带传动的类型和应用
13_带传动
§13.1带传动的类型和应用§13.2带传动的受力分析§13.3带传动的应力分析§13.4 带传动的工作能力§13.5 带传动的弹性滑动与传动比§13.6 普通V 带传动的设计与计算§13.7 V 带轮的结构§13.8 带传动的张紧和维护第13章带传动2.带传动的失效形式、设计准则;3.带传动的弹性滑动与打滑概念;1.带传动的受力分析、应力分析;4.带传动的参数选择。
第13章带传动重点13.1带传动的类型和应用带传动是二个或多个带轮间用带作为挠性件拉曳零件的传动,工作时借助零件之间的摩檫来传递运动与动力。
传动1传动2带的传动过程原动机转动驱动主动轮主动轮转动带与轮的摩擦力从动轮转动13.1带传动的类型和应用一. 带传动的类型13.1带传动的类型和应用一.带传动的类型点击小图看运动图13.1带传动的类型和应用V 带传动和平带传动的比较平型带摩擦力F fQf N f F f ⋅=⋅=两种传动的摩擦力的对比其中:Q —工作载荷;N —带和轮间压紧力;f —摩擦数。
V 型带摩擦力F f ′2sin2 ϕQ N =根据力平衡条件2sin2ϕN Q =Qf Q f Q fN f F f /2sin2sin2/====ϕϕ f ′—当量摩檫系数V 带传动和平带传动的比较V带传动的摩擦力>平带传动的摩擦力1)摩擦力增大,可减小包角;导致①许用较大的传动比i ②许用较小的中心距α;2)摩擦力增大,在载荷较大的传动中仍能正常工作;两种传动优缺点对比¾V 型带传动优点3)带无接头,工作平稳。
V 带传动和平带传动的比较1)V 带轮制造费用高;2)V 带厚不易弯曲,弯曲应力增大,寿命减短;在优缺点对比的许多场合下,其优点更为重要,故V 带应用多于平型带。
V 带传动和平带传动的比较V 型带传动缺点节线当V 带垂直其底边弯曲时,在带中保持原长度不变的任意一条周线。
带传动
由F =
F1 – F2,得:
F1 = F0 +F/2 F2 = F0 -F/2
CopyRight ZDJ
带的受力分析
带所传递的功率为:P = F v /1000 kW v 为带速 P 增大时, 所需的F (即Ff )加大。但Ff 不可能无限增大。当Ff 达到
极限值时,带传动处于即将打滑的临界状态。此时,带的有效拉力也达到
单根V带在特定条件下(α1=α2=180°,L为特定基准长度,载荷平稳等), 单根V带的基本额定功率见表格。 2)额定功率增量ΔP0(考虑实际传动比i≠1) 3)包角修正系数Kα(考虑实际包角变小) 4)基准长度修正系数KL(考虑实际长度不同于特定长度)
CopyRight ZDJ
二、V带传动的设计
1) 定期张紧
带传动的张紧、安装与维护
2)自动张紧
2、利用张紧轮
CopyRight ZDJ
以带逐渐伸长,这时带沿从动轮的转向相同方向 滑动,使带的速度V超前于从动轮的圆周速度V2。
CopyRight ZDJ
2、弹性滑动和打滑现象的区别
打 滑:是指由于过载引起的全面滑动,是带传动的一种失效形式,应当避免。
弹性滑动:是指正常工作时的微量滑动现象,是由拉力差(即带的紧边与松边拉力 不等)引起的,不可避免。
F0 500 (2.5 K ) Pd qv 2 906.6 N K zv FQ 2 zF0 sin 1 10860 N 2
8)计算作用在轴上的压力;
9)确定带轮的结构尺寸;(略) 10)设计张紧装置;(下节)
CopyRight ZDJ
第五节
一、带传动的张紧
1、调整中心距
dd 2 dd1 172.30 1200 a
带传动及其在汽车上的应用
带传动的功率范围取决于带的材 料、结构、尺寸以及工作条件等 因素。
带传动的使用寿命与维护
使用寿命
带的使用寿命取决于带的材料、结构、工作条件以及维护状况等 因素。
维护要求
为了延长带的使用寿命,需要定期检查带的张紧度、润滑状况和磨 损情况,并及时进行调整或更换。
更换原则
带传动的更换原则通常根据带的磨损程度、疲劳寿命以及工作条件 等因素来确定。
复合式传动系统的研究
未来将深入研究复合式传动系统,结合带传动和 其他传动方式的优点,以实现更加高效、稳定和 可靠的传动。
05 带传动在汽车上的案例分 析
案例一:发动机附件驱动的应用实例
总结词
发动机附件驱动是带传动在汽车上的重要应用之一,主要用于驱动发电机、冷却风扇、空调压缩机等 附件。
详细描述
带传动在发动机附件驱动中的应用,主要是通过一根或多根传动带将发动机的动力传递给发电机、冷 却风扇、空调压缩机等附件,实现这些附件的旋转运动。这种传动方式具有结构简单、成本低、维护 方便等优点,因此在汽车上广泛应用。
通过改变带轮的直径或槽数,可以实 现不同的传动比,满足汽车在不同行 驶状态下的动力需求。
车轮驱动与转向驱动
在四驱汽车中,带传动被用于将发动机的动力传递至前后轴,实现车轮的驱动。
在转向系统中,带传动被用于驱动转向油泵,为转向系统提供动力。
