中考数学——平行四边形的综合压轴题专题复习及详细答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

8k b 2 k 1
{
,{

2k 8 b 10
∴ 直线 BC : y x 10 ,
联立{
y y
x
x
10
,得
x
y
5 5

∴ E(0, 0) , F (5,5) .
2.如图,四边形 ABCD 中,AD∥ BC,∠ A=90°,BD=BC,点 E 为 CD 的中点,射线 BE 交 AD 的延长线于点 F,连接 CF. (1)求证:四边形 BCFD 是菱形; (2)若 AD=1,BC=2,求 BF 的长.
【答案】(1)作图见解析;(2) y 2x 5 , 3 5 ;(3) E(0, 0) , F (5,5) .
【解析】 试题分析:(1)连接 AC、BD 交于点 O,作直线 PO,直线 PO 将平行四边形 ABCD 的面积 和周长分别相等的两部分.
(2)连接 AC,BD 交于点 O ,过 O 、P 点的直线将矩形 ABCD 的面积和周长分为分别相
【答案】(1) y x2 2x 3 0 x 3 ;(2)∠ AEC=105°;(3)边 BC 的长为
2 或 1 17 . 2
【解析】 试题分析:(1)过 A 作 AH⊥BC 于 H,得到四边形 ADCH 为矩形.在△ BAH 中,由勾股定 理即可得出结论. (2)取 CD 中点 T,连接 TE,则 TE 是梯形中位线,得 ET∥ AD,ET⊥CD, ∠ AET=∠ B=70°. 又 AD=AE=1,得到∠ AED=∠ ADE=∠ DET=35°.由 ET 垂直平分 CD,得∠ CET=∠ DET=35°,即 可得到结论. (3)分两种情况讨论:①当∠ AEC=90°时,易知△ CBE≌ △ CAE≌ △ CAD,得∠ BCE=30°, 解△ ABH 即可得到结论. ②当∠ CAE=90°时,易知△ CDA∽ △ BCA,由相似三角形对应边成比例即可得到结论. 试题解析:解:(1)过 A 作 AH⊥BC 于 H.由∠ D=∠ BCD=90°,得四边形 ADCH 为矩形.


BC

M
11 2
,
6

MN
62
11 2
5 2 2
3
5.
( 3 )存在,直线 y x 平分五边形 OABCD 面积、周长.
∵ P(10 5 2,10 5 2) 在直线 y x 上,
∴ 连 OP 交 OA 、 BC 于点 E 、 F , 设 BC : y kx b , B(8, 2)C(2,8) ,
在 Rt△ BAD 中,AB= BD2 AD2 3 , ∵ AF=AD+DF=1+2=3,在 Rt△ BAF 中,BF= AB2 AF 2 =2 3 .
3.如图,四边形 ABCD 中,∠ BCD=∠ D=90°,E 是边 AB 的中点.已知 AD=1,AB=2. (1)设 BC=x,CD=y,求 y 关于 x 的函数关系式,并写出定义域; (2)当∠ B=70°时,求∠ AEC 的度数; (3)当△ ACE 为直角三角形时,求边 BC 的长.
在△ BAH 中,AB=2,∠ BHA=90°,AH=y,HBΒιβλιοθήκη Baidu x 1 ,∴ 22 y2 x 12 ,
则 y x2 2x 3 0 x 3
(2)取 CD 中点 T,联结 TE,则 TE 是梯形中位线,得 ET∥ AD,ET⊥CD, ∴ ∠ AET=∠ B=70°. 又 AD=AE=1,∴ ∠ AED=∠ ADE=∠ DET=35°.由 ET 垂直平分 CD,得∠ CET=∠ DET=35°, ∴ ∠ AEC=70°+35°=105°. (3)分两种情况讨论:①当∠ AEC=90°时,易知△ CBE≌ △ CAE≌ △ CAD,得∠ BCE=30°, 则在△ ABH 中,∠ B=60°,∠ AHB=90°,AB=2,得 BH=1,于是 BC=2.
轴正半轴上,点 B 坐标为 (8, 6) .已知点 P(6, 7) 为矩形外一点,请过点 P 画一条同时平分 矩形 OABC 面积和周长的直线 l ,说明理由并求出直线 l ,说明理由并求出直线 l 被矩形 ABCD 截得线段的长度.
问题解决:
( 3 )如图③,在平面直角坐标系 xOy 中,矩形 OABCD 的边 OA 、 OD 分别在 x 轴、 y 轴正半轴上, DC∥x 轴, AB∥y 轴,且 OA OD 8 , AB CD 2 ,点 P(10 5 2,10 5 2) 为五边形内一点.请问:是否存在过点 P 的直线 l ,分别与边 OA 与 BC 交于点 E 、 F ,且同时平分五边形 OABCD 的面积和周长?若存在,请求出点 E 和 点 F 的坐标:若不存在,请说明理由.
②当∠ CAE=90°时,易知△ CDA∽ △ BCA,又 AC BC2 AB2 x2 4 ,
【答案】(1)证明见解析(2)2 3
【解析】 (1)∵ AF∥ BC,∴ ∠ DCB=∠ CDF,∠ FBC=∠ BFD, ∵ 点 E 为 CD 的中点,∴ DE=EC,
FBC BFD 在△ BCE 与△ FDE 中, DCB CDF ,
DE EC
∴ △ BCE≌ △ FDE,∴ DF=BC, 又∵ DF∥ BC,∴ 四边形 BCDF 为平行四边形, ∵ BD=BC,∴ 四边形 BCFD 是菱形; (2)∵ 四边形 BCFD 是菱形,∴ BD=DF=BC=2,
等的两部分.
(3)存在,直线 y x 平分五边形 OABCD 面积、周长. 试题解析:(1)作图如下:
( 2 )∵ P(6, 7) , O(4,3) , ∴ 设 PO : y kx 6 ,
6k b 7 k 2
{
,{

4k b 3 b 5
∴ y 2x 5,

x
轴于
N
5 2
,
0
中考数学——平行四边形的综合压轴题专题复习及详细答案
一、平行四边形
1.问题发现:
(1)如图①,点 P 为平行四边形 ABCD 内一点,请过点 P 画一条直线 l ,使其同时平分 平行四边形 ABCD 的面积和周长.
问题探究:
( 2 )如图②,在平面直角坐标系 xOy 中,矩形 OABC 的边 OA 、 OC 分别在 x 轴、 y
相关文档
最新文档