热电偶 温度传感器的设计

合集下载

温度传感器的设计与研究

温度传感器的设计与研究

温度传感器的设计与研究温度传感器的设计与研究引言:随着科技的飞速发展,温度传感器在日常生活以及工业领域扮演着越来越重要的角色。

温度传感器是一种用来测量环境温度的设备,其设计和研究对于准确监测和控制温度具有至关重要的意义。

本文将介绍温度传感器的基本原理、常见设计和研究方法,并探讨其在不同领域中的应用。

一、温度传感器的基本原理1.1 热敏电阻(RTD)传感器热敏电阻利用材料的电阻随温度的变化而变化的特性进行温度的测量。

常见的材料有铂、镍等,其电阻随温度的变化呈现出一定的线性规律。

通过测量电阻的变化,便能够得知环境温度。

1.2 热电偶传感器热电偶是利用两种不同金属的热电效应原理来测量温度的传感器。

原理是两种金属在不同温度下形成电势差,利用该电势差可以计算出温度差,从而测量温度。

热电偶具有较高的测量精度和较广的测量范围,而且具有抗干扰能力强等特点,在工业领域得到广泛应用。

1.3 半导体温度传感器半导体温度传感器是利用半导体材料的电阻、电压或电流随温度的变化而变化来测量温度的传感器。

由于半导体材料的导电性与温度呈线性关系,因此可以利用半导体温度传感器来进行温度的测量。

二、温度传感器的设计与研究方法2.1 传感元件的选择在温度传感器的设计与研究中,首先需要选择适合的传感元件。

根据实际应用需求和测量范围等因素,选择合适的传感元件,如热敏电阻、热电偶或半导体温度传感器。

2.2 电路设计温度传感器常常需要与电路进行配合使用,因此需要进行电路设计。

电路设计的目的是将传感元件的输出信号转化为可读取和处理的电压或电流信号。

根据传感元件的特性和具体要求,设计相应的放大、滤波和线性化电路等,以确保测量结果的准确性和稳定性。

2.3 系统校准在温度传感器的设计和研究中,系统校准是不可或缺的步骤。

校准的目的是消除传感器本身和测量系统的误差,提高测量的准确性和可靠性。

常见的校准方法包括通过比较标准温度传感器进行修正、使用温度标准设备进行校准和定期检验等。

基于热电偶的温度测试仪设计

基于热电偶的温度测试仪设计

基于热电偶的温度测试仪设计摘要:基于热电偶的温度测试仪,该仪器是以AT89C51单片机为核心,由AD590,由热电偶测量热端温度T,该热电偶采用K型热集成温度传感器测量冷端温度T电偶(镍铬-镍硅热电偶)。

它们分别经过I/V转换和线性放大,分时进行A/D转换,转换后的数字信号送入AT89C51单片机,经单片机运算处理,转换成ROM地址,再通过二次查表法计算出实际温度值,此值送4位共阴极LED数码管显示。

该热电偶测温仪的软件用C语言编写,采用模块化结构设计。

关键词:热电偶,冷端温度补偿,89C51单片机,ADC0809,线性化标度变换Abstract:Thermocouple-based temperature testing instrument, the instrument is based on AT89C51 microcontroller as the core, from AD590 integrated temperature sensor measures the cold junction temperature T0, measured by the thermocouple hot-side temperature T, the use of K-Thermocouple Thermocouple ( Ni-Cr - Ni-Si thermocouple). They are through the I / V conversion and linear amplification, time for A / D conversion, the converted digital signal into the AT89C51 microcontroller, microcontroller operation after processing into ROM address, and then through the second look-up table method to calculate the actual temperature value, this value is sent to four common cathode LED digital tube display. The thermocouple thermometer software with C language, using a modular structure design.Keywords:Thermocouple, cold junction temperature compensation, 89C51 microcontroller, ADC0809, linear scale transformation目录1 前言 (1)2 整体方案设计 (2)2.1方案论证 (2)2.2方案比较 (3)3 单元模块设计 (4)3.1冷端采集和补偿电路模块 (4)3.1.1 AD590介绍 (4)3.1.2冷端采集和补偿电路分析 (6)3.2热端放大电路模块 (6)3.3A/D转换器ADC0809 (7)3.4单片机模块 (8)3.5LED显示模块 (11)4 软件设计 (13)4.1主程序 (13)4.2A/D转换子程序 (13)4.3线性化标度变换子程序 (15)5 系统调试 (18)5.1调试软件介绍 (18)5.1.1 ISIS简介 (18)5.1.2 Keil C51简介 (18)5.2硬件调试 (18)5.3软件调试 (19)5.4硬件软件联调 (20)6系统技术指标及精度和误差分析 (21)7设计小结 (22)8总结与体会 (23)9参考文献 (24)附录1:电路总图 (25)附录2:软件代码 (26)1 前言温度是表征物体冷热程度的物理量,温度传感器是通过物体随温度变化而改变某种特性来间接测量的。

