数学的三个发展时期——初等数学时期
奇妙数学史-1数学的起源和发展
毕达哥拉斯(约前560年-约前480年)学派是继以泰勒 斯为代表的爱奥尼亚学派之后,希腊第二个重要学派, 它延续了两个世纪,在希腊有很大的影响。它有着带有 浓厚宗教色彩的严密组织,属于唯心主义学派。他们相 信依靠数学可使灵魂升华,与上帝融为一体,从而数学 是其教义的一部分。他们在数学上最大的贡献是证明了 直角三角形三边关系的勾股定理,故西方称之为毕达哥 拉斯定理。
公元前4世纪,毕达哥拉斯学派的信徒希帕索斯 发现存在某些线段之间是不可公度的,例如正方形 的边长与其对角线之间就是不可公度。根据毕达哥 拉斯定理容易发现,它们之比并非是自然数之比。 据说,由于希帕索斯的这一发现,触犯了毕达哥拉 斯学派的信条而被视为异端,为此他被其同伴抛进 大海。因为他竟然在宇宙间搞出这样一个东西,否 定了毕氏学派的信念。他们要把发现的秘密和他们 的困惑一起抛入大海,永不泄露。
后来阿拉伯人把这些数学符号传到了
很多地方。最开始阿拉伯数字的形状与现 代阿拉伯数字并不完全相同,只是比较接 近而已,为了使它变成今天的0、1、2、 3、4、5、6、7、8、9......的书写形式, 又有许多数学家做了许多努力。
进位制:
史上曾经有过二进制,五进制,十进制, 十二进制,十六进制,二十进制、六十进 制。
随着对于数的认识的发展,无理数终于在人们心目 中取得合法地位,并逐渐发展了实数的严格理论。关 于实数理论现在已广泛应用于科学技术和日常生活之 中。
中国传统数学中的无理数产生于开方不尽和圆 周率的计算。不过由于中国古算与古希腊数学有 着不同的传统,希腊人总是将数与形截然分开, 对涉及无限的问题总是持有恐惧的态度。中国算 学中数与形是有机统一的,中国人自始至终对关 于无限的问题总是泰然处之,能够正视无理数。
数学发展简史
数学发展简史(摘自张顺燕《数学的源与流》,高等教育出版设2001)大数学家庞加莱说:“若想预见数学的未来,正确的方法是研究它的历史和现状”。
法国人类学家斯特劳斯说:“如果他不知道他来自何处,那就没有人知道他去向何方”。
我们需要知道,我们现在出在何处,我们是如何到达这里的,我们将去何方。
数学史将公司我们来自何处。
数学的发展史大致可以分为四个基本上本质不同的阶段。
第一个时期——数学形成时期。
这是人类建立最基本的数学概念的时期。
人类从数数开始逐渐建立了自然数的概念。
简单的计算法,并认识了最简单的几何形式,逐步的形成了理论与证明之间的逻辑关系的“纯粹”数学。
算术与几何还没有分开,彼此紧密地交错着。
第二个时期称为初等数学,即常数数学时期。
这个时期的基本的、最简单的成果构成现在中学数学的主要内容。
这个时期从公元前5世纪开始,也许更早一些,知道17世纪,大约持续了两千年。
在这个时期,逐渐形成了初等数学的主要分支:算术、几何、代数、三角。
按照历史条件不同,可以把初等数学史分为三个不同的时期:希腊的、东方的和欧洲文艺复兴时代的。
希腊时期正好与希腊文化普遍繁荣的时代一致。
到公元前3世纪,在最伟大的古代几何学家欧几里德、阿基米德、阿波罗尼奥斯的时代达到了顶峰,而终止于公元6世纪。
当时最光辉的著作是欧几里德的《几何原本》。
尽管这部书是两千多年钱写成的,但是它的一般内容和叙述的特征,却与我们现在通用的几何教科书非常接近。
希腊人不仅发展了初等几何,并把它导向完整的体系,还得到许多非常重要的结果。
例如,他们研究了圆锥曲线:椭圆、双曲线、抛物线;证明了某些属于射影几何的定理,一天问学的需要为指南,建立了球面几何,以及三家学的原理,并计算出最初的正弦表,确定了许多复杂图形的面积和体积。
在算术与代数方面,希腊人也做了比绍工作。
他们奠定了数论的基础,并研究了丢番图方程,吗发现了无理数,找到了求平方根、立方根的方法,知道了算术级数与几何级数的性质。
数学发展史
数学发展简史数学发展史大致可以分为四个阶段:一、数学起源时期二、初等数学时期三、近代数学时期四、现代数学时期一、数学起源时期(远古——公元前5世纪)这一时期:建立自然数的概念;认识简单的几何图形;算术与几何尚未分开。
数学起源于四个“河谷文明”地域:非洲的尼罗河;这个区域主要是埃及王国:采用10进制,只有加法。
埃及的主要数学贡献:定义了基本的四则运算,并推广到了分数;给出了求近似平方根的方法;他们的几何知识主要是平面图形和立体图形的求积法。
西亚的底格里斯河与幼发拉底河;这个区域主要是巴比伦:采用10进制,并发明了60进制。