汽车空调系统的驱动
汽车空调系统的压缩机通常通过带传 动进行驱动,以实现制冷剂的循环和 压缩。
案例二:变速器驱动的应用实例
总结词
变速器驱动是带传动在汽车上的又一重 要应用,主要用于传递发动机动力至变 速器。
VS
详细描述
在变速器驱动中,带传动主要负责将发动 机的动力传递给变速器,从而实现变高汽车的行驶速度和行 驶里程。此外,带传动在变速器驱动中还 具有结构紧凑、重量轻、成本低等优点, 因此在汽车上广泛应用。
机械基础——第五章 第一节 带传动
V带已经标准化,每根V带顶面都有水洗不掉的标记。
普通V带标记:
A2000 GB/T11544——1997
标准号 基准长度Ld=2000mm A型普通V带
(二)普通V带轮的典型结构
材料:灰铸铁、铸钢、铸铝、工程塑料
带轮由轮缘、腹板(轮辐) 和轮毂三部分组成。 轮缘指带轮的工作部分,制
有梯形轮槽。
轮毂是带轮与轴的联接部分。 轮辐(腹板)是连接轮缘与 轮毂的部分。
(二)普通V带轮的典型结构
V带轮按腹板结构的不同分为以下几种型式: 实心带轮 dd≤(2.5~3)d d—轴的直径
腹板带轮
dd≤250~300mm
孔板带轮 Dd=250~400mm
椭圆轮辐带轮 dd> 400 mm
三、V带的安装与张紧装臵 1、V带的正确安装与使用
(1)保证V带的截面在轮槽中的正确位臵。
二、普通V带与带轮的结构、型号 (一)普通V带的结构、型号
V 带为无接头环形带 , 带两侧
工作面的夹角α称为带的楔角 , 一
般取α=40°。
有帘布芯结构和绳芯结构两种。 帘布芯结构的V带抗拉强度较高,制造方便; 绳芯结构的V带柔韧性好,抗弯强度高,适用于转速较高、 带轮直径较小的场合。 现在生产中越来越多地采用绳芯结构的V带。
带的弹性滑动
产生的原因 带的弹性、松边与紧边拉力差
弹性滑动的特点
不可避免的
对带传动影响
传动比不准确、效率降低、带的磨损加重
带的打滑
带打滑时的现象?
产生的原因
外载荷增加,使得 F F f max 如何避免带发生 打滑?
打滑的特点
可以避免的
带的磨损急剧增加、从动轮的转速急剧下 降,直至传动失效。
第13章带传动和链传动 69页PPT文档
带传动的设计准则:在保证带传动不打滑的条件下,具
有一定的疲劳强度和寿命。
P0
F1(1e1f '
)v 1000
V带的疲劳强度条件:
ma x1b 1c []
1[ ]b1c
P 0( []b1c)1 (e1 f')1A0v00
单根V带基本额定功率P0见表13-3。
应用:
多用于高速或运动精度要求较高的传动装置中。
二、链轮
基本参数:节距p,套筒最大外径d1,排距pt及齿数z
链 轮 齿 形
国标仅规定链轮的最大和最小齿槽形状及其极限参数 目前较流行的一种齿形是三圆弧一直线齿形(或称凹齿形) 注明“齿形按3R GB/T 1244-1985规定制造” 链轮轴向齿廓及尺寸,应符合GB/T 1244-1985的规定。
预紧力F0 紧边拉力F1 松边拉力F2 带的总长度不变:
F0 F0
F0
F0
F1F0F0F2 2F0 F1F2
F2 F2
n1
n2
F1 F1
取主动轮端带为分离体
Ff F1F2
有效拉力F:
Ff
FFf F1F2
设:有效拉力F,N;带速v,m/s;则
带所能传递的功率P: P Fv 1000
最大应力发生 在带的紧边开 始饶上小带轮 σb1 处
b1
2 yE d1
b2
2 yE d2
σ2
σc
σ1
σb2
§13-4 带的弹性滑动和传动比
弹性滑动:由于带的弹性变形而引
起的带与带轮间的相对滑动。
A2
弹性滑动产生的原因:
B1
1、带是弹性体;
n1
带传动辅导
带传动辅导带传动是摩擦传动的一种,它由主动轮、从动轮和张紧在两轮上的环形带所组成,依靠带和带轮表面间的摩擦力传递运动和动力。
一、带传动的类型、特点和应用带传动适于中心距较大的传动;传动平稳,可缓冲吸振;过载时打滑,能起安全保护作用。
带传动的主要缺点是不能保证准确的传动比,带的寿命和传动效率较低。
综上所述,带传动适合于中小功率的动力传送,在机械传动系统中,多用于高速级。
不同类型的带,其传动特点和应用范围不尽相同:平型带 传动中心距大,带速高V 带 传递功率较大,结构紧凑多楔带 传递功率大(多根V 带组合)同步带 传动比准确,可用于高速大功率传动;圆型带 小功率传动二、V 带传动的参数和几何尺寸计算带传动按带的横截面形状可分为多种类型,其中梯形截面的V 带应用最广,是讨论的重点。
1.主要参数(1)V 带: 型号及横截面尺寸(教材表11-2)基准带长L d (教材表11-3)(2)V 带轮: 轮槽尺寸(教材表11-4)带轮基准直径d 1、d 2 (教材表11-9)(3)V 带传动:传动中心距a ,小带轮包角α1。
2.主要几何关系式(1)基准带长L da d d d d a L 4)()(2221212-+++=π计算出带长L 后,应参照教材表11-3所列出的基准长度系列圆整计算结果,使之符合标准基准带长L d 。
