖面测量仪器¾仪器传输方式Schlumberger Private油水均匀混合 速度剖面光滑 持率线性变化 单相水在底部,分散相油在顶部速度和持率变化剧烈水有可能回流分层流动,油水分异呈单相井斜微变,相速度和持率剧变井斜<20°井斜20°~85°井斜85°~95°复杂多相流流态-油水两相流试验Schlumberger Private水平井产液剖面测量-流体扫描成像Flow Scanner具有5个微转子测量分层流速,6对光学和电阻探针测量分层三相持率,实时监测数据质量Schlumberger PrivateFlow Scanner* 仪器示意图H y dra u l i c a c t u a t o r F l ow S c a n n e r *4 MS5 O P、5E P1 mi n i s p i n n e r , 1o p t i c a l p r o b e , 1e l e c t r i c a lp r o b e Minispinner cartridgewith integrated one-wire detectorFluid local velocityOptical GHOST*probesGas holdupElectrical FloView*probesWater holdup5 ft11 ftSchlumberger PrivateFlow Scanner* 流速传感器相速度-Minispinner最新技术;5个微型转子流量计垂直于井轴方向分布; 直接测量气相速度;电动短节扫描转子流量计,精确测定相速度。

斯伦贝谢随钻测井高清

斯伦贝谢随钻测井高清
成果与效益
项目成功发现了潜在的油藏,提高了油田的开采效率,为投资者带来 了可观的经济回报。
案例二:某页岩气开发项目
案例概述
某页岩气开发项目面临复杂的地质条件和储层特性,需要精确的 地质信息以指导开发。
技术应用
采用斯伦贝谢随钻测井高清技术,实时监测地层变化,获取高分 辨率的地质数据,为制定开发方案提供依据。
特点
该技术具有高分辨率、高精度、实时性强等特点,能够提供准确的地下信息, 帮助石油工程师更好地了解地下情况,优化钻井设计和提高石油产量。
技术发展历程
起源
斯伦贝谢随钻测井高清技术起源于20世纪90年代,当时石 油工业面临勘探难度不断增加的问题,需要更先进的技术 来提高钻井效率和石油产量。
发展历程
经过多年的研发和技术改进,斯伦贝谢随钻测井高清技术 逐渐成熟,并开始广泛应用于全球范围内的石油勘探和开 发项目。
高清成像技术
利用高分辨率传感器和信 号处理技术,获取高清晰 度的井下图像。
图像增强处理
通过数字图像处理技术, 对井下图像进行增强、去 噪、锐化等处理,提高图 像质量。
实时传输
利用高速数据传输技术, 将井下高清图像实时传输 到地面,为现场作业提供 及时、准确的井下信息。
随钻测井技术原理
1 2 3
随钻测井定义
油田开发
在油田开发过程中,该技术可以实时监测油藏动态,了解油藏分布和储 量情况,为油田开发提供重要的决策依据。
03
矿产资源勘探
除了石油勘探和开发领域,斯伦贝谢随钻测井高清技术还可以应用于矿
产资源勘探领域,如煤、天然气等矿产资源的勘探和开发。
02
斯伦贝谢随钻测井高清技术原理
高清成像原理
01

光纤测井的特性及应用美国斯伦贝谢公司的持气率光纤传感仪

光纤测井的特性及应用美国斯伦贝谢公司的持气率光纤传感仪

光纤测井的特性及应用蒋鹏志1. 引言测井技术又称为地球物理测井技术,是一种井下油气勘探的重要手段,是在钻探井中使用反映热、声、电、光、磁和核放射性等物理性质的仪器测量地层的各种物理信息;通过对这些信息按各自的物理原理和它们之间相互联系进行数据处理和解释,辨别地下岩石的孔隙性、渗透性和流体性质及其分布,用于发现油气藏,评估油气储量及其产量。

测井技术在油气田开发和钻井工程中有广泛的用途,是勘探煤、盐、硫、石膏、金属、地热、地下水、放射性等矿产资源的重要方法和有效手段,并应用到工程地质、灾害地质、生态环境等领域。