热电偶温度传感器实验报告

热电偶温度传感器实验报告

热电偶温度传感器实验报告
实验目的及要求:了解K型热电偶得特性与应用
实验仪器设备:智能调节仪、PT100、K型热电偶、温度源、温度传感器实验模块
实验原理,热心偶是一种使用最多的温度传感器,它的原理是基于1821年发现的塞贝尔效应,即两种不同的导体或半导体A或B组成一个回路,其两端相互连接,只要两节点处的温度不同,一端温度为7,另一端温度为z,则回路中就有电流产生,即回路中存在电动势,该电动势被称为热电势。

当回路断开时,在断开处a.6之向评有一长不.c性和最
值与回路中的热电势一致,并规是茬冷璃,当电赞面秀发向B时,称A为正极,B为负极,实验表明,当与较小时,g-S(T-T)(s是热电势率)。

热电偶基本定律:组成的闭合回路,不论导体的
(1)均质被立铁和长修水11不能各处的温度如何,都不能产生电动预览与源文档一致下载高清无水印势。

(2)中间导体定律:在热电偶回路中,只要中间导体C两端温度相同,那么接入中间导体对热电偶回路总热电势E (7T)没有影响。

怎样设计一个温度传感器电路

怎样设计一个温度传感器电路

怎样设计一个温度传感器电路设计一个温度传感器电路需要考虑到以下几个方面:传感器选择、电路设计和校准方法。

本文将详细介绍怎样设计一个温度传感器电路。

1. 传感器选择温度传感器有很多种类型,包括热敏电阻、热电偶、热电阻、半导体温度传感器等。

在选择传感器时,需考虑精度、响应时间、适用温度范围及成本等因素。

2. 根据传感器特性进行电路设计在设计电路时,首先需要将传感器接入一个适当的电桥电路。

电桥电路常用于测量和放大传感器输出的微小信号。

电桥电路由四个电阻组成,其中传感器作为其中一个电阻的变化将引起电桥输出电压的变化,从而间接反映出温度的变化。

3. 增益放大器设计为了放大电桥电路的输出信号,需设计一个增益放大器电路。

增益放大器电路可以将微小的变化信号放大到一定幅度,以便后续的信号处理和测量。

常用的增益放大器电路包括差动放大器、运算放大器等。

4. 滤波电路设计为了消除传感器输出中的噪声干扰,可以添加一个滤波电路。

滤波电路可滤除高频或低频的噪声信号,提高系统的抗干扰能力和测量精度。

5. 温度校准方法为了提高传感器电路的准确性,需要进行温度校准。

常用的校准方法包括通过对比法、模拟校准法和数字校准法。

校准方法的选择应根据具体的应用场景和需求。

总结:设计一个温度传感器电路需要选择合适的传感器类型,并根据传感器特性进行电路设计,包括电桥电路、增益放大器和滤波电路的设计。

此外,为提高测量准确性,还需进行温度校准。

一个完整的温度传感器电路设计需要综合考虑传感器性能、电路设计和校准方法等因素,并进行相应的优化和调整,以实现准确、稳定和可靠的温度测量。

热电阻热电偶温度传感器校准实验

热电阻热电偶温度传感器校准实验

湖南大学实验指导书课程名称:实验类型:实验名称:热电阻热电偶温度传感器校准实验学生姓名:学号:专业:指导老师:实验日期:年月日一、实验目的1.了解热电阻和热电偶温度计的测温原理2.学会热电偶温度计的制作与校正方法3.了解二线制、三线制和四线制热电阻温度测量的原理4.掌握电位差计的原理和使用方法5.了解数据自动采集的原理6.应用误差分析理论于测温结果分析。

二、实验原理1.热电阻(1) 热电阻原理热电阻是中低温区最常用的一种温度检测器。

它的主要特点是测量精度高,性能稳定。

其中铂热是阻的测量精确度是最高的,它不仅广泛应用于工业测温,而且被制成标准的基准仪。

热电阻测温是基于金属导体的电阻值随温度的增加而增加这一特性来进行温度测量的。

热电阻大都由纯金属材料制成,目前应用最多的是铂和铜,此外,现在已开始采用镍、锰和铑等材料制造热电阻。

常用铂电阻和铜电阻,铂电阻在0—630.74℃以内,电阻Rt与温度t 的关系为:Rt=R0(1+At+Bt2)R0系温度为0℃时的电阻,铂电阻内部引线方式有两线制,三线制,和四线制三种,两线制中引线电阻对测量的影响最大,用于测温精度不高的场合,三线制可以减小热电阻与测量仪之间连接导线的电阻因环境温度变化所引起的测量误差。

四线制可以完全消除引线电阻对测量的影响,用与高精度温度检测。

本实验是三线制连接,其中一端接二根引线主要是消除引线电阻对测量的影响。

(2) 热电阻的校验热电阻的校验一般在实验室中进行,除标准铂电阻温度计需要作三定点,(水三相点,水沸点和锌凝固点)校验外,实验室和工业用的铂或铜电阻温度计的校验方法有采用比较法两种校验方法。

比较法是将标准水银温度计或标准铂电阻温度计与被校电阻温度计一起插入恒温水浴中,在需要的或规定的几个稳定温度下读取标准温度计和被校验温度计的示值并进行比较,其偏差不超过最大允许偏差。