(2)小带轮包角α1︒︒⨯--=3.57180121ad d α 二、带传动的工作情况分析1.带传动的受力分析带传动靠传动带与带轮之间的摩擦力传递动力。
在正常工作时,此摩擦力的总合与有效圆周力F 相等。
当带和带轮之间所能产生的最大摩擦力F f 不能满足传动所需要的有效圆周力F 时,带和带轮之间将发生打滑。
带传动中力的基本关系式为F =F 1-F 2F 1+F 2=2F 0αv f e F F =21(将要打滑时成立,F f =F ) 由以上三式可推出最大摩擦力的公式1120+-=ααv v f f f e e F F 此式说明,最大摩擦力F f 与带传动的初拉力F 0成正比,同时还与包角α和摩擦系数ƒv 有关。
带传动
沈阳航空工业学院第八章带传动§8-1带传动类型及应用§8-2带传动的受力分析§8-3带的应力分析§8-4 带传动的打滑、弹性滑动和传动比§8-5 V带传动的计算§8-6 V带的张紧装置一、组成主动带轮带从动带轮二、工作原理:摩擦带:原动机驱动主动带轮转动,通过带与带轮之间产生的摩擦力,使从动带轮一起转动,从而实现运动和动力的传递。
啮合带:靠带与带轮的啮合传递运动和动力。
三、常见带传动的类型◆摩擦带传动◆啮合带传动平带传动V带传动多楔带传动§8-1 带传动的类型和应用四、摩擦带传动的特点优点:①因带是弹性体,可以缓冲和吸振,传动平稳、噪声小;②当传动过载时,带在带轮上打滑,可防止其他零件损坏;③可用于中心距较大的传动;④结构简单、装拆方便、成本低。
其主要缺点是:①传动比不准确;②外廓尺寸大;③传动效率低;④带的寿命短;⑤需要张紧装置;五、V带与带轮的结构V带有普通V带、窄V带、宽V带、汽车V带、大楔角V带等。
其中以普通V带和窄V带应用较广。
1、V带的结构标准V带都制成无接头的环形带,横截面结构如下:V带的结构2、带的型号:我国普通V带和窄V带都已标准化。
按截面尺寸由小到大,普通V带可分为Y、Z、A、B、C、D、E七种型号;窄V带可分为SPZ、SPA、SPB、SPC四个型号。
在同样条件下,截面尺寸大,则传递的功率就大。
3、带的主要参数◆节线:当带纵向弯曲时,在带中保持原长度不变的周线。
◆节面:由全部节线构成的面称为节面。
◆节宽b p :长度不变层。
所在位置称为中性层。
节面节线◆基准直径d d :V 带装在带轮上,和节宽b p 相对应的带轮直径。
◆基准长度L d :V 带在规定的张紧力下,位于带轮基准直径上的周线长度。
它用于带传动的几何计算。
表8-2 普通V带的基准长度系列及长度系数(部分)基准长度L d/mm长度系数KY Z A B C D E2500 1.09 1.030.932800 1.11 1.050.950.833150 1.13 1.070.970.863550 1.17 1.090.990.894000 1.19 1.13 1.020.914500 1.15 1.040.930.90 5000 1.18 1.070.960.92 5600 1.090.980.95 6300 1.12 1.000.97 7100 1.15 1.03 1.00§8-2 带传动的受力分析一、带传动中的力分析1)带不运转时初拉力F0。
机械设计基础——带传动
带传动所传递的功率: P F F------有效拉力 N
1000 带的速度 m / s
P------功率 Kw
当带和带轮间有全面滑动趋势时,摩擦力达到最大
值,即有效圆周力达到最大值。此时,紧边拉力F1和松 边拉力F2之间的关系可用欧拉公式表示:
F1 e f c) F2
用 P0表示 查表8.7~8.17
试验条件:包角 =1800、i 1、特定带长、工作平稳。
2.额定功率-------单根普通v带在设计所给定的实际条件下
允许传递的功率。
用 [P0] 表示
[P0]=(P0+⊿P0)KαKL
P0
Kb n1 (1
1 Ki
)
功率增量
Kw
Kb 弯曲影响系数(当i 1时), 查表8.18
1000
若带速超过范围,应重新选小带轮直径dd1。
5.确定中心距a和V带基准长度Ld
a太小,结构紧凑,但带短,使绕转次数增多,降 低带的寿命,同时包角α 减小,降低传动能力。
a太大,传动结构尺寸增大,高速时带容易颤动。
①初步确定中心距a0 0.7(dd1+dd2)≤a0≤2(dd1+dd2)
②带的基准长度计算公式
设计的主要内容: 1.选择v带的型号、带长和根数; 2.传动中心距; 3.确定带轮的基准直径; 4.绘制带轮的零件图。
设计步骤:
1.确定计算功率Pc
Pc=KAP ( kw) P-----传递的额定功率 Kw
(如电动机的额定功率 )
KA-----工况系数 查表8.21
2.选择V带的型号
计算功率Pc
查图8.12(P131)
结构紧凑
特点 传递很大功率