巴比伦王国的主要数学贡献可以归结为以下三点:度量矩形,直角三角形和等腰三角形的面积,以及圆柱体等柱体的体积;计数上,没有“零”的概念;天文学上,总结出很多天文学周期,但绝对不是科学。
中南亚的印度河与恒河;东亚的黄河与长江在四个“河谷文明”地域,当对数的认识(计数)变得越来越明确时,人们感到有必要以某种方式来表达事物的这一属性,于是导致了记数。
人类现在主要采用十进制,与“人的手指共有十个”有关。
而记数也是伴随着计数的发展而发展的。
四个“河谷文明”地域的记数归纳如下:刻痕记数是人类最早的数学活动,考古发现有3万年前的狼骨上的刻痕。
古埃及的象形数字出现在约公元前3400年;巴比伦的楔形数字出现在约公元前2400年;中国的甲骨文数字出现在约公元前1600年。
古埃及的纸草书和羊皮书及巴比伦的泥板文书记载了早期数学的内容,年代可以追溯到公元前2000年,其中甚至有“整勾股数”及二次方程求解的记录。
二、初等数学时期(前6世纪——公元16世纪)这个时期也称常量数学时期,这期间逐渐形成了初等数学的主要分支:算术、几何、代数、三角。
该时期的基本成果,构成现在中学数学的主要内容。
这一时期又分为三个阶段:古希腊;东方;欧洲文艺复兴。
下面我们分别介绍:1.古希腊(前6世纪——公元6世纪)毕达哥拉斯——“万物皆数”欧几里得——几何《原本》阿基米德——面积、体积阿波罗尼奥斯——《圆锥曲线论》托勒密——三角学丢番图——不定方程2.东方(公元2世纪——15世纪)1)中国西汉(前2世纪)——《周髀算经》、《九章算术》魏晋南北朝(公元3世纪——5世纪)——刘徽、祖冲之:出入相补原理,割圆术,算术。
数学的起源和发展
一般认为,从远古到现在,数学经历了五个历史阶段:数学萌芽时期(公元6世纪以前)初等数学时期(从公元前5世纪到公元17世纪)变量数学时期(17世纪上半叶-19世纪20年代)近代数学时期(19世纪20年代-20世纪40年代)现代数学时期(20世纪40年代以来)一、数学萌芽时期(公元6世纪以前)在人类历史上,这是原始社会和奴隶社会的初期。
这个时期数学的成就以巴比伦、埃及和中国的数学为代表。
古巴比伦是位于幼发拉底河和底格里斯河两河流域的一个文明古国。
巴比伦王国形成于约公元前19世纪,从出土的古巴比伦的泥板上的楔形文字中发现,古巴比伦人具有算术和代数方面的知识,建立了60进位制的记数系统,掌握了自然数的四则运算,广泛使用了分数,能进行平方、立方和简单的开平方、开立方运算。
他们迈出了代数的第一步,能用一些特别的术语和符号代表未知数,能解特殊的几种一元一次、二元一次方程和一元二次方程,甚至某些三次、四次(可化为二次的)和个别指数方程,并且能够把它们应用于天文学和商业等实际问题中去。
几何方面掌握了简单平面图形的面积和简单立体体积的计算方法。
二、初等数学时期(从公元前5世纪到公元17世纪)在人类历史上,这是发达的奴隶社会和整个封建社会时期。
这个时期外国数学发展的中心先在古希腊,后在印度和阿拉伯国家,之后又转到西欧诸国。
这时期的中国数学独立发展,在许多方面居世界领先地位。
在数学内容上,2世纪以前是几何优先发展阶段,2世纪以后是代数优先发展阶段。
如果说古希腊的几何证明的较突出,则中国和印度的代数计算可与其媲美。
这个时期的数学发生了本质的变化,数学(主要是几何学)由具体的、实用阶段发展到抽象的、理论阶段;从以实验和观察为依据的经验学科过渡到演绎的科学,并形成了自己的体系,初等几何、算术、初等代数和三角学都已成为独立的学科。
这个时期的研究内容是常量和不变的图形,因此又称为常量数学。
从公元前6世纪到公元前3世纪是希腊数学的古典时期。
数学的发展历史
数学的发展历史
数学的发展史大致可以分为四个时期分别是:第一时期是数学形成时期,第二时期是
常量数学时期,第三时期:变量数学时期,第四时期:现代数学时期。
其研究成果有李氏
恒定式、华氏定理、苏氏锥面。
第一时期:数学形成时期(远古—公元前六世纪),这是人类建立最基本的数学概念
的时期。
人类从数数开始逐渐建立了自然数的概念,简单的计算法,并认识了最基本、最
简单的几何形式,算术与几何还没有分开。
第二时期:初等数学时期、常量数学时期(公元前六世纪—公元十七世纪初)这个时
期的基本的、最简单的成果形成中学数学的主要内容,大约持续了两千年。
这个时期逐渐
构成了初等数学的主要分支:算数、几何、代数。
第三时期:变量数学时期(公元十七世纪初—十九世纪末)变量数学产生于17世纪,经历了两个决定性的重大步骤:第一步是解析几何的产生;第二步是微积分(calculus)
