双闭环直流调速系统的设计与仿真实验报告
双闭环直流调速系统设计及仿真
双闭环直流调速系统设计及仿真一转速、电流双闭环控制系统一般来说,我们总希望在最大电流受限制的情况下,尽量发挥直流电动机的过载能力,使电力拖动控制系统以尽可能大的加速度起动,达到稳态转速后,电流应快速下降,保证输出转矩与负载转矩平衡,进入稳定运行状态[1]。
这种理想的起动过程如图1所示。
nnt图1 转速调节系统理想起动过程为实现在约束条件快速起动,关键是要有一个使电流保持在最大值的恒流过程。
根据反馈控制规律,要控制某个量,就要引入这个量的负反馈。
因此很自然地想到要采用电流负反馈控制过程。
这里实际提到了两个控制阶段。
起动过程中,电动机转速快速上升,而要保持电流恒定,只需电流负反馈;稳定运行过程中,要求转矩保持平衡,需使转速保持恒定,应以转速负反馈为主。
如何才能做到使电流、转速两种负反馈在不同的控制阶段发挥作用呢?答案是采用转速、电流双闭环控制系统。
如图2所示。
图2 双闭环直流调速控制系统原理图参考双闭环的结构图和一些电力电子的知识,采用机理分析法可以得到双闭环系统的动态结构图。
如图3所示。
图3 双闭环直流调速系统动态结构图在转速环、电流环的反馈通道和输入端增加了转速滤波、电流滤波和给定滤波环节。
因为电流检测信号中常含有交流成分,须加低通滤波,其滤波时间常数按需要而定。
滤波环节可以抑制检测信号中的交流分量,但同时也个反馈检测信号带来延迟。
所以在给定信号通道中加入一个给定滤波环节,使给定信号与反馈信号同步,并可使设计简化。
由测速发电机得到的转速反馈电压含有电机的换向纹波,因此也需要滤波,其时间常数用表示[2]。
二双闭环控制系统起动过程分析前面已经指出,设置双闭环控制的一个重要目的就是要获得接近于理想的起动过程,因此在分析双闭环调速系统的动态性能时,有必要先探讨它的起动过程。
双闭环调速系统突加给定电压由静止状态起动时,转速和电流的过渡过程如图4所示。
由于在起动过程中转速调节器ASR 经历了不饱和、饱和、退饱和三个阶段,整个过渡过程也就分为三个阶段,在图中表以Ⅰ、Ⅱ和Ⅲ。
双闭环直流调速系统的设计与仿真开题报告
南京工程学院自动化学院毕业设计开题报告课题名称:双闭环直流调速系统的设计与仿真研究姓名:吴杰班级:10 自动化 1指导教师:张贞艳所在系部:自动化学院专业名称:自动化南京工程学院2014 年3 月毕业设计(论文)开题报告毕业设计的内容和意义一、毕业设计的内容(包括技术要求、图标要求以及工作要求等):1. 简单闭环调速系统系统的性能分析,其中包括单闭环有、无静差转速负反馈调速系统以及带电流截止转速负反馈调速系统的性能分析。
通过比较它们的性能分析结果,得出它们的不足之处,从而引出双闭环直流调速系统。
2. 双闭环直流调速系统的设计,其中包括建立双闭环调速系统的方框图以及仿真模型。
并且通过仿真分析结果,与简单的闭环调速仿真分析进行比较,从而得出双闭环直流调速优越性。
3. 双闭环V-M系统的设计,其中包含调节器的选择和参数设计,相关数据计算,动态结构图仿真,虚拟模型图仿真,仿真结果分析等。
4. 双闭环PWM-M调速系统设计,其中包含调节器的选择和参数设计,相关数据计算,动态结构图仿真,虚拟模型图仿真,仿真结构分析等。
二、毕业设计的意义1. 根据MATLAB/Simulink 仿真平台,研究双闭环直流调速系统的性能。
双闭环直流调速系统是目前应用最广泛的调速系统,该系统具有调速范围宽、稳定性好、精度高等许多优点,在拖动领域中发挥着极其重要的作用[1]。
采用该系统可获得优良的静、动态调速特性。
此系统的控制规律,性能特点和设计方法是各种交、直流电力拖动自动控制系统的重要基础[2]。
2. 通过比较单闭环有、无静差转速负反馈调速系统和带电流截止负反馈调速系统的仿真结果,从而得到它们各自的不足之处,从而突出双闭环直流调速系统的优越性以及必要性。
3. 通过对双闭环V-M系统和双闭环PWM-M调速系统这两种典型双闭环调速系统的的仿真分析,帮助我们更好的了解和应用双闭环直流调速系统。