在校验时使用的恒温器有冰点槽,恒温水槽和恒温油槽,根据所校验的温度范围选取恒温器。

温度传感实验报告

温度传感实验报告

一、实验目的1. 了解温度传感器的基本原理和种类。

2. 掌握温度传感器的测量方法及其应用。

3. 分析不同温度传感器的性能特点。

4. 通过实验验证温度传感器的测量精度和可靠性。

二、实验器材1. 温度传感器实验模块2. 热电偶(K型、E型)3. CSY2001B型传感器系统综合实验台(以下简称主机)4. 温控电加热炉5. 连接电缆6. 万用表:VC9804A,附表笔及测温探头7. 万用表:VC9806,附表笔三、实验原理1. 热电偶测温原理热电偶是由两种不同金属丝熔接而成的闭合回路。

当热电偶两端处于不同温度时,回路中会产生一定的电流,这表明电路中有电势产生,即热电势。

热电势与热端和冷端的温度有关,通过测量热电势,可以确定热端的温度。

2. 热电偶标定以K型热电偶作为标准热电偶来校准E型热电偶。

被校热电偶的热电势与标准热电偶热电势的误差可以通过以下公式计算:\[ \Delta E = \frac{E_{\text{标}} - E_{\text{校}}}{E_{\text{标}}}\times 100\% \]其中,\( E_{\text{标}} \) 为标准热电偶的热电势,\( E_{\text{校}} \) 为被校热电偶的热电势。

3. 热电偶冷端补偿热电偶冷端温度不为0,因此需要通过冷端补偿来减小误差。

冷端补偿可以通过测量冷端温度,然后通过计算得到补偿后的热电势。

4. 铂热电阻铂热电阻是一种具有较高稳定性和准确性的温度传感器。

其电阻值与温度呈线性关系,常用于精密温度测量。

四、实验内容1. 热电偶测温实验将K型热电偶和E型热电偶分别连接到实验台上,通过调节加热炉的温度,观察并记录热电偶的热电势值。

同时,使用万用表测量加热炉的实际温度,分析热电偶的测量精度。

2. 热电偶标定实验以K型热电偶为标准热电偶,对E型热电偶进行标定。

记录标定数据,计算误差。

3. 铂热电阻测温实验将铂热电阻连接到实验台上,通过调节加热炉的温度,观察并记录铂热电阻的电阻值。

温度传感器—热电偶测温实验

温度传感器—热电偶测温实验

温度传感器—热电偶测温实验一、实验原理:由两根不同质的导体熔接而成的闭合回路叫做热电回路,当其两端处于不同温度时则回路中产生一定的电流,这表明电路中有电势产生,此电势即为热电势。

图1 热电偶测温系统图图1中T 为热端,To 为冷端,热电势Et=)T ()T (o AB AB本实验中选用两种热电偶镍铬—镍硅(K )和镍铬—铜镍(E )。

实验所需部件:K 、E 分度热电偶、温控电加热炉、214位数字电压表(自备) 二、实验步骤:1、观察热电偶结构(可旋开热电偶保护外套),了解温控电加热器工作原理。

温控器:作为热源的温度指示、控制、定温之用。

温度调节方式为时间比例式,绿灯亮时表示继电器吸合电炉加热,红灯亮时加热炉断电。

温度设定:拨动开关拨向“设定”位,调节设定电位器,仪表显示的温度值℃随之变化,调节至实验所需的温度时停止。

然后将拨动开关扳向“测量”侧,(注:首次设定温度不应过高,以免热惯性造成加热炉温度过冲)。

2、首先将温度设定在50℃左右,打开加热开关,热电偶插入电加热炉内,K 分度热电偶为标准热电偶,冷端接“测试”端,E 分度热电偶接“温控”端,注意热电偶极性不能接反,而且不能断偶,214位万用表置200mv 档,当钮子开关倒向“温控”时测E 分度热电偶的热电势,并记录电炉温度与热电势E 的关系。

3、因为热电偶冷端温度不为0℃,则需对所测的热电势值进行修正E (T ,To )=E(T,t 1)+E(T 1,T 0)实际电动势=测量所得电势 +温度修正电势查阅热电偶分度表,上述测量与计算结果对照。

4、继续将炉温提高到70℃、90℃、110℃和130℃,重复上述实验,观察热电偶的测温性能。

三、注意事项:加热炉温度请勿超过150℃,当加热开始,热电偶一定要插入炉内,否则炉温会失控,同样做其它温度实验时也需用热电偶来控制加热炉温度。

热电偶电路设计方案

热电偶电路设计方案

热电偶电路设计方案全文共四篇示例,供读者参考第一篇示例:热电偶是一种常用的温度测量元件,其原理是利用不同金属之间的热电势差来实现温度测量。

热电偶电路设计方案是进行热电偶温度测量时必不可少的一部分,其设计的好坏直接影响到测量的准确性。

本文将详细介绍热电偶电路的设计方案,包括电路的基本原理、关键参数的选择,以及常见的设计方案及其优缺点。

一、热电偶电路的基本原理热电偶是利用两种不同金属之间的热电效应来实现温度测量的元件。

当热电偶的接线端温度发生变化时,两种金属之间会产生一个热电势差,通过测量这个热电势差来确定温度值。

热电偶的工作原理主要包括两点:温度差引起的热电势差和热电势差与温度值的关系。

二、热电偶电路设计的关键参数选择1、热电偶的材料选择:常见的热电偶材料有K型、J型、T型等,不同材料有不同的工作温度范围和精度要求,根据具体的应用场景选择合适的热电偶材料。

