数字电路与模拟电路的共地处理
电路设计中的接地问题
![电路设计中的接地问题](https://img.taocdn.com/s3/m/a29a186758fafab069dc0288.png)
电路设计中的接地问题接地是电路系统设计中的一个很重要问题。
目前,大多数数字电路都是以地为参考电压(ECL电路以电源为参考电压),只有所有的地都保持相同的电位,数字信号才能被正确的传送和接收;此外,良好的接地对电磁场有很好的屏蔽作用,能释放设备机壳上积累的大量的电荷,从而避免产生静电放电效应。
电子设备中地线结构大致有系统地、机壳地(屏蔽地)、数字地(逻辑地)和模拟地等,合理的应用接地技术,就能大大提高系统的抗干扰能力,减少EMI。
接地的方式可以分为三种:单点接地,多点接地和混合接地。
其中单点接地可以分为串联单点接地和并联单点接地两种(见图):单点接地指所有电路的地线接到公共地线的同一点,以减少地回路之间的相互干扰。
其中,串联单点接地指所有的器件的地都连接到地总线上,然后通过总线连接到地汇接点(如图1-8-8中a图)。
由于大家共用一根总线,会出现较严重的共模耦合噪声,同时由于对地分布电容的影响,会产生并联谐振现象,大大增加地线的阻抗,这种接法一般只用于低于1M的电路系统里。
并联单点接地指所有的器件的地直接接到地汇接点,不共用地总线(如图1-8-8中b图)。
可以减少耦合噪声,但是由于各自的地线较长,地回路阻抗不同,会加剧地噪声的影响,同样也会受到并联谐振的影响,一般使用的频率范围是1M到10MHZ 之间。
实际的情况中可以灵活采用这两种单点接地方式,比如,可以将电路按照信号特性分组,相互不会产生干扰的电路放在一组,一组内的电路采用串联单点接地,不同组的电路采用并联单点接地。
这样,既解决了公共阻抗耦合的问题,又避免了地线过多的问题。
总的来说,单点接地适用于较低的频率范围内,或者线长小于1/20波长的情况。
多点接地指系统内各部分电路就近接地,比如,设备内电路都以机壳为参考点,而各个设备的机壳又都以地为参考点。
这种接地结构能够提供较低的接地阻抗,这是因为多点接地时,每条地线可以很短;而且多根导线并联能够降低接地导体的总电感。
数字地、模拟地隔离——系统抗干扰
![数字地、模拟地隔离——系统抗干扰](https://img.taocdn.com/s3/m/7bf5c1d0ce2f0066f53322fa.png)
数字地与模拟地的隔离探讨1.数字电路的频率高,模拟电路的敏感度强,对信号线来说,高频的信号线尽可能远离敏感的模拟电路器件,对地线来说,整个PCB对外界只有一个结点,所以必须在PCB内部进行处理数、模共地的问题,而在板内部数字地和模拟地实际上是分开的它们之间互不相连,只是在PCB与外界连接的接口处(如插头等)数字地与模拟地有一点短接,请注意,只有一个连接点。
也有在PCB上不共地的,这由系统设计来决定。
但是,制做PCB板时一般都做铺铜走线,而走线都与GND相联,请问,铺铜之后,模拟地和数字地还能区分出来吗,还能像上面说的那样,只有一个联接点吗?两个地起不同的名字,分别辅铜,最后可以用一个10uH电感或0欧姆电阻连起来。
模拟部分的器件尽量集中,放置在与其它板子接口的附近,减小信号衰减。
数字部分线路长一些没关系。
先对模拟地敷铜,然后对整个板敷数字地。
模拟地和数字地之间会自动分隔,用一个1uH的电感或0欧的电阻作为共地点。
2在电子系统设计中,为了少走弯路和节省时间,应充分考虑并满足抗干扰性的要求,避免在设计完成后再去进行抗干扰的补救措施。
形成干扰的基本要素有三个:(1)干扰源,指产生干扰的元件、设备或信号,用数学语言描述如下:du/dt, di/dt 大的地方就是干扰源。
如:雷电、继电器、可控硅、电机、高频时钟等都可能成为干扰源。
(2)传播路径,指干扰从干扰源传播到敏感器件的通路或媒介。
典型的干扰传播路径是通过导线的传导和空间的辐射。
(3)敏感器件,指容易被干扰的对象。
如:A/D、D/A变换器,单片机,数字IC,弱信号放大器等。
抗干扰设计的基本原则是:抑制干扰源,切断干扰传播路径,提高敏感器件的抗干扰性能。
(类似于传染病的预防)1 抑制干扰源抑制干扰源就是尽可能的减小干扰源的du/dt,di/dt。
这是抗干扰设计中最优先考虑和最重要的原则,常常会起到事半功倍的效果。
减小干扰源的du/dt主要是通过在干扰源两端并联电容来实现。
集成电路设计中的模拟与数字混合技术
![集成电路设计中的模拟与数字混合技术](https://img.taocdn.com/s3/m/46f6de3ccbaedd3383c4bb4cf7ec4afe04a1b19e.png)
集成电路设计中的模拟与数字混合技术哎呀,说起集成电路设计中的模拟与数字混合技术,这可真是个有趣又充满挑战的领域!先跟您讲讲我曾经碰到的一件小事儿。
有一次,我参加一个电子设计的工作坊,当时大家都在为一个项目埋头苦干。
其中就涉及到了集成电路的设计,尤其是模拟与数字混合的部分。
我旁边的一个小伙伴,满脸愁容,对着他的设计图抓耳挠腮。
我凑过去一看,原来他在处理模拟和数字信号的转换接口上卡壳了。
这让我深刻地感受到,这混合技术要是没掌握好,那真是让人头疼啊!那到底啥是集成电路设计中的模拟与数字混合技术呢?简单来说,就是把模拟世界和数字世界连接起来的“桥梁”。
咱们的生活中,到处都有模拟信号。
比如说,声音就是一种模拟信号。
您说话的声音,有高有低,有强有弱,这是连续变化的,就像一条平滑的曲线。
而数字信号呢,就像是一个个的小格子,只有 0 和 1两种状态。
比如说电脑里存储的信息,就是数字信号。
在集成电路里,很多时候既要处理模拟信号,又要处理数字信号。
这就好比您既要有感性的一面,能欣赏美妙的音乐;又要有理性的一面,能准确地计算数学题。
模拟部分就像是一个细腻的画家,它能捕捉到信号的每一个微妙变化,就像画家能描绘出风景的每一处细节。