4. 通过对转速、电流双闭环直流调速系统的了解,使我们能够更好的掌握调速系统的基本理论及相关内容,在对其各种性能加深了解的同时,能够发现其缺陷之处,通过对该系统不足之处的完善,可提高该系统的性能,使其能够适用于各种工作场合,提高其使用效率。
基于Matlab的V-M双闭环直流调速系统设计及仿真报告(1)
基于Matlab的双闭环调速系统设计报告目录一、摘要 (2)二、总体方案设计 (3)1、控制原理2、控制结构图三、参数计算 (5)1、静态参数设计计算2、动态参数设计计算四、稳定性分析 (8)1、基于经典自控理论得分析2、利用MATLAB辅助分析A、利用根轨迹分析B、在频域内分析奈氏曲线:bode图利用单输入单输出仿真工具箱分析用Simulink仿真五、系统校正 (14)1、系统校正的工具2、调节器的选择3、校正环节的设计4、限流装置的选择六、系统验证 (15)1、分析系统的各项指标2、单位阶跃响应3、Simulink仿真系统验证系统运行情况七、心得体会 (20)八、参考文献 (20)一、摘要运动控制课是后续于自动控制原理课的课程,是更加接近本专业实现应用的一门课程。
直流电动机具有良好的起、制动性能,宜于在大范围内平滑调速,在许多需要调速和快速正反向的电力拖动领域中得到了广泛的应用。
由于直流拖动控制系统在理论上和实践上都比较成熟,而且从控制的角度来看,它又是交流拖动控制系统的基础。
所以加深直流电机控制原理理解有很重要的意义。
本设计首先进行总体系统设计,然后确定各个参数,当明确了系统传函之后,再进行稳定性分析,在稳定的基础上,进行整定以达到设计要求。
另外,设计过程中还要以matlab为工具,以求简明直观而方便快捷的设计过程。
二、总体方案设计1、控制原理根据设计要求,所设计的系统应为单闭环直流调速系统,选定转速为反馈量,采用变电压调节方式,实现对直流电机的无极平滑调速。
所以,设计如下的原理图:图1、单闭环直流调速系统原理图转速用与电动机同轴相连的测速电机产生的正比于转速的电压信号反馈到输入端,再与给定值比较,经放大环节产生控制电压,再通过电力电子变换器来调节电机回路电流,达到控制电机转速的目的。
这里,电压放大环节采用集成电路运算放大器实现,主电路用晶闸管可控整流器调节对电机的电源供给。
所以,更具体的原理图如下:图2、单闭环直流调速系统具体原理图2、控制结构图有了原理图之后,把各环节的静态参数用自控原理中的结构图表示,就得到了系统的稳态结构框图。
实验1转速电流双闭环控制的直流调速系统仿真
实验1 转速电流双闭环控制的直流调速系统仿真
一、实验目的
加深对它励式直流电机工作原理的理解,学会使用仿真软件MATLAB中的SIMULINK模块,搭建三相桥式可控整流电路模型和三相桥式驱动电路——6脉冲驱动发生器,并且将其与直流电机的双闭环控制相结合,并利用仿真模型,分析在直流电机开环时的仿真波形,以及在双闭环的原理和在此控制下的相关波形。
二、实验系统组成及工作原理
转速电流双波换控制直流系统的原理电路
三、实验所需软、硬件设备及仪器
(1)计算机(装有windows XP以上操作系统);
(2)MATLAB 6.1版本以上软件;
四、实验内容
直流电机的转速电流双闭环控制,电源的相电压为220V的三相交流,励磁绕组电压为220V的直流。
首先观测直流电机在开环控制,空载下的转速,电枢电流,励磁电流以及转矩的波形,其次在空载下,加上双闭环控制电路,控制三相整流桥的触发角,从而达到调整励磁电流的目的,直至电机稳定工作,得到相关波形,最后给电机加载,观察波形的变化。
α°)
(1)开环控制(30
=
(2)双闭环控制(α由控制器的输出得到)
(3)加载时,双闭环控制下的波形
五、步骤及方法
六、课后思考与总结
(1)撰写仿真实验报告;
(2)采用双闭环控制的目的;
(3)在转速、电流双闭环直流调速系统中,如要改变电动机的转速,通常可以调节哪些参数?。
双闭环控制的直流脉宽调速系统(H桥)实验报告(2014)
正转时,闭环控制特性 n = f(Ug)