在油气藏勘探开发中测井技术是地质家和油气藏开发工程师的“眼睛”,通过测井获得的资料是测井评价、地质研究和油气藏开发的科学依据。

在油田的开发过程中,需要知道在产液或注水过程中有关井内流体的持性与状态的详细资料,其可靠性和准确性是至关重要的。

因此测井,是石油勘探开发过程中不可缺少的重要环节。

矿场地球物理测井是通过定量测定井下钻穿地层的电、声、光、核、热、力等物理信息,用以判断地层的岩性及流体的性质,确定油、气、水层的位置,定量解释油、气层的厚度,含水饱和度和储层的物性等参数,了解井下状况的一整套技术。

但传统的电子基传感器无法在井下恶劣的环境(诸如高温、高压、腐蚀、地磁地电干扰)下工作,而光纤传感器可以克服这些困难。

光纤传感器具有灵敏度高、可靠性好、原材料硅资源丰富、抗电磁干扰, 抗腐蚀、耐高压(几十兆帕以上)、电绝缘性能好、可绕曲、防爆、频带宽、损耗低等优点,可以高精度地测量井筒和井场环境参数。

同时,光纤传感器具有分布式测量能力,可以给出被测量空间的剖面信息。

而且,光纤传感器横截面积小,外形短,在井筒中占据空间极小。

它还便于与计算机相连,实现智能化和远距离监控。

2.理论上的预期优势(1)温度监测井内检测区剖面的温度变化可以与其他地面采集的资料(流量、含水、井口压力等)以及裸眼测井曲线对比,从而为操作者提供井下各种参数变化的定性和定量信息。

斯伦贝谢公司新一代测井仪器—Scanner家族

斯伦贝谢公司新一代测井仪器—Scanner家族

斯伦贝谢公司新一代测井仪器—Scanner家族斯伦贝谢公司新一代测井仪器Scanner家族于2006年正式投入油田服务,其家族成员包括MR Scanner、Rt Scanner- Scanner 、Sonic Scanner、 Flow Scanner、Isolation Scanner。

各种仪器已在油田投入使用,取得了很好的效果,为研究疑难储层提供了重要手段。

我们将该家族各仪器的性能逐一介绍如下:1.新型核磁共振测井仪MR Scanner斯伦贝谢公司2006年新推出了Scanner家族的成员—核磁共振仪器MR Scanner,该仪器采用偏心梯度设计,具有多种探测深度、测量结果不受井眼条件的影响、能进行流体表征等特点。

在低阻、低对比度储层的评价中具有较大优势。

MR Scanner 测井仪的主要优点包括:测量结果不受储层破坏带的影响;可以通过径向剖面来识别流体及环境的影响;可以应用到井眼不规则或者薄的泥饼储层评价中;降低了钻井时间。

MR Scanner仪器的主要特性偏心,梯度设计;多种探测深度,最深可达4 in, 而且测量结果不受井眼大小及形状的影响;纵向分辨率为7.5 ft;最大测速可达 3600 ft/h;具有良好的油气表征能力;可以得到不同探测深度下的横向弛豫时间(T2)、纵向弛豫时间(T1)以及扩散分布。