的创立。
第四时期:现代数学时期(十九世纪末已经开始),数学发展的现代阶段的开端,以
其所有的基础--------代数、几何、分析中的深刻变化为特征。
数学的发展史
数学对人类的重要性
)
就,出现了许多闻名世界的数学家,如刘徽、祖冲之、 王孝通、李冶、秦九韶、朱世杰等人。出现了许多专 门的数学著作,特别是《九章算术》的完成,标志着 我国的初等数学已形成了体系。这部书不但在中国数 学史上而且在世界数学史上都占有重要的地位,一直 受到中外数学史家的重视。我国传统数学在线性方程 组、同余式理论、有理数开方、开立方、高次方程数 值解法、高阶等差级数以及圆周率计算等方面,都长 期居世界领先地位。
这个时期的起点是笛卡尔的著作,他引
这个时期是科学技术
飞速发展的时期,不 断出现震撼世界的重 大创造与发明。二十 世纪的历史表明,数 学已经发生了空前巨 大的飞跃,其规模之 宏伟,影响之深远, 都远非前几个世纪可 比,目前发展处于不 断加速的趋势。
从历史上看,远在巴比伦、埃及时代,由于人类生活和劳动生产的需要积累了一系列 算术和几何的知识。经过希腊时代,将这些比较零散的知识上升为理论的系统。西方
3 、变量数学 入了变量的概念。这个时期中还创立了 一系列新领域:解析几何、微积分、概 时期(十七世 率论、射影几何和数论等。并且出现了 代数化的趋势。随着数学新分支的创立, 新的概念层出不穷,如无理数、虚数、 纪初到十九世 导数、积分等等。 十八世纪是数学蓬勃发展的时期。以微 纪末) 积分为基础发展出一门宽广的数学领
数学的发展史
数学的发展史大致可以分为四个阶段。
第一时期----数学的萌芽时期这一时期大体上从远古到公元前六世纪.数学形成时期,这是人类建立最基本的数学概念的时期。
人类从数数开始逐渐建立了自然数的概念,简单的计算法,并认识了最基本最简单的几何形式,算术与几何还没有分开。
数学萌芽时期的特点,是人类在长期的生产实践中,逐步形成了数的概念,并初步掌握了数的运算方法,积累了一些数学知识.由于土地丈量和天文观测的需要,几何知识初步兴起,但是这些知识是片断和零碎的,缺乏逻辑因素,基本上看不到命题的证明.这个时期的数学还未形成演绎的科学.这一时期对数学的发展作出贡献的主要是中国、埃及、巴比伦和印度.从很久以前的年代起,我们中华民族勤劳的祖先就已经懂得数和形的概念了.在漫长的萌芽时期中,数学迈出了十分重要的一步,形成了最初的数学概念,如自然数、分数;最简单的几何图形,如正方形、矩形、三角形、圆形等.一些简单的数学计算知识也开始产生了,如数的符号、记数方法、计算方法等等.中小学数学中关于算术和几何的最简单的概念,就是在这个时期的日常生活实践基础上形成的.总之,这一时期是最初的数学知识积累时期,是数学发展过程中的渐变阶段.第二时期---常量数学时期初等数学,即常量数学时期。
这个时期的基本的、最简单的成果构成现在中学数学的主要内容。
这个时期从公元5世纪开始,也许更早一些,直到17世纪,大约持续了两千年。
这个时期逐渐形成了初等数学的主要分支:算数、几何、代数、三角。
这一时期也可以分成两段,一是初等数学的开创时代,二是初等数学的交流和发展时代1.初等数学的开创时代.这一时代主要是希腊数学。
从泰勒斯(Thales,公元前636—前546)到公元641 年亚历山大图书馆被焚,前后延续千余年之久,一般把它划分为以下几个阶段:(1)爱奥尼亚阶段(公元前600—前480 年);(2)雅典阶段(公元前480—前330 年);(3)希腊化阶段(公元前330—前200 年);(4)罗马阶段(公元前200—公元600 年)2.初等数学的交流和发展时代.从公元六世纪到十七世纪初,是初等数学在各个地区之间交流,并且取得了重大进展的时期.在亚洲地区,有中国数学、印度数学和日本数学.七世纪以后,建立了以巴格达为中心的阿拉伯数学。
数学发展史(经过一些个人整理)
数学发展史数学是一门伟大的科学,数学作为一门科学具有悠久的历史,与自然科学相比,数学更是积累性科学,它是经过上千年的演化发展才逐渐兴盛起来。
同时数学也反映着每个时代的特征,美国数学史家克莱因曾经说过:"一个时代的总的特征在很大程度上与这个时代的数学活动密切相关。
这种关系在我们这个时代尤为明显"。
"数学不仅是一种方法、一门艺术或一种语言,数学更主要是一门有着丰富内容的知识体系,其内容对自然科学家、社会科学家、哲学家、逻辑学家和艺术家十分有用,同时影响着政治家和神学家的学说"。
数学发展具有较明显的阶段性,因此根据一定的原则把数学史分成若干时期。