n(rpm)
1172 1100 1000 902 791 692 594
Ug(V)
4.06 3.78 3.41 3.07 2.69 2.35 2.02
反转时,闭环控制特性 n = f(Ug)
n(rpm)
1168 1096 997
Ug(V)
4.02 3.77 3.43
实验名称:双闭环控制的直流脉宽调速系统(H 桥)
实验目的:
1. 了解 PMW 全桥直流调速系统的工作原理。 2. 分析电流环与速度环在直流调速系统中的作用。
实验仪器设备:
1.DJK01 电源控制屏; 2.DJK08 可调电阻、电容箱; 3.DJK09 单相调压与可调负载; 4.DJK17 双闭环 H 桥 DC/DC 变换直流调速系统; 5.DD03-2 电机导轨、测速发电机及转速表; 6.DJ13-1 直流发电机; 7.DJ15 直流并励发电机; 8.D42 三相可调电阻; 9.慢扫描示波器; 10.万用表。
实验数据及结果:
系统的开环特性 n =f(Id)
n(rpm)
1130
Id(A)
0.9
1160 0.8
1190 0.7
1225 0.58
1265 0.45
1288 0.4
1300 0.37
电动机转速接近 n=l200rpm,闭环机械特性 n =f(Id)
n(rpm)
1168 1146 1116 1101
Ug 不变,改变 RG 使 Id 逐渐下降,测出相应的转速 n 及电流平均值 Id。 2.系统闭环特性的测定:将电流反馈量调节电位器调到最高端。 转向选择开关拨至“正向”,Ug >0,电动机启动后,测量测速发电机输出电压,将高电 位端接入速度反馈的 T1 端,低电位端接入 T2 端,以保证速度反馈为负值。 闭环机械特性的测定: 1) 调节给定 Ug 、转速反馈和电流反馈调节电位器使电机转速 n=1200rpm,这时 Un
双闭环不可逆直流调速系统实验报告
双闭环不可逆直流调速系统实验报告公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]双闭环不可逆直流调速系统实验一、实验目的(1)了解闭环不可逆直流调速系统的原理、组成及各主要单元部件的原理。
(2)掌握双闭环不可逆直流调速系统的调试步骤、方法及参数的整定。
(3)研究调节器参数对系统动态性能的影响。
二、实验所需挂件及附件三、实验线路及原理许多生产机械,由于加工和运行的要求,使电动机经常处于起动、制动、反转的过渡过程中,因此起动和制动过程的时间在很大程度上决定了生产机械的生产效率。
为缩短这一部分时间,仅采用PI调节器的转速负反馈单闭环调速系统,其性能还不很令人满意。
双闭环直流调速系统是由速度调节器和电流调节器进行综合调节,可获得良好的静、动态性能(两个调节器均采用PI调节器),由于调整系统的主要参量为转速,故将转速环作为主环放在外面,电流环作为副环放在里面,这样可以抑制电网电压扰动对转速的影响。
实验系统的原理框图组成如下:启动时,加入给定电压Ug,“速度调节器”和“电流调节器”即以饱和限幅值输出,使电动机以限定的最大启动电流加速启动,直到电机转速达到给定转速(即Ug =Ufn),并在出现超调后,“速度调节器”和“电流调节器”退出饱和,最后稳定在略低于给定转速值下运行。
系统工作时,要先给电动机加励磁,改变给定电压Ug的大小即可方便地改变电动机的转速。
“速度调节器”、“电流调节器”均设有限幅环节,“速度调节器”的输出作为“电流调节器”的给定,利用“速度调节器”的输出限幅可达到限制启动电流的目的。
“电流调节器”的输出作为“触发电路”的控制电压Uct,利用“电流调节器”的输出限幅可达到限制αmax的目的。
在本实验中DJK04上的“调节器I”作为“速度调节器”使用,“调节器II”作为“电流调节器”使用;若使用DD03-4不锈钢电机导轨、涡流测功机及光码盘测速系统和D55-4智能电机特性测试及控制系统两者来完成电机加载请详见附录相关内容。
双闭环直流调速系统实验