2、放大器的增益选择:热电偶产生的热电势差信号较小,需要通过放大器进行放大,选择合适的放大倍数来确保测量信号的准确性。

3、滤波器的设计:热电偶电路会受到环境噪声的干扰,需要设计滤波器来抑制噪声,提高信号质量。

4、参考电压的选择:热电偶电路通常需要一个稳定的参考电压作为基准,选择合适的参考电压来确保测量的准确性。

5、ADC分辨率的选择:ADC的分辨率决定了测量结果的精度,选择合适的ADC分辨率来满足实际需求。

三、常见的热电偶电路设计方案及其优缺点1、单端测量方案:将热电偶的一个端口接地,将另一个端口连接到测量电路。

优点是设计简单,缺点是信号容易受到干扰,准确性较低。

2、差动测量方案:将两个热电偶串联,通过测量两个热电偶之间的差值来实现温度测量。

优点是抗干扰能力强,准确性高,缺点是设计复杂。

3、冷端补偿方案:将热电偶的冷端接地,并通过一个补偿电路来抵消冷端温度对测量结果的影响。

优点是可以提高准确性,缺点是增加了设计的复杂性。

热电偶电路的设计方案是进行温度测量时的关键部分,设计方案的选择直接影响到测量结果的准确性和稳定性。

温度传感器实验报告

温度传感器实验报告

一、实验目的1. 了解温度传感器的原理和分类。

2. 掌握温度传感器的应用和特性。

3. 学习温度传感器的安装和调试方法。

4. 通过实验验证温度传感器的测量精度。

二、实验器材1. 温度传感器:DS18B20、热电偶(K型、E型)、热敏电阻(NTC)等。

2. 测量设备:万用表、数据采集器、温度调节器等。

3. 实验平台:温度传感器实验模块、单片机开发板、PC机等。

三、实验原理温度传感器是将温度信号转换为电信号的装置,根据转换原理可分为接触式和非接触式两大类。

本实验主要涉及以下几种温度传感器:1. DS18B20:一款数字温度传感器,具有高精度、高可靠性、易于接口等优点。

2. 热电偶:利用两种不同金属导体的热电效应,将温度信号转换为电信号。

3. 热敏电阻:利用温度变化引起的电阻值变化,将温度信号转换为电信号。

四、实验步骤1. DS18B20温度传感器实验1. 连接DS18B20传感器到单片机开发板。

2. 编写程序读取温度值。

3. 使用数据采集器显示温度值。

4. 验证温度传感器的测量精度。

2. 热电偶温度传感器实验1. 连接热电偶传感器到数据采集器。

2. 调节温度调节器,使热电偶热端温度变化。

3. 使用数据采集器记录热电偶输出电压。

4. 分析热电偶的测温特性。

3. 热敏电阻温度传感器实验1. 连接热敏电阻传感器到单片机开发板。

2. 编写程序读取热敏电阻的电阻值。

3. 使用数据采集器显示温度值。

4. 验证热敏电阻的测温特性。

五、实验结果与分析1. DS18B20温度传感器实验实验结果显示,DS18B20温度传感器的测量精度较高,在±0.5℃范围内。

2. 热电偶温度传感器实验实验结果显示,热电偶的测温特性较好,输出电压与温度呈线性关系。

3. 热敏电阻温度传感器实验实验结果显示,热敏电阻的测温特性较好,电阻值与温度呈非线性关系。

六、实验总结通过本次实验,我们了解了温度传感器的原理和分类,掌握了温度传感器的应用和特性,学会了温度传感器的安装和调试方法。

基于K型热电偶的温度测量系统设计-毕业论文

基于K型热电偶的温度测量系统设计-毕业论文

---文档均为word文档,下载后可直接编辑使用亦可打印---英文摘要 (2)1 绪论 (3)1.1研究背景及意义 (3)1.2国内外研究现状 (3)1.3研究主要内容 (4)2 基于K型热电偶的温度测量系统总体设计 (6)2.1设计要求 (6)2.2总体方案 (7)2.3功能介绍 (6)3 基于K型热电偶的温度测量系统硬件设计 (8)3.1核心控制系统设计 (8)3.2温度采集系统设计 (9)3.2.1K型热电偶传感器 (9)3.2.2 ADC转换模块 (11)3.3LCD显示系统设计 (12)3.4电源模块电路设计 (14)4 基于K型热电偶的温度测量系统软件设计 (15)4.1主程序流程 (15)4.2温度采集流程 (16)4.3显示程序流程 (16)4.4软件仿真 (17)4.4.1仿真环境 (17)4.4.2工作流程 (18)4.4.3仿真结果 (19)5 结论 (21)谢辞 (22)参考文献 (23)基于K型热电偶的温度测量系统设计摘要:K型热电偶不接触被测物中,目的是避免热平衡状态的变化,测量的敏感,响应速度快,良好的响应特性,常用于检测1000℃以上运动中的高温物体。

该测温系统结合单片机,设计以K型热电偶为温度传感器的温度测量系统。

其测量系统的测量温度可以分为三个档位,分别是高温档(500℃以上)中温档(100-500℃)低温档(100℃以下),使用前先预估待测物体温度选择合适的档位测量以提升测量精度。