但是呢,模拟信号在传输和处理的时候,容易受到干扰,就像画家的作品在运输过程中可能会被弄脏。
数字部分呢,就像是一个严谨的数学家,一切都清清楚楚,明明白白,不会有模糊的地方。
而且数字信号在传输和存储的时候更稳定、更可靠,就像数学家的公式,一旦确定,就不会轻易出错。
那怎么把这两个“性格迥异”的部分融合在一起,让它们和谐共处,共同为我们服务呢?这可不容易。
比如说,在设计一个音频处理芯片的时候,麦克风接收到的声音是模拟信号,但是我们要把它变成数字信号,才能让芯片进行处理,比如降噪、增强等等。
这时候,就需要一个叫做模数转换器(ADC)的东西。
它就像是一个翻译官,把模拟信号翻译成数字信号,让数字部分能“听懂”。
什么是数字地和模拟地,处理原则又是什么
![什么是数字地和模拟地,处理原则又是什么](https://img.taocdn.com/s3/m/63f4f4ef5fbfc77da269b147.png)
么是数字地和模拟地,处理原则又是什么什么是数字地和模拟地,处理原则又是什么,其实他们二者本质是一养的,就是数字地和模拟地都是地。
但是又有些不同,那我们又该如何区分他们,他们相互之间是否又有什么影响。
数字地、模拟地互相会影响不是因为一个叫数字,一个叫模拟,而是他们用了同一部电梯:地,而这部电梯所用的井道就是我们在PCB上布得地线。
模拟回路的电流走这条线,数字回路的电流也走这条线,本来无可厚非,线布着就是用来导通电流的,可问题出在这根线上有电阻!而且最根本的问题是走这条线的电流要去2 个不同的回路。
假设一下:有2股电流,数流,模流同时从地出发。
有2个器件:数字件和模拟件。
若2个回路不分开,数流模流走到数字件的接地端前的时候,损耗的电压为V=(数流+模流)X走线电阻,相当于数字器件的接地端相对于地端升高了V,数字器件不满意了,我承认会升高少许电压,数流的那部分我认了,但模流的为什么要加在我头上?同理模拟器件也会同样抱怨!什么是数字地和模拟地,处理原则又是什么两个解决方案:第1个:你布的PCB线没有阻抗,自然不会引起干扰,就像2、3楼直接往下跳,那是井道最宽的时候,也就是可以装一个无限大的电梯,自然谁都不影响谁,但谁都知道,This is mission impossible!第2个:2条回路分开走,数流,模流分开,既数地、模地分开。
同理,有时虽在模拟回路中,但也要分大、小电流回路,就是避免相互干扰。
所谓的干扰就是:2个不同回路中的电流在PCB走线上引起的电压,这2部分电压互相叠加而产生的。
下面再具体介绍,简单来说,数字地是数字电路部分的公共基准端,即数字电压信号的基准端;模拟地是模拟电路部分的公共基准端,模拟信号的电压基准端(零电位点)。
一、分为数字地和模拟地的原因由于数字信号一般为矩形波,带有大量的谐波。
如果电路板中的数字地与模拟地没有从接入点分开,数字信号中的谐波很容易会干扰到模拟信号的波形。
当模拟信号为高频或强电信号时,也会影响到数字电路的正常工作。
PADS 原理图PCB常见错误及DRC报告网络问题
![PADS 原理图PCB常见错误及DRC报告网络问题](https://img.taocdn.com/s3/m/53e97349c850ad02de80414e.png)
PADS 原理图/PCB常见错误及DRC报告网络问题1.原理图常见错误:(1)ERC报告管脚没有接入信号:a. 创建封装时给管脚定义了I/O属性;b.创建元件或放置元件时修改了不一致的grid属性,管脚与线没有连上;c. 创建元件时pin方向反向,必须非pin name端连线。
(2)元件跑到图纸界外:没有在元件库图表纸中心创建元件。
(3)创建的工程文件网络表只能部分调入pcb:生成netlist时没有选择为global。
(4)当使用自己创建的多部分组成的元件时,千万不要使用annotate.2.PCB中常见错误:(1)网络载入时报告NODE没有找到:a. 原理图中的元件使用了pcb库中没有的封装;b. 原理图中的元件使用了pcb库中名称不一致的封装;c. 原理图中的元件使用了pcb库中pin number不一致的封装。
如三极管:sch中pin number 为e,b,c, 而pcb中为1,2,3。
(2)打印时总是不能打印到一页纸上:a. 创建pcb库时没有在原点;b. 多次移动和旋转了元件,pcb板界外有隐藏的字符。
选择显示所有隐藏的字符,缩小pcb, 然后移动字符到边界内。
(3)DRC报告网络被分成几个部分:表示这个网络没有连通,看报告文件,使用选择CONNECTED COPPER查找。
另外提醒朋友尽量使用WIN2000, 减少蓝屏的机会;多几次导出文件,做成新的DDB文件,减少文件尺寸和PROTEL僵死的机会。
如果作较复杂得设计,尽量不要使用自动布线。
在PCB设计中,布线是完成产品设计的重要步骤,可以说前面的准备工作都是为它而做的,在整个PCB 中,以布线的设计过程限定最高,技巧最细、工作量最大。
PCB布线有单面布线、双面布线及多层布线。
布线的方式也有两种:自动布线及交互式布线,在自动布线之前,可以用交互式预先对要求比较严格的线进行布线,输入端与输出端的边线应避免相邻平行,以免产生反射干扰。
PROTEL99布线常见问题详解
![PROTEL99布线常见问题详解](https://img.taocdn.com/s3/m/1a19505168eae009581b6bd97f1922791688be7d.png)
一、原理图常见错误:(1)ERC报告管脚没有接入信号:a.创建封装时给管脚定义了I/O属性;b.创建元件或放置元件时修改了不一致的grid属性,管脚与线没有连上;c.创建元件时p i n方向反向,必须非pin name端连线。
(2)元件跑到图纸界外:没有在元件库图表纸中心创建元件。
(3)创建的工程文件网络表只能部分调入p cb:生成netl ist时没有选择为g l obal。