实验一 实验二 实验三 实验四 实验五实验五实验五 双闭环直流调速系统实验双闭环直流调速系统实验一.实验目的一.实验目的⒈ 熟悉双闭环直流调速系统的组成、工作原理、调试方法。
⒉ 了解双闭环直流调速系统的静态和动态特性。
二.实验设备二.实验设备⒈ MCL –⒈ MCL – 31 31 31 低压控制电路及仪表。
低压控制电路及仪表。
低压控制电路及仪表。
⒉ MCL –⒉ MCL – 32 32 32 电源控制屏。
电源控制屏。
电源控制屏。
⒊ MCL –⒊ MCL – 33 33 33 触发电路及晶闸管主回路。
触发电路及晶闸管主回路。
触发电路及晶闸管主回路。
⒋ MEL –⒋ MEL – 0303 03 三相可调电阻器。
三相可调电阻器。
三相可调电阻器。
⒌ MEL –⒌ MEL – 11 11 11 电容箱。
电容箱。
电容箱。
⒍ 直流电动机–发电机–测速机组。
⒍ 直流电动机–发电机–测速机组。
⒎ 万用表。
⒎ 万用表。
⒏ 双踪示波器。
⒏ 双踪示波器。
三.三. 实验原理实验原理在双闭环直流调速系统中设置了两个调节器,转速调节器的输出当作电流调节器的输入,电流调节器的输出控制晶闸管整流器的 触发装置。
触发装置。
电流调节器在里面称作内环,转速调节器在外面称作外环,这样就形成转速、电流双闭环调速系统。
双闭环直流调速系统原理图如下图所示。
速系统原理图如下图所示。
为了获得良好的静、动态性能,转速和电流两个调节器都采用采用 PI PI PI 调节器。
转速调节器是调速系统的主导调节器,它使转速跟随其给定电压变调节器。
转速调节器是调速系统的主导调节器,它使转速跟随其给定电压变化,稳态时实现转速无静差,对负载变化起抗扰作用,其输出限幅值决定电机允许的最大电流。
最大电流。
电流调节器电流调节器 使 电流紧紧跟随其电流紧紧跟随其 给定电压变化,对电网电压的波动起及时抗扰作用,在 转速动态过程中能够获得电动机允许的最大电流,从而加快动态过程, 当电机过载甚至堵转时,限制电枢电流的最大值,起快速的自动保护作用。
双闭环直流调速系统的设计与仿真实验报告
TGn ASR ACR U *n + -U n U i U *i + - U c TAV M + -U d I dUP E L- M T 双闭环直流调速系统的设计与仿真1、实验目的1.熟悉晶闸管直流调速系统的组成及其基本原理。
2.掌握晶闸管直流调速系统参数及反馈环节测定方法。
3.掌握调节器的工程设计及仿真方法。
2、实验内容1.调节器的工程设计 2.仿真模型建立 3.系统仿真分析 3、实验要求用电机参数建立相应仿真模型进行仿真 4、双闭环直流调速系统组成及工作原理晶闸管直流调速系统由三相调压器,晶闸管整流调速装置,平波电抗器,电动机—发电机组等组成。
本实验中,整流装置的主电路为三相桥式电路,控制回路可直接由给定电压U ct 作为触发器的移相控制电压,改变U ct 的大小即可改变控制角,从而获得可调的直流电压和转速,以满足实验要求。
为了实现转速和电流两种负反馈分别起作用,可在系统中设置两个调节器,分别调节转速和电流,即分别引入转速负反馈和电流负反馈,二者之间实行嵌套联接,如图4.1。
把转速调节器的输出当作电流调节器的输入,再用电流的输出去控制电力电子变换器UPE 。
在结构上,电流环作为内环,转速环作为外环,形成了转速、电流双闭环调速系统。
为了获得良好的静、动态特性,转速和电流两个调节器采用PI 调节器。
图4.1 转速、电流双闭环调速系统 5、电机参数及设计要求5.1电机参数 直流电动机:220V ,136A ,1460r/min , =0.192V ? min/r ,允许过载倍数=1.5,晶闸管装置放大系数: =40电枢回路总电阻:R=0.5 时间常数: =0.00167s, =0.075s电流反馈系数: =0.05V/A 转速反馈系数:=0.007 V ? min/r 5.2设计要求要求电流超调量 5%,转速无静差,空载起动到额定转速时的转速超调量 10%。
