2020年玉溪市中考数学试题附答案

合集下载

玉溪市2020年中考数学试卷D卷

玉溪市2020年中考数学试卷D卷

玉溪市2020年中考数学试卷D卷姓名:________ 班级:________ 成绩:________一、选择题 (共15题;共30分)1. (2分)(2019·鄞州模拟) 实数-2019的绝对值是()A . -2019B . 2019C .D .2. (2分) (2020八上·南宁期末) 下列图形是轴对称图形的是()A .B .C .D .3. (2分)神舟八号与天宫一号为顺利进行二次交会对接,天宫/神八组合体于2011年12月13日22时37分在距地面高度约343公里的近圆轨道上偏航180度,建立倒飞姿态。

请将343公里保留两个有效数字可表示为()A . 3.43公里B . 3.43×102公里C . 0.34×103公里D . 3.4×102公里4. (2分)(2020·瑶海模拟) 下列计算正确的是()A . 2×32=36B . (﹣2a2b3)3 =﹣6a6b9C . ﹣5a5b3c÷15a4b=﹣3ab2cD . (a﹣2b)2 =a2﹣4ab+4b25. (2分) (2018九下·滨湖模拟) 下列说法中,正确的是()A . 为检测我市正在销售的酸奶质量,应该采用普查的方式B . 若两名同学连续五次数学测试的平均分相同,则方差较大的同学数学成绩更稳定C . 抛掷一个正方体骰子,朝上的面的点数为奇数的概率是D . “打开电视,正在播放广告”是必然事件6. (2分)(2020·深圳模拟) 图中所示的几何体的左视图为()A .B .C .D .7. (2分) (2017七上·乐昌期末) 若6x3my4与﹣x9y2n是同类项,则m,n的值分别是()A . m=2,n=3B . m=3,n=2C . m=﹣3,n=2D . m=﹣2,n=38. (2分)为确保信息安全,信息需要加密传输,发送方由明文→密文(解密).接收方由密文→明文(解密)。

玉溪市2020年中考数学试卷D卷

玉溪市2020年中考数学试卷D卷

玉溪市2020年中考数学试卷D卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)在3.14,,−,,π这五个数中,无理数的个数是()A . 1个B . 2个C . 3个D . 4个2. (2分) (2020八上·大东期末) 下列命题中的假命题是()A . 两直线平行,内错角相等B . 同位角相等,两直线平行C . 两直线平行,同旁内角相等D . 平行于同一条直线的两直线平行3. (2分)(2019·道外模拟) 下列几何体的主视图与左视图不相同的是()A .B .C .D .4. (2分)(2018·黄冈模拟) 下列运算正确的是()A . m6÷m2=m3B . (x+1)2=x2+1C . (3m2)3=9m6D . 2a3•a4=2a75. (2分)如图,在矩形ABCD中,对角线AC和BD交于点O,若OB=4,则BD的长为()A . 4B . 6C . 8D . 106. (2分)(2019·河南模拟) 在第37届中国洛阳文化节期间,某手工刺绣服装店老板某天销售了10件同款的女装上衣,销售尺码统计如下表:尺码/cm155160165170175销量/件14221则这10件上衣尺码的平均数和众数分别为()A . 160,164B . 160,4C . 164,160D . 164,47. (2分) (2019八上·威海期末) 某项工作,甲单独完成需要40分钟;若甲、乙共同做20分钟后,乙需再单独做20分钟才能完成,则乙单独完成需要()A . 40分钟B . 60分钟C . 80分钟D . 100分钟8. (2分)(2012·梧州) 如图,∠AOC=∠BOC,点P在OC上,PD⊥OA于点D,PE⊥OB于点E.若OD=8,OP=10,则PE的长为()A . 5B . 6C . 7D . 89. (2分) (2017七上·常州期中) 观察图给出的四个点阵,s表示每个点阵中的点的个数,按照图形中的点的个数变化规律,猜想第n个点阵中的点的个数s为()A . 3n﹣2B . 3n﹣1C . 4n+1D . 4n﹣310. (2分)(2015·宁波模拟) 如图,四边形ABCD是平行四边形,顶点A、B的坐标分别是A(1,0),B(0,﹣2),顶点C、D在双曲线上,边AD与y轴相交于点E,=10,则k的值是()A . -16B . -9C . -8D . -12二、填空题 (共6题;共6分)11. (1分)(2018·宜宾模拟) 分解因式:2xy2+4xy+2x=________.12. (1分)如图,四边形ABCD与四边形AECF都是菱形,点E、F在BD上.已知∠BAD=120°,∠EAF=30°,则= ________ .13. (1分)用在高速公路上行驶的汽车耗油1L所行走的路程来估计1L汽油能使汽车行走多少路程的试验中,样本的选取________.(填“可靠”或“不可靠”)14. (1分) (2019七下·简阳期中) 若规定符号的意义是: = ,,则当m2﹣2m﹣3=0时,的值为__.15. (1分) (2019九上·南阳月考) 如图,在矩形ABCD中,AB=3,AD=7,点E是AD边上的一点,连接BE,将BE绕点E顺时针旋转90°至B′E,连接B′D,当△B′ED是直角三角形时,线段AE的长为________.16. (1分)(2018·苏州模拟) 如图,矩形的顶点在坐标原点,顶点、分别在轴、轴的正半轴上,顶点在反比例函数( 为常数, )的图像上,将矩形绕点按逆时针方向旋转90°得到矩形,若点的对应点恰好落在此反比例函数的图像上,则的值是________.三、计算题 (共9题;共78分)17. (5分)计算:20150+18. (5分)(2017·绿园模拟) 先化简,再求值:÷ ﹣a,其中a=2.19. (5分) (2017·洛宁模拟) “蘑菇石”是我国著名的自然保护区梵净山的标志,小明从山脚B点先乘坐缆车到达观景平台DE观景,然后再沿着坡脚为29°的斜坡由E点步行到达“蘑菇石”A点,“蘑菇石”A点到水平面BC的垂直距离为1890m.如图,DE∥BC,BD=1800m,∠DBC=80°,求斜坡AE的长度.(结果精确到0.1m,可参考数据sin29°≈0.4848,sin80°≈0.9848,cos29°≈0.8746,cos80°≈0.1736)20. (6分)(2016·安徽模拟) 在刚刚闭幕的2016全国“两会”,民生话题依然是社会焦点,某市记者为了了解百姓对“两会民生话题”的聚焦点,随机调查了部分市民,并对调查结果进行整理.绘制了如图所示的统计图表(不完整).頻数分布表组别焦点话题频数(人数)A医疗卫生100B食品安全mC教育住房40D社会保障80E生态环境nF其他60请根据图表中提供的信息解答下列问题:(1)填空:m=________,n=________.扇形统计图中E组,F组所占的百分比分别为________、________(2)该市现有人口大约800万,请你估计其中关注B组话题的人数;(3)若在这次接受调查的市民中,随机抽查一人,则此人关注A组话题的概率是多少?21. (10分)(2018·随州) 己知关于x的一元二次方程x2+(2k+3)x+k2=0有两个不相等的实数根x1 , x2 .(1)求k的取值范围;(2)若 =﹣1,求k的值.22. (10分)(2018·东莞模拟) 如图,四边形ABCD内接于⊙O,AB=AD,对角线BD为⊙O的直径,AC与BD 交于点E.点F为CD延长线上,且DF=BC.(1)证明:AC=AF;(2)若AD=2,AF= ,求AE的长;(3)若EG∥CF交AF于点G,连接DG.证明:DG为⊙O的切线.23. (11分)(2016·武汉) 某公司计划从甲、乙两种产品中选择一种生产并销售,每年产销x件.已知产销两种产品的有关信息如表:产品每件售价(万元)每件成本(万元)每年其他费用(万元)每年最大产销量(件)甲6a20200乙201040+0.05x280其中a为常数,且3≤a≤5(1)若产销甲、乙两种产品的年利润分别为y1万元、y2万元,直接写出y1、y2与x的函数关系式;(2)分别求出产销两种产品的最大年利润;(3)为获得最大年利润,该公司应该选择产销哪种产品?请说明理由.24. (11分)(2019·抚顺模拟) 已知△ABC是等边三角形,点P在射线AC上(点P与点A、点C不重合),点D在线段BC的延长线上,且AP=CD,△PCD′与△PCD关于直线AC对称.(1)如图1,当点P在线段AC上时,①求证:PB=PD;②请求出∠BPD′的度数;(2)当点P在射线AC上运动时,请直接回答:①PB=PD是否仍然成立?②∠BPD′的度数是否发生变化?(3)将△PCD′绕点P顺时针旋转,在旋转的过程中,PD′与PB能否重合?若能重合,请直接写出旋转的角度;若不能重合,请说明理由;(4)若AB=4,当点P为AC边的中点时,请直接写出PD'的长25. (15分) (2020九上·新乡期末) 如图,直线与轴交于点,与轴交于点,抛物线与直线交于,两点,点是抛物线的顶点.(1)求抛物线的解析式;(2)点是直线上方抛物线上的一个动点,其横坐标为,过点作轴的垂线,交直线于点,当线段的长度最大时,求的值及的最大值.(3)在抛物线上是否存在异于、的点,使中边上的高为,若存在求出点的坐标;若不存在请说明理由.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共6分)11-1、12-1、13-1、14-1、15-1、16-1、三、计算题 (共9题;共78分)17-1、18-1、19-1、20-1、20-2、20-3、21-1、21-2、22-1、22-2、22-3、23-1、23-2、23-3、24-1、24-3、24-4、25-1、25-2、25-3、。

玉溪市2020年中考数学试卷A卷(新版)

玉溪市2020年中考数学试卷A卷(新版)

玉溪市2020年中考数学试卷A卷姓名:________ 班级:________ 成绩:________一、选择题. (共10题;共20分)1. (2分)(2014·钦州) 如果收入80元记作+80元,那么支出20元记作()A . +20元B . ﹣20元C . +100元D . ﹣100元2. (2分)下面简单几何体的主视图是()A .B .C .D .3. (2分)下列各式中,合并同类项正确的是()。

A .B .C .D .4. (2分)(2020·襄阳) 如图,,直线分别交,于点E,F,平分,若,则的大小是()A .B .C .D .5. (2分)在共有15人参加的“我爱祖国”演讲比赛中,参赛选手要想知道自己是否能进入前8名,除了知道自己的成绩以外,还需要知道全部成绩的()A . 平均数B . 众数C . 方差D . 中位数6. (2分)用配方法解方程3x2﹣9x+1=0时,配方结果正确的是()A . (x+ )2=B . (x﹣)2=C . (x﹣)2=D . (x﹣)2=7. (2分)关于x的方程5-a(1-x)=8x-(3-a)x的解是负数,则a的取值范围是()A . a<-4B . a>5C . a>-5D . a<-58. (2分) (2017八下·建昌期末) 小亮从家步行到公交车站台,等公交车去学校.图中的折线表示小亮的行程s(km)与所花时间t(min)之间的函数关系.下列说法错误的是()A . 他离家8km共用了30minB . 他等公交车时间为6minC . 他步行的速度是100m/minD . 公交车的速度是350m/min9. (2分)某厂一月份的总产量为500吨,三月份的总产量达到为720吨。

若平均每月增长率是,则可以列方程()A . 500(1+2x)=720B . 500(1+x)2=720C . 500(1-x)2=720D . 720(1+x)2=50010. (2分) (2019八下·乐陵期末) 如图,在正方形ABCD的外侧,作等边三角形ADE,则∠BED为()A . 45°B . 15°C . 10°D . 125°二、填空题. (共8题;共19分)11. (2分) (2019八上·咸阳月考) 0.36的平方根是________,81的算术平方根是________12. (1分)截止2016年4月28日,电影《美人鱼》的累计票房达到大约3390000000元,数据3390000000用科学记数法表示为________.13. (1分)(2017·黄冈模拟) 学校为了了解九年级学生“一分钟跳绳次数”的情况,随机选取了4名女生和2名男生,则从这6名学生中选取2名同时跳绳,恰好选中一男一女的概率是________.14. (1分)(2019·徐州) 如图,矩形中,、交于点,、分别为、的中点.若,则的长为________.15. (1分) (2017七上·下城期中) 已知有理数,满足:,且,则 ________.16. (5分)(2019·鞍山) 如图,在菱形ABCD中,E,F分别是AD,DC的中点,若BD=4,EF=3,则菱形ABCD的周长为__.17. (1分)(2017·盐都模拟) 如图,一次函数与反比例函数的图像交于A(1,12)和B(6,2)两点.点P是线段AB上一动点(不与点A和B重合),过P点分别作x、y轴的垂线PC、PD交反比例函数图像于点M、N,则四边形PMON面积的最大值是________.18. (7分) (2018八上·易门期中) 完成下面的证明过程已知:如图,AB∥CD,AE⊥BD于E,CF⊥BD于F,BF=DE.求证:△ABE≌△CDF.证明:∵AB∥CD,∴∠1=________.(两直线平行,内错角相等)∵AE⊥BD,CF⊥BD,∴∠AEB=________=90°.∵BF=DE,∴BE=________.在△ABE和△CDF中,①________;②________;③________;∴△ABE≌△CDF________.三、解答题. (共8题;共66分)19. (5分)计算:(﹣2)2+||﹣.20. (10分)关于x,y的方程组(1)若x的值比y的值小5,求m的值;(2)若方程3x+2y=17与方程组的解相同,求m的值.21. (1分) (2018八下·黄浦期中) 请将方程(x-3) =0的解写在后面的横线上:________22. (10分) (2016九上·绵阳期中) 已知:关于x的方程x2﹣(k+2)x+2k=0(1)求证:无论k取任何实数值,方程总有实数根;(2)若等腰三角形ABC的一边长a=1,另两边长b,c恰好是这个方程的两个根,求△ABC的周长.23. (10分)(2017·溧水模拟) 如图,为了测出某塔CD的高度,在塔前的平地上选择一点A,用测角仪测得塔顶D的仰角为30°,在A、C之间选择一点B(A、B、C三点在同一直线上).用测角仪测得塔顶D的仰角为75°,且AB间的距离为40m.(1)求点B到AD的距离;(2)求塔高CD(结果用根号表示).24. (10分)(2018·南山模拟) 中考即将来临,小王调查了初三年级部分同学在中考后将以何种方式对自己的老师表达感谢,他将调查结果分为如下四类:A类—当面表示感谢、B类—打电话表示感谢、C类—发短信表示感谢、D类—写书信表示感谢.他将调查结果绘制成了如图所示的扇形统计图和条形统计图.请你根据图中提供的信息完成下列各题:(1)补全条形统计图;(2)在A类的同学中,有4人来自同一班级,其中有2个女生.现准备从他们4人中随机抽出两位同学主持感谢恩师主题班会课,请用树状图或列表法求抽出1男1女的概率.25. (10分)(2017·昆山模拟) 如图,在△ABC中,∠C=90°,D、F是AB边上的两点,以DF为直径的⊙O 与BC相交于点E,连接EF,过F作FG⊥BC于点G,其中∠OFE= ∠A.(1)求证:BC是⊙O的切线;(2)若sinB= ,⊙O的半径为r,求△EHG的面积(用含r的代数式表示).26. (10分)(2020·温州模拟) 如图,在平面直角坐标系x oy中,顶点为M的抛物线是由抛物线y=x²-3向右平移一个单位后得到的,它与y轴负半轴交于点A,点B在该拋物线上,且横坐标为3。

玉溪市2020版中考数学试卷C卷

玉溪市2020版中考数学试卷C卷

玉溪市 2020 版中考数学试卷 C 卷姓名:________班级:________成绩:________一、 选择题 (共 10 题;共 30 分)1. (3 分) |2-5|=( )A . -7B.7C . -3D.32. (3 分) (2019·嘉兴)年 月 日 时 分,“嫦娥四号”探测器飞行约实现人类探测器首次在月球背面软着陆.数据用科学记数法表示为( )A.B.C.D.3. (3 分) (2019·嘉兴) 如图是由四个相同的小正方形组成的立体图形,它的俯视图为(千米, )A.B. C.D. 4. (3 分) (2019·嘉兴)年 月 日第 届中国国际大数据产业博览会召开.某市在五届数博会上的产业签约金额的折线统计图如图.下列说法正确的是( )第 1 页 共 15 页A . 签约金额逐年增加 B . 与上年相比,2019 年的签约金额的增长量最多 C . 签约金额的年增长速度最快的是 2016 年 D . 2018 年的签约金额比 2017 年降低了 22.98% 5. (3 分) (2019·嘉兴) 如图是一个 2×2 的方阵,其中每行、每列的两数和相等,则 可以是( )20aA.B . -1C.0D.6. (3 分) (2019·嘉兴) 已知四个实数 , , , ,若,,则( )A.B.C.D. 7. (3 分) (2019·嘉兴) 如图,已知⊙O 上三点 A,B,C,半径 OC=1,∠ABC=30°,切线 PA 交 OC 延长线于 点 P,则 PA 的长为( )A.2第 2 页 共 15 页B. C.D. 8. (3 分) (2019·嘉兴) 中国清代算书《御制数理精蕴》中有这样一题:“马四匹、牛六头,共价四十八两 (我国古代货币单位);马三匹、牛五头,共价三十八两.问马、牛各价几何?”设马每匹 两,牛每头 两,根 据题意可列方程组为( )A.B.C.D. 9. (3 分) (2019·嘉兴) 如图,在直角坐标系中,已知菱形的顶点关于 轴的对称图形,再作图形关于点 的中心对称图形的坐标是( ),.作菱形,则点 的对应点A. B. C. D.10. (3 分) (2019·嘉兴) 小飞研究二次函数( 为常数)性质时如下结论:①这个函数图象的顶点始终在直线上;②存在一个 的值,使得函数图象的顶点与 轴的两个交点构成等腰直角三角形;③点与点在函数图象上,若,,则;④当 A.① B.②时, 随 的增大而增大,则 的取值范围为其中错误结论的序号是( )第 3 页 共 15 页C.③ D.④二、 填空题 (共 6 题;共 24 分)11. (4 分) 计算________.12.(4 分)(2019·嘉兴) 从甲、乙、丙三人中任选两人参加“青年志愿者”活动,甲被选中的概率为________.13. (4 分) (2019·嘉兴) 数轴上有两个实数 , ,且 >0, <0, + <0,则四个数 , ,, 的大小关系为________(用“<”号连接).14. (4 分) 在 x2+________ +4=0 的括号中添加一个关于 x 的一次项,使方程有两个相等的实数根。