2.三分量感应测井仪Rt ScannerRt Scanner仪器可以同时测量纵向和横向电阻率以及地层倾角和方位角的信息。

它能够提供多种探测深度上的三维测井信息。

通过这些信息增强了储层的含烃和含水饱和度解释模型的精度,使计算的结果更符合地层实际情况。

尤其是在薄层,各向异性或断层中的计算结果将更加准确。

该仪器具有六个三维的芯片,每一个芯片上面都安装了三个定位线圈以测量不同深度地层的纵向电阻率Rt和横向电阻率Rh。

在每两个线圈之间都安装了三个单轴接收器用以完全表征从三维芯片上传递到井眼中的信号。

斯伦贝谢随钻测井新技术

斯伦贝谢随钻测井新技术

NXB –Slide # : 14 Date : 08-Dec-2009
EcoScope – 概要
仪器名义直径(API) 6.75英寸
孔隙度 / 中子-伽马密度
仪器长度
26英尺
能谱/西格马 电阻率
井眼直径
83/8 至 97/8英寸
最大狗腿严重度 ,旋 8 & 16 °/100英尺
转模式与滑动模式
26 ft
随钻测井西格马的应用优势
骨架
∑0
砂岩 = 4.3 白云岩 = 4.7
灰岩 = 7.1 石膏 = 12
泥岩
5
10
ቤተ መጻሕፍቲ ባይዱ
15
20
25
30
35
40
流体

油 淡水

45
50
矿化度
鉴定储层物性
• 代替伽马标识泥岩
替代电阻率确定油气饱和度
• 可供选择的饱和度计算法 • 低阻储层评价(LRP)
估计’m’ 和 ‘n’值以及地层水矿化度
• adnVISION 方位中子密度
– Density/Neutron/Caliper/Imaging
• proVISION 随钻核磁共振
– Magnetic Resonance
• sonicVISION 随钻声波
– Compressional dt
• seismicVISION 随钻地震
– Seismic While Drilling
Sw
=


Σma ) − φ φ ⋅(Σw
⋅ (Σ hc
− Σhc

)
Σma
)
Ù
1

大斜度水平井生产测井技术(斯伦贝谢)

大斜度水平井生产测井技术(斯伦贝谢)
ቤተ መጻሕፍቲ ባይዱ
1.668 [42.9] 16.0 [4.9] 108 [49] 302 [150] 15,000 [103,425] NACE Standard MR0175 90% in 6-in. ID ±10% ±10% 2.875–9 [73.0–228.6] 1.813 [46.0]
Schlumberger Private
实例: 科威特
Schlumberger Private
面临问题: 初产13,000 STB/D 纯油,无水; 生产3周后,含水率达90%; 解决方案: 应用Flow Scanner测量产液剖 面,找水并堵水 措施及效果: 封堵下部主要产水段,含水 率从90%下降到75%,产量 2500BOPD & 7500BWPD
Schlumberger Private
Schlumberger Private
实例: 科威特
全井眼转子和微转子对比 -微转子工作更好
面临问题: 初产13,000 STB/D 油,无水; 生产3周后,含水率达90%; 解决方案: 应用Flow Scanner测量产液剖 面,找水并堵水
SPE 105327 - Horizontal Well Production Logging Experience in Heavy Oil Environment With Sand Screen : A Case Study From Kuwait
Flow Scanner* 持气率探针
持气率-GHOST
GHOST* 光学探针技术; 6个探针垂直于井轴方向分布; 电动短节扫描各探针,
精确测定低速气液界面。
GHOST – 持气率光学探针
光在气中的反射大于液体
探针

国外阵列感应测井仪器的最新发展

国外阵列感应测井仪器的最新发展

国外阵列感应测井仪器的最新发展阵列感应仪器在电缆测井作业中已经受了时间的考验,用于商业化服务快接近20年了。

Schlumberger公司在1991年推出了AIT仪器(Barber和Rosthal等),之后Baker Atlas公司在1996年(Beard等)、Halliburton公司在2000年(Beste 等)也分别推出了各自的阵列感应仪器。

利用阵列感应仪器可以测得聚焦探测深度为10至120英寸、相应的垂直分辨率为1、2、4英尺的径向电阻率曲线。

这些测井曲线从横向和纵向上对井眼及其周围地层给予了清晰的描述。

近年来,感应仪器的设计者们一直都在不断努力创新,改进仪器的硬件设计和软件处理,最终提高仪器的测量精度和重复性,发挥阵列感应测井的优势,为油、气层识别奠定基础。

一、斯伦贝谢公司的阵列感应成像测井仪AIT家族AIT阵列感应成像测井仪能在不同井眼条件和环境下精确测量裸眼井地层的电导率,该电导率既是井眼深度的函数,也是径向深度的函数。