6、调节器的工程设计 6.1电流调节器ACR 的设计 (1)确定电流环时间常数1)装置滞后时间常数 =0.0017s ; 2)电流滤波时间常数 =0.002s ;3)电流环小时间常数之和 = + =0.0037s ; (2)选择电流调节结构根据设计要求5%,并且保证稳态电流无差,电流环的控制对象是双惯性型的,且=0.03/0.0037=8.11<10,故校正成典型?I?型系统,显然应采用PI型的电流调节器,其传递函数可以写成?式中—?电流调节器的比例系数;?—?电流调节器的超前时间常数。
双闭环直流调速系统的设计与仿真实验报告
双闭环直流调速系统的设计与仿真实验报告一、系统结构设计双闭环直流调速系统由两个闭环控制组成,分别是速度子环和电流子环。
速度子环负责监测电机的转速,并根据设定值与实际转速的误差,输出电流指令给电流子环。
电流子环负责监测电机的电流,并根据电流指令与实际电流的误差,输出电压指令给电机驱动器,实现对电机转速的精确控制。
二、参数选择在进行双闭环直流调速系统的设计之前,需选择合适的控制参数。
根据实际的电机参数和转速要求,确定速度环和电流环的比例增益和积分时间常数等参数。
同时,还需根据电机的动态特性和负载特性,选取合适的速度和电流传感器。
三、控制策略速度子环采用PID控制器,通过计算速度误差、积分误差和微分误差,生成电流指令,并传递给电流子环。
电流子环也采用PID控制器,通过计算电流误差、积分误差和微分误差,生成电压指令,并输出给电机驱动器。
四、仿真实验为了验证双闭环直流调速系统的性能,进行了仿真实验。
首先,通过Matlab/Simulink建立双闭环直流调速系统的模型,并设置不同转速和负载条件,对系统进行仿真。
然后,通过调整控制参数,观察系统响应速度、稳定性和抗干扰性等指标的变化。
五、仿真结果分析根据仿真实验的结果可以看出,双闭环直流调速系统能够实现对电机转速的精确控制。
当系统负载发生变化时,速度子环能够快速调整电流指令,使电机转速保持稳定。
同时,电流子环能够根据速度子环的电流指令,快速调整电压指令,以满足实际转速的要求。
此外,通过调整控制参数,可以改善系统的响应速度和稳定性。
六、总结双闭环直流调速系统是一种高精度的电机调速方案,通过双重反馈控制实现对电机转速的精确控制。
本文介绍了该系统的设计与仿真实验,包括系统结构设计、参数选择、控制策略及仿真结果等。
仿真实验结果表明,双闭环直流调速系统具有良好的控制性能,能够满足实际转速的要求。
双闭环直流调速系统课程设计报告
1双闭环直流调速系统课程设计报告第一章主电路设计与参数计算调速系统方案的选择因为电机上网容量较大又要求电流的脉动小应采纳三相全控桥式整流电路供电方案。
电动机额定电压为220V 为保证供电质量应采纳三相减压变压器将电源电压降低。
为防止三次谐波电动势的不良影响三次谐波电流对电源的扰乱。
主变压器采纳 A/D 联络。
因调速精度要求较高应采纳转速负反应调速系统。
采纳电流截止负反应进行限流保护。
出现故障电流时过电流继电器切断主电路电源。
为使线路简单工作靠谱装置体积小宜采纳 KJ004 构成的六脉冲集成触发电路。
该系统采纳减压调速方案故励磁应保持恒定励磁绕组采纳三相不控桥式整流电路供电电源可从主变压器二次侧引入。
为保证先加励磁后加电枢电压主接触器主触点应在励磁绕组通电后方可闭合同时设有弱磁保护环节电动机的额定电压为 220V 为保证供电质量应采纳三相减 2 压变压器将电源电压降低为防止三次谐波电动势的不良影响三次谐波电流对电源的扰乱主变压器采纳D/Y 联络。
1.1 整流变压器的设计 1.1.1 变压器二次侧电压U2 的计算U2 是一个重要的参数选择过低就会没法保证输出额定电压。
选择过大又会造成延迟角α加大功率因数变坏整流元件的耐压高升增添了装置的成本。
一般可按下式计算即BAUUd2.112 1-1 式中 A-- 理想状况下α0°时整流电压 Ud0 与二次电压U2 之比即AUd0/U2B-- 延缓角为α时输出电压Ud 与 Ud0 之比即BUd/Ud0 ε——电网颠簸系数系数依据设计要求采纳公式11.2——考虑各样因数的安全BAUUd2.112 1-3由表查得A2.34 取ε 0.9 角α考虑 10°裕量则Bcosα 0.985222011.21061272.340.90.985UV 取 U2120V 。