2020年云南省中考数学试卷(含解析)印刷版

2020年云南省中考数学试卷(含解析)印刷版

2020年云南省中考数学试卷一、填空题(本大题共6小题,每小题3分,共18分)1.(3分)中国是最早采用正负数表示相反意义的量的国家.某仓库运进面粉7吨,记为+7吨,那么运出面粉8吨应记为吨.2.(3分)如图,直线c与直线a、b都相交.若a∥b,∠1=54°,则∠2=度.3.(3分)要使有意义,则x的取值范围是.4.(3分)已知一个反比例函数的图象经过点(3,1),若该反比例函数的图象也经过点(﹣1,m),则m =.5.(3分)若关于x的一元二次方程x2+2x+c=0有两个相等的实数根,则实数c的值为.6.(3分)已知四边形ABCD是矩形,点E是矩形ABCD的边上的点,且EA=EC.若AB=6,AC=2,则DE的长是.二、选择题(本大题共8小题,每小题只有一个正确选项,每小题4分,共32分)7.(4分)千百年来的绝对贫困即将消除,云南省95%的贫困人口脱贫,95%的贫困村出列,90%的贫困县摘帽,1500000人通过异地扶贫搬迁实现“挪穷窝”,“斩穷根”(摘自2020年5月11日云南日报).1500000这个数用科学记数法表示为()A.15×106B.1.5×105C.1.5×106D.1.5×1078.(4分)下列几何体中,主视图是长方形的是()A.B.C.D.9.(4分)下列运算正确的是()A.=±2B.()﹣1=﹣2C.(﹣3a)3=﹣9a3D.a6÷a3=a3(a≠0)10.(4分)下列说法正确的是()A.为了解三名学生的视力情况,采用抽样调查B.任意画一个三角形,其内角和是360°是必然事件C.甲、乙两名射击运动员10次射击成绩(单位:环)的平均数分别为、,方差分别为s甲2、s乙2,若=,s甲2=0.4,s乙2=2,则甲的成绩比乙的稳定D.一个抽奖活动中,中奖概率为,表示抽奖20次就有1次中奖11.(4分)如图,平行四边形ABCD的对角线AC,BD相交于点O,E是CD的中点.则△DEO与△BCD 的面积的比等于()A.B.C.D.12.(4分)按一定规律排列的单项式:a,﹣2a,4a,﹣8a,16a,﹣32a,…,第n个单项式是()A.(﹣2)n﹣1a B.(﹣2)n a C.2n﹣1a D.2n a13.(4分)如图,正方形ABCD的边长为4,以点A为圆心,AD为半径,画圆弧DE得到扇形DAE(阴影部分,点E在对角线AC上).若扇形DAE正好是一个圆锥的侧面展开图,则该圆锥的底面圆的半径是()A.B.1C.D.14.(4分)若整数a使关于x的不等式组,有且只有45个整数解,且使关于y的方程+=1的解为非正数,则a的值为()A.﹣61或﹣58B.﹣61或﹣59C.﹣60或﹣59D.﹣61或﹣60或﹣59三、解答题(本大题共9小题,共70分)15.(6分)先化简,再求值:÷,其中x=.16.(6分)如图,已知AD=BC,BD=AC.求证:∠ADB=∠BCA.17.(8分)某公司员工的月工资如下:员工经理副经理职员A职员B职员C职员D职员E职员F杂工G月工资/700044002400200019001800180018001200元经理、职员C、职员D从不同的角度描述了该公司员工的收入情况.设该公司员工的月工资数据(见上述表格)的平均数、中位数、众数分别为k、m、n,请根据上述信息完成下列问题:(1)k=,m=,n=;(2)上月一个员工辞职了,从本月开始,停发该员工工资,若本月该公司剩下的8名员工的月工资不变,但这8名员工的月工资数据(单位:元)的平均数比原9名员工的月工资数据(见上述表格)的平均数减小了.你认为辞职的那名员工可能是.18.(6分)某地响应“把绿水青山变成金山银山,用绿色杠杆撬动经济转型”发展理念,开展“美化绿色城市”活动,绿化升级改造了总面积为360万平方米的区域.实际施工中,由于采用了新技术,实际平均每年绿化升级改造的面积是原计划平均每年绿化升级改造的面积的2倍,所以比原计划提前4年完成了上述绿化升级改造任务.实际平均每年绿化升级改造的面积是多少万平方米?19.(7分)甲、乙两个家庭来到以“生态资源,绿色旅游”为产业的美丽云南,各自随机选择到大理、丽江、西双版纳三个城市中的一个城市旅游.假设这两个家庭选择到哪个城市旅游不受任何因素影响,上述三个城市中的每一个被选到的可能性相同,甲、乙两个家庭选择到上述三个城市中的同一个城市旅游的概率为P.(1)直接写出甲家庭选择到大理旅游的概率;(2)用列表法或树状图法(树状图也称树形图)中的一种方法,求P的值.20.(8分)如图,AB为⊙O的直径,C为⊙O上一点,AD⊥CE,垂足为D,AC平分∠DAB.(1)求证:CE是⊙O的切线;(2)若AD=4,cos∠CAB =,求AB的长.21.(8分)众志成城抗疫情,全国人民在行动.某公司决定安排大、小货车共20辆,运送260吨物资到A地和B地,支援当地抗击疫情.每辆大货车装15吨物资,每辆小货车装10吨物资,这20辆货车恰好装完这批物资.已知这两种货车的运费如下表:目的地A地(元/辆)B地(元/辆)车型大货车9001000小货车500700现安排上述装好物资的20辆货车(每辆大货车装15吨物资,每辆小货车装10吨物资)中的10辆前往A地,其余前往B地,设前往A地的大货车有x辆,这20辆货车的总运费为y元.(1)这20辆货车中,大货车、小货车各有多少辆?(2)求y与x的函数解析式,并直接写出x的取值范围;(3)若运往A地的物资不少于140吨,求总运费y的最小值.22.(9分)如图,四边形ABCD是菱形,点H为对角线AC的中点,点E在AB的延长线上,CE⊥AB,垂足为E,点F在AD的延长线上,CF⊥AD,重足为F,(1)若∠BAD=60°,求证:四边形CEHF是菱形;(2)若CE=4,△ACE的面积为16,求菱形ABCD的面积.23.(12分)抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于点C,点A的坐标为(﹣1,0),点C 的坐标为(0,﹣3).点P为抛物线y=x2+bx+c上的一个动点.过点P作PD⊥x轴于点D,交直线BC 于点E.(1)求b、c的值;(2)设点F在抛物线y=x2+bx+c的对称轴上,当△ACF的周长最小时,直接写出点F的坐标;(3)在第一象限,是否存在点P,使点P到直线BC的距离是点D到直线BC的距离的5倍?若存在,求出点P所有的坐标;若不存在,请说明理由.2020年云南省中考数学试卷参考答案与试题解析一、填空题(本大题共6小题,每小题3分,共18分)1.(3分)中国是最早采用正负数表示相反意义的量的国家.某仓库运进面粉7吨,记为+7吨,那么运出面粉8吨应记为﹣8吨.【分析】根据正负数的意义,直接写出答案即可.【解答】解:因为题目运进记为正,那么运出记为负.所以运出面粉8吨应记为﹣8吨.故答案为:﹣8.2.(3分)如图,直线c与直线a、b都相交.若a∥b,∠1=54°,则∠2=54度.【分析】直接利用平行线的性质:两直线平行,同位角相等,即可得出答案.【解答】解:∵a∥b,∠1=54°,∴∠2=∠1=54°.故答案为:54.3.(3分)要使有意义,则x的取值范围是x≥2.【分析】根据二次根式有意义的条件得到x﹣2≥0,然后解不等式即可.【解答】解:∵有意义,∴x﹣2≥0,∴x≥2.故答案为x≥2.4.(3分)已知一个反比例函数的图象经过点(3,1),若该反比例函数的图象也经过点(﹣1,m),则m =﹣3.【分析】设反比例函数的表达式为y=,依据反比例函数的图象经过点(3,1)和(﹣1,m),即可得到k=3×1=﹣m,进而得出m=﹣3.【解答】解:设反比例函数的表达式为y=,∵反比例函数的图象经过点(3,1)和(﹣1,m),∴k=3×1=﹣m,解得m=﹣3,故答案为:﹣3.5.(3分)若关于x的一元二次方程x2+2x+c=0有两个相等的实数根,则实数c的值为1.【分析】若一元二次方程有两个相等的实数根,则根的判别式△=b2﹣4ac=0,建立关于c的方程,求出c的值即可.【解答】解:∵关于x的一元二次方程x2+2x+c=0有两个相等的实数根,∴△=b2﹣4ac=22﹣4c=0,解得c=1.故答案为1.6.(3分)已知四边形ABCD是矩形,点E是矩形ABCD的边上的点,且EA=EC.若AB=6,AC=2,则DE的长是或.【分析】由勾股定理可求BC=2,分点E在CD上或在AB上两种情况讨论,由勾股定理可求解.【解答】解:如图,∵四边形ABCD是矩形,∴CD=AB=6,AD=BC,∠ABC=∠ADC=90°,∴BC===2,∴AD=2,当点E在CD上时,∵AE2=DE2+AD2=EC2,∴(6﹣DE)2=DE2+4,∴DE=;当点E在AB上时,∵CE2=BE2+BC2=EA2,∴AE2=(6﹣AE)2+4,∴AE=,∴DE===,综上所述:DE=或,故答案为:或.二、选择题(本大题共8小题,每小题只有一个正确选项,每小题4分,共32分)7.(4分)千百年来的绝对贫困即将消除,云南省95%的贫困人口脱贫,95%的贫困村出列,90%的贫困县摘帽,1500000人通过异地扶贫搬迁实现“挪穷窝”,“斩穷根”(摘自2020年5月11日云南日报).1500000这个数用科学记数法表示为()A.15×106B.1.5×105C.1.5×106D.1.5×107【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正数;当原数的绝对值<1时,n是负数.【解答】解:1500000=1.5×106,故选:C.8.(4分)下列几何体中,主视图是长方形的是()A.B.C.D.【分析】根据各个几何体的主视图的形状进行判断即可.【解答】解:圆柱体的主视图是长方形,圆锥的主视图是等腰三角形,球的主视图是圆形,四面体的主视图是三角形,故选:A.9.(4分)下列运算正确的是()A.=±2B.()﹣1=﹣2C.(﹣3a)3=﹣9a3D.a6÷a3=a3(a≠0)【分析】根据二次根式的性质,负整数指数幂法则,幂的性质进行解答便可.【解答】解:A.,选项错误;B.原式=2,选项错误;C.原式=﹣27a3,选项错误;D.原式=a6﹣3=a3,选项正确.故选:D.10.(4分)下列说法正确的是()A.为了解三名学生的视力情况,采用抽样调查B.任意画一个三角形,其内角和是360°是必然事件C.甲、乙两名射击运动员10次射击成绩(单位:环)的平均数分别为、,方差分别为s甲2、s乙2,若=,s甲2=0.4,s乙2=2,则甲的成绩比乙的稳定D.一个抽奖活动中,中奖概率为,表示抽奖20次就有1次中奖【分析】根据普查、抽查,三角形的内角和,方差和概率的意义逐项判断即可.【解答】解:了解三名学生的视力情况,由于总体数量较少,且容易操作,因此宜采取普查,因此选项A不符合题意;任意画一个三角形,其内角和是360°是不可能事件,因此选项B不符合题意;根据平均数和方差的意义可得选项C符合题意;一个抽奖活动中,中奖概率为,表示中奖的可能性为,不代表抽奖20次就有1次中奖,因此选项D不符合题意;故选:C.11.(4分)如图,平行四边形ABCD的对角线AC,BD相交于点O,E是CD的中点.则△DEO与△BCD 的面积的比等于()A.B.C.D.【分析】利用平行四边形的性质可得出点O为线段BD的中点,结合点E是CD的中点可得出线段OE 为△DBC的中位线,利用三角形中位线定理可得出OE∥BC,OE=BC,进而可得出△DOE∽△DBC,再利用相似三角形的面积比等于相似比的平方,即可求出△DEO与△BCD的面积的比.【解答】解:∵平行四边形ABCD的对角线AC,BD相交于点O,∴点O为线段BD的中点.又∵点E是CD的中点,∴线段OE为△DBC的中位线,∴OE∥BC,OE=BC,∴△DOE∽△DBC,∴=()2=.故选:B.12.(4分)按一定规律排列的单项式:a,﹣2a,4a,﹣8a,16a,﹣32a,…,第n个单项式是()A.(﹣2)n﹣1a B.(﹣2)n a C.2n﹣1a D.2n a【分析】根据题意,找出规律:单项式的系数为(﹣2)的幂,其指数为比序号数少1,字母为a.【解答】解:∵a=(﹣2)1﹣1a,﹣2a=(﹣2)2﹣1a,4a=(﹣2)3﹣1a,﹣8a=(﹣2)4﹣1a,16a=(﹣2)5﹣1a,﹣32a=(﹣2)6﹣1a,…由上规律可知,第n个单项式为:(﹣2)n﹣1a.故选:A.13.(4分)如图,正方形ABCD的边长为4,以点A为圆心,AD为半径,画圆弧DE得到扇形DAE(阴影部分,点E在对角线AC上).若扇形DAE正好是一个圆锥的侧面展开图,则该圆锥的底面圆的半径是()A.B.1C.D.【分析】根据圆锥的底面周长与展开后所得扇形的弧长相等列式计算即可.【解答】解:设圆椎的底面圆的半径为r,根据题意可知:AD=AE=4,∠DAE=45°,∴2πr=,解得r=.答:该圆锥的底面圆的半径是.故选:D.14.(4分)若整数a使关于x的不等式组,有且只有45个整数解,且使关于y的方程+=1的解为非正数,则a的值为()A.﹣61或﹣58B.﹣61或﹣59C.﹣60或﹣59D.﹣61或﹣60或﹣59【分析】解不等式组,得<x≤25,根据不等式组有且只有45个整数解,可得﹣61≤a<﹣58,根据关于y的方程+=1的解为非正数:解得a≥﹣61,又y+1不等于0,进而可得a的值.【解答】解:解不等式组,得<x≤25,∵不等式组有且只有45个整数解,∴﹣20≤<﹣19,解得﹣61≤a<﹣58,因为关于y的方程+=1的解为:y=﹣a﹣61,y≤0,∴﹣a﹣61≤0,解得a≥﹣61,∵y+1≠0,∴y≠﹣1,∴a≠﹣60则a的值为:﹣61或﹣59.故选:B.三、解答题(本大题共9小题,共70分)15.(6分)先化简,再求值:÷,其中x=.【分析】原式利用除法法则变形,约分得到最简结果,把x的值代入计算即可求出值.【解答】解:原式=÷=•=,当x=时,原式=2.16.(6分)如图,已知AD=BC,BD=AC.求证:∠ADB=∠BCA.【分析】根据SSS推出△ADB和△BCA全等,再根据全等三角形的性质得出即可.【解答】证明:在△ADB和△BCA中,,∴△ADB≌△BCA(SSS),∴∠ADB=∠BCA.17.(8分)某公司员工的月工资如下:员工经理副经理职员A职员B职员C职员D职员E职员F杂工G月工资/元700044002400200019001800180018001200经理、职员C、职员D从不同的角度描述了该公司员工的收入情况.设该公司员工的月工资数据(见上述表格)的平均数、中位数、众数分别为k、m、n,请根据上述信息完成下列问题:(1)k=2700,m=1900,n=1800;(2)上月一个员工辞职了,从本月开始,停发该员工工资,若本月该公司剩下的8名员工的月工资不变,但这8名员工的月工资数据(单位:元)的平均数比原9名员工的月工资数据(见上述表格)的平均数减小了.你认为辞职的那名员工可能是经理或副经理.【分析】(1)求出9个数据之和再除以总个数即可;对于中位数,按从大到小的顺序排列,找出最中间的那个数即可;出现频数最多的数据即为众数;(2)根据剩下的8名员工的月工资数据的平均数比原9名员工的月工资数据的平均数减小,得出辞职的那名员工工资高于2700元,从而得出辞职的那名员工可能是经理或副经理.【解答】解:(1)平均数k=(7000+4400+2400+2000+1900+1800×3+1200)÷9=2700,9个数据从大到小排列后,第5个数据是1900,所以中位数m=1900,1800出现了三次,次数最多,所以众数n=1800.故答案为:2700,1900,1800;(2)由题意可知,辞职的那名员工工资高于2700元,所以辞职的那名员工可能是经理或副经理.故答案为:经理或副经理.18.(6分)某地响应“把绿水青山变成金山银山,用绿色杠杆撬动经济转型”发展理念,开展“美化绿色城市”活动,绿化升级改造了总面积为360万平方米的区域.实际施工中,由于采用了新技术,实际平均每年绿化升级改造的面积是原计划平均每年绿化升级改造的面积的2倍,所以比原计划提前4年完成了上述绿化升级改造任务.实际平均每年绿化升级改造的面积是多少万平方米?【分析】设原计划每年绿化升级改造的面积是x万平方米,则实际每年绿化升级改造的面积是2x万平方米,根据“实际平均每年绿化升级改造的面积是原计划平均每年绿化升级改造的面积的2倍,所以比原计划提前4年完成了上述绿化升级改造任务”列出方程即可求解.【解答】解:设原计划每年绿化升级改造的面积是x万平方米,则实际每年绿化升级改造的面积是2x 万平方米,根据题意,得:﹣=4,解得:x=45,经检验,x=45是原分式方程的解,则2x=2×45=90.答:实际平均每年绿化升级改造的面积是90万平方米.19.(7分)甲、乙两个家庭来到以“生态资源,绿色旅游”为产业的美丽云南,各自随机选择到大理、丽江、西双版纳三个城市中的一个城市旅游.假设这两个家庭选择到哪个城市旅游不受任何因素影响,上述三个城市中的每一个被选到的可能性相同,甲、乙两个家庭选择到上述三个城市中的同一个城市旅游的概率为P.(1)直接写出甲家庭选择到大理旅游的概率;(2)用列表法或树状图法(树状图也称树形图)中的一种方法,求P的值.【分析】(1)直接用概率公式求解可得;(2)记到大理、丽江、西双版纳三个城市旅游分别为A、B、C,列表得出所有等可能结果,从中找到甲、乙两个家庭选择到上述三个城市中的同一个城市旅游的结果数,根据概率公式求解可得.【解答】解:(1)甲家庭选择到大理旅游的概率为;(2)记到大理、丽江、西双版纳三个城市旅游分别为A、B、C,列表得:A B CA(A,A)(A,B)(A,C)B(B,A)(B,B)(B,C)C(C,A)(C,B)(C,C)由表格可知,共有9种等可能性结果,其中甲、乙两个家庭选择到上述三个城市中的同一个城市旅游的有3种结果,所以甲、乙两个家庭选择到上述三个城市中的同一个城市旅游的概率P==.20.(8分)如图,AB为⊙O的直径,C为⊙O上一点,AD⊥CE,垂足为D,AC平分∠DAB.(1)求证:CE是⊙O的切线;(2)若AD=4,cos∠CAB=,求AB的长.【分析】(1)连接OC.只要证明OC⊥DE即可解决问题;(2)连接BC,根据圆周角定理得到∠ACB=90°,根据角平分线的定义得到∠DAC=∠CAB,根据相似三角形的性质即可得到结论.【解答】(1)证明:连接OC.∵OA=OC,∴∠OAC=∠OCA,∵AC平分∠DAB,∴∠CAD=∠CAB,∴∠DAC=∠ACO,∴AD∥OC,∵AD⊥DE,∴OC⊥DE,∴直线CE是⊙O的切线;(2)连接BC,∵AB为⊙O的直径,∴∠ACB=90°,∴∠ADC=∠ACB,∵AC平分∠DAB,∴∠DAC=∠CAB,∴△DAC∽△CAB ,∴=,∵cos∠CAB ==,∴设AC=4x,AB=5x ,∴=,∴x =,∴AB =.21.(8分)众志成城抗疫情,全国人民在行动.某公司决定安排大、小货车共20辆,运送260吨物资到A地和B地,支援当地抗击疫情.每辆大货车装15吨物资,每辆小货车装10吨物资,这20辆货车恰好装完这批物资.已知这两种货车的运费如下表:目的地A地(元/辆)B地(元/辆)车型大货车9001000小货车500700现安排上述装好物资的20辆货车(每辆大货车装15吨物资,每辆小货车装10吨物资)中的10辆前往A地,其余前往B地,设前往A地的大货车有x辆,这20辆货车的总运费为y元.(1)这20辆货车中,大货车、小货车各有多少辆?(2)求y与x的函数解析式,并直接写出x的取值范围;(3)若运往A地的物资不少于140吨,求总运费y的最小值.【分析】(1)设大货车、小货车各有x与y辆,根据题意列出方程组即可求出答案.(2)根据题中给出的等量关系即可列出y与x的函数关系.(3)先求出x的范围,然后根据y与x的函数关系式即可求出y的最小值.【解答】解:(1)设大货车、小货车各有x与y辆,由题意可知:,解得:,答:大货车、小货车各有12与8辆(2)设到A地的大货车有x辆,则到A地的小货车有(10﹣x)辆,到B地的大货车有(12﹣x)辆,到B地的小货车有(x﹣2)辆,∴y=900x+500(10﹣x)+1000(12﹣x)+700(x﹣2)=100x+15600,其中2<x<10.(3)运往A地的物资共有[15x+10(10﹣x)]吨,15x+10(10﹣x)≥140,解得:x≥8,∴8≤x<10,当x=8时,y有最小值,此时y=100×8+15600=16400元,答:总运费最小值为16400元.22.(9分)如图,四边形ABCD是菱形,点H为对角线AC的中点,点E在AB的延长线上,CE⊥AB,垂足为E,点F在AD的延长线上,CF⊥AD,重足为F,(1)若∠BAD=60°,求证:四边形CEHF是菱形;(2)若CE=4,△ACE的面积为16,求菱形ABCD的面积.【分析】(1)根据菱形的性质得到∠ABC=∠ADC=120°,根据角平分线的性质得到CE=CF,根据直角三角形的性质得到EH=FH=AC,于是得到结论;(2)根据三角形的面积公式得到AE=8,根据勾股定理得到AC==4,连接BD,则BD⊥AC,AH=AC=2,根据相似三角形的性质得到BD=2BH=2,由菱形的面积公式即可得到结论.【解答】解:(1)∵四边形ABCD是菱形,∠BAD=60°,∴∠EAC=∠F AC=30°,又∵CE⊥AB,CF⊥AD,∴CE=CF=1/2AC,∵点H为对角线AC的中点,∴EH=FH=1/2AC,∴CE=CF=EH=FH,∴四边形CEHF是菱形;(2)∵CE⊥AB,CE=4,△ACE的面积为16,∴AE=8,∴AC==4,连接BD,则BD⊥AC,AH=AC=2,∵∠AHB=∠AEC=90°,∠BAH=∠EAC,∴△ABH∽△ACE,∴=,∴=,∴BH=,∴BD=2BH=2,∴菱形ABCD的面积=AC•BD==20.23.(12分)抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于点C,点A的坐标为(﹣1,0),点C 的坐标为(0,﹣3).点P为抛物线y=x2+bx+c上的一个动点.过点P作PD⊥x轴于点D,交直线BC 于点E.(1)求b、c的值;(2)设点F在抛物线y=x2+bx+c的对称轴上,当△ACF的周长最小时,直接写出点F的坐标;(3)在第一象限,是否存在点P,使点P到直线BC的距离是点D到直线BC的距离的5倍?若存在,求出点P所有的坐标;若不存在,请说明理由.【分析】(1)把A、C点的坐标代入抛物线的解析式列出b、c的方程组,解得b、c便可;(2)连接BC与对称轴交于点F,此时△ACF的周长最小,求得BC的解析式,再求得BC与对称轴的交点坐标便可;(3)设P(m,m2﹣2m﹣3)(m>3),根据相似三角形的比例式列出m的方程解答便可.【解答】解:(1)把A、C点的坐标代入抛物线的解析式得,,解得,;(2)连接BC,与抛物线的对称轴交于点F,连接AF,如图1,此时,AF+CF=BF+CF=BC的值最小,∵AC为定值,∴此时△AFC的周长最小,由(1)知,b=﹣2,c=﹣3,∴抛物线的解析式为:y=x2﹣2x﹣3,∴对称轴为x=1,令y=0,得y=x2﹣2x﹣3=0,解得,x=﹣1,或x=3,∴B(3,0),令x=0,得y=x2﹣2x﹣3=﹣3,∴C(0,﹣3),设直线BC的解析式为:y=kx+b(k≠0),得,解得,,∴直线BC的解析式为:y=x﹣3,当x=1时,y=x﹣3=﹣2,∴F(1,﹣2);(3)设P (m ,m 2﹣2m ﹣3)(m >3),过P 作PH ⊥BC 于H ,过D 作DG ⊥BC 于G ,如图2, 则PH =5DG ,E (m ,m ﹣3),∴PE =m 2﹣3m ,DE =m ﹣3,∵∠PHE =∠DGE =90°,∠PEH =∠DEG ,∴△PEH ∽△DEG ,∴,∴,∵m =3(舍),或m =5,∴点P 的坐标为P (5,12).故存在点P ,使点P 到直线BC 的距离是点D 到直线BC 的距离的5倍,其P 点坐标为(5,12).。