带传动的类型及应用
带传动的类型及应用
(1)平带传动。如图1-4(a)所示,平带截面形状为 矩形,其工作面为内表面。常用的平带为橡胶帆布带。平带 传动多用于两轴平行、转向相同、中心距较大的场合。
图1-4 带的类型
带传动的类型及应用
(2)V带传动。V带截面形状为梯形,其工作面为两侧面, 如图1-4(b)所示。V带与平带相比,当量摩擦系数大,能传 递较大的功率,且结构紧凑,在机械传动中应用最广。
(3)多楔带传动。如图1-4(c)所示,多楔带是在平带 基体上由多根V带组成的传动带。多楔带能传递的功率更大, 且能避免多根V带长度不等而产生的传力不均匀的缺点,故适 用于传递功率较大且要求结构紧凑的场合。
(4)圆带传动。圆带横截面为圆形,如图1-4(d)所示。 常用皮革或棉绳制成,用于小功率机械传动,如录音机、缝纫 机、牙科医疗器械等。
带传动的类型及应用
2. 啮合型带传动
啮合型带传动即为同步带传动,它由主动同步 带轮、从动同步带轮和套在两轮上的环形同步带组 成。依靠传动带与带轮上的齿相互啮合来传递运动 和动力,如图1-3所示,具有传递功率大、传动比 准确等优点,多用于汽车发动机、数控机床等要求 传动平稳、传动精度较高的场合。
带传动的类型及应用
根据传动原理的不同, 带传动主要可以分为两类: 摩擦型带传动和啮合型带 传动(见图1-3)。
图1-3 啮合型带传动
带传动的类型及应用
1. 摩擦型带传动
摩擦型带传动通常由主动轮、从动轮和张 紧在两轮上的环形传动带组成,由于带已被张紧, 传动带在静止时已受到预紧力的作用,带与带轮 之间的接触面间产生了正压力。当主动轮转动时, 依靠带与带轮接触面之间的摩擦力,拖动传Βιβλιοθήκη 带 进而驱动从动轮转动,实现传动。
带传动与链传动
带传动与链传动一、带传动的特点和应用带传动是一种常用的、成本较低的机械传动形式,它的主要作用是传递转矩和改变转速。
大部分带传动是依靠挠性传动带与带轮间的摩擦力来传递运动和动力的。
带传动具有传动平稳、噪声小、清洁(无需润滑)的特点,具有缓冲减振和过载保护作用,并且维修方便。
与链传动和齿轮传动相比,带传动的强度较低以及疲劳寿命较短。
然而,对于传动带强力层材料的改善,如采用钢丝、尼龙、聚酯纤维等,带传动也可用于某些只有链传动或齿轮传动才适合的动力传输,如图1-6所示。
图1-6 带传动传动带具有弹性,能缓冲、吸振;过载时,带在带轮上打滑,防止其他零部件损坏,起安全保护作用;适用于中心距较大的场合;结构简单,成本较低,装拆维护方便。
但带在带轮上有相对滑动,传动比不恒定;传动效率低,带的寿命较短;传动的外廓尺寸大;需要张紧,支承带轮的轴及轴承受力较大;不宜用于高速、可燃等场所。
二、带传动的类型传动带按工作原理的不同可分为摩擦型传动带和啮合型传动带。
摩擦型传动带按带的横截面形状,可分为平带、V带和特殊截面带。
同步齿形带,属于啮合型传动带,带的工作面制有横向齿,与有相应齿的带轮作啮合传动,传动比较准确,具有链传动的优点,但制造和安装要求较高。
如拖拉机、坦克等的履带。
在一般机械传动中,应用最为广泛的是V带传动。
V带的横截面呈等腰梯形,传动时,以两侧为工作面,但V带与轮槽槽底不接触。
在同样的张紧力下,V带传动较平带传动能产生更大的摩擦力,这是V带传动性能上的最大优点。
V带有普通V带、窄V带、接头V带等近10种。
其中普通V带应用最为广泛。
常见V带的横剖面结构由包布、顶胶、抗拉体、底胶等部分组成,按抗拉体结构可分为绳芯V带和帘布芯V带两种。
帘布芯V带,制造方便,抗拉强度好;绳芯V带柔韧性好,抗弯强度高,适用于转速较高、载荷不大和带轮直径较小的场合。
普通V带(图1-7)是在一般机械传动中应用最为广泛的一种传动带,其传动功率大,结构简单,价格便宜。
第8章---带传动
单根带所能传递的有效拉力为:
传递的功率为:
为保证带具有一定的疲劳寿命,应使:
1.单根V带的基本额定功率P0
σ1 ≤ [σ] –σb1 - σc
代入得:
※在 α=π,Ld为特定长度、平稳的工作条件下,所得 P0 称为单根普通V带的基本额定功率,见表8-4。P.151
东莞理工学院专用
称带与带轮接触弧的总摩擦力Ff为有效拉力Fe,即带所能传递的圆周力:
Fe= F1 - F2
且传递功率与有效拉力和带速之间有如下关系:
2、有效拉力(有效圆周力)及传递功率
F1
Ff
F2
紧边
松边
主动轮
n1
Ff =F1 - F2
当非满负荷工作时,此摩擦力分布范围并未充满整个接触弧。
东莞理工学院专用
*
二、带传动的最大有效拉力Fec及其影响因素
顶宽b 6 10 13 17 22 32 38
节宽 bp 5.3 8.5 11 14 19 27 32
高度 h 4 6 8 11 14 19 25
§8-6* 同步带传动简介
内容提要
东莞理工学院专用
*
§8-1 概述
一. 带传动的组成 及工作原理