目前通常将数学发展划分为以下五个时期:1.数学萌芽期(公元前600年以前);2.初等数学时期(公元前600年至17世纪中叶);3.变量数学时期(17世纪中叶至19世纪20年代);4.近代数学时期(19世纪20年代至第二次世界大战);5.现代数学时期(20世纪40年代以来)而谈到数学的发展历史,就不得不谈到历史上三次著名的数学危机,危机的产生并不在于数学本身,由于自然科学和社会的发展,人们用已有的数学工具无法解决所面临的自然界的现实问题,自然而然人们要去寻求一种解决问题新的途径和方法,去建立新的理论体系。
那么就要导致与传统观念的冲突,无法用传统的、已有的理论解释、解决问题,那么就产生了数学危机。
数学危机的出现,自然要促使人们进行思维,进行数学革命,突破危机,突破传统观念的束缚,创立新的数学理论体系,改进和推动科学技术的发展和社会的进步。
无理数的发现──第一次数学危机大约公元前5世纪,不可通约量的发现导致了毕达哥拉斯悖论。
当时的毕达哥拉斯学派重视自然及社会中不变因素的研究,把几何、算术、天文、音乐称为"四艺",在其中追求宇宙的和谐规律性。
他们认为:宇宙间一切事物都可归结为整数或整数之比,毕达哥拉斯学派的一项重大贡献是证明了勾股定理,但由此也发现了一些直角三角形的斜边不能表示成整数或整数之比(不可通约)的情形,如直角边长均为1的直角三角形就是如此。
数学历史发展概况
赌博与概率论
意大利医生兼数学家卡当,据说曾大量 地进行过赌博。他在赌博时研究不输的 方法,实际是概率论的萌芽。 据说卡当曾参加过这样的一种赌法:把 两颗骰子掷出去,以每个骰子朝上的点 数之和作为赌的内容。已知骰子的六个 面上分别为1~6点,那么,赌注下在多少 点上最有利? 两个骰子朝上的面共有36种可能,点数 之和分别可为2~12共11种。7是最容易出 现的和数。卡当曾予言说押7最好。 概率论从赌博的游戏开始,完全是一种 新的数学。现在它在许多领域发挥着越 来越大,十分重要的作用。
数学【shù xué】 】
起源于人类早期的生产活动, 起源于人类早期的生产活动,为中国古 六艺之一 之一, 代六艺之一,亦被古希腊学者视为哲学 之起点。数学的希腊语Μαθηµατικ? 之起点。数学的希腊语 mathematikós)意思是 学问的基础 , 学问的基础”, )意思是“学问的基础 源于µατθηµα(máthema)( 科学,知 )(“科学 源于 ( )( 科学, 学问”)。 识,学问 )。 以前我国古代把数学叫算 又称算学,最后才改为数学。 术,又称算学,最后才改为数学。
2.5 中国数学的发展 约公元前150年 中国现存最早的数学 书《算数书》成书(1983~1984年间在 湖北出土) 约公元前100年 中国《周髀算经》 成书,记述了勾股定理 中国古代最重要的数学著作《九章 算术》经历代增补修订基本定形(一说 成书年代为公元 50~100年间),其中 正负数运算法则、分数四则运算、线性 方程组解法、比例计算与线性插值法盈 不足术等都是世界数学史上的重要贡献
1.3 古印度的数学
古印度是指南亚次大陆及其邻近的岛屿 文字大部分是写在棕榈树的叶子上或树皮上 数学伴随着占星术和宗教活动古印度的祭坛
数学文化发展
阿布尔.维法
奥马尔.海亚姆
阿拉伯学者在吸收、融汇、保存古希腊、印度和 中国数学成果的基础上,又有他们自己的创造,使阿 拉伯数学对欧洲文艺复兴时期数学的崛起,作了很好 的学术准备。
4
1
2
花拉子米
当时阿拉伯天文学家和数学家工作的情景
4
1
2
3.欧洲文艺复兴时期 (公元16世纪——17世纪初)
1)透视与射影几何 画 家 - 布努雷契、柯尔比、迪勒、达.芬奇
4
1
2
2.东方(公元前2世纪—15世纪)
★中国:西汉(前2世纪) — 宋元时期(公元10世纪—14世纪) ★印度:公元8世纪—12世纪 ★阿拉伯国家:公元8世纪—15世纪
4
1
2
(1) 中国数学
战国、秦汉期(公元前2世纪—公元2世纪) ——《周髀算经》、《九章算术》 魏晋、南北朝期(公元3世纪—公元5世纪) ——刘徽、祖冲之、割圆术、算p 隋唐时期(公元5世纪—公元2世纪) ——刘洪《乾象历》内插法等 宋元时期(公元10世纪——14世纪) ——
4
1
2
1.古希腊数学(前6世纪—公元6世纪)
※希腊数学是一个习惯用语,它并不等同希腊这个国 家或地区所创作的数学,而是指包括希腊半岛、整 个爱琴海区域和北面的马其顿和色雷斯、意大利半 岛和小亚细亚以及非洲北部等地所发展起来的数学.