云南省玉溪市2020年(春秋版)中考数学试卷A卷

云南省玉溪市2020年(春秋版)中考数学试卷A卷

云南省玉溪市2020年(春秋版)中考数学试卷A卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)-5的相反数是()A .B .C .D .2. (2分)如图是小明所在学校八年级各班学生人数分布图,则该校八年级学生总数为()A . 180人B . 200人C . 210人D . 220人3. (2分) (2020九下·哈尔滨月考) 如图是由四个小正方体叠成的一个立体图形,那么它的俯视图为()A .B .C .D .4. (2分)(2017·重庆) 估计 +1的值在()A . 2和3之间B . 3和4之间C . 4和5之间D . 5和6之间5. (2分)下列说法正确的是()A . 为了解我国中学生课外阅读的情况,应采用全面调查的方式B . 一组数据1,2,5,5,5,3,3的中位数和众数都是5C . 抛掷一枚硬币100次,一定有50次“正面朝上”D . 甲组数据的方差是0.03,乙组数据的方差是0.1,则甲组数据比乙组数据稳定6. (2分)如图,在平面直角坐标系中,线段AB的端点坐标为A(-2,4),B(4,2),直线y=kx-2与线段AB 有交点,则k的值不可能是()A . -5B . -2C . 3D . 57. (2分) (2016九下·江津期中) 河堤横断面如图所示,堤高BC为6米,迎水坡的坡比为1:,则坡面AB的长为A . 12B . 4米C . 5米D . 6米8. (2分) (2019八下·北京期中) 已知2是关于x的方程3x2﹣2a=0的一个解,则a的值是()A . 3B . 4C . 5D . 69. (2分) (2016八上·余姚期中) 如图是“赵爽弦图”,△ABH,△BCG,△CDF和△DAE是四个全等的直角三角形,四边形ABCD和EFGH都是正方形,如果AB=10,EF=2,那么AH等于()A . 8B . 6C . 4D . 510. (2分)(2016·达州) 如图,将一张等边三角形纸片沿中位线剪成4个小三角形,称为第一次操作;然后,将其中的一个三角形按同样方式再剪成4个小三角形,共得到7个小三角形,称为第二次操作;再将其中一个三角形按同样方式再剪成4个小三角形,共得到10个小三角形,称为第三次操作;…根据以上操作,若要得到100个小三角形,则需要操作的次数是()A . 25B . 33C . 34D . 50二、填空题 (共6题;共6分)11. (1分) (2017七下·门头沟期末) 因式分解: ________12. (1分) (2016八上·宁海月考) 小明帮助父母预算11月份电费情况,下表是11月初连续8天每天早上电表的显示读数:日期12345678电表显示读数2124283339424649如果每度电费用是0.53元,估计小明家11月(30天)的电费是________元。

2020年云南省中考数学试卷(含答案解析)

2020年云南省中考数学试卷(含答案解析)

2020年云南省中考数学试卷(含答案解析) 2020年云南省中考数学试卷一、选择题(本大题共8小题,共32.0分)1.根据题意可知,科学记数法表示为1.5×106,故选C。

2.根据主视图的定义可知,主视图是几何体在某一方向上的投影,投影是一个平面图形,故主视图是长方形的几何体只有长方体和正方体,故选A。

3.根据运算法则可知,√4=2,(−3a)3=−27a3,故选B。

4.根据指数的运算法则可知,(2)−1=1/2,a6÷a3=a3(a≠0),故选BD。

5.根据平行四边形对角线的性质可知,△aaa与△aaa的面积的比等于1:3,故选C。

6.根据题意可知,第n个单项式是(−2)a−1a,故选A。

7.根据扇形面积公式可知,扇形DAE的面积为4π/3,根据圆锥的侧面展开图可知,扇形DAE的弧长为底面圆的周长,即4√2,故底面圆的半径为2√2/π,故选D。

二、填空题(本大题共6小题,共18.0分)1.根据题意可知,采用抽样调查的目的是为了解三名学生的视力情况,故填“目的”。

2.根据三角形内角和定理可知,任意画一个三角形,其内角和是180°,不是必然事件,故填“不是”。

3.根据题意可知,甲的成绩比乙的稳定,即方差小,故填“甲的成绩比乙的稳定”。

4.根据中奖概率的定义可知,中奖概率为1/20,故填“1/20”。

5.根据题意可知,整数a使关于x的不等式组{2a−a>a+1,4a−a<a+1}有且只有45个整数解,且使关于y的方程2a+a+2/(a+1)+1/a=1的解为非正数,故填“45”。

6.根据题意可知,按一定规律排列的单项式为a,−2a,4a,−8a,16a,−32a,…,故填“-64a”。

了不同的旅游线路,甲家庭选择了A、B、C三个景点,乙家庭选择了B、C、D三个景点.已知甲家庭在A、B、C三个景点的花费分别为300元、400元、500元,乙家庭在B、C、D三个景点的花费分别为350元、450元、550元.1)甲、乙两个家庭在B、C两个景点的总花费相同,求B、C两个景点的平均花费;2)若甲、乙两个家庭的总花费相同,求甲家庭和乙家庭的平均花费;3)若甲家庭和乙家庭的总花费相差不超过200元,问哪个家庭的总花费更高?20.某校初三年级有600名学生,其中男生占总数的40%,女生占总数的60%.初三(1)班有40名学生,其中男生占总数的45%.1)初三年级男生人数是多少?2)初三(1)班女生人数是多少?3)初三年级女生人数是多少?4)初三年级女生人数比初三(1)班女生人数多多少?解析】根据题意可得:begin{aligned}P(\text{甲、乙两家选择同一城市}) &= P(\text{甲家选择城市}) \times P(\text{乙家选择城市}) \\frac{1}{3} \times \frac{1}{3} \\frac{1}{9}end{aligned}因此,甲家选择到大理旅游的概率为$\dfrac{1}{3}$。

云南省玉溪市2020年中考数学试卷(I)卷

云南省玉溪市2020年中考数学试卷(I)卷

云南省玉溪市2020年中考数学试卷(I)卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2019七上·义乌期中) 下列各数中,比-2小的数是()A . -1B .C . 0D . 12. (2分)在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A .B .C .D .3. (2分) (2018八上·钦州期末) 下列等式从左到右的变形,属于因式分解的是()A . a(x﹣y)=ax﹣ayB . x2﹣9+x=(x﹣3)(x+3)+xC . (x+1)(x+2)=x2+3x+2D . x2y﹣y=(x﹣1)(x+1)y4. (2分)下列事件是必然发生事件的是()A . 打开电视机,正在转播足球比赛B . 小麦的亩产量一定为1000公斤C . 在只装有5个红球的袋中摸出1球,是红球D . 农历十五的晚上一定能看到圆月5. (2分)(2017·兰州模拟) 由5个大小相同的小正方体拼成的几何体如图所示,则下列说法正确的是()A . 主视图的面积最小B . 左视图的面积最小C . 俯视图的面积最D . 三个视图的面积相等6. (2分) (2019七下·温州期中) 一滴水重0.00005千克.用科学记数法表示这个数是()千克.A .B .C .D .7. (2分)(2019·台州模拟) 下列说法正确的个数是()①一组数据的众数只有一个②样本的方差越小,波动性越小,说明样本稳定性越好③一组数据的中位数一定是这组数据中的某一数据④数据:1,1,3,1,1,2的众数为4 ⑤一组数据的方差一定是正数.A . 0个B . 1个C . 2个D . 4个8. (2分)(2020·凉山模拟) 如图,点A,B,C,D,E,F等分⊙O,分别以点B、D、F为圆心,AF的长为半径画弧,形成美丽的“三叶轮”图案.已知⊙O的半径为1,那么“三叶轮”图案的面积为()A . +B . -C .D .9. (2分) (2020九上·温州期末) 将抛物线y=x2-2向上平移1个单位后所得新抛物线的表达式为()A . y=x2-1B . y=x2-3C . y=(x+1)2-2D . y=(x-1)2-210. (2分) (2019七下·利辛期末) 将一直角三角板与两边平行的纸条如图放置若∠1=60°,则∠2的度数为()A . 60°B . 45°C . 50°D . 30°二、填空题 (共5题;共5分)11. (1分) (2017八下·蒙阴期末) 的结果是________.12. (1分)老师对甲、乙两同学最近5次数学测试成绩进行统计,发现两人的平均成绩相同,但甲同学的方差5,乙同学的方差 4.2,则________ 的成绩较稳定(填“甲”或“乙”).13. (1分)(2019·天府新模拟) 小明把如图所示的3×3的正方形网格纸板挂在墙上玩飞镖游戏(每次飞镖均落在纸板上,且落在纸板的任何一个点的机会都相等),则飞镖落在阴影区域(四个全等的直角三角形的每个顶点都在格点上)的概率是________.14. (1分) (2018九上·丰台期末) 半径为2的圆中,60°的圆心角所对的弧的弧长为________.15. (1分)函数的图象如图所示,则结论:①两函数图象的交点的坐标为;②当时,;③当时,;④当逐渐增大时,随着的增大而增大,随着的增大而减小.其中正确结论的序号是________.三、用心做一做 (共3题;共13分)16. (5分) (2019七下·城固期末) 计算:[(a+2b)2-(a+2b)(a-2b)]÷4b.17. (5分)已知方程=1的解是a,求关于y的方程+ay=0的解.18. (3分)如图,下列图形均可以由“基本图案”通过变换得到.(1)通过平移变换,但不能通过旋转变换得到的图案是________;(2)可能通过旋转变换,但不能通过平移变换得到的图案是________;(3)既可以由平移变换,也可以由旋转变换得到的图案是________.(填序号)四、沉着冷静,缜密思考 (共2题;共25分)19. (10分) (2017九下·江阴期中) 某市某幼儿园六一期间举行亲子游戏,主持人请三位家长分别带自己的孩子参加游戏,主持人准备把家长和孩子重新组合完成游戏,A、B、C分别表示三位家长,他们的孩子分别对应的是a、b、c.(1)若主持人分别从三位家长和三位孩子中各选一人参加游戏,恰好是A、a的概率是多少(直接写出答案)(2)若主持人先从三位家长中任选两人为一组,再从孩子中任选两人为一组,四人共同参加游戏,恰好是两对家庭成员的概率是多少.(画出树状图或列表)20. (15分)(2018·深圳模拟) 南岗区某中学的王老师统计了本校九年一班学生参加体育达标测试的报名情况,并把统计的数据绘制成了不完整的条形统计图和扇形统计图.根据图中提供的数据回答下列问题:(1)该学校九年一班参加体育达标测试的学生有多少人?(2)补全条形统计图的空缺部分;(3)若该年级有1200名学生,估计该年级参加仰卧起坐达标测试的有多少人?五、满怀信心,再接再厉 (共3题;共30分)21. (10分) (2020八下·宝安月考) 已知:如图,P是∠AOB平分线上的一点,PD⊥OA,PE⊥OB,垂足分别为D,E.求证:(1) OD=OE(2) OP是DE的垂直平分线22. (10分)已知一次函数的图象与y轴交于点A,点B(-1,n)是该函数图象与反比例函数(k≠0)图象在第二象限内的交点.(1)求点B的坐标及k的值;(2)试在x轴上确定点C,使AC=AB,请直接写出点C的坐标.23. (10分)当a取何值时,式子 -2a的值满足下列条件:(1)大于2;(2)不大于1-3a.六、灵动智慧,超越自我 (共2题;共30分)24. (15分)(2019·遵义模拟) 如图,已知△ABC内接于⊙O,AB是直径,点D在⊙O上,OD∥BC,过点D 作DE⊥AB,垂足为E,连接CD交OE边于点F.(1)求证:△DOE∽△ABC;(2)求证:∠ODF=∠BDE;(3)连接OC.设△DOE的面积为S.sinA= ,求四边形BCOD的面积(用含有S的式子表示)25. (15分) (2019九上·潮南期末) 在平面直角坐标系xOy中(如图).已知抛物线y=﹣ x2+bx+c经过点A(﹣1,0)和点B(0,),顶点为C,点D在其对称轴上且位于点C下方,将线段DC绕点D按顺时针方向旋转90°,点C落在抛物线上的点P处.(1)求这条抛物线的表达式;(2)求线段CD的长;(3)将抛物线平移,使其顶点C移到原点O的位置,这时点P落在点E的位置,如果点M在y轴上,且以O、D、E、M为顶点的四边形面积为8,求点M的坐标.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共5题;共5分)11-1、12-1、13-1、14-1、15-1、三、用心做一做 (共3题;共13分)16-1、17-1、18-1、18-2、18-3、四、沉着冷静,缜密思考 (共2题;共25分)19-1、19-2、20-1、20-2、20-3、五、满怀信心,再接再厉 (共3题;共30分) 21-1、21-2、22-1、22-2、23-1、23-2、六、灵动智慧,超越自我 (共2题;共30分)24-1、24-2、24-3、25-1、25-2、25-3、。

2020届云南省玉溪市江川区中考数学模拟试卷(四)(含解析)

2020届云南省玉溪市江川区中考数学模拟试卷(四)(含解析)