(4)当使用自己创建的多部分组成的元件时,千万不要使用annot ate.2.PCB中常见错误:(5)网络载入时报告NODE没有找到:a.原理图中的元件使用了p c b库中没有的封装;b.原理图中的元件使用了p c b库中名称不一致的封装;c.原理图中的元件使用了p c b库中p i n number不一致的封装。
如三极管:sch中pi n number为e,b,c,而pcb中为1,2,3。
(6)打印时总是不能打印到一页纸上:a.创建pcb库时没有在原点;b.多次移动和旋转了元件,pcb板界外有隐藏的字符。
选择显示所有隐藏的字符,缩小pcb,然后移动字符到边界内。
(3)DRC报告网络被分成几个部分:表示这个网络没有连通,看报告文件,使用选择CO NNECTE D COPPE R查找。
另外提醒朋友尽量使用W I N2000,减少蓝屏的机会;多几次导出文件,做成新的DD B文件,减少文件尺寸和PROTEL僵死的机会。
如果作较复杂得设计,尽量不要使用自动布线。
在PCB设计中,布线是完成产品设计的重要步骤,可以说前面的准备工作都是为它而做的,在整个PCB中,以布线的设计过程限定最高,技巧最细、工作量最大。
PCB布线有单面布线、双面布线及多层布线。
数字地和模拟地之间的连接与关系
![数字地和模拟地之间的连接与关系](https://img.taocdn.com/s3/m/9d4381354a73f242336c1eb91a37f111f1850d0d.png)
数字地和模拟地之间的连接与关系关于电路中的地,以我们最常用的MSP430系统作为例子吧。
电路中地是一个电路中公共电平参考点,不管是电路还是电源都以这地作为基准。
而这次我们要说的是“数字地和模拟地之间的连接与关系”,以下是个人的主观意见,如有不正确之处请大家能给予指正。
所谓数字地一般来说是指数字电路类型集合的公共参考地,而模拟地也是类同之意。
在一个复杂的电路系统中,往往会出现很不同类型的电路。
通常我们在以电路的工作类型或工作频率将其划分。
如数字、模拟之类划分或以速度或频率频段划分等。
在数字电路中,电路通常是处于开关状态,而在所有数字芯片接地端汇集在一起。
而这个汇集地因电路不停地开,这样在回流地端上也会因而产生一些开关高频噪声。
在设计PCB中若然这些电路处理不当的话,例如,将数字系统的地回流走线与模拟电路的地连接在一起。
这样很有可能将地噪声信号引入模拟电路中,若果引入的地方是模拟电路是放大部分。
那么很可能会将这些噪声进放大或干扰到模拟电路的正常工作或产生识动作等情况。
为了处理好这个可能性的发生,一个复杂的混合信号电路中我们在设计PCB时往往会将其电路类型进分开布局处理。
这样有利于减少数字电路对模拟电路的干扰。
通常在PCB中会采用一点汇流接地的方式来解决这种问题,如数字电路设计PCB时先采用公共地接点,而模拟同样处理。
在最后将数字地与模拟地同样汇接到电源的地端上进行一个电流回路。
另外,在数字电路中,同样要加增对电源的高频退耦处理,如最常用的有在电路供电端增加0.1uf的退耦电容。
这个电容通常用两个作用,其一是减少高频信号回路的高频电阻。
因为在高速开关中电路处于高速开关状态,电流需要快速流动。
然而,由于电源大电容的存在,同样由于大电容本身结构的原因当高速电流回流时大电容电感效应会对高速电流产生感抗。
这样从而增大了高速或高频信号回流的阻抗,这个对于模拟电路来说是很不利的。
此时增加了高频特性的退耦电容可以助于减少高频阻抗的产生。
数字地模拟地隔离
![数字地模拟地隔离](https://img.taocdn.com/s3/m/6c093af8910ef12d2af9e797.png)
数字地和模拟地处理的基本原则如下:1模拟地和数字地之间链接(1)模拟地和数字地间串接电感一般取值多大?一般用几uH到数十uH。
(2)用0欧电阻是最佳选择 (1)可保证直流电位相等、(2)单点接地(限制噪声)、(3)对所有频率的噪声都有衰减作用(0欧也有阻抗,而且电流路径狭窄,可以限制噪声电流通过)。
磁珠相当于带阻陷波器,只对某个频点的噪声有抑制作用,如果不能预知噪点,如何选择型号,况且,噪点频率也不一定固定,故磁珠不是一个好的选择。
电容不通直流,会导致压差和静电积累,摸机壳会麻手。
如果把电容和磁珠并联,就是画蛇添足,因为磁珠通直,电容将失效。
串联的话就显得不伦不类。
电感特性不稳定,离散分布参数不好控制,体积大。
电感也是陷波,LC 谐振(分布电容),对噪点有特效。
总之,关键是模拟地和数字地要一点接地。
建议,不同种类地之间用0欧电阻相连;电源引入高频器件时用磁珠;高频信号线耦合用小电容;电感用在大功率低频上。
2 磁珠采用在高频段具有良好阻抗特性的铁氧体材料烧结面成,专用于抑制信号线、电源线上的高频噪声和尖峰干扰,还具有吸收静电脉冲的能力。
主要参数:标称值:因为磁珠的单位是按照它在某一频率产生的阻抗来标称的,阻抗的单位也是欧姆 .一般以100MHz为标准,比如2012B601,就是指在100MHz的时候磁珠的阻抗为600欧姆。
额定电流:额定电流是指能保证电路正常工作允许通过电流.3 电感与磁珠的区别:有一匝以上的线圈习惯称为电感线圈,少于一匝(导线直通磁环)的线圈习惯称之为磁珠;电感是储能元件,而磁珠是能量转换(消耗)器件;电感多用于电源滤波回路,磁珠多用于信号回路,用于EMC对策;磁珠主要用于抑制电磁辐射干扰,而电感用于这方面则侧重于抑制传导性干扰.两者都可用于处理EMC、EMI问题;电感一般用于电路的匹配和信号质量的控制上.在模拟地和数字地结合的地方用磁珠.磁珠有很高的电阻率和磁导率,他等效于电阻和电感串联,但电阻值和电感值都随频率变化。
地的处理-模拟地,数字地
![地的处理-模拟地,数字地](https://img.taocdn.com/s3/m/dcaa9726dd36a32d73758119.png)