4
1
2
※希腊数学分为三个时期: 早期(从公元前600年-前323年)以五大学派的数学 成果为代表----尤其是毕达哥拉斯学派
婆罗摩笈多——《婆罗摩修正体系》、《肯特卡迪亚格》
代数成就可贵
婆什迦罗——《莉拉沃蒂》、《算法本源》(12世纪) 算术、代数、组合学
数学的发展历史
中国数学史上最先完成 勾股定理的证明
赵爽(东汉末至三国时代,生平不详,约生活 于公元3世纪) 研究过张衡的天文学著作《灵宪》 和刘洪的《乾象历》,也提到过“算术”。 他的主要贡献是约在222年深入研究了《周 牌算经》,为该书写了序言,并作了详细注释。 其中一段530余字的“勾股圆方图”注文是数 学史上极有价值的文献。其中的弦图相当于运 用面积的“出入相补”方法,证明了勾股定理。
《抛物线求积法》研究了曲线图形求积的问题,并用穷竭法建立 了这样的结论:“任何由直线和直角圆锥体的截面所包围的弓形 (即抛物线),其面积都是其同底同高的三角形面积的三分之 四。”他还用力学权重方法再次验证这个结论,使数学与力学成 功地结合起来。 《论螺线》是阿基米德对数学的出色贡献。他明确了螺线的定义, 以及对螺线的面积的计算方法。在同一著作中,阿基米德还导出 几何级数和算术级数求和的几何方法。 《平面的平衡》是关于力学的最早的科学论著,讲的是确定平面 图形和立体图形的重心问题。 《浮体》,是流体静力学的第一部专著,阿基米德把数学推理成 功地运用于分析浮体的平衡上,并用数学公式表示浮体平衡的规 律。 《论锥型体与球型体》讲的是确定由抛物线和双曲线其轴旋转而 成的锥型体体积,以及椭圆绕其长轴和短轴旋转而成的球型体的 体积。
(上海图书馆藏)
《周髀算经》中的 “勾股定理”
(约公元前700年)
《周髀算经》卷上记载西周开国时 期周公与大夫商高讨论勾股测量 的对话,商高答周公问时提到 “勾广三 股修四 经隅五”,这 是勾股定理的特例。 卷上另一处叙述周公后人荣方与陈 子(约公元前6、7世纪)的对话 中,则包含了勾股定理的一般形 式:“……以日下为勾,日高为 股,勾股各自乘,并而开方除之, 得邪至日。”
秦九韶的《数书九章》 卷一“大衍总数术”
数学史资料
数学史期末复习资料数学史的三大危机:初等:第一次危机:毕达哥拉斯学派主张←万物皆数(有理数)→无理数→欧多克斯→近代(17C):第二次:微积分→极限→柯西→运动与变化→函数现代(19C下半叶):第三次危机:罗素悖论(集合)→公理化0-数学史1.数学史的分期通常采用的线索:(1)按时代顺序(2)按数学对象、方法等本身的质变过程(3)按数学发展的社会背景。
2.数学史的四个分期:I数学的起源与早期发展(萌芽时期,公元前6世纪前)II初等数学时期(公元前6世纪-16世纪)(1)古希腊数学(公元前6世纪-16世纪)(2)中世纪东方数学(3世纪-15世纪)(3)欧洲文艺复兴时期(15世纪-16世纪)III近代数学时期(或称变量数学建立时期,17世纪-18世纪)IV现代数学时期(1820-现在)(1)现代数学酝酿时期(1820-1870)(2)现代数学形成时期(1870-1940)(3)现代数学繁荣时期(或称当代数学时期,1950-现在)3.使用位值制的两种数字:巴比伦楔形数字和中国筹算数码。
最早使用位值制的国家是古巴比伦,最早使用十进制位值得国家是中国。
4.埃及数学:古埃及人用纸莎草书写,关于古埃及数学知识主要依据莱茵德纸草书和莫斯科纸草书。
5.美索不达米亚数学:主要著作泥版文书。
2.古代希腊数学1.泰勒斯证明了四条定理:(1)圆的直径将圆分为两个相等的部分(2)等腰三角形两底角相等(3)两直线相交形成的对顶角相等(4)如果一三角形有两角、一边分别与另一三角形的对应角、边相等,那么这两个三角形全等。
他是最早的希腊数学家和古希腊论证几何学鼻祖。
2.毕达哥拉斯学派的基本信条是:万物皆数。
毕达哥拉斯可公度量:对于任何两条给定的线段,总能找到某第三线段,以它为单位线段能将给定的两条线段划分为整数段。
3.普鲁塔克的面积剖分法证明勾股定理。
4..雅典时期的希腊数学学派:(1)伊利亚学派(2)诡辩学派(3)雅典学院(柏拉图学派)(4)亚里士多德学派5.三大几何问题:(1)化圆为方,即做一个与给定面积相等的正方形。
数学核心经验模式发展概念6个阶段