2020届云南省玉溪市江川区中考数学模拟试卷(四)一、选择题(本大题共8小题,共32.0分)1. 4.下列计算不正确的是A. =±2B. =9C. =0.4D. =−62.下列运算中,计算结果正确的是()A. a4⋅a3=a12B. a3⋅b3=(ab)3C. (a3)2=a5D. a6÷a3=a23.如图,△ABC内接于⊙O,∠C=30°,AB=2,则⊙O的半径为()A. √3B. 2C. 2√3D. 44.若m是方程x2+x−1=0的根,则式子m3+2m2+2012的值为()A. 2011B. 2012C. 2010D. 20135.下列事件中,哪一个是确定事件?()A. 明日有雷阵雨B. 小胆的自行车轮胎被钉扎环C. 小红买体彩中奖D. 抛掷一枚正方体骰子,出现7点朝上6.轮船在顺水中航行30km时间与在逆水中航行20km所用时间相等.已知水流速度为2km/ℎ,设轮船在静水中速度为xkm/ℎ,下列方程不正确的是()A. 3020=x+2x−2B. 30(x−2)=20(x+2)C. 3x+2=2x−2D. 20x+2=30x−27.等腰三角形的底角是15°,腰长为10,则其腰上的高为()A. 8B. 7C. 5D. 48.对抛物线y=−x 2+2x−3而言,下列结论正确的是()A. 与x轴有两个交点B. 开口向上C. 与y轴的交点坐标是(0,3)D. 顶点坐标是(1,−2)二、填空题(本大题共6小题,共18.0分)9.写出一个x值,使|x−2|=x−2,你写出的x值为______ .10.如图,已知数轴上的点A、B、O、C、D、E分别表示数−3、−2、0、1、2、3,则表示数−1+√5的点P应落在线段______ (填序号).(1)AB上(2)OC上(3)CD上(4)DE上11.0.000 000 504米,用科学记数法表示为______ 米.12.如图,l1//l2,∠1=120°,则∠2=______°.13.若√x−1+(y+2)2=0,则(x+y)2019=______.14.如图是用棋子摆成的“T”字图案,第2018个图案用______棋子.三、解答题(本大题共9小题,共70.0分)15.计算:(−1)2020−|√3−2|+1.tan30∘16.如图1,在平面直角坐标系中,A(−2,0),B(0,6),C(6,0),∠ABC+∠ADC=180°,BC⊥CD.(1)求证:∠ABO=∠CAD;(2)求四边形ABCD的面积;(3)如图2,E为∠BCO的邻补角的平分线上的一点,且∠BEO=45°,OE交BC于点F,求BF的长.17.根据省统计局发布的全省国民经济和社会发展统计公报相关数据,小明将我省2012年社会消费品销售额按城乡划分绘制成统计图①(信息不完整),2011年与2012年社会消费品销售额按行业划分绘制成条形统计图②.请回答下列问题:(1)图①中乡村消费品销售额为百亿元;(2)2011年到2012年间,图②的各行业中销售额增长率最高的行业是;(3)2013年与2012年相比,若批发业与住宿餐饮业的销售额之和能增长10%,则零售业要增长百分之多少,才能使全省2013年的社会消费品销售额增长12%?18.一个不透明的口袋中装有4个分别标有数字−1,−2,3,4的小球,它们的形状、大小完全相同.先从口袋中随机摸出一个小球,记下数字为x;再在剩下的3个小球中随机摸出一个小球,记下数字为y,得到点P的坐标(x,y).(1)请用“列表”或“画树状图”等方法表示出点P(x,y)所有可能的结果;(2)求出点P(x,y)在第一象限或第三象限的概率.19.如图,在平面直角坐标系xOy中,直线y=−13x+b与x轴交于点A,与双曲线y=−6x在第二象限内交于点B(−3,a).(1)求a和b的值;(2)过点B作直线l平行x轴交y轴于点C,连结AC,求△ABC的面积.20.某市“永辉”超市购进一批20元/千克的绿色食品,如果以30元/千克销售,那么每天可售出400千克.由销售经验知,每天销售量y(千克)与销售单价x(元)(x≥30)存在如图所示的一次函数关系.(1)设“永辉”超市销售该绿色食品每天获得利润p元,当销售单价为何值时,每天可获得最大利润?最大利润是多少?(2)如果该超市每天要获得的利润为4180元,并且尽量让利于市民,请问超市销售单价应定为多少?21.二次函数y=ax2−4x+c(a≠0)的图象与x轴交于A(1,0)、B两点,与y轴交于点C(0,5),其顶点为D.(1)求这个二次函数的表达式;(2)求△BCD的面积.22.如图,已知P是⊙O外一点,PO交⊙O于点C,OC=CP=4,弦AB⊥OC,劣弧AB所对的圆周角度数为60°,连接PB.(1)求BC的长;(2)求证:PB是⊙O的切线.23.如图(1),在平面直角坐标系中,已知点A(m,0),B(n,0),且m,n满足(m+1)2+√n−3=0,将线段AB向右平移1个单位长度,再向上平移2个单位长度,得到线段CD,其中点C与点A 对应,点D与点B对应,连接AC,BD.(1)求点A、B、C、D的坐标;(2)在x轴上是否存在点P,使三角形PBC的面积等于平行四边形ABDC的面积?若存在,求出点P的坐标;若不存在,请说明理由;(3)如图(2),点E在y轴的负半轴上,且∠BAE=∠DCB.求证:AE//BC.【答案与解析】1.答案:B解析:解:A.故A正确;B.故B错误;C.故C正确;D.故D正确.故选:B.2.答案:B解析:解:A、a4⋅a3=a7,故A选项错误;B、a3⋅b3=(ab)3,故B选项正确;C、(a3)2=a6,故C选项错误;D、a6÷a3=a6−3=a3,故D选项错误.故选:B.根据同底数幂的乘除法的法则、幂的乘方与积的乘方,逐项判断即可.本题主要考查了同底数幂的乘除法、幂的乘方与积的乘方.熟记相关的法则是解决此题的关键.3.答案:B解析:解:作直径AD,连接BD,则∠ABD=90°,∵∠D=∠C=30°,∴直角△ABD中,AD=2AB=2×2=4,∴OA=2.故选:B.作直径AD.则∠ABD=90°,利用圆周角定理:同弧所对的圆周角相等,即可求得∠D=30°,在直角△ABD中,利用30°的锐角所对的直角边等于斜边的一半,即可求得直径,从而求得半径.本题考查了圆周角定理,正确作出辅助线,转化成直角三角形的计算是关键.4.答案:D解析:解:∵m是方程x2+x−1=0的根,∴m2+m−1=0,即m2+m=1,∴m3+2m2+2012=m(m2+m)+m2+2012=m+m2+2012=1+2012=2013.故选D.把m代入x2+x−1=0得到m2+m−1=0,即m2+m=1,把m2+m=1代入式子:m3+2m2+ 2012,再将式子变形为m(m2+m)+m2+2012的形式,即可求出式子的值.考查了一元二次方程的解,代数式中的字母表示的数没有明确告知,而是隐含在题设中,首先应从题设中获取代数式m2+m的值,然后利用“整体代入法”求代数式的值.5.答案:D解析:解:A、B、C事件都可能发生,也可能不发生,是不确定事件;D、一定不会发生,是不可能事件即确定事件.故选D.确定事件包括必然事件和不可能事件.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.解决本题需要正确理解必然事件、不可能事件、随机事件的概念.确定事件包括必然事件和不可能事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.6.答案:D解析:根据题意表示出船的顺水速度为(x+2)km/ℎ,逆水速度为(x−2)km/ℎ,根据关键语句“轮船在顺水中航行30km时间与在逆水中航行20km所用时间相等”列出方程,再变形可得答案.解:由题意得:船的顺水速度为(x+2)km/ℎ,逆水速度为(x−2)km/ℎ,由题意得:30x+2=20x−2,此方程可变形为3020=x+2x−2,30(x−2)=20(x+2),3x+2=2x−2,故A、B、C都正确,D错误,故选D.7.答案:C解析:解:过C作CD⊥BA,交BA的延长线于D,则∠D=90°,∵AB=AC,∠B=15°,∴∠ACB=∠B=15°,∴∠DAC=∠B+∠ACB=30°,∴CD=12AC=12×10=5,故选:C.过C作CD⊥BA,交BA的延长线于D,则∠D=90°,根据三角形的外角性质求出∠DAC=30°,求出CD=12AC,即可求出答案.本题考查了三角形的外角性质,等腰三角形的性质,含30°角的直角三角形的性质等知识点,能求出∠DAC=30°是解此题的关键.8.答案:D解析:本题考查二次函数图象,难度较小.因为a=−1,所以开口向下;因为△=22−4×(−1)×(−3)=−8<0,则与x轴没有交点;与y轴的交点为(0,−3);因为y=−x 2+2x−3=−(x−1)2−2,所以其顶点坐标为(1,−2).9.答案:3(只要大于或等于2即可)解析:解:∵|x−2|=x−2,∴x−2≥0,即x≥2,则x的值为3(只要大于或等于2即可).故答案为:3(只要大于或等于2即可).利用绝对值的代数意义判断即可.此题考查了绝对值,熟练掌握绝对值的代数意义是解本题的关键.10.答案:(3)解析:解:由被开方数越大算术平方根越大,得2<√5<3.由不等式的性质,得1<−1+√5<2,P点在CD上.故答案为:(3).根据被开方数越大算术平方根越大,可得√5的范围,再根据不等式的性质,可得答案.本题考查了估算无理数的大小,利用被开方数越大算术平方根越大得出√5的范围是解题关键.11.答案:5.04×10−7解析:解:0.000 000 504=5.04×10−7,故答案为:5.04×10−7.绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.本题考查用科学记数法表示较小的数,一般形式为a×10−n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.12.答案:60解析:解:∵∠1=120°,∴∠3=180°−∠1=60°,∵l1//l2,∴∠2=∠3=60°.故答案为:60.由邻补角的定义,即可求得∠3的度数,又由l1//l2,根据两直线平行,同位角相等,即可求得∠2的度数.此题考查了平行线的性质与邻补角的定义.注意两直线平行,同位角相等.13.答案:−1解析:解:由题意得,x−1=0,y+2=0,解得,x=1,y=−2,则(x+y)2019=(1−2)2019=−1,故答案为:−1.先根据非负数的性质分别求出x、y,再代入式子根据有理数的乘方法则计算,得到答案.本题考查的是非负数的性质.掌握绝对值和偶次方的非负性是解题的关键.14.答案:6056解析:解:第1个“T”字型图案需要3+2=5枚棋子,第2个“T”字型图案需要3×2+2=8枚棋子,第3个“T”字型图案需要3×3+2=11枚棋子,…第n个图案需要3n+2枚棋子.那么当n=2018时,则有6056枚;故答案为:6056通过观察已知图形可得:每个图形都比其前一个图形多3枚棋子,得出规律为摆成第n个图案需要3n+2枚棋子,进而解答即可;此题主要考查了图形的变化规律,注意由特殊到一般的分析方法,得出数字变化规律是解题关键.15.答案:解:原式=1−(2−√3)+√33=1−2+√3+√3=2√3−1.解析:原式利用乘方的意义,绝对值的代数意义,以及特殊角的三角函数值计算即可求出值.此题考查了实数的运算,以及特殊角的三角函数值,熟练掌握运算法则是解本题的关键.16.答案:解:(1)如图1,在四边形ABCD中,∵∠ABC+∠ADC=180°,∴∠BAD+∠BCD=180°.∵BC⊥CD,∴∠BCD=90°.∴∠BAD=90°.∴∠BAC+∠CAD=90°.又∵∠BAC+∠ABO=90°.∴∠ABO=∠CAD.(2)如图2,过点A作AF⊥BC于点F,作AE⊥CD的延长线于点E,作DG⊥x轴于点G.∵A(−2,0),B(0,6),C(6,0),∴OA=2,OB=OC=6.∴∠BCO=45°.又∵BC⊥CD,∴∠BCO=∠DCO=45°.又∵AF⊥BC,AE⊥CD,∴AF=AE,∠FAE=90°.∴∠BAF=∠DAE,∴△ABF≌△ADE.∴AB=AD.又∵∠AGD=∠BOA=90°,∴△ABO≌△DAG.∴DG=AO=2,AC=AO+OC=8.∴S四边形ABCD =12AC⋅(BO+DG)=12×8×(6+2)=32.(3)如图3,过点E作EH⊥BC于点H,作EG⊥x轴于点G,∵E点在∠BCO的邻补角的平分线上,∴EH=EG.又∵∠BCO=∠BEO=45°,∴∠EBC=∠EOC.∴△EBH≌△EOG.∴EB=EO.又∵∠BEO=45°,∴∠EBO=∠EOB=67.5°.∵∠OBC=45°,∴∠BOE=∠BFO=67.5°.∴BF=BO=6.解析:(1)根据四边形的内角和定理、直角三角形的性质证明;(2)过点A作AF⊥BC于点F,作AE⊥CD的延长线于点E,作DG⊥x轴于点G,证明△ABF≌△ADE、△ABO≌△DAG,利用面积和可得四边形ABCD的面积;(3)作EH⊥BC于点H,作EG⊥x轴于点G,根据角平分线的性质得到EH=EG,证明△EBH≌△EOG,得到EB=EO,根据等腰三角形的判定定理解出即可.本题考查的是全等三角形的判定和性质、角平分线的性质、图形与坐标特点,难度适中,掌握全等三角形的判定定理和性质定理是解题的关键.17.答案:解:(1)根据题意得:(21+100+14)×(1−84%)=21.6(百亿元),则图①中乡村消费品销售额为21.6百亿元,(2)根据题意得:批发业增长率为21−1818=16,零售业增长率为100−9090=19,住宿餐饮业的增长率14−1313=113,∵1 6>19>113,∴增长率最大的行业为批发业,(3)设零售业要增长x,才能使全省2013年的社会消费品销售额增长12%,根据题意列出方程得:100(1+x%)+(21+14)(1+10%)=(21+100+14)(1+12%),解得:x=12.7%,则零售业要增长12.7%,才能使全省2013年的社会消费品销售额增长12%.故答案为:21.6;批发业.解析:试题分析:(1)根据条形统计图求出2012年社会消费品销售额,乘以乡村消费品销售额占的百分比即可得到结果;(2)求出批发业,零售业以及住宿餐饮业的增长率,即可作出判断;(3)设零售业要增长百分之x,才能使全省2013年的社会消费品销售额增长12%,根据题意列出方程,求出方程的解得到x的值,即可得到结果.18.答案:解:(1)列表如下:(2)从上面的表格可以看出,所有可能出现的结果共有12种,且每种结果出现的可能性相同,其中点(x,y)在第一象限或第三象限的结果有4种,所以其的概率=412=13.解析:本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率(1)通过列表展示即可得到所有可能的结果;(2)找出在第一象限或第三象限的结果数,然后根据概率公式计即可.19.答案:解:(1)解:(1)把B(−3,a)代入y=−6x得−3a=−6,解得a=2,则B点坐标为(−3,2)把B(−3,2)代入y=−13x+b得1+b=2,解得b=1;(2)因为BC平行x轴,所以C点坐标为(0,2),所以△ABC的面积=12×2×3=3.解析:(1)先把B(−3,a)代入反比例函数解析式可计算出a =2,得到B 点坐标,然后把B 点坐标代入y =−13x +b 可计算出b 的值;(2)先利用直线BC 平行x 轴确定C 点坐标为(0,2),然后根据三角形面积公式计算.本题考查了反比例函数与一次函数的交点问题:反比例函数与一次函数图象的交点坐标满足两函数解析式.也考查了待定系数法求函数解析式以及观察函数图象的能力. 20.答案:解:(1)设y =kx +b ,由图象可知,{30k +b =40040k +b =200,解得{k =−20b =1000, ∴y =−20x +1000(30≤x ≤50);(2)p =(x −20)y=(x −20)(−20x +1000)=−20x 2+1400x −20000.∵a =−20<0,∴p 有最大值.当x =−14002×(−20)35时,p 最大值=4500.即当销售单价为35元/千克时,每天可获得最大利润4500元;(3)当p =4180时,4180=−20x 2+1400x −20000,解得 x 1=31,x 2=39,∵要让利于市民,∴只取x =31.∴绿色食品销售单价为31元符合要求.解析:(1)由图象过点(30,400)和(40,200)利用待定系数法求直线解析式;(2)每天利润=每千克的利润×销售量.据此列出表达式,运用函数性质解答;(3)利用(2)的函数解析式即可得到关于x 的一元二次方程,解方程即可求解.此题主要考查了待定系数法求一次函数解析式以及求二次函数最值等知识,画出函数图象结合图形解答不等式的有关问题是目前解一元二次不等式的实用途径,也是解某些有限制条件的最值问题的有效方法,具有直观性,体现了数形结合的数学思想方法.21.答案:解:(1)将点A(1,0),C(0,5)代入解析式,得:{a −4+c =0c =5, 解得{a =−1c =5, ∴此二次函数表达式为y =−x 2−4x +5;(2)如图,过点D 作DE ⊥y 轴于点E ,∵y =−x 2−4x +5=−(x +2)2+9,∴D(−2,9),当y =0时,−x 2−4x +5=0,解得x 1=1,x 2=−5,∴B(−5,0),则S △BCD =S 梯形OBDE −S △BOC −S △CDE , =12×(2+5)×9−12×5×5−12×2×4 =632−252−4 =15.解析:本题主要考查抛物线与x 轴的交点,解题的关键是熟练掌握待定系数法求函数解析式及二次函数的图象与性质,割补法求三角形的面积.(1)将点A 与点C 坐标代入计算可得;(2)先求出抛物线的顶点坐标及点B 坐标,再利用割补法求解可得.22.答案:(1)解:连接OB ,∵弦AB⊥OC,劣弧AB所对的圆周角度数为60°,∴劣弧AB的度数为60°,∴弧BC与弧AC的度数为:60°,∴∠BOC=60°,∵OB=OC,∴△OBC是等边三角形,∴BC=OC=4;(2)证明:∵OC=CP,BC=OC,∴BC=CP,∴∠CBP=∠CPB,∵△OBC是等边三角形,∴∠OBC=∠OCB=60°,∴∠CBP=30°,∴∠OBP=∠CBP+∠OBC=90°,∴OB⊥BP,∵点B在⊙O上,∴PB是⊙O的切线.解析:(1)首先连接OB,由弦AB⊥OC,劣弧AB的度数为120°,易证得△OBC是等边三角形,则可求得BC的长;(2)由OC=CP=4,△OBC是等边三角形,可求得BC=CP,即可得∠P=∠CBP,又由等边三角形的性质,∠OBC=60°,∠CBP=30°,则可证得OB⊥BP,继而证得PB是⊙O的切线.此题考查了切线的判定、等边三角形的判定与性质以及等腰三角形的性质.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.23.答案:(1)解:∵m,n满足(m+1)2+√n−3=0,∴m+1=0,且n−3=0,∴m=−1,n=3,∴A(−1,0),B(3,0),由平移的性质得:C(0,2),D(4,2);(2)解:存在,理由如下:设P(x,0),由(1)得:AB=4,OC=2,∴S平行四边形ABDC=4×2=8,∵PB=|x−3|,∴S△PBC=12PB×OC=12|x−3|×2=8,解得:x=11,或x=−5,∴点P的坐标为(11,0)或(−5,0);(3)证明:由平移的性质得:AB//CD,∴∠DCB=∠CBA,∵∠BAE=∠DCB,∴∠BAE=∠CBA,∴AE//BC.解析:(1)由非负数的性质得出m+1=0,且n−3=0,求出m=−1,n=3,得出A(−1,0),B(3,0),由平移的性质得C(0,2),D(4,2);(2)设P(x,0),由(1)得AB=4,OC=2,则S平行四边形ABDC=4×2=8,由PB=|x−3|得出S△PBC=1 2PB×OC=12|x−3|×2=8,解得x=11,或x=−5,即可得出答案;(3)由平移的性质得AB//CD,由平行线的性质得出∠DCB=∠CBA,证出∠BAE=∠CBA,即可得出结论.本题是四边形综合题目,考查了平移的性质、坐标与图形性质、平行四边形的面积、平行线的判定与性质、三角形面积等知识;熟练掌握平移的性质是解题的关键.。

玉溪市2020年(春秋版)中考数学试卷D卷

玉溪市2020年(春秋版)中考数学试卷D卷

玉溪市2020年(春秋版)中考数学试卷D卷姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分) (2016七上·仙游期末) 的相反数是()A .B . -C .D . -2. (2分)(2014·深圳) 支付宝与“快的打车”联合推出优惠,“快的打车”一夜之间红遍大江南北.据统计,2014年“快的打车”账户流水总金额达到47.3亿元,47.3亿用科学记数法表示为()A . 4.73×108B . 4.73×109C . 4.73×1010D . 4.73×10113. (2分) (2015七下·绍兴期中) 下列运算中,结果正确的是()A . x3•x3=x6B . 3x2+2x2=5x4C . (x2)3=x5D . (x+y)2=x2+y24. (2分)点P(4,5)关于y轴对称点的坐标是()A . (-4,-5)B . (-4,5)C . (4,-5)D . (4,5)5. (2分) (2016九下·重庆期中) 下列二次根式中,最简二次根式是()A .B .C .D .6. (2分)(2019·海珠模拟) 在一次立定跳远的测试中,小娟等6位同学立定跳远的成绩分别为: 1.8、2、2.2、1.7、2、1.9,那么关于这组数据的说法正确的是()A . 平均数是2B . 中位数是2C . 众数是2D . 方差是27. (2分)如图是一个三棱柱的展开图,若AD=10,CD=2,则AB的长度可以是()A . 2B . 3C . 4D . 58. (2分)(2018·台湾) 如图1的矩形ABCD中,有一点E在AD上,今以BE为折线将A点往右折,如图2所示,再作过A点且与CD垂直的直线,交CD于F点,如图3所示,若AB=6 ,BC=13,∠BEA=60°,则图3中AF的长度为何?()A . 2B . 4C . 2D . 4二、填空题 (共10题;共10分)9. (1分)(2016·北京) 如图中的四边形均为矩形,根据图形,写出一个正确的等式________.10. (1分) (2016七上·太康期末) 化简:﹣(3y2﹣xy)+2(3xy﹣5y2)的结果为________.11. (1分) (2018九上·和平期末) 已知A(﹣1,2)是反比例函数图象上的一个点,则k的值为________.12. (1分)(2019·镇海模拟) 方程的解是________.13. (1分) (2019七下·北区期末) 随机投掷一枚质地均匀的股子,朝上的点是3的概率是________.14. (1分) (2019九上·凤翔期中) 关于x的一元二次方程有实数根,则k的取值范围为________.15. (1分)(2018·平南模拟) 如图,已知,李明把三角板的直角顶点放在直线上.若∠1=42°,则∠2的度数为________.16. (1分)(2017·昌平模拟) 如图,四边形ABCD的顶点均在⊙O上,∠A=70°,则∠C=________°.17. (1分)(2014·福州) 如图,在Rt△ABC中,∠ACB=90°,点D,E分别是边AB,AC的中点,延长BC 到点F,使CF= BC.若AB=10,则EF的长是________.18. (1分) (2018七上·江都期中) 一列数,按如下规律排列:,,,,,则第个数为________.三、解答题 (共10题;共97分)19. (5分)(2020·温岭模拟)20. (5分) (2020八下·龙岗期中) 解不等式组:,并写出它的整数解.21. (5分) (2020八下·武川期中) 如图,已知四边形ABCD是平行四边形,点E、B、D、F在同一直线上,且BE=DF.求证:AE=CF.22. (8分)(2016·攀枝花) 中秋佳节我国有赏月和吃月饼的传统,某校数学兴趣小组为了了解本校学生喜爱月饼的情况,随机抽取了60名同学进行问卷调查,经过统计后绘制了两幅尚不完整的统计图.(注:参与问卷调查的每一位同学在任何一种分类统计中只有一种选择)请根据统计图完成下列问题:(1)扇形统计图中,“很喜欢”的部分所对应的圆心角为________度;条形统计图中,喜欢“豆沙”月饼的学生有________人;(2)若该校共有学生900人,请根据上述调查结果,估计该校学生中“很喜欢”和“比较喜欢”月饼的共有________人.(3)甲同学最爱吃云腿月饼,乙同学最爱吃豆沙月饼,现有重量、包装完全一样的云腿、豆沙、莲蓉、蛋黄四种月饼各一个,让甲、乙每人各选一个,请用画树状图法或列表法,求出甲、乙两人中有且只有一人选中自己最爱吃的月饼的概率.23. (13分)(2017·南关模拟) 网上购物已经成为人们常用的一种购物方式,售后评价特别引人关注,为了解市民对售后评价的关注情况,随机采访部分市民,对采访情况制作了如下统计图表:关注情况频数频率A.高度关注50bB.一般关注1200.6C.不关注a0.1D.不知道100.05(1)根据上述统计图可得此次采访的人数为________人,a=________,b=________;(2)根据以上信息补全条形统计图;(3)根据上述采访结果,请估计在6400名市民中,高度关注售后评价的市民约有多少人?24. (5分)现在各地房产开发商,为了获取更大利益,缩短楼间距,以增加住宅楼栋数。