地的处理在控制系统和电气系统中,经常会涉及地进行处理。
我公司的很多产品都涉及到了对地的处理,尤其是隔离放大式电压传感器,其对地的处理最是丰富。
为什么要接地呢?接地最初是为了防止电力或电子等设备遭雷击而采取的保护性措施,目的是把雷电产生的雷击电流通过避雷针引入到大地,从而起到保护建筑物的作用。
同时,接地也是保护人身安全的一种有效手段,当某种原因引起的相线(如电线绝缘不良,线路老化等)和设备外壳碰触时,设备的外壳就会有危险电压产生,由此生成的故障电流就会流经PE线到大地,从而起到保护作用。
随着电子通信和其它数字领域的发展,在接地系统中只考虑防雷和安全已远远不能满足要求了。
比如在通信系统中,大量设备之间信号的互连要求各设备都要有一个基准‘地’作为信号的参考地。
而且随着电子设备的复杂化,信号频率越来越高。
因此,在接地设计中,信号之间的互扰等电磁兼容问题必须给予特别关注,否则,接地不当就会严重影响系统运行的可靠性和稳定性。
近来,高速信号的信号回流技术中也引入了“地”的概念。
为什么要将模拟地和数字地分开呢?模拟信号和数字信号都要回流到地,因为数字信号变化速度快,从而在数字地上引起的噪声就会很大,而模拟信号是需要一个干净的地参考工作的。
如果模拟地和数字地混在一起,噪声就会影响到模拟信号。
一般来说,模拟地和数字地要分开处理,然后通过细的走线连在一起,或者单点接在一起。
总的思想是尽量阻隔数字地上的噪声窜到模拟地上。
当然这也不是非常严格的要求模拟地和数字地必须分开,如果模拟部分附近的数字地还是很干净的话是可以合在一起的。
在现代接地概念中,对于线路工程师来说,该术语的含义通常是‘线路电压的参考点’;对于系统设计师来说,它常常是机柜或机架;对电气工程师来说,它是绿色安全地线或接到大地的意思。
一个比较通用的定义是“接地是电流返回其源的低阻抗通道”。
对一些常见的地定义如下:①数字地:也叫逻辑地,是各种开关量(数字量)信号的零电位。
数字地和模拟地处理的基本原则
![数字地和模拟地处理的基本原则](https://img.taocdn.com/s3/m/a5db7588cc22bcd126ff0c3d.png)
数字地和模拟地处理的基本原则作者:未知时间:2010-3-17 19:48:03在电子系统设计中,为了少走弯路和节省时间,应充分考虑并满足抗干扰性的要求,避免在设计完成后再去进行抗干扰的补救措施。
形成干扰的基本要素有三个:(1)干扰源,指产生干扰的元件、设备或信号,用数学语言描述如下:du/dt,di/dt大的地方就是干扰源。
如:雷电、继电器、可控硅、电机、高频时钟等都可能成为干扰源。
(2)传播路径,指干扰从干扰源传播到敏感器件的通路或媒介。
典型的干扰传播路径是通过导线的传导和空间的辐射。
(3)敏感器件,指容易被干扰的对象。
如:A/D、D/A变换器,单片机,数字IC,弱信号放大器等。
抗干扰设计的基本原则是:抑制干扰源,切断干扰传播路径,提高敏感器件的抗干扰性能。
(类似于传染病的预防)1 抑制干扰源抑制干扰源就是尽可能的减小干扰源的du/dt,di/dt。
这是抗干扰设计中最优先考虑和最重要的原则,常常会起到事半功倍的效果。
减小干扰源的du/dt主要是通过在干扰源两端并联电容来实现。
减小干扰源的di/dt则是在干扰源回路串联电感或电阻以及增加续流二极管来实现。
抑制干扰源的常用措施如下:(1)继电器线圈增加续流二极管,消除断开线圈时产生的反电动势干扰。
仅加续流二极管会使继电器的断开时间滞后,增加稳压二极管后继电器在单位时间内可动作更多的次数。
(2)在继电器接点两端并接火花抑制电路(一般是RC串联电路,电阻一般选几K 到几十K,电容选0.01uF),减小电火花影响。
(3)给电机加滤波电路,注意电容、电感引线要尽量短。
(4)电路板上每个IC要并接一个0.01μF~0.1μF高频电容,以减小IC对电源的影响。
注意高频电容的布线,连线应靠近电源端并尽量粗短,否则,等于增大了电容的等效串联电阻,会影响滤波效果。
(5)布线时避免90度折线,减少高频噪声发射。
(6)可控硅两端并接RC抑制电路,减小可控硅产生的噪声(这个噪声严重时可能会把可控硅击穿的)。
模拟地和数字地的处理
![模拟地和数字地的处理](https://img.taocdn.com/s3/m/827450164431b90d6c85c773.png)
★数字地和模拟地处理的基本原则如下:1模拟地和数字地之间链接(1)模拟地和数字地间串接电感一般取值多大?一般用几uH到数十uH。
(2)用0欧电阻是最佳选择(1)可保证直流电位相等、(2)单点接地(限制噪声)、(3)对所有频率的噪声都有衰减作用(0欧也有阻抗,而且电流路径狭窄,可以限制噪声电流通过)。
磁珠相当于带阻陷波器,只对某个频点的噪声有抑制作用,如果不能预知噪点,如何选择型号,况且,噪点频率也不一定固定,故磁珠不是一个好的选择。
电容不通直流,会导致压差和静电积累,摸机壳会麻手。
如果把电容和磁珠并联,就是画蛇添足,因为磁珠通直,电容将失效。
串联的话就显得不伦不类。
电感特性不稳定,离散分布参数不好控制,体积大。
电感也是陷波,LC谐振(分布电容),对噪点有特效。
总之,关键是模拟地和数字地要一点接地。
建议,不同种类地之间用0欧电阻相连;电源引入高频器件时用磁珠;高频信号线耦合用小电容;电感用在大功率低频上。
2 磁珠采用在高频段具有良好阻抗特性的铁氧体材料烧结面成,专用于抑制信号线、电源线上的高频噪声和尖峰干扰,还具有吸收静电脉冲的能力。
主要参数:标称值:因为磁珠的单位是按照它在某一频率产生的阻抗来标称的,阻抗的单位也是欧姆 .一般以100MHz 为标准,比如2012B601,就是指在100MHz的时候磁珠的阻抗为600欧姆。