通过温度传感器DS18B20在STM32L476芯片控制下进行实时温度检测并显示,能够实现快速测量环境温度。

关键词:单片机;热电偶;温度测量系统Design of temperature measurement system based on K-type thermocoupleAbstract:Non-contact temperature measurement will not be in contact with the measured object. It avoids changing the thermal equilibrium state of the object. It is sensitive when measuring. The response speed is fast and the response characteristics are good. It is usually used to detect high temperature objects in the movement of 1000°C and above. This text combines the advantage of the one-chip computer, design based on 51 one-chip computer non-contact temperature measurement system. Based on 51 single-chip non-contact temperature measurement system, the measurement temperature is divided into three gears, which are high temperature file (above 500°C), medium temperature file (100-500°C), low temperature file (below 100°C), and the object to be measured is estimated before use. Temperature Select the appropriate gear measurement to improve measurement accuracy. By using the STM32L476 chip to control the temperature sensor DS18B20 for real-time temperature detection and display, it is possible to quickly measure the ambient temperature.Keywords:single chip microcomputer; non-contact; temperature measurement; design基于K型热电偶的温度测量系统设计1 绪论1.1研究背景及意义当今社会,随着科学技术发展迅猛,社会生活水平也快速提高,企业对生产也有了更高的要求:信息化、科学化、自动化。

热电偶温度表测量电路的设计

热电偶温度表测量电路的设计

热电偶温度表测量电路的设计热电偶温度表由配套热电偶、外壳和核心测量电路等组成,其核心电路由三大部分组成:(1)测量放大电路;(2)A/D转换电路;(3)显示电路。

一般用单片机作为信号处理和控制的核心,图10.6.1所示为市场上常见的热电偶测温表。

若对电路稍作改进也可变成温度控制器或兼具温度控制与报警双重功能。

图10.6.1 热电偶温度表1 温度表硬件电路设计1.1 热电偶温度传感器及其冷端补偿方法的选择可根据测量温度高低来选择,尽量选用贱金属型热电偶,以降低成本。

如铁—康铜型热电偶,被测温度范围可达-100~1 100℃,冷端补偿采用补偿电桥法,采用不平衡电桥产生的电势来补偿热电偶因冷端温度变化而引起的热电势变化值。

不平衡电桥由电阻R1、R2、R3(锰铜丝绕制)、R cu(铜丝绕制)四桥臂和桥路稳压源组成,串联在热电偶回路中。

R cu 与热电偶冷端同处于±0℃,而R1=R2=R3=1Ω,桥路电源电压为4V,由稳压电源供电,R s为限流电阻,其阻值因热电偶不同而不同,电桥通常取在20℃时平衡,这时电桥的四个桥臂电阻R1=R2=R3=R cu,a、b端无输出。

当冷端温度偏离20℃时,例如升高时,R cu增大,而热电偶的热电势却随着冷端温度的升高而减小。

U ab与热电势减小量相等,U ab与热电势迭加后输出电势则保持不变,从而达到了冷端补偿的自动完成。

1.2 测量放大电路及其芯片实际电路中,从热电偶输出的信号最多不过几十毫伏(<30mV),且其中包含工频、静电和磁偶合等共模干扰,对这种电路放大就需要放大电路具有很高的共模抑制比以及高增益、低噪声和高输入阻抗,因此宜采用测量放大电路。