云南省玉溪市中考2020年数学试卷

云南省玉溪市中考2020年数学试卷

云南省玉溪市中考2020年数学试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)下列运算中,正确的一个是()A . (-2)3=-6B . -(-3)2=-9C . 23×23=29D . 23÷(-2)=42. (2分)温家宝总理强调,“十二五”期间,将新建保障性住房36 000 000套,用于解决中低收入和新参加工作的大学生住房的需求.把36 000 000用科学记数法表示应是()A . 3.6×107B . 3.6×106C . 36×106D . 0.36×1083. (2分) (2019八上·黄石港期中) 如图,△ABC与△A′B′C′关于直线l对称,且∠A=105°,∠C′=30°,则∠B=()A . 25°B . 45°C . 30°D . 20°4. (2分) (2020七上·莲湖期末) 在下列几何体中,从正面看到的平面图形为三角形的是()A .B .C .D .5. (2分)如图已知△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2等于()A . 315°B . 270°C . 180°D . 135°6. (2分)今年,我国部分地区“登革热”流行,党和政府采取果断措施,防治结合,防止病情继续扩散.如图是某同学记载的9月1日至30日每天某地的“登革热”新增确诊病例数据日.将图中记载的数据每5天作为一组,从左至右分为第一组至第六组,下列说法:①第一组的平均数最大,第六组的平均数最小;②第二组的中位数为146;③第四组的众数为28.其中正确的有()A . 0个B . 1个C . 2个D . 3个7. (2分)当x=2时,代数式x2(2x)3-x(x+8x4)的值是()A . 4B . -4C . 0D . 18. (2分)(2018·吉林模拟) 如图,点的坐标为(,),点是轴正半轴上的一动点,以为边作等腰直角,使,设点的横坐标为,点的纵坐标为,能表示与的函数关系的图象大致是()A .B .C .D .9. (2分)下列说法正确的是()A . 圆的对称轴是圆的直径B . 相等的圆周角所对的弧相等C . 平分弦的直径垂直于弦,并且平分弦所对的两条弧D . 经过半径的外端并且垂直于这条半径的直线是圆的切线10. (2分) (2015九上·平邑期末) 如图所示是二次函数y=ax2+bx+c图象的一部分,图象过A点(3,0),二次函数图象对称轴为x=1,给出四个结论:①b2>4ac;②bc<0;③2a+b=0;④a+b+c=0,其中正确结论是()A . ②④B . ①③C . ②③D . ①④二、填空题 (共6题;共6分)11. (1分) (2017七下·东营期末) 分解因式:a2b-b3=________.12. (1分) (2016七上·孝义期末) 已知线段AB=10cm,直线AB上有一点C,BC=4cm,则线段AC=________cm.13. (1分)(2019·襄州模拟) 某校为了了解全校400名学生参加课外锻炼的情况,随机对40名学生一周内平均每天参加课外锻炼的时间进行了调查,结果如下:(单位:分)40 21 35 24 40 38 23 52 35 62 36 15 51 45 40 42 40 32 43 36 34 53 38 4039 32 45 40 50 45 40 40 26 45 40 45 35 40 42 45(1)补全频率分布表和频率分布直方图.分组频数频率4.5﹣22.520.05022.5﹣30.5330.5﹣38.5100.25038.5﹣46.51946.5﹣54.550.12554.5﹣62.510.025合计40 1.000(2)填空:在这个问题中,总体是________,样本是________.由统计结果分析的,这组数据的平均数是38.35(分),众数是________,中位数是________.(3)如果描述该校400名学生一周内平均每天参加课外锻炼时间的总体情况,你认为用平均数、众数、中位数中的哪一个量比较合适?(4)估计这所学校有多少名学生,平均每天参加课外锻炼的时间多于30分?14. (1分)(2018·潘集模拟) 如图,四边形ABCD中,AB=CD,对角线AC,BD相交于点O,AE⊥BD于点E,CF⊥BD于点F,连接AF,CE,若DE=BF,则下列结论:①CF=AE;②OE=OF;③图中共有四对全等三角形;④四边形ABCD是平行四边形;其中正确结论的是________.15. (1分)一个圆的周长是37.68dm,这个圆的半径是________dm,面积是________16. (1分)(2018·河南模拟) 如图所示,一次函数y=k1x+3(k1<0)的图象与反比例函数y= (k2>0)的图象交于M、N两点,过点M作MC⊥y轴于点C,已知CM=1,则k1﹣k2=________.三、解答题 (共9题;共75分)17. (5分)解下列方程组:(1);(2);(3);(4).18. (5分) (2017八下·汶上期末) 如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC 的平行线交CE的延长线于点F,且AF=BD,连接BF.(1)求证:BD=CD;(2)如果AB=AC,试判断四边形AFBD的形状,并证明你的结论.19. (5分) (2019九上·尚志期末) 先化简,再求代数式()÷ 的值,其中a=2sin45°+tan45°.20. (10分) (2018九上·苏州月考) 如图,⊙ 是的外接圆,,,交的延长线于点,交于点 .(1)求证:是⊙ 的切线;(2)若, .求⊙ 的半径和线段的长.21. (10分)在△ABC中,AB=BC=2,∠ABC=120°,将△ABC绕点B顺时针旋转角α(0°<α<90°)得△A1BC1 ,A1B交AC于点E,A1C1分别交AC、BC于D、F两点.(1)如图1,观察并猜想,在旋转过程中,线段BE与BF有怎样的数量关系?并证明你的结论;(2)如图2,当α=30°时,试判断四边形BC1DA的形状,并说明理由.22. (10分) (2018八上·沈河期末) 我国边防局接到情报,近海处有一可疑船只正向公海方向航行,边防部迅速派出快艇追赶如图1,图2中分别表示两船相对海岸的距离 (海里)与追赶时间 (分)之间的关系.根据图象回答问题:(1)哪条线表示到海岸的距离与追赶时间之间的关系?(2)哪个速度快?(3) 15分钟内能否追上?为什么?(4)如果一直追下去,那么能否追上?(5)当逃离海岸12海里时,将无法对其进行检查,照此速度,能否在逃入公海前将其拦截?为什么?(6)与对应的两个一次函数与中,的实际意义各是什么?可疑船只与快艇的速度各是多少?23. (10分) (2018八上·焦作期末) 某校举办了一次成语知识竞赛,满分10分,学生得分均为整数,成绩达到6分及6分以上为合格,达到9分或10分为优秀,这次竞赛中,甲、乙两组学生成绩分布的折线统计图和成绩统计分析表如图所示.(1)求出下列成绩统计分析表中,的值:组别平均分中位数方差合格率优秀率甲组6.8 3.7690%30%乙组7.5 1.9680%20%(2)小英同学说:“这次竞赛我得了7分,在我们小组中排名属中游略偏上!”观察上面表格判断,小英是甲、乙哪个组的学生;(3)甲组同学说他们组的合格率、优秀率均高于乙组,所以他们组的成绩好于乙组.但乙组同学不同意甲组同学的说法,认为他们组的成绩要好于甲组.请你写出两条支持乙组同学观点的理由.24. (10分) (2019八下·芜湖期中) 如图,在边长为1的正方形ABCD中,动点E,F分别在边AB,CD上,将正方形ABCD沿直线EF折叠,使点B的对应点M始终落在边AD上(点M不与点A,D重合),点C落在点N处,MN与CD交于点P,设BE=x.(1)当AM= 时,求x的值;(2)随着点M在边AD上位置的变化,ΔPDM的周长是否发生变化?如变化,请说明理由;如不变,请求出该定值;(3)若AM=a,四边形BEFC的面积为S,求S与a之间的函数表达式.25. (10分) (2018九上·北京月考) 如图所示,二次函数y=﹣2x2+4x+m的图象与x轴的一个交点为A(3,0),另一个交点为B,且与y轴交于点C.(1)求m的值及点B的坐标;(2)求△ABC的面积;(3)该二次函数图象上有一点D(x,y),使S△ABD=S△ABC,请求出D点的坐标.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共6分)11、答案:略12-1、13-1、13-2、13-3、13-4、14-1、15-1、16-1、三、解答题 (共9题;共75分) 17-1、17-2、17-3、17-4、18-1、18-2、19-1、20-1、20-2、21-1、21-2、22-1、22-2、22-3、22-4、22-5、22-6、23-1、23-2、23-3、24-1、24-2、24-3、25-1、25-2、25-3、。

云南省玉溪市2020版中考数学试卷(II)卷

云南省玉溪市2020版中考数学试卷(II)卷

云南省玉溪市2020版中考数学试卷(II)卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)(2017·市北区模拟) 相反数是5的数是()A . 5B . ﹣5C .D . ﹣2. (2分)(2019·越秀模拟) 函数中,自变量x的取值范围是()A .B .C .D .3. (2分)下列各式中,能用完全平方公式分解因式的是()A . 4x2-2x+1B . 4x2+4x-1C . x2-xy+y2D . x2-x+4. (2分)(2019·安徽) 在某时段由50辆车通过一个雷达测速点,工作人员将测得的车速绘制成如图所示的条形统计图,则这50辆车的车速的众数(单位:km/h)为()A . 60B . 50C . 40D . 155. (2分)(2018·聊城) 如图所示的几何体,它的左视图是()A .B .C .D .6. (2分) (2019八下·渭滨月考) 下列图形既是中心对称又是轴对称图形的是()A .B .C .D .7. (2分)如图所示,在矩形ABCD中,∠DBC=29°,将矩形沿直线BD折叠,顶点C落在点E处,则∠ABE 的度数是()A . 29°B . 32°C . 22°D . 61°8. (2分)如果,过圆O外一点P引圆O的切线PA,PB,切点为A,B,C为圆上一点,若∠APB=50°,则∠ACB=()A . 50°B . 60°C . 65°D . 70°9. (2分) (2017八下·卢龙期末) 若反比例函数的图象经过第二、四象限,则m为()A . 1B . -1C .D .10. (2分)小颖准备用21元钱买笔和笔记本,已知每支笔3元,每个笔记本2元,她买了4个笔记本,则她最多还可以买多少支笔()A . 1支B . 2支C . 3支D . 4支二、填空题 (共8题;共8分)11. (1分) (2018八上·武邑月考) 的平方根是________, =________.12. (1分) (2019七上·洮北月考) 用科学记数法表示-320000为________;0.003758× =________.13. (1分) (2017七下·洪泽期中) 小丽在计算一个二项式的平方时,得到正确结果m2﹣10mn+■,但最后一项不慎被墨水污染,这一项应是________.14. (1分) (2019九上·房山期中) 在平面直角坐标系xOy中,点A(m,n)在抛物线y=ax2 +2ax-3a上,点A关于此抛物线对称轴的对称点为B(p,q),则m+p的值是________.15. (1分)(2018·东营) 已知一个圆锥体的三视图如图所示,则这个圆锥体的侧面积为________.16. (1分)(2018·新乡模拟) 一次函数y=(k−2)x+3−k的图象经过第一、二、三象限,则k的取值范围是________。

云南省玉溪市2020年(春秋版)中考数学试卷(II)卷

云南省玉溪市2020年(春秋版)中考数学试卷(II)卷

云南省玉溪市2020年(春秋版)中考数学试卷(II)卷姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分)下列说法中正确的是()A . 正数和负数互为相反数B . 任何一个数的相反数都与它本身不相同C . 任何一个数都有它的相反数D . 数轴上原点两旁的两个点表示的数互为相反数2. (2分)(2017·增城模拟) 计算:(a2b)3的结果是()A . a6bB . a6b3C . a5b3D . a2b33. (2分) (2016七上·遵义期末) 下列四个图中,每个都是由六个相同的小正方形组成,折叠后能围成正方体的是()A .B .C .D .4. (2分)如果一组数据x1 , x2 ,…,xn的方差是3,则另一组数据x1+5,x2+5,…,xn+5的方差是()A . 3B . 8C . 9D . 15. (2分)在直角坐标系中,⊙O的圆心在原点,半径为3,⊙A的圆心A的坐标为(),半径为1,那么⊙O与⊙A的位置关系是()A . 外离B . 外切C . 内切D . 相交6. (2分)(2018·崇阳模拟) 在平面直角坐标系xOy中,将一块含有45°角的直角三角板如图放置,直角顶点C的坐标为(1,0),顶点A的坐标为(0,2),顶点B恰好落在第一象限的双曲线上,现将直角三角板沿x轴正方向平移,当顶点A恰好落在该双曲线上时停止运动,则此时点C的对应点C′的坐标为()A . (,0)B . (2,0)C . (,0)D . (3,0)7. (2分) (2016八下·番禺期末) 小强所在学校离家距离为2千米,某天他放学后骑自行车回家,先骑了5分钟后,因故停留10分钟,再继续骑了5分钟到家.下面哪一个图象能大致描述他回家过程中离家的距离s(千米)与所用时间t(分)之间的关系()A .B .C .D .8. (2分)下列函数,y随x增大而减小的是().A . y=xB . y=x-1C . y=x+1D . y=-x+1二、填空题 (共9题;共9分)9. (1分)已知|x|=5,y=3,则x-y=________.10. (1分)如图,在方格纸上建立的平面直角坐标系中,Rt△ABC关于y轴对称的图形为Rt△DEF,则点A 的对应点D的坐标是________11. (1分)(2012·辽阳) 计算﹣sin45°=________.12. (1分) (2016九上·仙游期末) 如图,已知A为⊙O外一点,连结OA交⊙O于P,AB为⊙O的切线,B 为切点,AP=5㎝,AB=㎝,则劣弧与AB,AP所围成的阴影的面积是________.13. (1分)当m=________ 时,函数y=(m﹣2)x|m|﹣3是反比例函数.14. (1分) (2017八下·丽水期末) 已知关于x的方程x2+kx+3=0的一个根为x=3,则方程的另一个根为________.15. (1分)(2011·扬州) 因式分解:x3﹣4x2+4x=________.16. (1分) (2016九上·江海月考) 已知正比例函数与反比例函数的图象的一个交点坐标为(-1,2),则另一个交点的坐标为________17. (1分)(2019·贵池模拟) 如图,半圆O的直径是AB ,弦AC与弦BD交于点E ,且OD⊥AC ,若∠DEF =60°,则tan∠ABD=________.三、计算题 (共11题;共120分)18. (10分)(2012·常州) 化简:(1)﹣()0+2sin30°(2)﹣.19. (10分)(2017·玄武模拟) 解答题(1)解不等式组并把它的解集在数轴上表示出来.(2)解方程 =1﹣.20. (15分) (2019八下·长沙期中) 为了促进学生多样化发展,某校组织开展了社团活动,分别设置了体育类、艺术类、文学类及其它类社团(要求人人参与社团,每人只能选择一项),为了解学生喜爱哪种社团活动,学校做了一次抽样调查,根据收集到的数据,绘制成如下两幅不完整的统计图,请根据图中提供的信息,完成下列问题:(1)此次共调查了多少人?(2)求其它类社团在扇形统计图中所占与圆心角的度数;(3)若该校有1500名学生,请估计喜欢文学类社团的学生有多少人?21. (10分) (2014九上·临沂竞赛) 甲、乙两个袋中均装有三张除所标数值外完全相同的卡片,甲袋中的三张卡片上所标的数值分别为-7、-1、3,乙袋中的三张卡片上所标的数值分别为-2、1、6.先从甲袋中随机取出一张卡片,用表示取出的卡片上标的数值,再从乙袋中随机取出一张卡片,用表示取出的卡片上标的数值,把、分别作为点的横坐标、纵坐标.(1)用适当的方法写出点的所有情况;(2)求点落在第三象限的概率.22. (5分)如图,△ABC与△CDE均是等腰直角三角形,∠ACB=∠DCE=90°,D在AB上,连结BE.请找出一对全等三角形,并说明理由.23. (10分)(2018·房山模拟) 如图,在中,,点分别是上的中点,连接并延长至点,使,连接 .(1)证明:;(2)若,AC=2,连接BF,求BF的长24. (10分)(2017·峄城模拟) 如图,AB是⊙O的直径,CD与⊙O相切于点C,与AB的延长线交于点D,DE⊥AD 且与AC的延长线交于点E.(1)求证:DC=DE;(2)若tan∠CAB= ,AB=3,求BD的长.25. (10分)(2018·遵义模拟) 某超市销售一种牛奶,进价为每箱24元,规定售价不低于进价.现在的售价为每箱36元,每月可销售60箱.市场调查发现:若这种牛奶的售价每降价1元,则每月的销量将增加10箱,设每箱牛奶降价x元(x为正整数),每月的销量为y箱.(1)写出y与x之间的函数关系式和自变量x的取值范围;(2)超市如何定价,才能使每月销售牛奶的利润最大?最大利润是多少元?26. (10分)(2017·城中模拟) 为鼓励学生参加体育锻炼,学校计划拿出不超过3200元的资金购买一批篮球和排球,已知篮球和排球的单价比为3:2,单价和为160元.(1)篮球和排球的单价分别是多少元?(2)若要求购买的篮球和排球的总数量是36个,且购买的排球数少于11个,有哪几种购买方案?27. (15分)已知在平面直角坐标系xOy中(如图),抛物线y=ax2﹣4与x轴的负半轴(XRS)相交于点A,与y轴相交于点B,AB=,点P在抛物线上,线段AP与y轴的正半轴交于点C,线段BP与x轴相交于点D,设点P的横坐标为m(1)求这条抛物线的解析式;(2)用含m的代数式表示线段CO的长;(3)当tan∠ODC=时,求∠PAD的正弦值.28. (15分)已知AB是圆O的切线,切点为B,直线AO交圆O于C、D两点,CD=2,∠DAB=30°,动点P在直线AB上运动,PC交圆O于另一点Q.(1)当点P运动到使Q、C两点重合时(如图1),求AP的长;(2)点P在运动过程中,有几个位置(几种情况)使△CQD的面积为?(直接写出答案)(3)当△CQD的面积为,且Q位于以CD为直径的上半圆,CQ>QD时(如图2),求AP的长.参考答案一、选择题 (共8题;共16分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、二、填空题 (共9题;共9分)9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、17-1、三、计算题 (共11题;共120分)18-1、18-2、19-1、19-2、20-1、20-2、20-3、21-1、21-2、22-1、23-1、23-2、24-1、24-2、25-1、25-2、26-1、26-2、27-1、27-2、27-3、28-1、28-2、。