额定电流:额定电流是指能保证电路正常工作允许通过电流.3 电感与磁珠的区别:有一匝以上的线圈习惯称为电感线圈,少于一匝(导线直通磁环)的线圈习惯称之为磁珠;电感是储能元件,而磁珠是能量转换(消耗)器件;电感多用于电源滤波回路,磁珠多用于信号回路,用于EMC对策;磁珠主要用于抑制电磁辐射干扰,而电感用于这方面则侧重于抑制传导性干扰.两者都可用于处理EMC、EMI问题;电感一般用于电路的匹配和信号质量的控制上.在模拟地和数字地结合的地方用磁珠.磁珠有很高的电阻率和磁导率,他等效于电阻和电感串联,但电阻值和电感值都随频率变化。
数字电路与模拟电路的共地处理
![数字电路与模拟电路的共地处理](https://img.taocdn.com/s3/m/7ce5a900de80d4d8d15a4fb2.png)
5.对于数字电路来说,地线环路造成的地线环流也就是几十毫伏级别的,而TTL的抗干扰门限是1.2V,CMOS电路更可以达到1/2电源电压,也就是说地线环流根本就不会对电路的工作造成不良影响。相反,如果地线不闭合,问题会更大,因为数字电路在工作的时候产生的脉冲电源电流会造成各点的地电位不平衡,在大脉冲电流的冲击下,如果采用枝状地线(线宽25mil)分布,地线间各个点的电位差将会达到百毫伏级别。而采用地线环路之后,脉冲电流会散布到地线的各个点去,大大降低了干扰电路的可能。采用闭合地线,实测出各器件的地线最大瞬时电位差是不闭合地线的二分之一到五分之一。
4.从地环路干扰的机理可知,只要减小地环路中的电流就能减小地环路干扰。如果能彻底消除地环路中的电流,则可以彻底解决地
A. 将一端的设备浮地如果将一端电路浮地,就切断了地环路,因此可以消除地环路电流。但有两个问题需要注意,一个是出于安全的考虑,往往不允许电路浮地。这时可以考虑将设备通过一个电感接地。这样对于50Hz的交流电流设备接地阻抗很小,而对于频率较高的干扰信号,设备接地阻抗较大,减小了地环路电流。但这样做只能减小高频干扰的地环路干扰。另一个问题是,尽管设备浮地,但设备与地之间还是有寄生电容,这个电容在频率较高时会提供较低的阻抗,因此并不能有效地减小高频地环路电流。
PCB设计几大原则:
![PCB设计几大原则:](https://img.taocdn.com/s3/m/7ed894f2f90f76c661371a0b.png)
PCB设计几大原则:1.0线宽:地线〉电源线〉信号线尽量加宽电源、地线宽度,最好是地线比电源线宽,它们的关系是:地线>电源线>信号线,通常信号线宽为:0.2~0.3mm(8-12mil),最经细宽度可达0.05~0.07mm,电源线为1.2~2.5mm(50-100mil)2.0过孔:地〉电源〉信号信号过孔一般设置为:32(18)mil,地,电源过孔一般设置为:50(28)mil。
3.0去藕电容必须靠近芯片供电电源及地;4.0地线、电源线信号线:地线最好环绕数字模块一圈,电源线与地线应尽可能呈放射状,信号线不能出现回环走线;5.0数字电路与模拟电路的共地只能有一点相连!现在有许多PCB不再是单一功能电路(数字或模拟电路),而是由数字电路和模拟电路混合构成的。
因此在布线时就需要考虑它们之间互相干扰问题,特别是地线上的噪音干扰。
数字电路的频率高,模拟电路的敏感度强,对信号线来说,高频的信号线尽可能远离敏感的模拟电路器件,对地线来说,整个PCB对外界只有一个结点,所以必须在PCB内部进行处理数、模共地的问题,而在板内部数字地和模拟地实际上是分开的它们之间互不相连,只是在PCB与外界连接的接口处(如插头等)。
数字地与模拟地有一点短接,请注意,只有一个连接点。
也有在PCB上不共地的,这由系统设计来决定。
6.0数字、模拟、高频分区数字、模拟、高频等器件最好分区放,布线也最好在各自区域布线,高频信号、敏感模拟信号走线尽量短。
第一部分:怎样做好PCB板大家都知道理做PCB板就是把设计好的原理图变成一块实实在在的PCB电路板,请别小看这一过程,有很多原理上行得通的东西在工程中却难以实现,或是别人能实现的东西另一些人却实现不了,因此说做一块PCB板不难,但要做好一块PCB 板却不是一件容易的事情。
微电子领域的两大难点在于高频信号和微弱信号的处理,在这方面PCB制作水平就显得尤其重要,同样的原理设计,同样的元器件,不同的人制作出来的PCB就具有不同的结果,那么如何才能做出一块好的PCB板呢?根据我们以往的经验,想就以下几方面谈谈自己的看法:一:要明确设计目标接受到一个设计任务,首先要明确其设计目标,是普通的PCB板、高频PCB板、小信号处理PCB板还是既有高频率又有小信号处理的PCB板,1.0如果是普通的PCB板,只要做到布局布线合理整齐,机械尺寸准确无误即可,如有中负载线和长线,就要采用一定的手段进行处理,减轻负载,长线要加强驱动,重点是防止长线反射。
关于数字地与模拟地的隔离问题
![关于数字地与模拟地的隔离问题](https://img.taocdn.com/s3/m/c4f985fd6e1aff00bed5b9f3f90f76c660374c43.png)
关于数字地与模拟地的隔离问题关于数字地与模拟地的隔离问题1.数字电路的频率高,模拟电路的敏感度强,对信号线来说,高频的信号线尽可能远离敏感的模拟电路器件,对地线来说,整个PCB对外界只有一个结点,所以必须在PCB内部进行处理数、模共地的问题,而在板内部数字地和模拟地实际上是分开的它们之间互不相连,只是在PCB与外界连接的接口处(如插头等)。
数字地与模拟地有一点短接,请注意,只有一个连接点。
也有在PCB上不共地的,这由系统设计来决定。
但是,制做PCB板时一般都做铺铜走线,而走线都与GND相联,请问,铺铜之后,模拟地和数字地还能区分出来吗,还能像上面说的那样,只有一个联接点吗?两个地起不同的名字,分别辅铜,最后可以用一个10uH电感或0欧姆电阻连起来。
模拟部分的器件尽量集中,放置在与其它板子接口的附近,减小信号衰减。
数字部分线路长一些没关系。
先对模拟地敷铜,然后对整个板敷数字地。