电压比KU1/U2380/1203.2 。
1.1.2 一次、二次相电流 I1 、I2 的计算由表查得 KI10.816 KI20.816 考虑变压器励磁电流得取1.1.3 变压器容量的计算S1m1U1I1 1-4 S2m2U2I2 1-5S1/2S1S2 1-6 式中 m1、m2 -- 一次侧与二次侧绕组的相数表查得 m13m23 S1m1U1I13× 380×1415.6KVA由S2m2U2I23×110×44.914.85 KVA考虑励磁功率LP220×1.60.352kW 取 S15.6kvA 1.2 晶闸管元件的选择晶闸管的额定电压晶闸管实质蒙受的最大峰值电压TNU 乘以 23 倍的安全裕量参照标准电压等级即可确立晶闸管的额定电压 TNU 即 TNU 23mU 整流电路形式为三相全控桥查表得26UUm 则223236236110539808TNmUUUV 3-7 取晶闸管的额定电流选择晶闸管额定电流的原则是一定使管子同意经过的额定电流有效值TNI 大于实质流过管子电流最大有效值TI8 即 4 TNI 1.57AVTITI 或AVTI57.1TI57.1TIddIIKdI 1-8 考虑 1.52 倍的裕量AVTI1.52KdI 1-9 式中KTI/1.57dI-- 电流计算系数。
“双闭环控制直流电动机调速系统”数字仿真实验
“双闭环控制直流电动机调速系统”数字仿真实验24、SIMULINK建模我们借助SIMULINK,根据上节理论计算得到的参数,可得双闭环调速系统的动态结构图如下所示:图7 双闭环调速系统的动态结构图(1)系统动态结构的simulink建模①启动计算机,进入MATLAB系统检查计算机电源是否已经连接,插座开关是否打开,确定计算机已接通,按下计算机电压按钮,打开显示器开关,启动计算机。
打开Windows开始菜单,选择程序,选择MATAB6.5.1,选择并点击MATAB6.5.1,启动MATAB程序,如图8,点击后得到下图9:图8选择MATAB程序图9 MATAB6.5.1界面点击smulink 中的continuous,选择transfor Fc n(传递函数)就可以编辑系统的传递函数模型了,如图10。
图10 smulink界面②系统设置选择smulink界面左上角的白色图标既建立了一个新的simulink模型,系统地仿真与验证将在这个新模型中完成,可以看到在simulink目录下还有很多的子目录,里面有许多我们这个仿真实验中要用的模块,这里不再一一介绍,自介绍最重要的传递函数模块的设置,其他所需模块参数的摄制过程与之类似。
将transfor Fc n(传递函数)模块用鼠标左键拖入新模型后双击transfor Fc n(传递函数)模块得到图11,开始编辑此模块的属性。
图11参数表与模型建立参数对话栏第一和第二项就是我们需要设置的传递函数的分子与分母,如我们需要设置电流环的控制器的传递函数:0.01810.0181()0.2920.0180.062ACR s s W s s s++=⋅=,这在对话栏的第一栏写如:[0.018 1],第二栏为:[0.062 0]。
点击OK ,参数设置完成。
如图12。
图12传递函数参数设置设置完所有模块的参数后将模块连接起来既得到图7所示的系统仿真模型。
在这里需要注意的是,当我们按照理论设计的仿真模型得到的实验波形与理想的波形有很大的出入。
直流电动机双闭环调速系统MATLAB仿真实验报告
本科上机大作业报告课程名称:电机控制姓名:学号:学院:电气工程学院专业:电气工程及其自动化指导教师:提交日期:20年月日一、作业目的1.熟悉电机的控制与仿真;2.熟悉matlab和simulink等相关仿真软件的操作;3.熟悉在仿真中各参数变化和不同控制器对电机运行的影响。