阵列感应仪器的线圈阵列有多种工作频率。

对接收到的信号进行软聚焦处理可以得到不同探测深度的电阻率测井曲线。

多道信号处理给出了丰富而稳定的仪器响应,其径向探测深度和纵向分辨率都明显改进和提高,而且对环境影响进行了校正。

利用仪器的测量结果还可实现二维(2D)电阻率成像,成像图形清晰定量地显示了层理和侵入特征。

利用多种侵入特征描述参数可以表明过渡带和环空带的地层特征。

可以把定量的侵入信息现场彩绘为2D含水饱和度Sw图像。

继开发出用于测量井眼条件适中的地层电阻率的标准的AIT-B和AIT-C型仪器外,斯伦贝谢公司也开发出用于小井眼和恶劣环境(高温高压)条件下测井等多种类型的阵列感应仪器,组成了AIT家族。

多种类型的AIT仪器可适用于不同的特殊工作环境,包括小井眼、恶劣环境下高温高压环境(HPHT)。

Platform Express Array Induction Imager Tool(AIT-H)AIT-H 仪器特别用于Platform Express 测井平台。

斯伦贝谢新技术简介_2009-06-01

斯伦贝谢新技术简介_2009-06-01
Schlumberger Public Schlumberger Public
25 m
水平井
26 Lou
导眼井
地表地震图像
Schlumberger Public Schlumberger Public
原计划井眼
实钻井眼
处理结果
x
x
27 Lou
地表地震图像
25 m
水利压裂监测 (HFM) 简介
可在裂缝生成过程中绘制 水力压裂裂缝系统三维图 。 这一服务能够对增产作业 引发的微地震活动进行探 测,并对微地震相对于增 产作业井的位置进行三维 空间定位。
28 Lou
Schlumberger Public Schlumberger Public
HFM 基本原理
设置
– VSI仪器在观测井中 – 压裂井与观测井间距小于 600米
作业
– 持续的微地震监测 – 实时的探测和处理(延时30秒 ) – 处理后的裂缝位置可进行三维 显示
• 裂缝高度、长度、方位
Schlumberger Public Schlumberger Public
上下煤层被 压开, 压开,导致 试气出水? 试气出水?
储层段上下隔层遮挡 条件良好, 资料显示 条件良好,DSI资料显示 未压开煤层, 未压开煤层,主要为储 层产水
4
Lou
压裂裂缝高度预测与套后DSI检测结果对比
声波过套管测井的局限性
套管及水泥胶接的影响 裸眼井大井眼的影响 套管尺寸的限制
Schlumberger Public Schlumberger Public
井间测量技术
电磁波、地震
其他新技术
BARS, HFM
2 Lou
过套管地层评价解决方案 ABC – Analysis Behind Casing

FMI、CMR、MDT测井技术的应用

FMI、CMR、MDT测井技术的应用

FMI、CMR、MDT测井技术在油藏描述中的应用FMI、CMR、MDT测井技术是斯伦贝谢公司20世纪90年代在岩性、孔隙度、径向电阻率等常规测井基础上发展起来的微观成像测井系列,其目的是快速、直观、形象、准确的识别油气层和储层流体性质,提供储层物性参数(孔隙度、渗透率和有效裂缝)。

1、FMI:微电阻率扫描成像测井,提供岩石颗粒的形状、大小、排列、胶结、分选、层理、裂缝等11种地质资料,可开展储层岩性识别、裂缝识别、倾角处理、地层构造等研究。

1.1正确识别储层岩性红山嘴油田红18井区块石炭系油藏岩性主要为安山岩、凝灰质岩屑砂岩,由于该区石炭系储层段未取岩心,储层岩性识别困难,给储层研究造成了一定困难。

油藏描述存在的问题主要是储层岩性识别和储层裂缝识别。

首先,根据邻区车43井区和本区的石炭系岩石薄片资料,对FMI成像资料和常规测井资料进行岩性标定,然后在此基础上分别建立常规测井和FMI图象两种岩性图版,常规测井岩性图版主要根据常规测井信息(三孔隙度、自然伽玛、电阻率等)建立,FMI岩性图版则根据图象特征建立,不同的岩性有不同成像特征。