模拟地和数字地之间会自动分隔,用一个1uH的电感或0欧的电阻作为共地点。
2在电子系统设计中,为了少走弯路和节省时间,应充分考虑并满足抗干扰性的要求,避免在设计完成后再去进行抗干扰的补救措施。
形成干扰的基本要素有三个:(1)干扰源,指产生干扰的元件、设备或信号,用数学语言描述如下:du/dt,di/dt大的地方就是干扰源。
如:雷电、继电器、可控硅、电机、高频时钟等都可能成为干扰源。
(2)传播路径,指干扰从干扰源传播到敏感器件的通路或媒介。
典型的干扰传播路径是通过导线的传导和空间的辐射。
(3)敏感器件,指容易被干扰的对象。
如:A/D、D/A变换器,单片机,数字IC,弱信号放大器等。
抗干扰设计的基本原则是:抑制干扰源,切断干扰传播路径,提高敏感器件的抗干扰性能。
(类似于传染病的预防)1 抑制干扰源抑制干扰源就是尽可能的减小干扰源的du/dt,di/dt。
这是抗干扰设计中最优先考虑和最重要的原则,常常会起到事半功倍的效果。
减小干扰源的du/dt主要是通过在干扰源两端并联电容来实现。
数字和模拟混合电路中的接地问题
![数字和模拟混合电路中的接地问题](https://img.taocdn.com/s3/m/60c1e9ebbb4cf7ec4bfed027.png)
数字和模拟混合电路中的接地问题数字和模拟混合电路中的接地问题蓝色鹦鹉单点接地多点接地单点地要解决的问题就是针对"公共地阻抗耦合"和"低频地环路",多点地是针对"高频所容易通过长地走线产生的共模干扰".低频电路中,信号的工作频率小于1MHz,它的布线和器件间的电感影响较小,而接地电路形成的环流对干扰影响较大,因而应采用一点接地。
当信号工作频率大于10MHz时,地线阻抗变得很大,此时应尽量降低地线阻抗,应采用就近多点接地。
当工作频率在1~10MHz时,如果采用一点接地,其地线长度不应超过波长的1/20,否则应采用多点接地法。
数字地与模拟地之间单点接地,数字地之内多点接。
地线干扰与地线设计地线设计是电磁兼容设计中大家都很注意,却又不知道应该怎样去做的一个问题。
了解了地线造成干扰问题的机理之后,在设计和实施地线时就有了一个明确的思路。
本期从介绍地线造成干扰的原理入手,使读者了解设计地线的关键和原则。
1什么是地线?地线有安全地和信号地两种。
前者是为了保证人身安全、设备安全而设置的地线,后者是为了保证电路正确工作所设置的地线。
造成电路干扰现象的主要是信号地,因此这里仅讨论信号地的问题。
信号地的一般定义是:电路的电位参考点。
更恰当地说,这个定义是我们设计电路时的一个假设。
从这个定义是无法分析和理解一些地线干扰问题的。
从现在开始,我们在分析电磁兼容问题时,使用下面的定义。
地线是信号电流流回信号源的地阻抗路径。
既然地线是电流的一个路径,那么根据欧姆定律,地线上是有电压的;既然地线上有电压,说明地线不是一个等电位体。
这样,我们在设计电路时,关于地线电位一定的假设就不再成立,因此电路会出现各种错误。
这就是地线干扰的实质。
2地线的阻抗有多大?一个难以理解的问题是,我们在设计地线时,都使地线的电阻很小,那么地线上的电位差怎么会大到导致电路出错的程度。
理解这个问题,要理解地线阻抗的组成。
画PCB注意事项
![画PCB注意事项](https://img.taocdn.com/s3/m/3727bf0eaeaad1f347933fd0.png)
1 电源、地线的处理既使在整个PCB板中的布线完成得都很好,但由于电源、地线的考虑不周到而引起的干扰,会使产品的性能下降,有时甚至影响到产品的成功率。
所以对电源、地线的布线要认真对待,把电、地线所产生的噪音干扰降到最低限度,以保证产品的质量。
对每个从事电子产品设计的工程人员来说都明白地线与电源线之间噪音所产生的原因,现只对降低式抑制噪音作以表述:众所周知的是在电源、地线之间加上去耦电容。
尽量加宽电源、地线宽度,最好是地线比电源线宽,它们的关系是:地线>电源线>信号线,通常信号线宽为:0.2~0.3mm,最经细宽度可达0.05~0.07mm,电源线为1.2~2.5 mm对数字电路的PCB可用宽的地导线组成一个回路, 即构成一个地网来使用(模拟电路的地不能这样使用)用大面积铜层作地线用,在印制板上把没被用上的地方都与地相连接作为地线用。
或是做成多层板,电源,地线各占用一层。
2、数字电路与模拟电路的共地处理现在有许多PCB不再是单一功能电路(数字或模拟电路),而是由数字电路和模拟电路混合构成的。
因此在布线时就需要考虑它们之间互相干扰问题,特别是地线上的噪音干扰。
数字电路的频率高,模拟电路的敏感度强,对信号线来说,高频的信号线尽可能远离敏感的模拟电路器件,对地线来说,整人PCB对外界只有一个结点,所以必须在PCB内部进行处理数、模共地的问题,而在板内部数字地和模拟地实际上是分开的它们之间互不相连,只是在PCB与外界连接的接口处(如插头等)。
数字地与模拟地有一点短接,请注意,只有一个连接点。
也有在PCB上不共地的,这由系统设计来决定。
3、信号线布在电(地)层上在多层印制板布线时,由于在信号线层没有布完的线剩下已经不多,再多加层数就会造成浪费也会给生产增加一定的工作量,成本也相应增加了,为解决这个矛盾,可以考虑在电(地)层上进行布线。
首先应考虑用电源层,其次才是地层。
因为最好是保留地层的完整性。
电路板的布线、焊接技巧及注意事项
![电路板的布线、焊接技巧及注意事项](https://img.taocdn.com/s3/m/a0d38066783e0912a2162af9.png)
1、输入端与输出端的边线应避免相邻平行,以免产生反射干扰。
必要时应加地线隔离,两相邻层的布线要互相垂直,平行容易产生寄生耦合。
2、电源、地线之间加上去耦电容。