二、作业要求对直流电动机双闭环调速进行仿真1.描述每个模块的功能2.仿真结果分析:包括转速改变、转矩改变下电机运行性能,并解释相应现象3.转速PI调节器参数对电机运行性能的影响4.电流调节器改用PI调节器三、实验设备MATLAB、simulink四、实验原理1.双闭环系统结构如图:该系统通过电流负反馈和速度负反馈两个反馈闭环实现对电机的控制,其内环是电流控制环,外环是转速控制环。
内环由电流调节器LT,晶闸管移相触发器CF,晶闸管整流器和电动机电枢回路所组成。
电流调节器的给定信号un。
与电机电枢回路的电流反馈信号相比较,其差值送人电流调节器.由调节器的输出通过移相触发器控制整流桥的输出电压。
在这个电压的作用下电机的电流及转矩将相应地发生变化。
电流反馈信号可以通过直流互感器取白肖流电枢回路,也可以用交流互感器取自整流桥的交流输人电流,然后经整流面得。
这两种办法所得结果相同,但后者应用较多,因为交流互感器结构比较简单。
当电流调节器的给定信号u n大于电流反馈信号uf,其差值为正时,经过调节器控制整流桥的移相角α,使整流输出电压升高,电枢电流增大。
反之,当给定信号u n 小于电流反馈信号时,使整流桥输出电压降低,电流减小,它力图使电枢电流与电流给定值相等。
外环是速度环,其中有一个速度调节器ST,在调节器的输入端送入一个速度给定信号u g,由它规定电机运行的转速。
另一个速度反馈信号u fn米自与电机同轴的测速发电机TG。
这个速度给定信号和实际转速反馈信号之差输人到速度调节器,由速度调节器的输出信号u n作电流调节器输人送到电流调节器,通过前面所讲的电流调节环的控制作用调节电机的.电枢电流Ia和转矩T ,使电机转速发生变化,最后达到转速的给定值。
“双闭环控制直流电动机调速系统”数字仿真实验
“双闭环控制直流电动机调速系统”数字仿真实验一、引言1.直流电机调速系统概述直流电机调速系统在现代化工业生产中已经得到广泛应用。
直流电动机具有良好的起、制动性能和调速性能,易于在大范围内平滑调速,且调速后的效率很高。
直流电动机有三种调速方法,分别是改变电枢供电电压、励磁磁通和电枢回路电阻来调速。
对于要求在一定范围内无级平滑调速的系统来说,以调节电枢电压方式为最好,调压调速是调速系统的主要调速方式。
直流调压调速需要有专门的可控直流电源给直流电动机,随着电力电子的迅速发展,直流调速系统中的可控变流装置广泛采用晶闸管,将晶闸管的单向导电性与相位控制原理相结合,构成可控直流电源,以实现电枢端电压的平滑调节。
本实验的题目是双闭环直流电机调速系统设计。
采用静止式可控整流器即改革后的晶闸管—电动机调速系统作为调节电枢供电电压需要的可控直流电源。
由于开环调速系统都能实现一定范围内的无级调速,但是许多需要调速的生产机械常常对静差率有要求则采用反馈控制的闭环调速系统来解决这个问题。
如果对系统的动态性能要求较高,则单闭环系统就难以满足需要。
而转速、电流双闭环直流调节系统采用PI调节器可以获得无静差;构成的滞后校正,可以保证稳态精度;虽快速性的限制来换取系统稳定的,但是电路较简单。
所以双闭环直流调速是性能很好、应用最广的直流调速系统。
转速、电流双闭环控制直流调速系统根据晶闸管的特性,通过调节控制角α大小来调节电压。
基于实验题目,直流电动机调速控制器选用了转速、电流双闭环调速控制电路。
本实验的重点是设计直流电动机调速控制器电路,实验采用转速、电流双闭环直流调速系统为对象来设计直流电动机调速控制器。
为了实现转速和电流两种负反馈分别起作用,可在系统中设置两个调节器,分别调节转速和电流,即分别引入转速负反馈和电流负反馈,二者之间实行嵌套联接。
从闭环结构上看,电流环在里面,称作内环;转速环在外边,称做外环。
这就形成了转速、电流双闭环调速系统。
直流电动机双闭环调速系统MATLAB仿真实验报告
直流电动机双闭环调速系统MATLAB仿真实验报告
实验目的:
本实验旨在设计并实现直流电动机的双闭环调速系统,并使用MATLAB进行仿真实验,验证系统的性能和稳定性。
实验原理:
直流电动机调速系统是通过改变电机的输入电压来实现调速的。