测量放大器又称数据放大器、仪表放大器和桥路放大器,它的输入阻抗高,易于与各种信号源匹配,而它的输入失调电压和输入失调电流及输入偏置电流小,并且温漂较小。

由于时间温漂小,因而测量放大器的稳定性好。

由三运放组成测量放大器,差动输入端R1和R2分别接到A1和A2的同相端。

热电偶温度传感器设计报告

热电偶温度传感器设计报告

热电偶温度传感器设计报告热电偶温度传感器是一种将温度变化转化为电能输出的装置,其设计的主要目标是实现温度的准确测量和控制。

本设计报告将详细介绍热电偶温度传感器的设计过程,包括原理分析、材料选择、结构设计、制造工艺以及测试验证等方面。

热电偶温度传感器是基于塞贝克效应(Seebeck effect)工作的。

塞贝克效应是指两种不同材料组成的闭合回路中,当两个接触点处的温度不同时,回路中会产生电动势。

热电偶温度传感器就是利用这一原理,将温度变化转化为电动势变化,从而实现温度的测量。

热电偶温度传感器的主要材料包括热电偶丝和连接导线。

热电偶丝是实现温度测量的关键元件,需要具备高灵敏度、良好的稳定性和抗氧化性等特性。

常见的热电偶丝有镍铬合金、铜镍合金和铂等。

连接导线主要用于连接热电偶丝和测量仪表,应具备耐高温、抗氧化和良好的导电性能等特性。

热电偶温度传感器的结构设计应考虑测量范围、精度和稳定性等因素。

常见的热电偶温度传感器结构有铠装式和非铠装式两种。

铠装式结构具有较高的抗振性和耐磨性,适用于恶劣环境下的温度测量。

非铠装式结构则具有较小的体积和重量,适用于实验室和工业生产中的温度测量。

热电偶温度传感器的制造工艺主要包括焊接、保护涂层和校准等环节。

焊接工艺应保证热电偶丝和连接导线之间的可靠连接;保护涂层能够有效保护传感器免受腐蚀和氧化;校准环节则确保了传感器的测量精度和稳定性。

为了验证热电偶温度传感器的性能指标是否达到设计要求,需要进行一系列的测试验证。

这些测试包括灵敏度测试、线性度测试、重复性测试和稳定性测试等。

通过这些测试,可以评估传感器的测量精度、响应时间和长期稳定性等性能指标。

本文对热电偶温度传感器的设计进行了详细的介绍和分析。

通过原理分析、材料选择、结构设计、制造工艺以及测试验证等方面的探讨,我们成功地设计出一款具有高灵敏度、良好稳定性和抗氧化性的热电偶温度传感器。

该传感器能够广泛应用于各种温度测量场合,为工业自动化、实验室研究和环境监测等领域提供重要的技术支持。

热电偶温度计的制作与标定

热电偶温度计的制作与标定

热电偶温度计的制作与标定实验学时:4实验类型:设计实验要求:选修一、实验目的:(1)了解热电偶的测温原理;(2)掌握设计制作热电偶的温度计一般技能;(3)掌握热电偶温度计的标定方法;(4)学会使用热电偶温度计进行实际测量温度及数据处理。

二、实验内容制作一根热电偶温度计再给以标定,并用该热电偶温度计进行实际测量温度。

三、热电偶温度计工作原理热电偶温度计具有结构简单、测量范围宽,准确度高,热惯性小、输出的电信号便于远传或信号转换等优点,所以目前应用十分广泛.图1—1图1-1热电偶测量温度的基本原理是热电效应(或温差效应),将两种不同材料的导体首尾相连接成闭合回路,如图1-1所以。

如两接点的温度不等,则在回路中就会产生热电动势,这种现象称之为热电效应(这一热电现象早在1821年就由塞贝克发现的,所以这一现象也称塞贝克效应)。

热电偶就是由两种不同的金属材料焊接而成。

使用时通常将一端(参考端)保持在一定的恒定温度(如0℃或100 ℃),当对另一端(测量端)加热时,在接点处有热电势产生。

如参考端温度恒定,其热电势的大小和方向只与两种金属材料的特性和测量端的温度有关,而与热电偶的粗细和长短无关。

当测量端的温度改变后,热电势也随之改变,并且温度和热电势之间有一固定的函数关系,利用这个关系就可以测量温度。

接触电势差的大小和相接处的两种金属的性质及接触处的温度有关,当量两种不同的材料的金属想成闭合回路时,按上述接触电势差的性质可以判定,,若两接触处的温度分别为T 和0T 时,闭合回路的电动势为)/()(/0b a n n Ln T T e k E -= 若0T T 不等于,则E 不等于0,这种电动势称为温差电动势。

在实际中,给出来的温差电动势都用下式表示:.........)()(200+-+-=t t b t t a E 式中,a,b.....是常数,称为温差系数,表示温差为C 01时的电动势,其大小取决于组成热电偶的材料;0t t 和是接触处的摄氏温度,0T 为冷端温度,T 为热端温度在温差不太大的情况下,可近似为:)(0t t a E -=可见,若常数和冷端温度已知,只要侧得温度电动势,就能得到热端温度(热端也称做测温端)三、热电偶温度计制作由两根不同质的导体熔接而成的闭合回路叫做热电回路, 当其两端处于不同温度时则回路中产生一定的电流,这表明电路中有电势产生,此电势即为热电势。

基于热电偶传感器的智能测温仪设计

基于热电偶传感器的智能测温仪设计

XXXXXXXXXXX本科毕业论文(设计)二〇一四 年 五 月 十日题 目 基于热电偶传感器的智能 测温仪设计作 者 XXXXX 学 院信息科学与工程学院 专 业电子信息科学与技术 学 号 XXX 指导教师 XXX湖南涉外经济学院本科毕业论文(设计)诚信声明本人声明:所呈交的本科毕业论文(设计),是本人在指导老师的指导下,独立开展工作所取得的成果,成果不存在知识产权争议,除文中已经注明引用的内容外,本论文不含任何其他个人或集体已经发表或创作过的作品成果。

对本文工作做出重要贡献的个人和集体均已在文中以明确方式标明。

本人完全意识到本声明的法律结果由本人承担。

本科毕业论文(设计)作者签名:二0一四年五月十日摘要在工农业生产过程中,温度是一个非常重要的物理参数,温度检测类仪表作为温度测量工具也因此得到了广泛应用。

热电偶有成本低、准确度高和测温范围宽等优势,自然成为工业应用中优先考虑的方案。

为获得准确的测温值,本论文将微机技术与热电偶传感器结合起来,设计了较高精度较高集成度的智能测温仪表。

跟传统热电偶测温方案相比该设计采用了数字集成芯片MAX6675,该芯片集成了A/D转换器、冷端补偿及SPI 串口的热电偶放大器与数字转换器,这使得仪表的精度跟集成度得到提升的同时也降低了设计的复杂度。