尽量加宽电源、地线宽度,最好是地线比电源线宽,它们的关系是:地线>电源线>信号线,通常信号线宽为:0.2~0.3mm,最经细宽度可达0. 05~0.07mm,电源线为1.2~2.5mm3、数字电路与模拟电路的共地处理,数字电路的频率高,模拟电路的敏感度强,对信号线来说,高频的信号线尽可能远离敏感的模拟电路器件,对地线来说,整人PCB对外界只有一个结点,所以必须在PCB内部进行处理数、模共地的问题,而在板内部数字地和模拟地实际上是分开的它们之间互不相连,只是在PCB与外界连接的接口处(如插头等)。
数字地与模拟地有一点短接,请注意,只有一个连接点。
也有在PCB上不共地的,这由系统设计来决定。
4、尽可能缩短高频元器件之间的连线,设法减少它们的分布参数和相互间的电磁干扰。
易受干扰的元器件不能相互挨得太近,输入和输出元件应尽量远离。
某些元器件或导线之间可能有较高的电位差,应加大它们之间的距离,以免放电引出意外短路。
带高电压的元器件应尽量布置在调试时手不易触及的地方。
5、在高频下工作的电路,要考虑元器件之间的分布参数。
一般电路应尽可能使元器件平行排列。
这样,不但美观.而且装焊容易.易于批量生产。
6、输入输出端用的导线应尽量避免相邻平行。
最好加线间地线,以免发生反馈藕合。
7、印制导线拐弯处一般取圆弧形,而直角或夹角在高频电路中会影响电气性能。
如非要取直角,一般采用两个135度角来代替直角。
8、电源线设计根据印制线路板电流的大小,尽量加租电源线宽度,减少环路电阻。
同时、使电源线、地线的走向和数据传递的方向一致,这样有助于增强抗噪声能力。
9、地线设计地线设计的原则是:(1)数字地与模拟地分开。
若线路板上既有逻辑电路又有线性电路,应使它们尽量分开。
低频电路的地应尽量采用单点并联接地,实际布线有困难时可部分串联后再并联接地。
DXP知识
![DXP知识](https://img.taocdn.com/s3/m/def086bdf121dd36a32d82d3.png)
1.布线方向:从焊接面看,元件的排列方位尽可能保持与原理图相一致,布线方向最好与电路图走线方向相一致,因生产过程中通常需要在焊接面进行各种参数的检测,故这样做便于生产中的检查,调试及检修(注:指在满足电路性能及整机安装与面板布局要求的前提下)。
2.各元件排列,分布要合理和均匀,力求整齐,美观,结构严谨的工艺要求。
3.电阻,二极管的放置方式:分为平放与竖放两种:(1)平放:当电路元件数量不多,而且电路板尺寸较大的情况下,一般是采用平放较好;对于1/4W以下的电阻平放时,两个焊盘间的距离一般取4/10英寸,1/2W的电阻平放时,两焊盘的间距一般取5/10英寸;二极管平放时,1N400X系列整流管,一般取3/10英寸;1N540X系列整流管,一般取4~5/10英寸。
(2)竖放:当电路元件数较多,而且电路板尺寸不大的情况下,一般是采用竖放,竖放时两个焊盘的间距一般取1~2/10英寸。
4.电位器:IC座的放置原则(1)电位器:在稳压器中用来调节输出电压,故设计电位器应满中顺时针调节时输出电压升高,反时针调节器节时输出电压降低;在可调恒流充电器中电位器用来调节充电电流折大小,设计电位器时应满中顺时针调节时,电流增大。
电位器安放位轩应当满中整机结构安装及面板布局的要求,因此应尽可能放轩在板的边缘,旋转柄朝外。
(2)IC座:设计印刷板图时,在使用IC座的场合下,一定要特别注意IC座上定位槽放置的方位是否正确,并注意各个IC脚位是否正确,例如第1脚只能位于IC座的右下角线或者左上角,而且紧靠定位槽(从焊接面看)。
5.进出接线端布置(1)相关联的两引线端不要距离太大,一般为2~3/10英寸左右较合适。
(2)进出线端尽可能集中在1至2个侧面,不要太过离散。
6.设计布线图时要注意管脚排列顺序,元件脚间距要合理。
7.在保证电路性能要求的前提下,设计时应力求走线合理,少用外接跨线,并按一定顺充要求走线,力求直观,便于安装,高度和检修。
射频电路设计的常见问题及五大经验总结
![射频电路设计的常见问题及五大经验总结](https://img.taocdn.com/s3/m/45f3d5c34bfe04a1b0717fd5360cba1aa8118cbe.png)
射频电路板设计由于在理论上还有很多不确定性,因此常被形容为一种黑色艺术”,但这个观点只有部分正确,RF电路板设计也有许多可以遵循的准则和不应该被忽视的法则。
不过,在实际设计时,真正实用的技巧是当这些准则和法则因各种设计约束而无法准确地实施时如何对它们进行折衷处理。
当然,有许多重要的RF设计课题值得讨论,包括阻抗和阻抗匹配、绝缘层材料和层叠板以及波长和驻波等,在全面掌握各类设计原则前提下的仔细规划是一次性成功设计的保证。
RF电路设计的常见问题1、数字电路模块和模拟电路模块之间的干扰如果模拟电路(射频)和数字电路单独工作,可能各自工作良好。
但是,一旦将二者放在同一块电路板上,使用同一个电源一起工作,整个系统很可能就不稳定。
这主要是因为数字信号频繁地在地和正电源(>3 V)之间摆动,而且周期特别短,常常是纳秒级的。
由于较大的振幅和较短的切换时间。
使得这些数字信号包含大量且独立于切换频率的高频成分。
在模拟部分,从无线调谐回路传到无线设备接收部分的信号一般小于巾V。
因此数字信号与射频信号之间的差别会达到120 dB。
显然.如果不能使数字信号与射频信号很好地分离。
微弱的射频信号可能遭到破坏,这样一来,无线设备工作性能就会恶化,甚至完全不能工作。
2、供电电源的噪声干扰射频电路对于电源噪声相当敏感,尤其是对毛刺电压和其他高频谐波。
微控制器会在每个内部时钟周期内短时间突然吸人大部分电流,这是由于现代微控制器都采用CMOS工艺制造。
因此。
假设一个微控制器以1MHz的内部时钟频率运行,它将以此频率从电源提取电流。
如果不采取合适的电源去耦.必将引起电源线上的电压毛刺。
如果这些电压毛刺到达电路RF部分的电源引脚,严重时可能导致工作失效。
3、不合理的地线如果RF电路的地线处理不当,可能产生一些奇怪的现象。