根据建立的岩性图版,各种岩性特征明显,具有较好的岩性分辨能力。

在岩性识别过程中,首先根据常规测井岩性图版识别,然后用FMI测井图象岩性图版验证。

分析表明,两种图版的分析结果基本一致,并且,FMI测井图像岩性图版符合率比常规测井岩性图版符合率高。

经过岩性识别,认为红18井区块石炭系储层岩性主要为安山岩,由此为储层深入研究奠定了坚实的基础。

1.2有效识别储层裂缝红山嘴油田红18井区块石炭系储层岩性为安山岩,储集类型为孔隙、裂缝的双重介质。

根据FMI图像特征、地层倾角等资料,石炭系构造裂缝与断层同期形成,分为两套裂缝系统。

一套为走向平行于断层走向的纵向系统,以剪切裂缝为主,是裂缝的主控系统;一套为共扼裂缝系统,为主裂缝系统的共扼裂缝。

两套裂缝系统相互沟通,形成裂缝网络,这些裂缝是石炭系储层油气渗流的主要通道。

斯伦贝谢Techlog2016九大测井解释新技术

斯伦贝谢Techlog2016九大测井解释新技术
·地层压力预测试 ·井下流体分析 ·井下流体取样 ·不稳定测试(即 Mini-DST 小型测试和 IPTT
层间干扰测试)
·岩石力学测量(即 Mini-Frac 微型压裂)
满足了当前广泛存在的低渗地层和不规则井眼 条件下的测试与取样数据分析需求。
5 岩石力学分析和声波测井高级应用
岩石力学分析和声波测井高级应用技术 (Geomechanics & AdvancedAcoustic Suite)可整合各 类现场数据、成像、井径、地层压力测试和偶极声波 数 据 ,进 行 地 层 应 力 综 合 分 析(Integrated Stress Analysis),综合确定应力方向、特征(Stress Regime) 和大小:
1 Techlog2016 新技术发展概况
Techlog2016 测井解释技术发展分为两大方面: 第一、对已有模块进行技术改进、增加算法或增 加所支持的测井仪器,比如 NMR 核磁共振解释增加 了对非斯伦贝谢公司 9 种核磁测井仪器(如 P 型核 磁)的支持。 第二、从 Techlog2016 开始,对外释放了 9 个原 本一直是内部使用的测井数据高级分析及解释技 术:
·ECS 测井数据处理(ECS processing) ·成 像 测 井 高 级 处 理 及 解 释
(AdvancedBorehole Geology Suite)
·地 层 测 试 测 井 高 级 分 析 及 应 用
(FormationTesting Suite)
·岩 石 力 学 分 析 和 声 波 测 井 高 级 应 用
·全井壁成像:重构极板间缺失部分生成覆盖
全井壁图像,方便综合地质分析
·垂向切片图像:按指定方位生成垂向切片图
像,用于岩心垂向切片准确归位
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新的信息重新刻度和标定
斯伦贝谢测井技术的主要发展阶段 -适应油气藏勘探开发的需要
1990年以前
1990年-2000年 2000年-2006年
常规三组合
PeX+元素 声、电成像
扫描 Scanner 系列
SonicScanner MR/RtScanner
2006年-2015年
扫描 Scanner系 列+无化学源新
电缆测井新技术与应用
基于传统“三组合”测井的储层测井解释模型
油气 骨架 粘土

W体水a积te模r型 骨架(75%-85%) 流体-水/油气(15%-25%)
传统的9条曲线三组合 测井
自然伽玛-自然电位-井径:储 层
油气 密度-中子-声波:孔隙度
电阻率(深/中/浅):饱和
粘土