1 组成:主动轮1、从动轮2、环形带3。
2 工作原理:安装时带被张紧在带轮上,产生的初拉力使得带与带轮之间产生压力。主动轮转动时,依靠摩擦力拖动从动轮一起同向回转。
3
1
n2
打滑将使带的磨损加剧,从动轮转速急速降低,带传动失效,这种情况应当避免。
避免打滑的条件: Fe ≤ Fec
1)相同点:都是滑动;2)不同点:本质不同:前者是一种固有特性,不可避免;后者是一种失效,可以避免。发生原因不同:前者是带两边的拉力差引起的,后者是过载导致。发生区域不同:前者是在局部接触弧上,后者是在整个接触弧上。3)联系:弹性滑动区域的量变导致打滑的质变
第13章 带传动
两边拉力之差F称为带传动的有效
拉力。
F=F1-F2
(13-5)
实际上F是带与带轮之间摩擦力的
总和,在最大静摩擦力范围内,带
传动的有效拉力F与总摩擦力相等。
F同时也是带传动所传递的圆周力。
带传动所传递的功率 P=FV/1000 KW
式中 P—传递的功率,KW; F—有效拉力,N; V—带的速度,m/s。
定义: v1 v2 d1n1 d2n2 为滑动率
v1
d1n1
得从动轮的转速:
n2
n1d1 (1 )
d2
带传动的传动比: i n1 d2
n2
d1(1 )
V带传动的滑动率ε=0.01~0.02。
三、弹性滑动和打滑的区别
• 弹随性有滑 效动 拉的 力大F而小变随。带的拉力差F1-F2而变,即 • 弹性滑动是以摩擦力传递载荷的带传动不可避
的拉力,称为初拉力F0。
当传动带传动时,由于带与带轮接 触面之间摩擦力的作用,带两边的 拉力不再相等,如图所示。
一边被拉紧,拉力由F0增大到F1, 称为紧边; 一边被放松,拉力由F0减少到F2, 称为松边。
设环形带的总长度不变,则紧边拉 力的增加量F1-F0应等于松边拉力的 减少量F0-F2。
F1-F0=F0-F2
四、V带传动的欧拉公式
平带的极限摩擦力分析: F=N f = Q f
V带的极限摩擦力分析 :
F
NNf f
Qf
ssiinn
Qf
f
'
Q
22
Q
Q
φ/2
φ/2
N
潘存云教授研制
N/2 N/2
带传动
(三)V带轮设计
P.208 §13-6
1. 结构组成 轮缘-安装带 结构组成: 图13-16 轮辐- 联接轮缘与轮毂 P.208 轮毂-安装轴 2. V带轮设计要求: 带轮设计要求: (1)质量小、工艺性好、质量分布均匀、内应力小、 高速应经动平衡 轮缘 (2)工作面应精细加工 轮辐 3. V带轮材料 轮毂 灰铸铁HT150、HT200-常用 铸钢、焊接(钢板)-高速 铸铝、塑料-小功率
p.199第4
N = 3600 ·k·T·V/L V-带速(m/S) L-带长(m) V/L →绕转次数/秒 K-带轮数 (K次/周) T-带的寿命(h)
(五) 带传动的优缺点
p.195倒3
•优点 1.缓冲吸振, 传动平稳 优点: 优点 2.过载具安全保护作用 3.适用于中心距较大的传动 4.结构简单, 要求精度低, 成本低 •缺点 1.不能保持准确的传动比, 效率低 缺点: 缺点 2.传递相同圆周力所需的轮廓尺寸和轴上 压力均比啮合传动的大 3.带的寿命短 4.需要张紧装置 5.不宜用于高温, 易燃场合
(一)带传动的类型
p.194
开口传动 两轴平行, 按形 开口传动 -两轴平行,同向回转 交叉传动 两轴平行, 传式 交叉传动 -两轴平行,反向回转 动分 半交叉传动-两轴交错,不能逆转 半交叉传动-两轴交错, 传动 按 平带传动-底面是工作面,可实现多 平带传动 底面是工作面, 传动- 带 种形式的传动 的 传动- 两侧面是工作面, V带传动-带两侧面是工作面,承载 截 力大, 力大,只用于开口传动 面 多楔带传动-具平、V带的优点 多楔带传动 具平、V 传动- 、V带的优点 分 同步带传动 传动- 同步带传动-具带与链传动的特点
二.带传动工作时最大应力: σmax= σ 1+ σ b1+ σ c ∵ σ 1>σ 2 σ b1> σ b2 σb1
皮带传动
①传动的外廓尺寸较大;②由于需要张紧,使轴上受力较大;③ 工作中有弹性滑动,不能准确地保持主动轴和从动轴的转速比关 系;④带的寿命短;⑤传动效率降低;⑥带传动可能因摩擦起电 ,产生火花,故不能用于易燃易爆的场合。
(5)作用在轴上的压力 如图13-11所示,静止时轴上压力为
F Q2 F 0siα 2 1 n2 13 s0 i12 n 2 7 105N 90
普通V带两侧面的夹角均为40°,但在带轮上 弯曲时,由于截面变形将使其夹角变小。为 了使胶带仍能紧贴轮槽两侧,将V带轮槽角规 定为32°、34°、36°和38°。
皮带在带轮中的安装位置
平齐(合适) 突出(不当) 凹陷(不当 )
开口传动 半交叉传动
交叉传动 导轮
角度传动
§6-2-3 同步带传动简介