对于数字电路设计,即使没有地线层,大多数数字电路功能也表现良好。
而在RF频段,即使一根很短的地线也会如电感器一样作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数字电路与模拟电路的共地处理
『技术交流』关于地线的接法
最近大家在电路设计中都遇到了一些衔接的问题。
特别在数字模拟设计的过程中,因为电源处理的不好,烧了很多的片子。
现在收集总结一些相关的东西,包含个人的一点经验以及和顾问请教得出的心得了。
1.地线的定义
什么是地线?大家在教科书上学的地线定义是:地线是作为电路电位基准点的等电位体。
这个定义是不符合实际情况的。
实际地线上的电位并不是恒定的。
如果用仪表测量一下地线上各点之间的电位,会发现地线上各点的电位可能相差很大。
正是这些电位差才造成了电路工作的异常。
电路是一个等电位体的定义仅是人们对地线电位的期望。
HENRY 给地线了一个更加符合实际的定义,他将地线定义为:信号流回源的低阻抗路径。
这个定义中突出了地线中电流的流动。
按照这个定义,很容易理解地线中电位差的产生原因。
因为地线的阻抗总不会是零,当一个电流通过有限阻抗时,就会产生电压降。
因此,我们应该将地线上的电位想象成象大海中的波浪一样,此起彼伏。
.地线的阻抗谈到地线的阻抗引起的地线上各点之间的电位差能够造成电路的误动作,许多人觉得不可思议:我们用欧姆表测量地线的电阻时,地线的电阻往往在毫欧姆级,电流流过这么小的电阻时怎么会产生这么大的电压降,导致电路工作的异常。
要搞清这个问题,首先要区分开导线的电阻与阻抗两个不同的概念。
电阻指的是在直流状态下导线对电流呈现的阻抗,而阻抗指的是交流状态下导线对电流的阻抗,这个阻抗主要是由导线的电感引起的。
任何导线都有电感,当频率较高时,导线的阻抗远大于直流电阻,表1 给出的数据说明了这个问题。
在实际电路中,造成电磁干扰的信号往往是脉冲信号,脉冲信号包含丰富的高频成分,因此会在地线上产生较大的电压。
对于数字电路而言,电路的工作频率是很高的,因此地线阻抗对数字电路的影响是十分可观的。
3.由于地线阻抗的存在,当电流流过地线时,就会在地线上产生电压。
当电流较大时,这个电压可以很大。
例如附近有大功率用电器启动时,会在地线在中流过很强的电流。
这个电流会在两个设备的连接电缆上产生电流。
由于电路的不平衡性,每根导线上的电流不同,因此会产生差模电压,对电路造成影响。
由于这种干扰是由电缆与地线构成的环路电流产生的,因此成为地环路干扰。
地环路中的电流还可以由外界电磁场感应出来。
4.从地环路干扰的机理可知,只要减小地环路中的电流就能减小地环路干扰。
如果能彻底消除地环路中的电流,则可以彻底解决
地环路干扰的问题。
因此提出以下几种解决地环路干扰的方案。
A. 将一端的设备浮地如果将一端电路浮地,就切断了地环路,因此可以消除地环路电流。
但有两个问题需要注意,一个是出于安全的考虑,往往不允许电路浮地。
这时可以考虑将设备通过一个电感接地。
这样对于50Hz的交流电流设备接地阻抗很小,而对于频率较高的干扰信号,设备接地阻抗较大,减小了地环路电流。
但这样做只能减小高频干扰的地环路干扰。
另一个问题是,尽管设备浮地,但设备与地之间还是有寄生电容,这个电容在频率较高时会提供较低的阻抗,因此并不能有效地减小高频地环路电流。
B. 使用变压器实现设备之间的连接利用磁路将两个设备连接起来,可以切断地环路电流。
但要注意,变压器初次级之间的寄生电容仍然能够为频率较高的地环路电流提供通路,因此变压器隔离的方法对高频地环路电流的抑制效果较差。
提高变压器高频隔离效果的一个办法是在变压器的初次级之间设置屏蔽层。
但一定要注意隔离变压器屏蔽层的接地端必须在接受电路一端。
否则,不仅不能改善高频隔离效果,还可能使高频耦合更加严重。
因此,变压器要安装在信号接收设备的一侧。
经过良好屏蔽的变压器可以在1MHz以下的频率提供有效的隔离。
C. 使用光隔离器另一个切断地环路的方法是用光实现信号的传输。
这可以说是解决地环路干扰问题的最理想方法。
用光连接有两种方法,一种是光耦器件,另一种是用光纤连接。
光耦的寄生电容一般为2pf,能够在很高的频率提供良好的隔离。
光纤几乎没有寄生电容,但安装、维护、成本等方面都不如光耦器件。
D. 使用共模扼流圈在连接电缆上使用共模扼流圈相当于增加了地环路的阻抗,这样在一定的地线电压作用下,地环路电流会减小。
但要注意控制共模扼流圈的寄生电容,否则对高频干扰的隔离效果很差。
共模扼流圈的匝数越多,则寄生电容越大,高频隔离的效果越差。
5.对于数字电路来说,地线环路造成的地线环流也就是几十毫伏级别的,而TTL的抗干扰门限是1.2V,CMOS电路更可以达到1/2电源电压,也就是说地线环流根本就不会对电路的工作造成不良影响。
相反,如果地线不闭合,问题会更大,因为数字电路在工作的时候产生的脉冲电源电流会造成各点的地电位不平衡,在大脉冲电流的冲击下,如果采用枝状地线(线宽25mil)分布,地线间各个点的电位差将会达到百毫伏级别。
而采用地线环路之后,脉冲电流会散布到地线的各个点去,大大降低了干扰电路的可能。
采用闭合地线,实测出各器件的地线最大瞬时电位
差是不闭合地线的二分之一到五分之一。
地线造成电磁干扰的主要原因是地线存在阻抗,当电流流过地线时,会在地线上产生电压,这就是地线噪声。
在这个电压的驱动下,会产生地线环路电流,形成地环路干扰。
当两个电路共用一段地线时,会形成公共阻抗耦合。
解决地环路干扰的方法有切断地环路,增加地环路的阻抗,使用平衡电路等。
解决公共阻抗耦合的方法是减小公共地线部分的阻抗,或采用并联单点接地,彻底消除公共阻抗。
最后的建议:在数字电路和模拟电路相接时,一定注意好隔离,光藕时我们最常用的隔离方式,但参考外面很多公司做的控制电路,其实是不接光藕的,这要有很好的对电路设计的把握能力,我们还需要更多的去关注这些细节:)。