2020年云南省中考数学试卷含答案解析附赠九年级数学重要公式定理

2020年云南省中考数学试卷含答案解析附赠九年级数学重要公式定理

2020年云南省中考数学试卷一、填空题(本大题共6小题,每小题3分,共18分)1.中国是最早采用正负数表示相反意义的量的国家.某仓库运进面粉7吨,记为+7吨,那么运出面粉8吨应记为吨.2.如图,直线c与直线a、b都相交.若a∥b,∠1=54°,则∠2=度.3.要使有意义,则x的取值范围是.4.已知一个反比例函数的图象经过点(3,1),若该反比例函数的图象也经过点(﹣1,m),则m=.5.若关于x的一元二次方程x2+2x+c=0有两个相等的实数根,则实数c的值为.6.已知四边形ABCD是矩形,点E是矩形ABCD的边上的点,且EA=EC.若AB=6,AC =2,则DE的长是.二、选择题(本大题共8小题,每小题只有一个正确选项,每小题4分,共32分)7.千百年来的绝对贫困即将消除,云南省95%的贫困人口脱贫,95%的贫困村出列,90%的贫困县摘帽,1500000人通过异地扶贫搬迁实现“挪穷窝”,“斩穷根”(摘自2020年5月11日云南日报).1500000这个数用科学记数法表示为()A.15×106B.1.5×105C.1.5×106D.1.5×1078.下列几何体中,主视图是长方形的是()A.B.C.D.9.下列运算正确的是()A.=±2 B.()﹣1=﹣2 C.(﹣3a)3=﹣9a3 D.a6÷a3=a3(a≠0)10.下列说法正确的是()A.为了解三名学生的视力情况,采用抽样调查B.任意画一个三角形,其内角和是360°是必然事件C.甲、乙两名射击运动员10次射击成绩(单位:环)的平均数分别为、,方差分别为s甲2、s乙2,若=,s甲2=0.4,s乙2=2,则甲的成绩比乙的稳定D.一个抽奖活动中,中奖概率为,表示抽奖20次就有1次中奖11.如图,平行四边形ABCD的对角线AC,BD相交于点O,E是CD的中点.则△DEO 与△BCD的面积的比等于()A.B.C.D.12.按一定规律排列的单项式:a,﹣2a,4a,﹣8a,16a,﹣32a,…,第n个单项式是A.(﹣2)n﹣1a B.(﹣2)n a C.2n﹣1a D.2n a13.如图,正方形ABCD的边长为4,以点A为圆心,AD为半径,画圆弧DE得到扇形DAE (阴影部分,点E在对角线AC上).若扇形DAE正好是一个圆锥的侧面展开图,则该圆锥的底面圆的半径是()A.B.1 C.D.14.若整数a使关于x的不等式组,有且只有45个整数解,且使关于y的方程+=1的解为非正数,则a的值为()A.﹣61或﹣58 B.﹣61或﹣59C.﹣60或﹣59 D.﹣61或﹣60或﹣59三、解答题(本大题共9小题,共70分)15.(6分)先化简,再求值:÷,其中x=.16.(6分)如图,已知AD=BC,BD=AC.求证:∠ADB=∠BCA.17.(8分)某公司员工的月工资如下:员工经理副经理职员A职员B职员C职员D职员E职员F杂工G 700044002400200019001800180018001200月工资/元经理、职员C、职员D从不同的角度描述了该公司员工的收入情况.设该公司员工的月工资数据(见上述表格)的平均数、中位数、众数分别为k、m、n,请根据上述信息完成下列问题:(1)k=,m=,n=;(2)上月一个员工辞职了,从本月开始,停发该员工工资,若本月该公司剩下的8名员工的月工资不变,但这8名员工的月工资数据(单位:元)的平均数比原9名员工的月工资数据(见上述表格)的平均数减小了.你认为辞职的那名员工可能是.18.(6分)某地响应“把绿水青山变成金山银山,用绿色杠杆撬动经济转型”发展理念,开展“美化绿色城市”活动,绿化升级改造了总面积为360万平方米的区域.实际施工中,由于采用了新技术,实际平均每年绿化升级改造的面积是原计划平均每年绿化升级改造的面积的2倍,所以比原计划提前4年完成了上述绿化升级改造任务.实际平均每年绿化升级改造的面积是多少万平方米?19.(7分)甲、乙两个家庭来到以“生态资源,绿色旅游”为产业的美丽云南,各自随机选择到大理、丽江、西双版纳三个城市中的一个城市旅游.假设这两个家庭选择到哪个城市旅游不受任何因素影响,上述三个城市中的每一个被选到的可能性相同,甲、乙两个家庭选择到上述三个城市中的同一个城市旅游的概率为P.(1)直接写出甲家庭选择到大理旅游的概率;(2)用列表法或树状图法(树状图也称树形图)中的一种方法,求P的值.20.(8分)如图,AB为⊙O的直径,C为⊙O上一点,AD⊥CE,垂足为D,AC平分∠DAB.(1)求证:CE是⊙O的切线;(2)若AD=4,cos∠CAB=,求AB的长.21.(8分)众志成城抗疫情,全国人民在行动.某公司决定安排大、小货车共20辆,运送260吨物资到A地和B地,支援当地抗击疫情.每辆大货车装15吨物资,每辆小货车装10吨物资,这20辆货车恰好装完这批物资.已知这两种货车的运费如下表:A地(元/辆)B地(元/辆)目的地车型大货车9001000小货车500700现安排上述装好物资的20辆货车(每辆大货车装15吨物资,每辆小货车装10吨物资)中的10辆前往A地,其余前往B地,设前往A地的大货车有x辆,这20辆货车的总运费为y元.(1)这20辆货车中,大货车、小货车各有多少辆?(2)求y与x的函数解析式,并直接写出x的取值范围;(3)若运往A地的物资不少于140吨,求总运费y的最小值.22.(9分)如图,四边形ABCD是菱形,点H为对角线AC的中点,点E在AB的延长线上,CE⊥AB,重足为E,点F在AD的延长线上,CF⊥AD,重足为F,(1)若∠BAD=60°,求证:四边形CEHF是菱形;(2)若CE=4,△ACE的面积为16,求菱形ABCD的面积.23.(12分)抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于点C,点A的坐标为(﹣1,0),点C的坐标为(0,﹣3).点P为抛物线y=x2+bx+c上的一个动点.过点P作PD⊥x轴于点D,交直线BC于点E.(1)求b、c的值;(2)设点F在抛物线y=x2+bx+c的对称轴上,当△ACF的周长最小时,直接写出点F 的坐标;(3)在第一象限,是否存在点P,使点P到直线BC的距离是点D到直线BC的距离的5倍?若存在,求出点P所有的坐标;若不存在,请说明理由.2020年云南省中考数学试卷参考答案与试题解析一、填空题(本大题共6小题,每小题3分,共18分)1.中国是最早采用正负数表示相反意义的量的国家.某仓库运进面粉7吨,记为+7吨,那么运出面粉8吨应记为﹣8吨.解:因为题目运进记为正,那么运出记为负.所以运出面粉8吨应记为﹣8吨.故答案为:﹣8.2.如图,直线c与直线a、b都相交.若a∥b,∠1=54°,则∠2=54度.解:∵a∥b,∠1=54°,∴∠2=∠1=54°.故答案为:54.3.要使有意义,则x的取值范围是x≥2.解:∵有意义,∴x﹣2≥0,∴x≥2.故答案为x≥2.4.已知一个反比例函数的图象经过点(3,1),若该反比例函数的图象也经过点(﹣1,m),则m=﹣3.解:设反比例函数的表达式为y=,∵反比例函数的图象经过点(3,1)和(﹣1,m),∴k=3×1=﹣m,解得m=﹣3,故答案为:﹣3.5.若关于x的一元二次方程x2+2x+c=0有两个相等的实数根,则实数c的值为1.解:∵关于x的一元二次方程x2+2x+c=0有两个相等的实数根,∴△=b2﹣4ac=22﹣4c=0,解得c=1.故答案为1.6.已知四边形ABCD是矩形,点E是矩形ABCD的边上的点,且EA=EC.若AB=6,AC =2,则DE的长是或.解:如图,∵四边形ABCD是矩形,∴CD=AB=6,AD=BC,∠ABC=∠ADC=90°,∴BC===2,∴AD=2,当点E在CD上时,∵AE2=DE2+AD2=EC2,∴(6﹣DE)2=DE2+4,∴DE=;当点E在AB上时,∵CE2=BE2+BC2=EA2,∴AE2=(6﹣AE)2+4,∴AE=,∴DE===,综上所述:DE=或,故答案为:或.二、选择题(本大题共8小题,每小题只有一个正确选项,每小题4分,共32分)7.千百年来的绝对贫困即将消除,云南省95%的贫困人口脱贫,95%的贫困村出列,90%的贫困县摘帽,1500000人通过异地扶贫搬迁实现“挪穷窝”,“斩穷根”(摘自2020年5月11日云南日报).1500000这个数用科学记数法表示为()A.15×106B.1.5×105C.1.5×106D.1.5×107解:1500000=1.5×106,故选:C.8.下列几何体中,主视图是长方形的是()A.B.C.D.解:圆柱体的主视图是长方形,圆锥的主视图是等腰三角形,球的主视图是圆形,四面体的主视图是三角形,故选:A.9.下列运算正确的是()A.=±2 B.()﹣1=﹣2C.(﹣3a)3=﹣9a3D.a6÷a3=a3(a≠0)解:A.,选项错误;B.原式=2,选项错误;C.原式=﹣27a3,选项错误;D.原式=a6﹣3=a3,选项正确.故选:D.10.下列说法正确的是()A.为了解三名学生的视力情况,采用抽样调查B.任意画一个三角形,其内角和是360°是必然事件C.甲、乙两名射击运动员10次射击成绩(单位:环)的平均数分别为、,方差分别为s甲2、s乙2,若=,s甲2=0.4,s乙2=2,则甲的成绩比乙的稳定D.一个抽奖活动中,中奖概率为,表示抽奖20次就有1次中奖解:了解三名学生的视力情况,由于总体数量较少,且容易操作,因此宜采取普查,因此选项A不符合题意;任意画一个三角形,其内角和是360°是比可能事件,因此选项B不符合题意;根据平均数和方差的意义可得选项C符合题意;一个抽奖活动中,中奖概率为,表示中奖的可能性为,不代表抽奖20次就有1次中奖,因此选项D不符合题意;故选:C.11.如图,平行四边形ABCD的对角线AC,BD相交于点O,E是CD的中点.则△DEO 与△BCD的面积的比等于()A.B.C.D.解:∵平行四边形ABCD的对角线AC,BD相交于点O,∴点O为线段BD的中点.又∵点E是CD的中点,∴线段OE为△DBC的中位线,∴OE∥BC,OE=BC,∴△DOE∽△DBC,∴=()2=.故选:B.12.按一定规律排列的单项式:a,﹣2a,4a,﹣8a,16a,﹣32a,…,第n个单项式是()A.(﹣2)n﹣1a B.(﹣2)n a C.2n﹣1a D.2n a解:∵a=(﹣2)1﹣1a,﹣2a=(﹣2)2﹣1a,4a=(﹣2)3﹣1a,﹣8a=(﹣2)4﹣1a,16a=(﹣2)5﹣1a,﹣32a=(﹣2)6﹣1a,…由上规律可知,第n个单项式为:(﹣2)n﹣1a.故选:A.13.如图,正方形ABCD的边长为4,以点A为圆心,AD为半径,画圆弧DE得到扇形DAE (阴影部分,点E在对角线AC上).若扇形DAE正好是一个圆锥的侧面展开图,则该圆锥的底面圆的半径是()A.B.1 C.D.解:设圆椎的底面圆的半径为r,根据题意可知:AD=AE=4,∠DAE=45°,∴2πr=,解得r=.答:该圆锥的底面圆的半径是.故选:D.14.若整数a使关于x的不等式组,有且只有45个整数解,且使关于y的方程+=1的解为非正数,则a的值为()A.﹣61或﹣58 B.﹣61或﹣59C.﹣60或﹣59 D.﹣61或﹣60或﹣59解:解不等式组,得<x≤25,∵不等式组有且只有45个整数解,∴﹣20≤<﹣19,解得﹣61≤a<﹣58,因为关于y的方程+=1的解为:y=﹣a﹣61,y≤0,∴﹣a﹣61≤0,解得a≥﹣61,∵y+1≠0,∴y≠﹣1,∴a≠﹣60则a的值为:﹣61或﹣59.故选:B.三、解答题(本大题共9小题,共70分)15.(6分)先化简,再求值:÷,其中x=.解:原式=÷=•=,当x=时,原式=2.16.(6分)如图,已知AD=BC,BD=AC.求证:∠ADB=∠BCA.证明:在△ADB和△BCA中,,∴△ADB≌△BCA(SSS),∴∠ADB=∠BCA.17.(8分)某公司员工的月工资如下:员工经理副经理职员A职员B职员C职员D职员E职员F杂工G 700044002400200019001800180018001200月工资/元经理、职员C、职员D从不同的角度描述了该公司员工的收入情况.设该公司员工的月工资数据(见上述表格)的平均数、中位数、众数分别为k、m、n,请根据上述信息完成下列问题:(1)k=2700,m=1900,n=1800;(2)上月一个员工辞职了,从本月开始,停发该员工工资,若本月该公司剩下的8名员工的月工资不变,但这8名员工的月工资数据(单位:元)的平均数比原9名员工的月工资数据(见上述表格)的平均数减小了.你认为辞职的那名员工可能是经理或副经理.解:(1)平均数k=(7000+4400+2400+2000+1900+1800×3+1200)÷9=2700,9个数据从大到小排列后,第5个数据是1900,所以中位数m=1900,1800出现了三次,次数最多,所以众数n=1800.故答案为:2700,1900,1800;(2)由题意可知,辞职的那名员工工资高于2700元,所以辞职的那名员工可能是经理或副经理.故答案为:经理或副经理.18.(6分)某地响应“把绿水青山变成金山银山,用绿色杠杆撬动经济转型”发展理念,开展“美化绿色城市”活动,绿化升级改造了总面积为360万平方米的区域.实际施工中,由于采用了新技术,实际平均每年绿化升级改造的面积是原计划平均每年绿化升级改造的面积的2倍,所以比原计划提前4年完成了上述绿化升级改造任务.实际平均每年绿化升级改造的面积是多少万平方米?解:设原计划每年绿化升级改造的面积是x万平方米,则实际每年绿化升级改造的面积是2x万平方米,根据题意,得:﹣=4,解得:x=45,经检验,x=45是原分式方程的解,则2x=2×45=90.答:实际平均每年绿化升级改造的面积是90万平方米.19.(7分)甲、乙两个家庭来到以“生态资源,绿色旅游”为产业的美丽云南,各自随机选择到大理、丽江、西双版纳三个城市中的一个城市旅游.假设这两个家庭选择到哪个城市旅游不受任何因素影响,上述三个城市中的每一个被选到的可能性相同,甲、乙两个家庭选择到上述三个城市中的同一个城市旅游的概率为P.(1)直接写出甲家庭选择到大理旅游的概率;(2)用列表法或树状图法(树状图也称树形图)中的一种方法,求P的值.解:(1)甲家庭选择到大理旅游的概率为;(2)记到大理、丽江、西双版纳三个城市旅游分别为A、B、C,列表得:A B CA(A,A)(A,B)(A,C)B(B,A)(B,B)(B,C)C(C,A)(C,B)(C,C)由表格可知,共有9种等可能性结果,其中甲、乙两个家庭选择到上述三个城市中的同一个城市旅游的有3种结果,所以甲、乙两个家庭选择到上述三个城市中的同一个城市旅游的概率P==.20.(8分)如图,AB为⊙O的直径,C为⊙O上一点,AD⊥CE,垂足为D,AC平分∠DAB.(1)求证:CE是⊙O的切线;(2)若AD=4,cos∠CAB=,求AB的长.(1)证明:连接OC.∵OA=OC,∴∠OAC=∠OCA,∵AC平分∠DAB,∴∠CAD=∠CAB,∴∠DAC=∠ACO,∴AD∥OC,∵AD⊥DE,∴OC⊥DE,∴直线CE是⊙O的切线;(2)连接BC,∵AB为⊙O的直径,∴∠ACB=90°,∴∠ADC=∠ACB,∵AC平分∠DAB,∴∠DAC=∠CAB,∴△DAC∽△CAB,∴=,∵cos∠CAB==,∴设AC=4x,AB=5x,∴=,∴x=,∴AB=.21.(8分)众志成城抗疫情,全国人民在行动.某公司决定安排大、小货车共20辆,运送260吨物资到A地和B地,支援当地抗击疫情.每辆大货车装15吨物资,每辆小货车装10吨物资,这20辆货车恰好装完这批物资.已知这两种货车的运费如下表:目的地A地(元/辆)B地(元/辆)车型大货车9001000小货车500700现安排上述装好物资的20辆货车(每辆大货车装15吨物资,每辆小货车装10吨物资)中的10辆前往A地,其余前往B地,设前往A地的大货车有x辆,这20辆货车的总运费为y元.(1)这20辆货车中,大货车、小货车各有多少辆?(2)求y与x的函数解析式,并直接写出x的取值范围;(3)若运往A地的物资不少于140吨,求总运费y的最小值.解:(1)设大货车、小货车各有x与y辆,由题意可知:,解得:,答:大货车、小货车各有12与8辆(2)设到A地的大货车有x辆,则到A地的小货车有(10﹣x)辆,到B地的大货车有(12﹣x)辆,到B地的小货车有(x﹣2)辆,∴y=900x+500(10﹣x)+1000(12﹣x)+700(x﹣2)=100x+15600,其中2<x<10.(3)运往A地的物资共有[15x+10(10﹣x)]吨,15x+10(10﹣x)≥140,解得:x≥8,∴8≤x<10,当x=8时,y有最小值,此时y=100×8+15600=16400元,答:总运费最小值为16400元.22.(9分)如图,四边形ABCD是菱形,点H为对角线AC的中点,点E在AB的延长线上,CE⊥AB,重足为E,点F在AD的延长线上,CF⊥AD,重足为F,(1)若∠BAD=60°,求证:四边形CEHF是菱形;(2)若CE=4,△ACE的面积为16,求菱形ABCD的面积.解:(1)∵四边形ABCD是菱形,∠BAD=60°,∴∠ABC=∠ADC=120°,∵CE⊥AB,CF⊥AD,∴CE=CF,∵H为对角线AC的中点,∴EH=FH=AC,∵∠CAE=30°,∵CE=AC,∴CE=EH=CF=FH,∴四边形CEHF是菱形;(2)∵CE⊥AB,CE=4,△ACE的面积为16,∴AE=8,∴AC==4,连接BD,则BD⊥AC,AH=AC=2,∵∠AHB=∠AEC=90°,∠BAH=∠EAC,∴△ABH∽△ACE,∴=,∴=,∴BH=,∴BD=2BH=2,∴菱形ABCD的面积=AC•BD==20.23.(12分)抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于点C,点A的坐标为(﹣1,0),点C的坐标为(0,﹣3).点P为抛物线y=x2+bx+c上的一个动点.过点P作PD⊥x轴于点D,交直线BC于点E.(1)求b、c的值;(2)设点F在抛物线y=x2+bx+c的对称轴上,当△ACF的周长最小时,直接写出点F 的坐标;(3)在第一象限,是否存在点P,使点P到直线BC的距离是点D到直线BC的距离的5倍?若存在,求出点P所有的坐标;若不存在,请说明理由.解:(1)把A、C点的坐标代入抛物线的解析式得,,解得,;(2)连接BC,与抛物线的对称轴交于点F,连接AF,如图1,此时,AF+CF=BF+CF=BC的值最小,∵AC为定值,∴此时△AFC的周长最小,由(1)知,b=﹣2,c=﹣3,∴抛物线的解析式为:y=x2﹣2x﹣3,∴对称轴为x=1,令y=0,得y=x2﹣2x﹣3=0,解得,x=﹣1,或x=3,∴B(3,0),令x=0,得y=x2﹣2x﹣3=﹣3,∴C(0,﹣3),设直线BC的解析式为:y=kx+b(k≠0),得,解得,,∴直线BC的解析式为:y=x﹣3,当x=1时,y=x﹣3=﹣2,∴F(1,﹣2);(3)设P(m,m2﹣2m﹣3)(m>3),过P作PH⊥BC于H,过D作DG⊥BC于G,如图2,则PH=5DG,E(m,m﹣3),∴PE=m2﹣3m,DE=m﹣3,∵∠PHE=∠DGE=90°,∠PEH=∠DEG,∴△PEH∽△DEG,∴,∴,∵m=3(舍),或m=5,∴点P的坐标为P(5,12).故存在点P,使点P到直线BC的距离是点D到直线BC的距离的5倍,其P点坐标为(5,12).九年级(上)重要的数学公式定理1.一元二次方程求根公式:一元二次方程ax2+bx+c=0(a≠0)的两根为2.一元二次方程根与系数的关系一元二次方程ax2+bx+c=0(a≠0)的两根为x1,x2,则x1+x2= ,x1·x2=一元二次方程x2+px+q=0(a≠0)的两根为x1,x2,则x1+x2= ,x1·x2=3.两点间距离公式:两点A(x1,y1),B(x2,y2)之间的距离AB=特别地,若x1=x2,则AB= ,若y1=y2,则AB= , 若O为坐标原点,则OA=4.中点坐标公式:两点A(x1,y1),B(x2,y2)的中点C的坐标为5.点到直线的距离公式:点P(x0,y0)到直线Ax+BY+C=0的距离为6.直线比例系数公式:若两点为A(x1,y1),B(x2,y2),则K AB=7.两直线平行,则K1,K2的关系是8.两直线垂直,则K1,K2的关系是9.二次函数顶点坐标公式:二次函数y=ax2+bx+c的顶点坐标为,对称轴为最大(小)值为10.二次函数y=ax2+bx+c与x轴两交点距离公式二次函数y=ax2+bx+c与x轴两交点A(X1,0),B(x2,0),则AB= ,对称轴为11.平面直角坐标系中三角形面积公式为12.弧长公式为13.扇形面积公式为①②如图,圆锥的侧面积为圆锥的全面积为为r R14.垂径定理15.垂径定理的推论①②③17.圆的两条平行弦18.圆心角定理19.圆心角定理的推论20.圆周角定理21.圆周角定理推论122.圆周角定理推论223.圆内接四边形定理24.切线的判定定理25.切线的性质定理26.切线长定理27.三角形内切圆半径公式,∠BOC=特别地,直角三角形内切圆半径公式28.正n变形中心角公式29.射影定理30.黄金分割比=31.特殊角锐角三角函数sinαcosαtanα30°45°60°36.两角和或差的正切公式。