岩性密度/介电/核磁
元素能谱测井的原理和过程– 矿物组份和总有机碳量化
将元素干重曲线处理 解释得到矿物组份、 骨架特征参数和总有 机碳含量(TOC)
最新元素测井仪器 - 岩性扫描测井 LithoScanner
仪器设计的创新与突破 高性能的中子发生器(PNG),其输出中子 速度高达每秒3×108个,是普通中子管的2 倍、化学源的8倍以上 掺铈溴化镧(LaBr3:Ce)大晶体探测器, 精度比锗酸铋(BGO)探测器提高两倍以上, 在不牺牲光谱分辨率条件下处理超过每秒 2,500,000计数的计数率,同时高低温性能 优越 改善了原有元素测量精度和准确度
海相
陆相
海陆过渡相
复杂储层的地层测井解释模型
矿物骨架
孔隙
流体类型
体积模型
骨架(>90%) 流体-水/油气(<10%)
传统的9条曲线三组合测 井
自然伽玛-自然电位-井径:储层 密度-中子-声波:孔隙度 电阻率(深/中/浅):饱和度 岩性密度-核磁
岩心刻度 线性关系

孔隙度小、孔隙结构复杂降低了 常规曲线对岩性、孔隙度响应的 灵敏度;
• 连续TOC测量 • 非区域性经验公式
溴化镧(LaBr3:Ce)和锗酸铋(BGO)探测器性能对比
溴化镧(LaBr3:Ce)的温度性能明显好于锗酸铋(BGO)探测器。
岩性扫描测井LithoScanner处理解释流程
• TOC总有机碳含量
常见矿物的元素测井响应参数
Quartz Orthoclase Na-spar Ca-spar Calcite/Aragonite Dolomite Ankerite (Webmineral) Siderite Kaolinite Illite Smectite Chlorite Glauconite Muscovite Pyrite Anhydrite/Gypsum Hematite Augite Ilmenite
主要流体
• 渗透率
束缚流体
0.1 1 10 100 T2 (msec)
1000
核磁共振测井在复杂油气评价中的应用
可动水
骨架
• 孔隙度 • 孔隙尺寸大小分布
? • 流体识别
• 渗透率
毛管 束缚水
油气
粘土 束缚水
斯伦贝谢核磁共振
MRX 2004
Schlumberger MRX/LWD/ CMR+
仪器的发展史
- MRF
Hydrocarbon
Character
- NMR Based
Saturation
- Viscosity
- Deep Reading
ห้องสมุดไป่ตู้
CMR-Plus - Fast Logging
2000
- New Answers
- Faster
CMR-200 - DMR, HiRes
1997
- EPM
ProVISION
Elements from Spectroscopy
Carbon Si, MNCaa,,inMMneg,,PrS,a,eFltsce., K,
Total Carbon (TC)
-
Total Inorganic Carbon (TIC)
=
Total Organic Carbon (TOCj)
非弹谱测量总碳
测井
Matrix岩性识别 骨架 含水饱和度
孔隙度和孔隙结构
流体识别
岩心刻度
对常规储层来说,地层组分含量与常规测井响应之间基本都是线性关系,
适合体积模型(四性关系符合阿尔奇公式的理论基础)
常规“三组合”测井响应特征和“四性”关系评价思路
复杂油气藏储层的地层特征和对测井技术的挑战
中国典型复杂油气藏地层常规三组合测井曲线特征
0 0 0 0.043 0
0 0 0 0.144 0.395 0.213 0.194 0 0.001 0.005 0.013 0.007
0.005 0 0
0.294 0
0.157 0
0 0 0 0 0.004 0.129 0.053 0 0.001 0.012 0.020 0.048
0.021 0.001
有机质的存在降低了常规曲线对 孔隙度响应的灵敏度;
有机质和重矿物的存在降低了常 规曲线对岩性响应的灵敏度;
高束缚水饱和度、有机质和黄铁 矿的存在降低了常规曲线对油气 响应的灵敏度;