带轮直径较小时可采用实心式(图13-16a);中等直径的带轮可采用腹 板式(图13-16b);直径大于350 mm时可采用轮辐式(图13-17)。图中列 有经验公式可供带轮结构设计时参考。各种型号V带轮的轮缘宽B、 轮毂孔径ds和轮毂长L的尺寸,可查阅GB10412-89。
普通V带轮轮缘的截面图及其各部尺寸见表6-1。
d2
n1 n2
d1(1ε
)
❖ d1、d2应符合带轮基准直径尺寸系列,见表7-7。
❖ 带速
v πd1n1 m/s 601000
带速不宜过小,也不宜过大,一般应使v在 5~25 m/s的范围内, 最适宜的速度为10~20 m/s 。
由P=Fv可知,传递同样的功率P时,若带速太低(如v< 5m/s), 则圆周力F就很大,当F>Ff时带就要打滑。若带速太高,又会 因离心力太大而降低带与带轮间的正压力,从而降低摩擦力和 传动的工作能力。此外,随着离心力的增大,离心拉应力也增 大,使带的疲劳强度有所降低。所以带速v要适宜。
带传动的类型和应用
定期检查
定期检查传动带 的磨损情况
定期检查传动带 的张紧度
定期检查传动带 轮的磨损和损坏 情况
定期检查传动带 的清洁度和润滑 情况
更换磨损件
定期检查传动带的磨损情况 及时更换磨损严重的传动带 更换时确保传动带与带轮的匹配 更换后检查传动带的张紧度
调整张紧力
定期检查带张 紧力
调整张紧轮位 置
调整张紧力时 注意安全
,a click to unlimited possibilities
汇报人:
目录
带传动的定义
带传动是一种挠性传动 带传动是利用带与带轮之间的摩擦力进行传动 带传动具有结构简单、传动平稳、价格低廉等优点 带传动适用于两轴中心距较大的场合
带传动的原理
带传动的基本原 理
带传动的类型和 特点
带传动的应用范 围
轨道交通:在地铁、轻轨等轨道交通中,带传动用于传递动力,确保列车运行的平稳和高效。
航空航天:在飞机和火箭等航空航天领域,带传动作为一种高效、可靠的传动方式,用于驱动 各种设备。
船舶:在船舶领域,带传动用于驱动螺旋桨和其他设备,确保船舶航行的稳定和安全。
其他应用
汽车领域:用于汽车的发动机 与变速器之间的动力传递
调整后检查带 传动效果
清洁与润滑
清洁:定期清理带 传动表面,去除灰 尘、污垢和其他杂 质
润滑:使用适当的 润滑剂,定期涂抹 在带传动表面,以 减少摩擦和磨损
润滑剂选择:根据 带传动的类型和应 用,选择合适的润 滑剂
润滑周期:确定润 滑周期,确保带传 动始终保持良好状 态
汇报人:
特点:圆带传动具有结构简单、制造方便、成本低廉等优点,适用于中低速、小功率的传动系 统。
应用:圆带传动广泛应用于各种机械设备的传动系统中,如农业机械、纺织机械、矿山机械等。
带传动
带传动和摩擦轮传动一样,也有下列缺点:1) 缺点: 有弹性滑动和打滑,使效率降低和不能保持准确 的传动比(同步带传动是靠啮合传动的,所以可 保证传动同步),2)传递同样大的圆周力时,轮 廓尺寸和轴上的压力都比啮合传动大:3)带的寿 命较短。4)不适用于高温、易燃及有腐蚀介质 的场合。
机械基础部分
15
机械基础部分
8
同步齿形带应用
机械基础部分
9
同步带应用
机器人关节
机械基础部分
10
(6)齿孔带:
机械基础部分
11
3)按用途分:
(1)传动带 传递动力用
(2)输送带 输送物品用。
传动带
输送带
机械基础部分 平型带 普通V带 窄V带 齿形V带 宽V带 联组V带 大楔角V带
12
摩擦型 类 型 啮合型
V 拉力增加, 带逐渐被拉长,沿轮面产生向前的弹性滑动,使带 的速度逐渐大于从动轮的圆周速度。
由于带弹性变形而产生的带与带轮间的局部 相对滑动称为弹性滑动。
机械基础部分 弹性滑动的分析
B B1
45
A1
A
重合(v 相等) 拉力降 B A1 轮 带回缩 B1 ⌒< ⌒ ∴ AB A1B1 即:v< v1 ——微量相对滑动 同理在从动轮一边有: v2<v (弹性滑动)
结构设计: 带轮由轮缘、 腹板(轮辐)和轮毂三部分 组成。 轮缘是带轮的工作部分, 制有梯形轮槽。轮毂是带轮 与轴的联接部分,轮缘与轮 毂则用轮辐(腹板)联接成 一整体。 V带轮按腹板结构的不 同分为以下几种型式:实心 带轮(S型)、腹板带轮(P 型) 、孔板带轮(H型)、 轮辐带轮(E型)。
机械基础部分
n1、n2——主、从动轮的转速,r/min
机械设计基础第7章 带传动与链传动
20
7.3.3 单根V带的额定功率 在载荷平稳、特定带长、传动比为1、包角为180° 的条件下,单根普通V带的基本额定功率P0见表7.3.3。 当实际使用条件与特定条件不同时,须加以修正,从而 得出许用的单根普通V带的额定功率 [P0],即
21
22
23
24
7.3.4 V带传动的设计步骤和参数选择 (1)V带传动的参数选择 在V带传动设计中,通常已知条件为:传动的用途, 载荷性质,需传递的功率,主、从动轮转速或传动比, 对外廓尺寸要求等。 (2)V带传动的设计计算方法