该论文主要由测量仪表的软件设计、硬件设计两个部分组成。

热电偶测温仪表硬件主要由单片机最小系统电路、MAX6675数据采集与转换电路、数码管显示电路、串口通信电路、报警电路五个部分组成。

软件部分主要由数据读取程序、串口通讯程序、数码管动态扫描显示程序等程序模块组成。

设计的测温软件程序可以在51单片机上移植。

关键词:智能仪表;K型热电偶;温度测量;MAX6675;AT89S51ABSTRACTIn the industrial and agricultural production process, the temperature is a very important physical parameters , temperature detection instrumentation for temperature measurement tool class and therefore widely used . Thermocouple low cost , high accuracy and wide temperature range and other advantages, will naturally become a priority in industrial applications programs . In order to obtain an accurate temperature measurement value , this paper will microcomputer technology and thermocouple sensors combine high precision design of a high degree of integration of intelligent Thermometer . Compared with the conventional thermocouple program designed using digital integrated chip MAX6675, the chip integrates the A / D converter , serial interface SPI cold junction compensation and thermocouple amplifier and digital converter. This makes integration with precision instrumentation has been improved , while also reducing the complexity of the design. The paper mainly consists of measuring instruments software design, hardware design of the two parts. In this design , first introduced the hardware part of the thermocouple thermometer table. Thermocouple Thermometer hardware consists of five parts: the smallest single-chip system circuit , MAX6675 data acquisition and conversion circuits , digital display circuit , serial communication circuit , alarm circuit . Software part consists of the following modules: data reading program , serial communication program , the digital display dynamic scanning procedures routines. Software program designed temperature can be used in the 51 MCU .Keywords:intelligent instrument; K-type thermo-couple; temperature measurement;MAX6675; AT89S51目录诚信声明 (I)摘要 (II)ABSTRACT (III)第一章绪论 (1)1.1 研究背景和意义 (1)1.1.1 研究背景 (1)1.1.2 研究意义 (1)1.2研究现状及发展趋势 (1)1.2.1国内外测温研究现状 (1)1.2.2发展趋势 (2)1.3研究思路及主要内容 (3)第二章系统方案论证与总体设计 (4)2.1 系统方案论证 (4)2.1.1 热电阻测温系统 (4)2.1.2红外测温系统 (4)2.1.3热电偶测温系统 (4)2.2方案选型与总体设计 (4)2.3本章小结 (5)第三章仪表的硬件设计 (5)3.1温度的数据采集与前期数据处理模块 (6)3.1.1 K型热电偶 (6)3.1.2 K型热电偶串行模数转换器MAX6675 (7)3.1.3 MAX6675与AT89S51 单片机的接口 (9)3. 2 AT89S51与PC机串口通讯模块 (10)3.2 .1 RS-232C标准 (10)3.2.2 MAX232芯片简介 (10)3.2.3单片机的串行口工作方式 (11)3.2.4接口电路 (11)3.3蜂鸣器报警与报警温度值设定模块 (12)3.4 LED数码管显示模块 (12)3.5 AT89S51单片机最小系统模块 (12)3.5.1 AT89S51单片机 (12)3.5.2片内振荡器和时钟电路 (13)3.5.3单片机复位电路 (13)3.6 本章小结 (14)第四章软件设计 (15)4.1 KeilC51集成开发环境简介 (15)4.2 基于KeilC51软件编程设计 (15)4.2.1 主程序流程图 (15)4.2.2 读取MAX6675数据程序 (15)4.2.3 报警温度值设定程序 (17)4.2.4串口通讯程序 (17)4.2.5数码管显示子程序 (17)4.3本章小结 (19)第五章仿真 (20)5.1proteus简介 (20)5.2仿真步骤 (20)5.2.1建立仿真电路原理图 (20)5.2.2导入程序 (20)5.3仿真结果 (21)5.3.1测温模块与报警模块 (21)5.3.2 串口通讯模块仿真 (22)结论 (24)参考文献 (25)致谢 (26)附录A 硬件原理图 (27)附录B 设计程序 (28)第一章绪论1.1 研究背景和意义1.1.1 研究背景温度是所有物理现象中一个最基本的物理现象,它是应用于生产过程中最基础、最普通的工艺参数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