地层组分与常规测井响应之间的 线性关系程度减弱;
如何进行有效储层和产层识别? 如何量化储集空间和含油气饱和
度? 复杂的数学和体积模型问题需要
0.467
0.4
0.132
These elemental weight fractions are used to convert elements to minerals
元素能谱测井的原理和过程– 总有机碳(TOC)解释模型
Elements from Spectroscopy
Carbon Si, MNCaa,,inMMneg,,PrS,a,eFltsce., K,
• 通过能谱分析获取具有特定稳定特 征的元素产额
• 元素产额的氧闭合处理确定元素干 重
• 基于元素干重定量矿物组份含量
产额
伽马射线能量
非弹性碰撞(Inelastic Collision)- 快中子
高能中子(能量> 1 MeV) 在与矿物非弹性碰撞过程中失去大量能量. 这些 能量传递到矿物原子核中的中子/质子中并使其处于激发状态,并通过诱 发伽马射线使能量快速衰减。每种处于激发状态的原子核具有特定的诱发 伽马射线能谱特征(非弹谱)。
硅、钙、铁、硫、钛、钆、氯、钡、氢、镁 可直接测量更多的元素
碳、铝、钾、锰、钠、铜、镍、氧 精细矿物剖面与总有机碳TOC 改善安全性和作业效率 无需化学源 比ECS测速快两倍 探测器无需冷却装置,175℃耐温
18
更小外径(4.5”),最小井眼5.5”
元素能谱测井的原理和过程– 矿物组份解释模型
各种矿物的元素干重特征值
石英 钾长石斜长石方解石 白云石伊利石 蒙脱石绿泥石黄铁矿 粘土 含量 含量 含量 含量 含量 含量 含量 含量 含量 总量
LithoScanner岩性扫描测井非电法含油饱和度
Shc
=
TOC ·rma ·(1 rhc ·Xhc ·Ø t
Ø t)
TOC, rma Øt Xh rhc
总有机碳、骨架密度 总孔隙度 HC 与 C 重量百分比转换系数(~ 0.85) 油气密度。轻质油~ 0.8; 沥青 ~ 1.1
非弹谱(INELASTIC)
俘获谱(CAPTURE)
首先测量独立的中子诱发伽马 非弹谱和俘获谱数据
元素能谱测井的原理和过程– 剥谱
非弹谱(INELASTIC)
俘获谱(CAPTURE)
将每种特定元素的特征谱 从总谱中分离出来得到每 种元素的产额
元素能谱测井的原理和过程– 氧闭合
将每种元素的产额转换 成元素干重曲线
0 0 0 0.072 0
0 0 0.088 0 0 0 0 0 0.0007 0.004 0.007 0.001
0.001 0.005
0 0 0 0.005 0
0 0.141
0 0 0 0 0 0 0.001 0.045 0.006 0.004
0.059 0.078
0 0 0 0 0
0 0 0 0 0 0 0.164 0.482 0.008 0.048 0.020 0.208
孔隙大小
粘度
扩散效应
Schlumberger Private
T1
T2
D
32
核磁共振测量的T2谱与岩石润湿性的相关关系
三组合 LithoScanne+CM R+ADTScanner
2015年以后
Scanner+…
高分辨率 (高频测量) QuantaGeo/NMR
常规油气藏---低孔低渗油气藏---致密油气藏---页岩油气藏---CBM/可燃冰气藏 现在。。。
复杂油气藏地层评价的“新三组合”测井新技术
骨架
孔隙
白云石、方解石
核磁(NMR)测井简介
NMR核磁信号来源于孔隙流体中氢原子(极化、弛豫)
基于T2谱的两个直接测量信息:
• 核磁总孔隙度(f TCMR) • 孔隙大小(T2)
T2 谱分布
孔隙尺寸
0.1 1 10 100 T2 (msec)
1000
基于f TCMR 和 孔隙尺寸可以计算的信息:
• 自由流通孔隙度
自由流体截止值 (例如:33 msec 砂岩)
CMR-A F Total 1995 - SNR
2002
- Real-time
- F NMR - BFV -K
- GeoSteering - Fluid ID
相关文档
最新文档