第7章 带传动与链传动
7.1 带传动的主要类型、特点和应用
带传动是一种常用的机械传动装置,通常是由主动 轮1、从动轮2和张紧在两轮上的挠性环形带3所组成, 如图7.1.1所示。安装时,带被张紧在带轮上,当主动轮 1转动时,依靠带与带轮接触面间的摩擦力或啮合驱动 从动轮2一起回转,从而传递一定的运动和动力。
25
26
图7.3.2 普通V带选型图
27
28
29
图7.3.3 作用在轴上的力
30
31
7.4 V带轮的材料和结构设计
7.4.1 V带轮的材料 V带轮常用铸铁制造(HT150或HT200),允许最 大圆周速度v≤25 m/s。当转速高或直径大时,应采用铸 钢或钢板焊接成的带轮;在小功率带传动中,也可采用 铸铝或塑料带轮。
13
滑动率ε的值与弹性变形的大小有关,即与带的材料 和受力大小有关,不是准确的恒定值,因此,摩擦传动 即使在正常使用条件下,也不能获得准确的传动比。通 常,带传动的滑动率为ε=0.01~0.02,在一般传动计算 中,可不予以考虑。
14
图7.2.3 带传动的相对滑动
15
带传动的分类与尺寸
带传动的分类与尺寸带传动是一种常见的机械传动方式,通过带子的拉力将动力从发动机或电动机传递给机械装置。
带传动主要包括传动带和皮带轮两个部分,传动带是由橡胶、聚氯乙烯等材料制成的带状零件,而皮带轮则是用来传递运动的轮子。
根据传动带的不同特性和用途,带传动可以分为多种分类。
同时,带传动也有不同的尺寸,根据具体应用需求选择适当的尺寸。
1.平带传动:平带传动是最简单的一种传动方式,传动带宽度较窄,一般适用于较小功率的传动。
平带传动常用于家用电器、小型机械装置等。
2.开口带传动:开口带传动是通过将带子开口,将带子套在轮齿中间,使其紧固在轴上,从而实现传动。
开口带传动广泛应用于大型机械装置和工业生产中。
3.齿形带传动:齿形带传动是通过将带子的内侧槽与皮带轮的齿轮嵌合,使其传动力更强,使用寿命更长。
齿形带传动常用于需要高传动功率和高传动效率的机械装置。
4.V带传动:V带传动是将传动带和皮带轮设置成“V”形,以增加带子与皮带轮之间的摩擦力。
V带传动广泛应用于汽车、摩托车等交通工具的发动机传动中。
5.多带传动:多带传动是将多个传动带并列使用,以增加传动功率和传动能力。
多带传动常用于大型机械装置和工业生产中,如工厂的输送带等。
带传动的尺寸根据其应用需求和传动功率的大小来选择。
传动带的尺寸一般由带宽、轮径、带长等来决定。
带宽一般在10mm到50mm之间,轮径一般在50mm到1000mm之间,带长则根据传动带的使用环境和传动功率而定。
选择合适的带传动尺寸可以保证传动效果和使用寿命。
综上所述,带传动的分类有平带传动、开口带传动、齿形带传动、V 带传动和多带传动等,根据应用需求和传动功率选择合适的尺寸,可以实现准确的传动效果。
带传动作为一种常见的传动方式,在机械装置和工业生产中发挥着重要的作用。
《机械设计基础》第十章 带传动
10.2.2 带传动工作时的应力分析
带是在变应力下工作,当应力较大,应力变化频率较高时,带将很快产生疲劳 断裂而失效,从而限制了带的使用寿命。带传动工作时,带所受应力有如下几种:
机械设计基础
1.由紧边拉力和松边产生的拉应力
紧边拉应力 松边拉应力
2.由离心力产生的拉应力
∵F1> F2
∴ σ 1> σ 2
FQ=2ZFo
机械设计基础
10.带轮结构的设计
带轮结构的设计根据带轮槽型、槽数、基准直径和轴的尺寸确定。参 见本章10.4节部分或有关机械设计手册。
【例 10-1】 设计一带式输送机的普通 V 带传动。原动机为 Y112M-4 异步电动机, 其额定功率 P =4kW, 满载转速 n1 =1440 r/min, 从动轮转速 n 2 =470 r/min, 单班制工作, 载荷变动较小,要求中心距 a ≤550 mm。 解.(1)确定计算功率 Pc 由表 10-7 查的 K 1.1 ,故
机械设计基础
6、验算小带轮包角
对于V带,一般要求α1≥120°,否则,应增大中心距或加 张紧轮。 7、确定V带的根数
为了使每根V带受力均匀,带的根数不宜太多,通常取带的 根数小于10根。 机械设计基础
8、计算初拉力F0 初拉力F0的大小对带传动的正常工作及寿命影响很大。初拉 力不足,易出现打滑;初拉力过大,则V带寿命降低,压轴力增 大。
式中PC——计算功率,kW; Z——V带的根数; v——V带速度,m/s; Kα——包角修正系; q——v带每米长质量,kg/m。 由于新带易松弛,所以对于非自动张紧的带传动,安装新 带时的初拉力应为上述初拉力的1.5倍。 机械设计基础
9、计算轴压力 V带作用在轴上的压力FQ一般可近似按两边的初拉力F0的合 力来计算。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