云南省玉溪市2020年(春秋版)中考数学试卷(I)卷

云南省玉溪市2020年(春秋版)中考数学试卷(I)卷

云南省玉溪市2020年(春秋版)中考数学试卷(I)卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)(2017·曹县模拟) 据科学研究,火星距离地球的最近距离约为5500万千米,这个数据用科学记数法可表示为()千米.A . 5.5×106B . 5.5×107C . 55×106D . 0.55×1082. (2分) (2016七上·山西期末) 如图所示,的值()A . 大于1B . 等于1C . 大于0D . 小于03. (2分) (2019八下·滕州期末) 下列命题正确的个数是()⑴若x2+kx+25是一个完全平方式,则k的值等于10;(2)正六边形的每个内角都等于相邻外角的2倍;(3)一组对边平行,一组对角相等的四边形是平行四边形;(4)顺次连结四边形的四边中点所得的四边形是平行四边形A . 1B . 2C . 3D . 44. (2分)若a<0,则下列不等关系错误的是()A . a+5<a+7B . 5a>7aC . 5-a<7-aD . >5. (2分)如图,甲为四等分数字转盘,乙为三等分数字转盘,同时自由转动两个转盘,当转盘停止转动后(若指针指在边界处则重转),两个转盘指针指向数字之和不超过4的概率是()A .B .C .D .6. (2分)一个几何体的三视图如下:其中主视图与左视图都是腰长为4、底边为2的等腰三角形,则这个几何体的侧面展开图的面积为()A . 2πB .C . 8πD . 4π7. (2分)在下列APP图标的设计图案中,可以看做中心对称图形的有()A . 1个B . 2个C . 3个D . 4个8. (2分)下列说法:①在同一平面内,不相交的两条线段叫做平行线;②过一点,有且只有一条直线平行于已知直线;③两条平行直线被第三条直线所截,同位角相等;④同旁内角相等,两直线平行.正确的个数有()个.A . 1B . 2C . 3D . 49. (2分)(2020·河北模拟) 如图,直角坐标系中,A是反比例函数y= (x>0)图象上一点,B是y轴正半轴上一点,以OA,AB为邻边作 ABCO,若点C及BC中点D都在反比例函数y= (k<0,x<0)图象上,则k的值为()A . -3B . -4C . -6D . -810. (2分) (2019九上·江岸月考) 下列说法:若一元二次方程有一个根是,则代数式的值是若,则是一元二次方程的一个根若,则一元二次方程有不相等的两个实数根当m取整数或1时,关于x的一元二次方程与的解都是整数.其中正确的有()A . 1个B . 2个C . 3个D . 4个二、填空题 (共8题;共11分)11. (1分) (2020八下·昆明期末) 函数有意义的的取值范围是________.12. (1分) (2019七下·栾城期末) 若则 ________.13. (4分)水稻种植是嘉兴的传统农业.为了比较甲、乙两种水稻秧苗的长势,农技人员从两块试验田中分别随机抽取5株水稻秧苗,将测得的苗高数据绘制成如图所示的统计图.根据统计图所提供的数据,计算出的甲、乙两种水稻苗高的平均数和方差分别是________、________;________、________.14. (1分)如图,∠ACB=90°,AC=BC,BE⊥CE于点E,AD⊥CE于点D,下面四个结论:①∠ABE=∠BAD;②△CEB≌△ADC;③AB=CE;④AD-BE=DE.其中正确的是________ (将你认为正确结论的序号都写上).15. (1分)(2017·广东模拟) 如图,四边形ABCD中,对角线AC⊥BD,且AC=2,BD=2,各边中点分别为A1、B1、C1、D1 ,顺次连接得到四边形A1B1C1D1 ,再取各边中点A2、B2、C2、D2 ,顺次连接得到四边形A2B2C2D2 ,…,依此类推,这样得到四边形AnBnCnDn ,则四边形AnBnCnDn的面积为________16. (1分) (2020八下·陆川期末) a,b,c是的三边长,满足关系式,则的形状为________.17. (1分)已知,大正方形的边长为4厘米,小正方形的边长为2厘米,起始状态如图所示,大正方形固定不动,把小正方形向右平移,当两个正方形重叠部分的面积为2平方厘米时,小正方形平移的距离为________厘米.18. (1分)已知方程x2﹣2x﹣5=0的两个根是m和n,则2m+4n﹣n2的值为________.三、解答题 (共10题;共102分)19. (5分) (2019七下·岳池期中) 计算20. (10分) (2020七下·姜堰期末) 因式分解:(1);(2) .21. (10分)已知关于x的不等式(2a﹣b)x+a﹣5b>0的解集为x<,(1)求的值(2)求关于x的不等式ax>b的解集.22. (5分) (2020八上·襄城期末) 张明3小时清点完一批图书的一半,李强加入清点另一半图书的工作,两人合作1.2小时清点完另一半图书。

玉溪市2020版中考数学试卷(II)卷

玉溪市2020版中考数学试卷(II)卷

玉溪市2020版中考数学试卷(II)卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)如果a,b互为相反数,那么(6a2﹣12a)﹣6(a2+2b﹣5)的值为()A . ﹣18B . 18C . 30D . ﹣302. (2分)下列说法,你认为正确的是()A . 0的倒数是0B . 3-1=-3C . π是有理数D . 是有理数3. (2分)根据2010年第六次全国人口普查主要数据公报,广东省常住人口约为10430万人.这个数据可以用科学计数法表示为().A . 1.043×108人B . 1.043×107人C . 1.043×104人D . 1043×105人4. (2分)(2017·河北模拟) 下列图形中,是轴对称图形,但不是中心对称图形的是()A .B .C .D .5. (2分) (2017七下·宁城期末) 已知点p(3-m,m-1)在第二象限,则m的取值范围在数轴上表示正确的是()A .B .C .D .6. (2分)(2020·呼和浩特模拟) 下列命题是真命题的是()A . 多边形的内角和为360°B . 若2a﹣b=1,则代数式6a﹣3b﹣3=0C . 二次函数y=(x﹣1)2+2的图象与y轴的交点的坐标为(0,2)D . 矩形的对角线互相垂直平分7. (2分)某农科院对甲、乙两种甜玉米各用10块相同条件的试验田进行试验,得到两个品种每公顷产量的两组数据,其方差分别为s甲2=0.002、s乙2=0.03,则()A . 甲比乙的产量稳定B . 乙比甲的产量稳定C . 甲、乙的产量一样稳定D . 无法确定哪一品种的产量更稳定8. (2分)将一张矩形纸对折再对折(如图),然后沿着图中的虚线剪下,得到①、②两部分,将①展开后得到的平面图形是()A . 矩形B . 三角形C . 平行四边形D . 菱形9. (2分)如图,AB和CD都是⊙O的直径,∠AOC=50°,则∠C的度数是()A . 50°B . 30°C . 25°D . 20°10. (2分)(2017·达州) 已知二次函数y=ax2+bx+c的图象如下,则一次函数y=ax﹣2b与反比例函数y= 在同一平面直角坐标系中的图象大致是()A .B .C .D .二、填空题 (共6题;共6分)11. (1分)将点(1,5)向下平移2个单位后,所得点的坐标为________12. (1分) (2017八下·扬州期中) 如图,在□ABCD中,BE、CF分别是∠ABC和∠BCD的平分线,BE、CF 分别与AD相交于点E、F,AB=6,BC=10,则EF=________.13. (1分) (2019九下·乐清月考) 直角坐标系中△OAB,△BCD均为等毅直角三角形,OA=AB,BD=CD,点A 在x轴的正半轴上。

云南省玉溪市2020年(春秋版)中考数学试卷C卷

云南省玉溪市2020年(春秋版)中考数学试卷C卷

云南省玉溪市2020年(春秋版)中考数学试卷C卷姓名:________ 班级:________ 成绩:________一、选择题. (共10题;共20分)1. (2分)(2019·石家庄模拟) 图中的内容是某同学完成的作业,嘉琪帮他做了批改,嘉琪批改正确题数是()A . 2个B . 3个C . 4个D . 5个2. (2分) (2019八上·陆川期中) 下列计算正确的是()A .B .C .D .3. (2分)(2019·南山模拟) 港珠澳大桥2018年10月23日正式开通,整个大桥造价超过720亿元人民币,是连接香港、珠海、澳门的超大型跨海通道.数据“720亿”用科学记数法表示为()A . 0.72×1011B . 7.2×1011C . 7.2×1010D . 72×1094. (2分)将下面正方体的平面展开图重新折成正方体后,“共”字对面的字是()A . 阖B . 家C . 幸D . 福5. (2分)若线段2a+1,a,a+3能构成一个三角形,则a的范围是()A . a>0B . a>1C . a>2D . 1<a<36. (2分)两班学生参加一个测试,20名学生的一班,平均分是80分;30名学生的一班平均分是70分,两班所有学生的平均分是()A . 75分B . 74分C . 72分D . 77分7. (2分)下列命题是假命题的有()①邻补角相等;②对顶角相等;③同位角相等;④内错角相等.A . 1个B . 2个C . 3个D . 4个8. (2分) (2016七下·潮州期中) 在平面直角坐标系中,△DEF是由△ABC平移得到的,点A(﹣1,﹣4)的对应点为D(1,﹣1),则点B(1,1)的对应点F的坐标为()A . (2,2)B . (3,4)C . (﹣2,2)D . (2,﹣2)9. (2分)满足下列条件的三角形中,不是直角三角形的是()A . 三内角的度数之比为1:2:3B . 三内角的度数之比为3:4:5C . 三边长之比为3:4:5D . 三边长的平方之比为1:2:310. (2分)(2020·平阳模拟) 某农场拟建一间矩形种牛饲养室,饲养室的一面靠现有墙(墙足够长),并在如图所示位置留2m宽的门。

云南省玉溪市2020版中考数学试卷A卷

云南省玉溪市2020版中考数学试卷A卷

云南省玉溪市2020版中考数学试卷A卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)(2016·平武模拟) 的倒数的相反数是()A .B . 2C . ﹣2D . ﹣2. (2分)(2016·阿坝) 某自治州自然风景优美,每天吸引大量游客前来游览,经统计,某段时间内来该州风景区游览的人数约为36000人,用科学记数法表示36000为()A . 36×103B . 0.36×106C . 0.36×104D . 3.6×1043. (2分)(2018·德阳) 下列计算或运算中,正确的是()A .B .C .D .4. (2分) (2020九上·建湖期末) 一组数据1,2,8,5,3,9,5,4,5,4的众数、中位数分别为()A . 4.5、5B . 5、4.5C . 5、4D . 5、56. (2分)(2020·广西模拟) 下图是一个由6个相同的正方体组成的立体图形,它的主视图是()A .B .C .D .7. (2分)(2018·越秀模拟) 若方程x2﹣4x+c=0有两个不相等的实数根,则实数c的值可以是()A . 6B . 5C . 4D . 38. (2分)不等式组的最小整数解为()A . 0B . 1C . 2D . ﹣19. (2分) (2015九上·重庆期末) 在物理实验课上,小明用弹簧称将铁块A悬于盛有水的水槽中,然后匀速向上提起(不考虑水的阻力),直至铁块完全露出水面一定高度,则下图能反映弹簧称的读数y(单位N)与铁块被提起的高度x(单位cm)之间的函数关系的大致图象是()A .B .C .D .10. (2分)如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,cos∠BCD=, BD=1,则边AB的长度是()A .B .C . 2D .二、填空题 (共5题;共5分)11. (1分)因式分解: ________.12. (1分) (2019八上·洪泽期末) 在平面直角坐标系中,将点向左平移1个单位得到点,那么的坐标为________.13. (1分)(2016·平武模拟) 在函数y= +(x﹣1)0中,自变量x的取值范围是________.14. (1分)如图,AB为⊙O的弦,⊙O的半径为5,OC⊥AB于点D,交⊙O于点C,且CD=1,则弦AB的长是________.15. (1分) (2020九上·泰兴期末) 对于一个函数,当自变量x取n时,函数值y等于4-n,我们称n为这个函数的“二合点”,如果二次函数y=mx2+x+1有两个相异的二合点x1 , x2 ,且x1<x2<1,则m的取值范围是________.三、解答题 (共9题;共85分)16. (5分)(2017·冷水滩模拟) 计算:(π﹣3)0﹣(﹣1)2017+(﹣)﹣2+tan60°+| ﹣2|17. (5分)先化简,再求代数式的值,其中a=3tan30°+1,b=cos45°.18. (5分) (2017九上·夏津开学考) 如图,已知平行四边形ABCD中,点E为BC边的中点,延长DE,AB相交于点F.求证:CD=BF.19. (10分) (2019九上·伍家岗期末) 有两盏节能灯,每一盏能通电发亮的概率都是50%,按照图中所示的并联方式连接电路,观察这两盏灯发亮的情况:(1)列举出所有可能的情况;(2)求出两盏灯都不发亮的概率.20. (5分)(2017·揭西模拟) 如图,某校数学兴趣小组为测得大厦AB的高度,在大厦前的平地上选择一点C,测得大厦顶端A的仰角为30°,再向大厦方向前进80米,到达点D处(C,D,B三点在同一直线上),又测得大厦顶端A的仰角为45°,请你计算该大厦的高度.(精确到0.1米,参考数据:≈1.414,≈1.732)21. (10分) (2016七下·五莲期末) 某商店需要购进甲、乙两种商品共180件,其进价和售价如表:(注:获利=售价﹣进价)甲乙进价(元/件)1435售价(元/件)2043(1)若商店计划销售完这批商品后能获利1240元,问甲、乙两种商品应分别购进多少件?(2)若商店计划投入资金少于5040元,且销售完这批商品后获利多于1312元,请问有哪几种购货方案?并直接写出其中获利最大的购货方案.22. (10分) (2019九上·孝昌期末) 如图,在平面直角坐标系xOy中,点A(a,﹣)在直线y=﹣上,AB∥y轴,且点B的纵坐标为1,双曲线y=经过点B.(1)求a的值及双曲线y=的解析式;(2)经过点B的直线与双曲线y=的另一个交点为点C,且△ABC的面积为 .①求直线BC的解析式;②过点B作BD∥x轴交直线y=﹣于点D,点P是直线BC上的一个动点.若将△BDP以它的一边为对称轴进行翻折,翻折前后的两个三角形所组成的四边形为正方形,直接写出所有满足条件的点P的坐标.23. (15分)(2020·广西模拟) 如图,已知AB是⊙O的直径,点C为圆上一点,点D在OC的延长线上,连接DA,交BC的延长线于点E,使得∠DAC=∠B.(1)求证:DA是⊙O的切线;(2)求证:△CED∽△ACD;(3)若OA=1,sinD=,求AE的长.24. (20分) (2019九上·长春期末) 如图,在平面直角坐标系中,抛物线y=﹣x2+3x与x轴交于O、A两点,与直线y=x交于O、B两点,点A、B的坐标分别为(3,0)、(2,2).点P在抛物线上,且不与点O、B重合,过点P作y轴的平行线交射线OB于点Q ,以PQ为边作R△PQN ,点N与点B始终在PQ同侧,且PN=1.设点P 的横坐标为m(m>0),PQ长度为d .(1)用含m的代数式表示点P的坐标.(2)求d与m之间的函数关系式.(3)当△PQN是等腰直角三角形时,求m的值.(4)直接写出△PQN的边与抛物线有两个交点时m的取值范围.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共5题;共5分)11-1、12-1、13-1、14-1、15-1、三、解答题 (共9题;共85分)16-1、17-1、18-1、19-1、19-2、20-1、21-1、21-2、22-1、22-2、23-1、23-2、23-3、24-1、24-2、24-3、24-4、第11 页共11 页。

