高中数学函数知识点总结(全)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学函数知识点总结

1. 对于集合,一定要抓住集合的代表元素,及元素的“确定性、互异性、无序性”。

2 进行集合的交、并、补运算时,不要忘记集合本身和空集的特殊情况 注重借助于数轴和文氏图解集合问题。

空集是一切集合的子集,是一切非空集合的真子集。 {}

{}如:集合,A x x x B x ax =--===||22301 若,则实数的值构成的集合为B A a ⊂

3. 注意下列性质:

{}()集合,,……,的所有子集的个数是;1212a a a n n

要知道它的来历:若B 为A 的子集,则对于元素a 1来说,有2种选择(在或者不在)。同样,对于元素a 2, a 3,……a n ,都有2种选择,所以,总共有2n 种选择, 即集合A 有2n 个子集。

当然,我们也要注意到,这2n 种情况之中,包含了这n 个元素全部在何全部不在的情况,故真子集个数为21n -,非空真子集个数为22n -

()若,;2A B A B A A B B ⊆⇔==

(3)德摩根定律:

()()()()()()C C C C C C U U U U U U A B A B A B A B ==,

有些版本可能是这种写法,遇到后要能够看懂

4. 你会用补集思想解决问题吗?(排除法、间接法) 如:已知关于的不等式

的解集为,若且,求实数x ax x a

M M M a --<∈∉5

0352

的取值范围。

7. 对映射的概念了解吗?映射f :A →B ,是否注意到A 中元素的任意性和B 中与之对应元素的唯一性,哪几种对应能构成映射?

(一对一,多对一,允许B 中有元素无原象。)

注意映射个数的求法。如集合A 中有m 个元素,集合B 中有n 个元素,则从A 到B 的映射个数有n m 个。

如:若}4,3,2,1{=A ,},,{c b a B =;问:A 到B 的映射有 个,B 到A 的映射有 个;A 到B 的函数有 个,若}3,2,1{=A ,则A 到B 的一一映射有 个。

函数)(x y ϕ=的图象与直线a x =交点的个数为 个。

8. 函数的三要素是什么?如何比较两个函数是否相同? (定义域、对应法则、值域)

相同函数的判断方法:①表达式相同;②定义域一致 (两点必须同时具备)

9. 求函数的定义域有哪些常见类型?

()()

例:函数的定义域是

y x x x =

--432

lg

函数定义域求法:

● 分式中的分母不为零; ● 偶次方根下的数(或式)大于或等于零;

10. 如何求复合函数的定义域?

[]

如:函数的定义域是,,,则函数的定f x a b b a F(x f x f x ())()()>->=+-0 义域是_____________。

例 若函数)(x f y =的定义域为⎥⎦

⎤⎢⎣⎡2,21,则 的定义域为 。

11、函数值域的求法

1、直接观察法

对于一些比较简单的函数,其值域可通过观察得到。

例 求函数y=

x

1

的值域 2、配方法

配方法是求二次函数值域最基本的方法之一。

例、求函数y=2x -2x+5,x ∈[-1,2]的值域。

3、判别式法

对二次函数或者分式函数(分子或分母中有一个是二次)都可通用,但这类题型有时也可以用其他方法进行化简,不必拘泥在判别式上面

.1

12..2

22

22222

b

a y 型:直接用不等式性质k+x

bx

b. y 型,先化简,再用均值不等式

x mx n

x 1 例:y 1+x x+x

x m x n c y 型 通常用判别式

x mx n x mx n

d. y 型

x n

法一:用判别式 法二:用换元法,把分母替换掉

x x 1(x+1)(x+1)+1 1

例:y (x+1)1211

x 1x 1x 1

=

=++==≤

''

++=++++=+++-===+-≥-=+++

5、函数有界性法

直接求函数的值域困难时,可以利用已学过函数的有界性,来确定函数的值域。我们所说的单调性,最常用的就是三角函数的单调性。

6、函数单调性法

通常和导数结合,是最近高考考的较多的一个内容

7、换元法

通过简单的换元把一个函数变为简单函数,其题型特征是函数解析式含有根式或三角 函数公式模型。换元法是数学方法中几种最主要方法之一,在求函数的值域中同样发 挥作用。

例 求函数y=x+1-x 的值域。

8 数形结合法

其题型是函数解析式具有明显的某种几何意义,如两点的距离公式直线斜率等等,这 类题目若运用数形结合法,往往会更加简单,一目了然,赏心悦目。 例:求函数y=)

2(2

-x +

)

8(2

+x 的值域。

倒数法

有时,直接看不出函数的值域时,把它倒过来之后,你会发现另一番境况 例 求函数y=

3

2

++x x 的值域

12. 求一个函数的解析式时,注明函数的定义域了吗?

切记:做题,特别是做大题时, 一定要注意附加条件,如定义域、单位等东西要记得协商,不要犯我当年的错误,

与到手的满分失之交臂 (

)

如:,求f

x e x f x x +=+1().

15 . 如何用定义证明函数的单调性? (取值、作差、判正负) 判断函数单调性的方法有三种: (1)定义法:

根据定义,设任意得x 1,x 2,找出f(x 1),f(x 2)之间的大小关系

可以变形为求

1212()()f x f x x x --的正负号或者12()

()

f x f x 与1的关系

(2)参照图象:

①若函数f(x)的图象关于点(a ,b)对称,函数f(x)在关于点(a ,0)的对称区间具有相同的单调性; (特例:奇函数)

②若函数f(x)的图象关于直线x =a 对称,则函数f(x)在关于点(a ,0)的对称区间里具有相反的单调性。(特例:

相关文档
最新文档