数学核心经验模式发展概念6个阶段数学经历了长期的发展,从初期的缓慢积累、萌芽,到近现代思想、概念的快速发展,数学的学科分支、内容得到了极大地丰富。
而这整个发展时期,大体可分为6个阶段。
1.萌芽时期从几十万年前的远古到公元前6世纪,人类在长期的生产实践中逐渐形成数的概念,并初步掌握了其运算方法等数学知识;又出于田亩度量、天文观测的需要,几何知识初步兴起,但缺乏逻辑因素,更没有命题的证明。
2.初等数学的开创时期从公元前600年前后的泰勒斯到公元641年亚历山大图书馆被焚,是初等数学的开创时期。
该时期可分为两个时期、四个阶段,即古典时期的爱奥尼亚阶段和雅典阶段;亚历山大里亚时期的希腊化阶段和罗马阶段。
中国自公元前221年至公元220年,数学己经成为一门独立科学,建立了真正科学意义的数理论;数学的两个重要分支是几何和算术,已经按演绎体系建立起来,数学已经明显地从经验形态上升为理论形态,欧几里得的几何学、阿基米德的穷竭法和阿波罗尼的圆锥曲线论,标志着数学的主体部分一一算术、代数、几何等已基本建立起来。
3.初等数学的交流和发展时期初等数学的交流和发展时期,主要指公元6世纪到17世纪初的国外,以及公元221年至14世纪的中国。
这一时期的数学主要是中国数学、印度数学和阿拉伯数学等,初等数学的主体部分已经全部形成,并且发展成熟。
这一时期在交流中体现了两种传统:希腊传统,强调数学是逻辑的,是认识自然的工具,重点为几何,重视理论;中国、印度、阿拉伯传统,强调数学是经济的,是支配自然的工具,重点为算术和代数,重视应用。
4.近代数学的创立与发展时期从17世纪初到18世纪末,约200年左右的时间是近代数学创立与发展的时期。
继希腊数学诞生并从经验数学跃入理论数学之后,在17世纪,数学从常量数学跃进到变量数学,数学传统由古希腊以来的几何(形)研究为主导转变为以数、代数为主导,以解析几何和微积分为代表,数学教育范围扩大、从事数学工作的人数迅速增加。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初等数学时期是指从原始人时代到17世纪中叶,这期间数学研究的主要对象是常数、常量和不变的图形。
在这一时期,数学经过漫长时间的萌芽阶段,在生产的基础上积累了丰富的有关数和形的感性知识。
到了公元前六世纪,希腊几何学的出现成为第一个转折点,数学从此由具体的、实验的阶段,过渡到抽象的、理论的阶段,开始创立初等数学。
此后又经过不断的发展和交流,最后形成了几何、算术、代数、三角等独立学科。
这一时期的成果可以用初等数学(即常量数学)来概括,它大致相当于现在中小学数学课的主要内容。
世界上最古老的几个国家都位于大河流域:黄河流域的中国;尼罗河下游的埃及;幼发拉底河与底格里斯河的巴比伦国;印度河与恒河的印度。
这些国家都是在农业的基础上发展起来的,从事耕作的人们日出而作、日落而息,因此他们就必须掌握四季气候变迁的规律。
游牧民族的迁徙,也要辨清方向:白天以太阳为指南,晚上以星月为向导。
因此,在世界各民族文化发展的过程中,天文学总是发展较早的科学,而天文学又推动了数学的发展。
随着生产实践的需要,大约在公元前3000年左右,在四大文明古国巴比伦、埃及、中国、印度出现了萌芽数学。
现在对于古巴比伦数学的了解主要是根据巴比伦泥版,这些泥版是在胶泥还软的时候刻上字,然后晒干制成的(早期是一种断面呈三角形的笔在泥版上按不同方向刻出楔形刻痕,叫楔形文字)。
已经发现的泥版上面载有数字表(约200件)和一批数学问题(约100件),大致可以分为三组。
第一组大约创制于公元前2100年,第二组大约从公元前1792年到公元前1600年,第三组大约从公元前600年到公元300年。
这些数学泥版表明,巴比伦自公元前2000年左右即开始使用60进位制的记数法进行较复杂的计算了,并出现了60进位的分数,用与整数同样的法则进行计算;已经有了关于倒数、乘法、平方、立方、平方根、立方根的数表;借助于倒数表,除法常转化为乘法进行计算。
公元前300年左右,已得到60进位的达17位的大数;一些应用问题的解法,表明已具有解一次、二次(个别甚至有三次、四次)数字方程的经验公式;会计算简单直边形的面积和简单立体的体积,并且可能知道勾股定理的一般形式。