式中 : nA、nB ——A、B的自由电子密度( nA>nB ) K——波尔兹曼常数;1.38×10-23J/K q —— 电子电量
总的接触电势为:
eAB(T, T0)=[K (T - T0) / q]ln( nA / nB)
两种导体的温差电势(汤姆逊效应)
设导体 A 达到动态平衡时的温差电势为eA(T,T0), 导体 B 的温差电势为 eB(T,T0)。由A,B两导体组 成的闭合电路总温差电势:
在热电偶测温回路内,接入第三种导体时,只要第三
种导体的两端温度相同,则对回路的总热电势没有影响。
A
T0
A
T
T
T0
C
B (a)
T0
B
T1
B
C
T1
(b)
EABC (T ,T0 ) EAB (T ) EAB (T0 ) EAB (T ,T0 ) 应用:利用热电偶进行测温,必须在回路中引入连接导 线和仪表,接入导线和仪表后不会影响回路中的热电势。
eAB(T,T0)=eAB(T,Tc)+eAB(Tc,T0)
A
T
T0
B
A
T
A
Tc Tc
T0
B
B
中间温度定律
中间温度定律的应用
• 根据这个定律,可以连接与热电偶热电特性相近的导体
A′和B ′,将热电偶冷端延伸到温度恒定的地方,这就为热
电偶回路中应用补偿导线提供了理论依据。
该定律是参考端温度计算修正法的理论依据。在实际热 电偶测温回路中, 利用热电偶这一性质, 可对参考端温度不 为0℃的热电势进行修正。
3. 热电偶两电极材料成分确定后,热电势大小只由两结点温 度决定,与电极中间温度无关。若自由端温度 T0 保持一定, 热电偶的热电势仅是测量端温度 T的单值函数。即: EAB(T, T0)= φ(T)
热电偶应用定律
中间导体定律 中间温度定律 标准导体(电极)定律
T
A
B
Tc
a
b
T0
中间导体定律
T
T0 AdT
eA(T,T0)——导体A两端温度为T、T0时形成的温差电动势; T,T0——高低端的绝对温度;
σA——汤姆逊系数,表示导体A两端的温度差为1℃时所产生的温
差电动势,例如在0℃时,铜的σ =2μV/℃。
两种导体的接触电势(珀尔贴电势)
A,B两金属在温度 T 时的接触电势eAB(T): eAB(T)=(KT/q)ln(nA/nB)
基于热电偶的温度传感器
—现代检测技术课程
主要内容
热电偶的基本原理; 热电偶的种类; 热电偶测温补偿方法; 变送器的实现;
1.热电偶的基本原理
工作原理:
热电势效应(赛贝克效应) 两种不同材料的导体 A 与 B,按图所示的组合在一 起,如果两结点的温度不同,则在回路中就会有电 势产生,其电势(电流)的大小与两导体的性质和 结点的温度有关。这种现象称为热电势效应。
eA' B (T,T0 )
T
T0 ( A B )dT
式中:σA、 σB——导体A,B的汤姆逊系数
热电偶总热电势
EAB (T ,T0 ) eAB (T ,T0 ) eA' B (T ,T0 )
T
[K (T T0 ) / q]ln(nA / nB ) T0 ( A B )dT
EAB (T ,T0 ) eAB (T ,T0 ) eA' B (T ,T0 )
T
结论: [K (T T0 ) / q]ln(nA / nB ) T0 ( A B )dT
1、 同种导体构成的热电偶,即便 T T0。闭合回路中也不会产生 热电势。因此,作为热电偶,必须采用两种不同的导体作 热极。
2. 热电偶所产生的热电势大小,只决定于热电极材料的成分 和两结点温度,与热电极的长度,直径和接触面的形状、 大小无关。当T=T0 时,热电势为零。
热电势 接触电势
温差电势
接触电势
A B
T
接触电势原理图
eAB (T )
KT q
ln
nA nB
式中 :KnA—、—nB波—尔—兹导曼体常A、数B;的1.自38由×电10子-2密3J度/K( nA>nB )
q —— 电子电量
温差电势
To A
eA(T,To)
T 温差电势原理图
e'A(T ,T0 )
例子
用镍铬-镍硅热电偶测量加热炉温度。已知冷端温度
T0=30℃,测得热电势eAB(T,T0)为33.29mV, 求加
热炉温度。
查镍铬-镍硅热电偶分度表得 eAB(30,0)1.203
mV。可得 eAB(T,0)= eAB(T,T0)+eAB(T0,0)=33.29+1.203=34.493mV
标准导体(电极)定律
T0
T0
T0
A
CB
CA
B
T
T
T
EAB (T ,T0 ) EAC (T ,T0 )-EBC (T ,T0 )
标准导体定律的意义
通常选用高纯铂丝作标准电极
只要测得它与各种金属组成的热电偶的热 电动势,则各种金属间相互组合成热电偶 的热电动势就可根据标准电极定律计算出 来。
例子
热端为100℃,冷端为0℃时,镍铬合金与纯铂 组成的热电偶的热电动势为2.95mV,而康铜 与纯铂组成的热电偶的热电动势为-4.0mV, 则镍铬和康铜组成的热电偶所产生的热电动势 应为:
2.95-(-4.0)=6.95(mV)
热电偶的分度表
一般通过实验的方法来确定,并将 不同温度下测得的结果列成表格,编制出热电势与 温度的对照表,即分度表。
中间导体定律
若三个接点的温度均为T0,则回路的总热电势为 EABC(T0)= EAB(T0)+ EBC(T0)+ ECA(T0)=0 若A、B接点温度为T,其余接点温度为T0,且T >T0, 则回路的总热电势为 EABC(T,T0)= EAB(T)+ EBC(T0)+ ECA(T0)
因为EAB(T0)=-[EBC(T0)+ ECA(T0)] 所以
EABC(T,T0)= EAB(T)- EAB(T0)
测量仪表及引线作为第三种导体的热电偶回路
t0
A T0
C
t
B T0
C
AC T1 B T1 A C
t
(a)
(b)
中间温度定律
在热电偶测温回路中,Tc为热电极上某一点的温度, 热电偶AB在接点温度为T、T0时的热电势eAB(T, T0)等于 热电偶AB在接点温度T、Tc和Tc、T0时的热电势eAB(T, Tc)和eAB(Tc, T0)的代数和,即
相关文档
最新文档