六、带传动的张紧方法: ◆ 布置:松边在上,有利于加大包角; ◆ 方法:调节中心距
常见的张紧装置:
a
滑道式
调整螺钉
1、定期张紧装置
调整螺杆
摆架式
采用张紧轮张紧装置
张紧轮 张紧轮一般应放在松边的内侧,使带只受单向弯曲。同时 张紧轮应尽量靠近大轮,以免过分影响在小带轮上的包角。张 紧轮的轮槽尺寸与带轮的相同。
§13-1 带传动的类型和应用
八、带传动的应用 在各类机械中应用广泛,但摩擦式带传动不适用于对传
动比有精确要求的场合。功率P<100KW,带速v=5~25m/s, 传动比i<7。
大理石切割机(平带)
平带
§13-1 带传动的类型和应用
汽车发动机(多楔带)
§13-1 带传动的类型和应用
汽车发动机(同步带)
§13-1 带传动的类型和应用
七、带传动的优缺点: 优点:
1. 适用于中心距较大的传动; 2. 带具有良好的挠性,可缓和冲击、吸收振动; 3. 过载时带与带轮之间会出现打滑,避免了其它零
件的损坏; 4. 结构简单、成本低廉。
缺点: 1. 传动的外廓尺寸较大; 2. 需要张紧装置; 3. 由于带的滑动,不能保证固定不变的传动比; 4. 带的寿命较短; 5. 传动效率较低。
§13-1 带传动的类型和应用
五、带传动的几何关系
包角α: 2
因θ较小, 以 sin d2 d1
A
α1 θ
θ
代入得: d2 d1
2a
(rad )
d1 D
B θ
α2 d2
带长:
180 d2 d1 57.3
L 2AB BC AD
aC
中心距
2a cos d2 ( 2 ) d1 ( 2 )
§13-1 带传动的类型和应用
一、带传动的组成 主动轮 (带轮1 ), 从动轮 (带轮2 ), 传动带3,及张紧轮。
1 n1 3
2 n2
二、工作原理 摩擦传动:通过带和带轮间的摩擦力传递动力(平带和V带) 啮合传动:通过带和带轮间的齿啮合,传递动力(同步带)
§13-1 带传动的类型和应用
三、传动形式 开口传动:两轴平行,1、2同向。 交叉传动:两轴平行,1、2反向。 半交叉传动:两轴交错,不能逆转。
2.需要的张紧力小,作用在轴上的压力小,可减少轴承的摩擦损失 ;
3.结构紧凑; 4.能在高温,有油污等恶劣环境下工作; 与齿轮传动相比 5.制造和安装精度较低,中心距较大时其传动结构简单; 缺点: 瞬时转速和瞬时传动比不是常数,传动的平稳性较差,
有一定的冲击和噪声。
二、应用: 广泛应用于矿山机械、农业机械、石油机械、机床及摩托车中。
§13-1 带传动的类型和应用
四、带传动的类型 平带 ----结构简单,带轮容易制造,用于中心距较大的场合; V 型带 ----横截面为等腰梯形,摩擦力大,应用广泛;
摩擦型 多楔带 ----扁平部分+纵向槽,摩擦力大,受力均匀,结构紧凑。 圆形带 ----牵引力小,用于仪器。
啮合型 同步带----无滑动,能保证固定的传动比。
13-2 V带轮的结构
13-2 V带轮的结构
13-2 V带轮的结构
§13-3 链传动的特点和应用
组成:链轮、环形链条 作用:链与链轮轮齿之间的啮合实现平行轴之间的同向传动。
§13-3 链传动的特点和应用
一、特点: 优点:与带传动相比 1.链轮传动没有弹性滑动和打滑,能保持准确的平均传动比;
2
2
2a
cos
2
(d1
d2
)
(d2
d1 )
以cos 1 sin2 1 1 2 及 d2 d1 代入得:
2
2a
L
2a
2
(d1
d2
)
d 2
d1 2
4a
§13-1 带传动的类型和应用BA来自α1θα1
d2
d1
D
aC
带长:
L
2a
2
(d1
d2
)
d 2
d1 2
4a
已知带长时,由上式可得中心距 :
a 2L (d1 d2 ) 2L (d1 d2 )2 8(d2 d1)2
工业机器人关节(同步带)
§13-1 带传动的类型和应用
拖拉机(V带)
试验装置(圆形带)
§13-2 V带轮的结构
1、带轮的材料 通常采用铸铁,常用材料的牌号为HT150和HT200。 转速较高时宜采用铸钢或用钢板冲压后焊接而成。 小功率时可用铸铝或塑料。
2、结构与尺寸
V带轮的典型结构有:实心式、 腹板式和轮辐式。 带轮的结构设计,主要是根据带轮的基准直径选择结构形式。 根据带的截型确定轮槽尺寸。 带轮的其它结构尺寸通常按经验公式计算确定。
V带轮结构
13-2 V带轮的结构
实心式: 直径较小时
d d1
B L
13-2 V带轮的结构
腹板式: d 350mm,中等直径
∠1:25
da dd
d d1
13-2 V带轮的结构
S d0
∠1:25 D0
d1
d
D1
dd
da
13-2 V带轮的结构
轮辐式: d > 350mm
d ∠1:25
dh dd da h1 h2
§13-3 链传动的特点和应用
工作范围:传动比: i ≤8; 中心距: a ≤5~6 m; 传递功率: P ≤100 KW; 圆周速度: v ≤15 m/s; 传动效率: η ≈0.95~0.98