巴比伦人对于天文、历法很有研究,因而算术和代数比较发达。
巴比伦数学具有算术和代数的特征,几何只是表达代数问题的一种方法。
这时还没有产生数学的理论。
对埃及古代数学的了解,主要是根据两卷纸草书。
纸草是尼罗河下游的一种植物,把它的茎制成薄片压平后,用墨水写上文字(最早的是象形文字)。
同时把许多张纸草纸粘在一起连成长幅,卷在杆干上,形成卷轴。
已经发现的一卷约写于公元前1850年,包含25个问题(叫莫斯科纸草文书,现存莫斯科);另一卷约写于公元前1650年,包含85个问题(叫莱因德纸草文书,是英国人莱因德于1858年发现的)。
从这两卷文献中可以看到,古埃及是采用10进位制的记数法,但不是位值制,而是所谓的累积法。
正整数运算基于加法,乘法是通过屡次相加的方法运算的。
除了几个特殊分数之外,所有分数均极化为分子是一的单位分数之和,分数的运算独特而又复杂。
许多问题是求解未知数,而且多数是相当于现在一元一次方程的应用题。
利用了三边比为3:4:5的三角形测量直角。
埃及人的数学兴趣是测量土地,几何问题多是讲度量法的,涉及到田地的面积、谷仓的容积和有关金字塔的简易计算法。
但是由于这些计算法是为了解决尼罗河泛滥后土地测量和谷物分配、容量计算等日常生活中必须解决的课题而设想出来的,因此并没有出现对公式、定理、证明加以理论推导的倾向。
埃及数学的一个主要用途是天文研究,也在研究天文中得到了发展。
中国古代数学将在后面的作专门介绍。
印度在7世纪以前缺乏可靠的数学史料,在此略去不论。
总的说来,萌芽阶段是数学发展过程的渐变阶段,积累了最初的、零碎的数学知识。
由于地理位置和自然条件,古希腊受到埃及、巴比伦这些文明古国的许多影响,成为欧洲最先创造文明的地区。
在公元前775年左右,希腊人把他们用过的各种象形文字书写系统改换成腓尼基人的拼音字母后,文字变得容易掌握,书写也简便多了。
因此希腊人更有能力来记载他们的历史和思想,发展他们的文化了。
古代西方世界的各条知识支流在希腊汇合起来,经过古希腊哲学家和数学家的过滤和澄清,形成了长达千年的灿烂的古希腊文化。
从公元前6世纪到公元4世纪,古希腊成了数学发展的中心。
希腊数学大体可以分为两个时期。
第一个时期开始于公元前6世纪,结束于公元前4世纪,通称为古典时期。
泰勒斯开始了命题的逻辑证明;毕达哥拉斯学派对比例论、数论等所谓几何化代数作了研究,据说非通约量也是由这个学派发现的。
进入公元前5世纪,爱利亚学派的芝诺提出了四个关于运动的悖论;研究圆化方的希波克拉茨开始编辑《原本》。
从此,有许多学者研究三大问题,有的试图用穷竭法去解决化圆为方的问题。
柏拉图强调几何对培养逻辑思维能力的重要作用;亚里士多德建立了形式逻辑,并且把它作为证明的工具;德谟克利特把几何量看成是由许多不可再分的原子所构成。
公元前四世纪,泰埃特托斯研究了无理量理论和正多面体理论,欧多克斯完成了适用于各种量的一般比例论。
证明数学的形成是这一时期希腊数学的重要内容。
但遗憾的是这一时期并没有留下较为完整的数学书稿。
第二个时期自公元前4世纪末至公元1世纪,这时的学术中心从雅典转移到了亚历山大里亚,因此被称为亚历山大里亚时期。
这一时期有许多水平很高的数学书稿问世,并一直流传到了现在。
公元前3世纪,欧几里得写出了平面几何、比例论、数论、无理量论、立体几何的集大成的著作《几何原本》,第一次把几何学建立在演绎体系上,成为数学史乃至思想史上一部划时代的名著。
遗憾的是,人们对欧几里得的生活和性格知道得很少,甚至连他的生卒年月和地点都不清楚。
估计他大约生于公元前330年,很可能在雅典的柏拉图学园受过数学训练,后来成为亚历山大里亚大学(约建成于公元前300年)的数学教授和亚历山大数学学派的奠基人。
之后的阿基米德把抽象的数学理论和具体的工程技术结合起来,根据力学原理去探求几何图形的面积和体积,第一个播下了积分学的种子。
阿波罗尼写出了《圆锥曲线》一书,成为后来研究这一问题的基础。
公元一世纪的赫伦写出了使用具体数解释求积法的《测量术》等著作。
二世纪的托勒密完成了到那时为止的数理天文学的集大成著作《数学汇编》,结合天文学研究三角学。
三世纪丢番图著《算术》,使用简略号求解不定方程式等问题,它对数学发展的影响仅次于《几何原本》。