玉溪市2020版中考数学试卷C卷

玉溪市2020版中考数学试卷C卷

玉溪市2020版中考数学试卷C卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)(2018·道外模拟) 的相反数是()A .B . -C . -D .2. (2分) (2017七下·萍乡期末) 下面所给的交通标志图中是轴对称图形的是()A .B .C .D .3. (2分) (2019七上·松江期末) 下列各式运算正确的是()A .B .C .D .4. (2分)(2018·遵义模拟) 如图,直线AB∥CD,直线EF分别与直线AB,CD相交于点G,H.若∠1=135°,则∠2的度数为()A . 35°B . 45°C . 55°D . 65°5. (2分)(2018·洛阳模拟) 把不等式组的解集表示在数轴上,下列不符合题意的是()A .B .C .D .6. (2分) (2017九下·梁子湖期中) 下列说法正确的是()A . 若一组数据x1 , x2 , x3的方差为1,则另一组数据2x1 , 2x2 , 2x3的方差为4B . 调查某批次汽车的抗撞击能力,应选择全面调查C . 中位数就是一组数据中最中间的一个数D . 8,9,9,10,10,11这组数据的众数是107. (2分) (2020九上·渭滨期末) 如图,AD是△ABC的中线,点E在AD上,AD=4DE,连接BE并延长交AC 于点F,则AF:FC的值是()A . 3:2B . 4:3C . 2:1D . 2:38. (2分)一个数的平方与这个数的3倍相等,则这个数为()A . 0B . 3C . 0或3D .9. (2分)如图所示是一个几何体的三视图,这个几何体的名称是()A . 圆柱体B . 三棱锥C . 球体D . 圆锥体10. (2分)已知二次函数, m、n为常数,且下列自变量取值范围中y随x增大而增大的是()A . x<2B . x<1C . 0<x<2D . x>1二、填空题(本大题共6个小题,每小题3分,共18分) (共6题;共6分)11. (1分)地球上海洋面积约为361000000km2 ,将它精确到10000000km2可表示为________ .12. (1分) (2019九下·天心期中) 如图,△ABC中,D是BC上一点,AC=AD=DB,∠DAC=80°,则∠B=________度.13. (1分) (2019八上·丹徒月考) 若直角三角形斜边上的中线是6cm,则它的斜边是________ cm.14. (1分)如图,在直角坐标系中,直线y1=2x﹣2与坐标轴交于A、B两点,与双曲线y2= (x>0)交于点C,过点C作CD⊥x轴,垂足为D,且OA=AD,则以下结论:①S△ADB=S△ADC;②当0<x<3时,y1<y2;③如图,当x=3时,EF= ;④当x>0时,y1随x的增大而增大,y2随x的增大而减小.其中正确结论的序号是________.15. (1分)如图,P是⊙O的直径AB的延长线上一点,PC、PD切⊙O于点C、D.若PA=6,⊙O的半径为2,则∠CPD=________16. (1分) (2016九上·北京期中) 如图,在大小为4×4的正方形网格中,是相似三角形的是________(请填上编号).三、解答题(本题共9小题,共72分,解答应写出必要演算步骤,文字 (共9题;共83分)17. (10分) (2017七下·东城期中) 计算(1).(2).18. (5分) (2016八上·平南期中) 已知M= ,N=()﹣1 ,当a:b=3:2时,求M+N的值.19. (5分)已知某项工程,乙工程队单独完成所需天数是甲工程队单独完成所需天数的两倍,若甲工程队单独做10天后,再由乙工程队单独做15天,恰好完成该工程的,共需施工费用85万元,甲工程队每天的施工费用比乙工程队每天的施工费用多1万元.(1)单独完成此项工程,甲、乙两工程对各需要多少天?(2)甲、乙两工程队每天的施工费各为多少万元?(3)若要完成全部工程的施工费用不超过116万元,且乙工程队的施工天数大于10天,求甲工程队施工天数的取值范围?20. (8分)(2018·成华模拟) 九(1)班针对“你最喜爱的课外活动项目”对全班学生进行调查(每名学生分别选一个活动项目),并根据调查结果列出统计表,绘制成扇形统计图.根据以上信息解决下列问题:(1) ________, ________;(2)扇形统计图中机器人项目所对应扇形的圆心角度数为________°;(3)从选航模项目的4名学生中随机选取2名学生参加学校航模兴趣小组训练,请用列举法(画树状图或列表)求所选取的2名学生中恰好有1名男生、1名女生的概率.21. (5分)(2020·三明模拟) 如图,直升飞机在大桥AB上方C点处测得A,B两点的俯角分别为45°和31°.若飞机此时飞行高度CD为1205m,且点A,B,D在同一条直线上,求大桥AB的长.(精确到1m)(参考数据:sin31°≈0.52,cos31°≈0.86,tan31°≈0.60)22. (10分) (2019九上·高州期末) 已知:如图,平行四边形的对角线相交于点,点在边的延长线上,且,联结.(1)求证:;(2)如果,求证:.23. (15分) (2016九上·大石桥期中) 某商店原来平均每天可销售某种水果100千克,每千克可盈利7元,为减少库存,经市场调查,如果这种水果每千克降价1元,则每天可所多售出20千克.(1)设每千克水果降价x元,平均每天盈利y元,试写出y关于x的函数表达式;(2)若要平均每天盈利400元,则每千克应降价多少元?(3)每千克降价多少元时,每天的盈利最多?最多盈利多少元?24. (10分)(2017·金乡模拟) 在▱ABCD中,过点D作DE⊥AB于点E,点F在边CD上,DF=BE,连接AF,BF.(1)求证:四边形BFDE是矩形;(2)若CF=3,BF=4,DF=5,求证:AF平分∠DAB.25. (15分) (2019九下·长兴月考) 如图,在平面直角坐标系xOy中,已知矩形OABC的边OA,OC都在坐标轴上,点B的坐标为(12,16).点D以每秒5个单位的速度从点C向点A运动(不与A,C重合),反比例函数y= (x>0)的图象经过点D,与AC的另一个交点为E,与AB,BC分别交于点FG,连结EF.设点D的运动时间为t.(1)当t=1时,求反比例函数y= (x>0)的解析式;(2)点D在运动过程中,①求证:当线段AF的长度取最大值时,点D恰好为AC的中点;②是否存在这样的t,使得△AEF为等腰三角形?若存在,请求出此时点D的坐标;若不存在,请说明理由;(3)连结FG,将△BFG沿着FG所在直线翻折,当点B落在y轴左侧时,请直接写出t的取值范围.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题(本大题共6个小题,每小题3分,共18分) (共6题;共6分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题(本题共9小题,共72分,解答应写出必要演算步骤,文字 (共9题;共83分) 17-1、17-2、18-1、19-1、20-1、20-2、20-3、21-1、22-1、22-2、23-1、23-2、23-3、24-1、24-2、25-1、25-2、25-3、。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020年玉溪市中考数学试题附答案一、选择题1.若一个凸多边形的内角和为720°,则这个多边形的边数为( )A .4B .5C .6D .72.通过如下尺规作图,能确定点D 是BC 边中点的是( )A .B .C .D .3.函数31x y x +=-中自变量x 的取值范围是( ) A .x ≥-3 B .x ≥-3且1x ≠ C .1x ≠ D .3x ≠-且1x ≠4.三张外观相同的卡片分别标有数字1,2,3,从中随机一次性抽出两张,则这两张卡片上的数字恰好都小于3的概率是( )A .19B .16C .13D .23 5.已知11(1)11A x x ÷+=-+,则A =( ) A .21x x x -+B .21x x -C .211x - D .x 2﹣16.不等式x+1≥2的解集在数轴上表示正确的是( ) A .B .C .D .7.如图,四个有理数在数轴上的对应点M ,P ,N ,Q ,若点M ,N 表示的有理数互为相反数,则图中表示绝对值最小的数的点是( )A .点MB .点NC .点PD .点Q 8.观察下列图形中点的个数,若按其规律再画下去,可以得到第9个图形中所有点的个数为( )A .61B .72C .73D .869.下面的几何体中,主视图为圆的是( )A .B .C .D .10.若关于x 的一元二次方程kx 2﹣4x +3=0有实数根,则k 的非负整数值是( ) A .1 B .0,1 C .1,2 D .1,2,311.某商店销售富硒农产品,今年1月开始盈利,2月份盈利240000元,4月份盈利290400元,且从2月份到4月份,每月盈利的平均增长率相同,则每月盈利的平均增长率是( )A .8%B .9%C .10%D .11%12.已知实数a ,b ,若a >b ,则下列结论错误的是A .a-7>b-7B .6+a >b+6C .55ab > D .-3a >-3b二、填空题13.如图,已知AB ∥CD ,F 为CD 上一点,∠EFD=60°,∠AEC=2∠CEF ,若6°<∠BAE <15°,∠C 的度数为整数,则∠C 的度数为_____.14.如图,直线a 、b 被直线l 所截,a ∥b ,∠1=70°,则∠2= .15.已知圆锥的底面圆半径为3cm ,高为4cm ,则圆锥的侧面积是________cm 2.16.如图,在平行四边形ABCD 中,连接BD ,且BD =CD ,过点A 作AM ⊥BD 于点M ,过点D 作DN ⊥AB 于点N ,且DN =32DB 的延长线上取一点P ,满足∠ABD =∠MAP +∠PAB ,则AP =_____.17.我国倡导的“一带一路”建设将促进我国与世界各国的互利合作,“一带一路”地区覆盖总人口约为4400000000人,将数据4400000000用科学记数法表示为______.18.正六边形的边长为8cm,则它的面积为____cm2.19.已知(a-4)(a-2)=3,则(a-4)2+(a-2)2的值为__________.20.对于有理数a、b,定义一种新运算,规定a☆b=a2﹣|b|,则2☆(﹣3)=_____.三、解答题21.国家自2016年1月1日起实行全面放开二胎政策,某计生组织为了解该市家庭对待这项政策的态度,准备采用以下调查方式中的一种进行调查:A.从一个社区随机选取1 000户家庭调查;B.从一个城镇的不同住宅楼中随机选取1 000户家庭调查;C.从该市公安局户籍管理处随机抽取1 000户城乡家庭调查.(1)在上述调查方式中,你认为比较合理的一个是.(填“A”、“B”或“C”)(2)将一种比较合理的调查方式调查得到的结果分为四类:(A)已有两个孩子;(B)决定生二胎;(C)考虑之中;(D)决定不生二胎.将调查结果绘制成如下两幅不完整的统计图.请根据以上不完整的统计图提供的信息,解答下列问题:①补全条形统计图.②估计该市100万户家庭中决定不生二胎的家庭数.22.2018年“妇女节”前夕,扬州某花店用4000元购进若干束花,很快售完,接着又用4500元购进第二批花,已知第二批所购花的束数是第一批所购花束数的1.5倍,且每束花的进价比第一批的进价少5元,求第一批花每束的进价是多少?23.某小区响应济南市提出的“建绿透绿”号召,购买了银杏树和玉兰树共150棵用来美化小区环境,购买银杏树用了12000元,购买玉兰树用了9000元.已知玉兰树的单价是银杏树单价的1.5倍,那么银杏树和玉兰树的单价各是多少?24.阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如:2+=(),善于思考的小明进行了以下探索:32212设()2a b 2m n 2+=+(其中a b m n 、、、均为整数),则有22a b 2m 2n 2mn 2+=++.∴22a m 2n b 2mn =+=,.这样小明就找到了一种把部分a b 2+的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:当a b m n 、、、均为正整数时,若()2a b 3m n 3+=+,用含m 、n 的式子分别表示a b 、,得a = ,b = ;(2)利用所探索的结论,找一组正整数a b m n 、、、,填空: + =( + 3)2;(3)若()2433a m n +=+,且a b m n 、、、均为正整数,求a 的值. 25.如图1,已知二次函数y=ax 2+32x+c (a≠0)的图象与y 轴交于点A (0,4),与x 轴交于点B 、C ,点C 坐标为(8,0),连接AB 、AC . (1)请直接写出二次函数y=ax 2+32x+c 的表达式; (2)判断△ABC 的形状,并说明理由; (3)若点N 在x 轴上运动,当以点A 、N 、C 为顶点的三角形是等腰三角形时,请写出此时点N 的坐标;(4)如图2,若点N 在线段BC 上运动(不与点B 、C 重合),过点N 作NM∥AC,交AB 于点M ,当△AMN 面积最大时,求此时点N 的坐标.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】设这个多边形的边数为n,根据多边形的内角和定理得到(n﹣2)×180°=720°,然后解方程即可.【详解】设这个多边形的边数为n,由多边形的内角和是720°,根据多边形的内角和定理得(n-2)180°=720°.解得n=6.故选C.【点睛】本题主要考查多边形的内角和定理,熟练掌握多边形的内角和定理是解答本题的关键. 2.A解析:A【解析】【分析】作线段BC的垂直平分线可得线段BC的中点.【详解】作线段BC的垂直平分线可得线段BC的中点.由此可知:选项A符合条件,故选A.【点睛】本题考查作图﹣复杂作图,解题的关键是熟练掌握五种基本作图.3.B解析:B【解析】分析:本题主要考查自变量的取值范围,函数关系中主要有二次根式和分式两部分.根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,就可以求解.≥0,∴x+3≥0,∴x≥-3,∵x-1≠0,∴x≠1,∴自变量x的取值范围是:x≥-3且x≠1.故选B.4.C解析:C【解析】【分析】画出树状图即可求解.【详解】解:画树状图得:∵共有6种等可能的结果,而两张卡片上的数字恰好都小于3有2种情况,∴两张卡片上的数字恰好都小于3概率=13;故选:C.【点睛】本题考查的是概率,熟练掌握树状图是解题的关键. 5.B解析:B【解析】【分析】由题意可知A=111)11x x++-(,再将括号中两项通分并利用同分母分式的减法法则计算,再用分式的乘法法则计算即可得到结果.【详解】解:A=11111x x++-=111xx x+-=21xx-故选B.【点睛】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.6.A解析:A【解析】试题解析:∵x+1≥2,∴x≥1.故选A.考点:解一元一次不等式;在数轴上表示不等式的解集.7.C解析:C【解析】试题分析:∵点M,N表示的有理数互为相反数,∴原点的位置大约在O点,∴绝对值最小的数的点是P点,故选C.考点:有理数大小比较.8.C解析:C【解析】【分析】设第n个图形中有a n个点(n为正整数),观察图形,根据各图形中点的个数的变化可得出变化规律“a n=n2+n+1(n为正整数)”,再代入n=9即可求出结论.【详解】设第n个图形中有a n个点(n为正整数),观察图形,可知:a1=5=1×2+1+2,a2=10=2×2+1+2+3,a3=16=3×2+1+2+3+4,…,∴a n=2n+1+2+3+…+(n+1)=n2+n+1(n为正整数),∴a9=×92+×9+1=73.故选C.【点睛】本题考查了规律型:图形的变化类,根据各图形中点的个数的变化找出变化规律“a n=n2+n+1(n为正整数)”是解题的关键.9.C解析:C【解析】试题解析:A、的主视图是矩形,故A不符合题意;B、的主视图是正方形,故B不符合题意;C、的主视图是圆,故C符合题意;D、的主视图是三角形,故D不符合题意;故选C.考点:简单几何体的三视图.10.A解析:A【解析】【分析】【详解】由题意得,根的判别式为△=(-4)2-4×3k,由方程有实数根,得(-4)2-4×3k≥0,解得k≤43,由于一元二次方程的二次项系数不为零,所以k≠0,所以k的取值范围为k≤43且k≠0,即k 的非负整数值为1,故选A .11.C解析:C【解析】【分析】设月平均增长率为x ,根据等量关系:2月份盈利额×(1+增长率)2=4月份的盈利额列出方程求解即可.【详解】设该商店的每月盈利的平均增长率为x ,根据题意得:240000(1+x )2=290400,解得:x 1=0.1=10%,x 2=-0.21(舍去),故选C.【点睛】此题主要考查了一元二次方程的应用,属于增长率的问题,一般公式为原来的量×(1±x )2=后来的量,其中增长用+,减少用-.12.D解析:D【解析】A.∵a >b ,∴a-7>b-7,∴选项A 正确;B.∵a >b ,∴6+a >b+6,∴选项B 正确;C.∵a >b ,∴55a b >,∴选项C 正确;D.∵a >b ,∴-3a <-3b ,∴选项D 错误.故选D. 二、填空题13.36°或37°【解析】分析:先过E 作EG ∥AB 根据平行线的性质可得∠AEF=∠BA E+∠DFE 再设∠CEF=x 则∠AEC=2x 根据6°<∠BAE <15°即可得到6°<3x-60°<15°解得22°<解析:36°或37°.【解析】分析:先过E 作EG ∥AB ,根据平行线的性质可得∠AEF=∠BAE+∠DFE ,再设∠CEF=x ,则∠AEC=2x ,根据6°<∠BAE <15°,即可得到6°<3x-60°<15°,解得22°<x <25°,进而得到∠C 的度数.详解:如图,过E 作EG ∥AB ,∵AB∥CD,∴GE∥CD,∴∠BAE=∠AEG,∠DFE=∠GEF,∴∠AEF=∠BAE+∠DFE,设∠CEF=x,则∠AEC=2x,∴x+2x=∠BAE+60°,∴∠BAE=3x-60°,又∵6°<∠BAE<15°,∴6°<3x-60°<15°,解得22°<x<25°,又∵∠DFE是△CEF的外角,∠C的度数为整数,∴∠C=60°-23°=37°或∠C=60°-24°=36°,故答案为:36°或37°.点睛:本题主要考查了平行线的性质以及三角形外角性质的运用,解决问题的关键是作平行线,解题时注意:两直线平行,内错角相等.14.110°【解析】∵a∥b∴∠3=∠1=70°∵∠2+∠3=180°∴∠2=110°解析:110°【解析】∵a∥b,∴∠3=∠1=70°,∵∠2+∠3=180°,∴∠2=110°15.15π【解析】【分析】设圆锥母线长为l根据勾股定理求出母线长再根据圆锥侧面积公式即可得出答案【详解】设圆锥母线长为l∵r=3h=4∴母线l=∴S侧=×2πr×5=×2π×3×5=15π故答案为15π解析:15π【解析】【分析】设圆锥母线长为l,根据勾股定理求出母线长,再根据圆锥侧面积公式即可得出答案.【详解】设圆锥母线长为l,∵r=3,h=4,∴母线225r h+=,∴S侧=12×2πr×5=12×2π×3×5=15π,故答案为15π.【点睛】本题考查了圆锥的侧面积,熟知圆锥的母线长、底面半径、圆锥的高以及圆锥的侧面积公式是解题的关键.16.6【解析】分析:根据BD=CDAB=CD可得BD=BA再根据AM⊥BDDN⊥AB即可得到DN=AM=3依据∠ABD=∠MAP+∠PAB∠ABD=∠P+∠BAP即可得到△APM是等腰直角三角形进而得到解析:6【解析】分析:根据BD=CD,AB=CD,可得BD=BA,再根据AM⊥BD,DN⊥AB,即可得到,依据∠ABD=∠MAP+∠PAB,∠ABD=∠P+∠BAP,即可得到△APM是等腰直角三角形,进而得到AM=6.详解:∵BD=CD,AB=CD,∴BD=BA,又∵AM⊥BD,DN⊥AB,∴,又∵∠ABD=∠MAP+∠PAB,∠ABD=∠P+∠BAP,∴∠P=∠PAM,∴△APM是等腰直角三角形,∴AM=6,故答案为6.点睛:本题主要考查了平行四边形的性质以及等腰直角三角形的性质的运用,解决问题给的关键是判定△APM是等腰直角三角形.17.4×109【解析】【分析】科学记数法的表示形式为a×10n的形式其中1≤|a|<10n为整数确定n的值时要看把原数变成a时小数点移动了多少位n 的绝对值与小数点移动的位数相同当原数绝对值>10时n是正解析:4×109【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】4400000000的小数点向左移动9位得到4.4,所以4400000000用科学记数法可表示为:4.4×109,故答案为4.4×109.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.18.【解析】【分析】【详解】如图所示正六边形ABCD中连接OCOD过O作OE⊥CD;∵此多边形是正六边形∴∠COD=60°;∵OC=OD∴△COD是等边三角形∴OE=CE•tan60°=cm∴S△OCD解析:3【解析】【分析】【详解】如图所示,正六边形ABCD中,连接OC、OD,过O作OE⊥CD;∵此多边形是正六边形,∴∠COD=60°;∵OC=OD,∴△COD是等边三角形,∴OE=CE•tan60°=83432⨯=cm,∴S△OCD=12CD•OE=12×8×43=163cm2.∴S正六边形=6S△OCD=6×163=963cm2.考点:正多边形和圆19.10【解析】【分析】试题分析:把(a﹣4)和(a﹣2)看成一个整体利用完全平方公式求解【详解】(a﹣4)2+(a﹣2)2=(a﹣4)2+(a﹣2)2-2(a ﹣4)(a﹣2)+2(a﹣4)(a﹣2)=解析:10【解析】【分析】试题分析:把(a﹣4)和(a﹣2)看成一个整体,利用完全平方公式求解.【详解】(a﹣4)2+(a﹣2)2=(a﹣4)2+(a﹣2)2-2(a﹣4)(a﹣2)+2(a﹣4)(a﹣2)=[(a﹣4)-(a﹣2)]2+2(a﹣4)(a﹣2)=(-2)2+2×3=10故答案为10【点睛】本题考查了完全平方公式:(a±b)2=a2±2ab+b2求解,整体思想的运用使运算更加简便.20.1【解析】解:2☆(﹣3)=22﹣|﹣3|=4﹣3=1故答案为1点睛:此题考查有理数的混合运算掌握规定的运算方法是解决问题的关键解析:1【解析】解:2☆(﹣3)=22﹣|﹣3|=4﹣3=1.故答案为1.点睛:此题考查有理数的混合运算,掌握规定的运算方法是解决问题的关键.三、解答题21.(1)C;(2)①作图见解析;②35万户.【解析】【分析】(1)C项涉及的范围更广;(2)①求出B,D的户数补全统计图即可;①100万乘以不生二胎的百分比即可.【详解】解:(1)A、B两种调查方式具有片面性,故C比较合理;故答案为:C;(2)①B:100030%300⨯=户1000-100-300-250=350户补全统计图如图所示:(3)因为350100351000⨯=(万户),所以该市100万户家庭中决定不生二胎的家庭数约为35万户.【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.22.20元/束.【解析】【分析】设第一批花每束的进价是x元/束,则第一批进的数量是:4000x,再根据等量关系:第二批进的数量=第一批进的数量×1.5可得方程.【详解】设第一批花每束的进价是x元/束,依题意得:4000x ×1.5=45005x -, 解得x =20. 经检验x =20是原方程的解,且符合题意.答:第一批花每束的进价是20元/束.【点睛】本题考查了分式方程的应用.关键是根据等量关系:第二批进的数量=第一批进的数量×1.5列方程.23.银杏树的单价为120元,则玉兰树的单价为180元.【解析】试题分析:根据题意可以列出相应的分式方程,从而可以解答本题.试题解析:解:设银杏树的单价为x 元,则玉兰树的单价为1.5x 元,根据题意得:1200090001501.5x x+= 解得:x =120,经检验x =120是原分式方程的解,∴1.5x =180.答:银杏树的单价为120元,则玉兰树的单价为180元.24.(1)22m 3n +,2mn ;(2)4,2,1,1(答案不唯一);(3)a =7或a =13.【解析】【分析】【详解】(1)∵2(a m +=+,∴2232a m n +=++,∴a =m 2+3n 2,b =2mn .故答案为m 2+3n 2,2mn .(2)设m =1,n =2,∴a =m 2+3n 2=13,b =2mn =4.故答案为13,4,1,2(答案不唯一).(3)由题意,得a =m 2+3n 2,b =2mn .∵4=2mn ,且m 、n 为正整数,∴m =2,n =1或m =1,n =2,∴a =22+3×12=7,或a =12+3×22=13. 25.(1)y=﹣14x 2+32x+4;(2)△ABC 是直角三角形.理由见解析;(3)点N 的坐标分别为(﹣8,0)、(8﹣0)、(3,0)、(0).(4)当△AMN 面积最大时,N 点坐标为(3,0).【解析】【分析】(1)由点A 、C 的坐标利用待定系数法即可求出二次函数的解析式;(2)令二次函数解析式中y=0,求出点B 的坐标,再由两点间的距离公式求出线段AB 、AC 、BC 的长度,由三者满足AB2+AC2=BC2即可得出△ABC为直角三角形;(3)分别以A、C两点为圆心,AC长为半径画弧,与x轴交于三个点,由AC的垂直平分线与x轴交于一点,即可求得点N的坐标;(4)设点N的坐标为(n,0)(-2<n<8),通过分割图形法求面积,再根据相似三角形面积间的关系以及三角形的面积公式即可得出S△AMN关于n的二次函数关系式,根据二次函数的性质即可解决最值问题.【详解】(1)∵二次函数y=ax2+x+c的图象与y轴交于点A(0,4),与x轴交于点B、C,点C坐标为(8,0),∴,解得.∴抛物线表达式:y=﹣x2+x+4;(2)△ABC是直角三角形.令y=0,则﹣x2+x+4=0,解得x1=8,x2=﹣2,∴点B的坐标为(﹣2,0),由已知可得,在Rt△ABO中AB2=BO2+AO2=22+42=20,在Rt△AOC中AC2=AO2+CO2=42+82=80,又∵BC=OB+OC=2+8=10,∴在△ABC中AB2+AC2=20+80=102=BC2∴△ABC是直角三角形.(3)∵A(0,4),C(8,0),∴AC==4,①以A为圆心,以AC长为半径作圆,交x轴于N,此时N的坐标为(﹣8,0),②以C为圆心,以AC长为半径作圆,交x轴于N,此时N的坐标为(8﹣4,0)或(8+4,0)③作AC的垂直平分线,交x轴于N,此时N的坐标为(3,0),综上,若点N在x轴上运动,当以点A、N、C为顶点的三角形是等腰三角形时,点N的坐标分别为(﹣8,0)、(8﹣4,0)、(3,0)、(8+4,0).(4)如图,设点N的坐标为(n,0),则BN=n+2,过M点作MD⊥x轴于点D,∴MD∥OA,∴△BMD∽△BAO,∴=,∵MN∥AC∴=,∴=,∵OA=4,BC=10,BN=n+2∴MD=(n+2),∵S△AMN=S△ABN﹣S△BMN=BN•OA﹣BN•MD=(n+2)×4﹣×(n+2)2=﹣(n﹣3)2+5,当n=3时,△AMN面积最大是5,∴N点坐标为(3,0).∴当△AMN面积最大时,N点坐标为(3,0).【点睛】本题考查了二次函数的综合问题,熟练掌握二次函数的知识点是本题解题的关键.。

相关文档
最新文档