希腊数学中最突出的三大成就欧几里得的几何学,阿基米德的穷竭法和阿波罗尼的圆锥曲线论,标志着当时数学的主体部分算术、代数、几何基本上已经建立起来了。
罗马人征服了希腊也摧毁了希腊的文化。
公元前47年,罗马人焚毁了亚历山大里亚图书馆,两个半世纪以来收集的藏书和50万份手稿竞付之一炬。
基督教徒又焚毁了塞劳毕斯神庙,大约30万种手稿被焚。
公元640年,回教徒征服埃及,残留的书籍被阿拉伯征服者欧默下令焚毁。
由于外族入侵和古希腊后期数学本身缺少活力,希腊数学衰落了。
从5世纪到15世纪,数学发展的中心转移到了东方的印度、中亚细亚、阿拉伯国家和中国。
在这1000多年时间里,数学主要是由于计算的需要,特别是由于天文学的需要而得到迅速发展。
和以前的希腊数学家大多数是哲学家不同,东方的数学家大多数是天文学家。
从公元6世纪到17世纪初,初等数学在各个地区之间交流,并且取得了重大进展。
古希腊的数学看重抽象、逻辑和理论,强调数学是认识自然的工具,重点是几何;而古代中国和印度的数学看重具体、经验和应用,强调数学是支配自然的工具,重点是算术和代数。
大约在公元前1000年,印度的数学家戈涅西已经知道:圆的面积等于以它的半周长为底,以它的半径为高的矩形的而积。
印度早期的一些数学成就是与宗教教仪一同流传下来的,这包括勾股定理和用单位分数表示某些近似值(公元的6世纪)。
公元前500年左右,波斯王征服了印度一部分土地,后来的印度数学就受到了外国的影响。
数学作为一门学科确立和发展起来,还是在作为吠陀辅学的历法学受到天文学的影响之后的事。
印度数学受婆罗门教的影响很大,此外还受希腊、中国和近东数学的影响,特别是受中国的影响。
印度数学的全盛时期是在公元五至十二世纪之间。
在现有的文献中,499年阿耶波多著的天文书《圣使策》的第二章,已开始把数学作为一个学科体系来讨论。
628年婆罗门这多(梵藏)著《梵图满手册》,讲解对模式化问题的解法,由基本演算和实用算法组成;讲解正负数、零和方程解法,由一元一次方程、一元二次方程、多元一次方程等组成。
已经有了相当于未知数符号的概念,能使用文字进行代数运算。
这些都汇集在婆什迦罗1150年的著作中,后来没有很大发展。
印度数学文献是用极简洁的韵文书写的,往往只有计算步骤而没有证明。
印度数学书中用10进位记数法进行计算;在天文学书中不用希腊人的弦,而向相当于三角函数的方向发展。
这两者都随着天文学一起传入了阿拉伯世界,而现行的阿拉伯数码就源于印度,应当称为印度阿拉伯数码。
阿拉伯人的祖先是住在现今阿拉伯半岛的游牧民族。
他们在穆罕默德的领导下统一起来,并在他死(632年)后不到半个世纪内征服了从印度到西班牙的大片土地,包括北部非洲和南意大利。
阿拉伯文明在1000年前后达到顶点,在1100年到1300年间,东部阿拉伯世界先被基督教十字军打击削弱,后来又遭到了蒙古人的蹂躏。
1492年西部阿拉伯世界被基督教教徒征服,阿拉伯文明被推毁殆尽。
阿拉伯数学指阿拉伯科学繁荣时期(公元8至15世纪)在阿拉伯语的文献中看到的数学。
七世纪以后,阿拉伯语言不仅是阿拉伯国家的语言,而且成为近东、中东、中亚细亚许多国家的官方语言。
阿拉伯数学有三个特点:实践性;与天文学有密切关系;对古典著作做大量的注释。
它的表现形式和写文章一样,不用符号,连数目也用阿拉伯语的数词书写,而阿拉伯数字仅用于实际计算和表格。
对于阿拉伯文化来说,数学是外来的学问,在伊斯兰教创立之前,只有极简单的计算方法。
七世纪时,通过波斯传进了印度式计算法。
后来开始翻译欧几里得、阿基米得等人的希腊数学著作。
花拉子模著的《代数学》成为阿拉伯代数学的范例。
在翻译时代(大约850年之前)过去之后,是众多数学家表现创造才能著书立说的时代(1200年之前)。
梅雅姆、纳速拉丁、阿尔卡西等等,使阿拉伯数学在11世纪达到顶点。
阿拉伯人改进了印度的计数系统,代数的研究对象规定为方程论;让几何从属于代数,不重视证明;引入正切、余切、正割、余割等三角函数,制作精密的三角函数表,发现平面三角与球面三角若干重要的公式,使三角学脱离天文学独立出来。
1200年之后,阿拉伯数学进入衰退时期。
初期的阿拉伯数学在12世纪被译为拉丁文,通过达芬奇等传播到西欧,使西欧人重新了解到希腊数学。