双闭环调速系统采用了速度环和电流环两个闭环控制器,其中速度环的输入为期望转速和实际转速的误差,输出为电机的电流设定值;电流环的输入为速度环输出的电流设定值和实际电流的误差,输出为电机的输入电压。
实验步骤:
1.建立直流电动机的数学模型。
2.设计速度环控制器。
3.设计电流环控制器。
4.进行系统仿真实验。
实验结果:
经过仿真实验,得到了直流电动机双闭环调速系统的性能指标,包括上升时间、峰值过渡性能和稳态误差等。
同时,还绘制了调速曲线和相应的控制输入曲线,分析了调速系统的性能和稳定性。
实验结论:
通过对直流电动机双闭环调速系统的仿真实验,验证了系统的性能和
稳定性。
实验结果表明,所设计的双闭环控制器能够实现快速且稳定的直
流电动机调速,满足了实际工程应用的需求。
实验心得:
本实验通过使用MATLAB进行仿真实验,深入理解了直流电动机的双
闭环调速系统原理和实现方式。
通过实验,我不仅熟悉了MATLAB的使用,还掌握了直流电动机的调速方法和控制器设计的原则。
同时,实验中遇到
了一些问题,比如系统的超调过大等,通过调整控制器参数和优化系统结
构等方法,最终解决了这些问题。
通过本次实验,我对直流电动机调速系
统有了更加深入的理解,为之后的工程应用打下了坚实的基础。
双闭环直流调速实验报告
一、实验目的1. 熟悉晶闸管直流调速系统的组成及其基本原理。
2. 掌握晶闸管直流调速系统参数及反馈环节测定方法。
3. 掌握调节器的工程设计及仿真方法。
4. 通过实验验证双闭环直流调速系统的性能,分析其动态响应和稳态特性。
二、实验原理双闭环直流调速系统由转速环和电流环组成,通过转速负反馈和电流负反馈实现对电机转速和电流的精确控制。
转速环的输出作为电流环的给定值,电流环的输出控制晶闸管整流装置的输出电压,从而调节电机的转速。
三、实验内容1. 系统搭建与调试- 搭建双闭环直流调速系统,包括晶闸管整流装置、电动机、转速检测环节、电流检测环节、转速调节器和电流调节器等。
- 对系统进行调试,确保各环节工作正常。
2. 参数测定- 测定晶闸管整流装置的输出电压、电流和功率等参数。
- 测定转速检测环节和电流检测环节的灵敏度。
3. 调节器设计- 设计转速调节器和电流调节器,采用PI调节器。
- 根据实验要求,确定调节器的参数。
4. 系统仿真- 使用MATLAB/Simulink软件建立双闭环直流调速系统的仿真模型。
- 对系统进行仿真,分析其动态响应和稳态特性。
5. 实验结果分析- 分析实验数据,评估系统的性能。
- 分析系统在不同负载条件下的响应和稳定性。
四、实验步骤1. 系统搭建- 按照实验电路图搭建双闭环直流调速系统。
- 连接晶闸管整流装置、电动机、转速检测环节、电流检测环节、转速调节器和电流调节器等。
2. 系统调试- 调整晶闸管整流装置的触发角,使输出电压和电流稳定。
- 调整转速检测环节和电流检测环节的灵敏度。
- 调整转速调节器和电流调节器的参数,使系统稳定运行。
3. 参数测定- 使用示波器、电流表、电压表等仪器测定晶闸管整流装置的输出电压、电流和功率等参数。
- 使用转速表和电流表测定转速检测环节和电流检测环节的灵敏度。
4. 调节器设计- 根据实验要求,设计转速调节器和电流调节器。
- 使用MATLAB/Simulink软件进行调节器参数的优化。
实验三 双闭环直流调速系统MATLAB仿真
实验三双闭环直流调速系统MATLAB仿真
一、实验目的
1.掌握双闭环直流调速系统的原理及组成;
2.掌握双闭环直流调速系统的仿真。
二、实验原理
一、实验内容
基本数据如下:
直流电动机:220V, 136A, 1460r/min.Ce=0.132Vmin/r.允许过载倍数为1.5;晶闸管装置放大系数: Ks=40;Ts=0.0017s;
电枢回路总电阻: ;
时间常数: ;
电流反馈系数: ;
电流反馈滤波时间常数: ;
电流反馈系数: ;
转速反馈系数α=0.007vmin/r
转速反馈滤波时间常数:
设计要求:设计电流调节器, 要求电流无静差, 电流超调量。
转速无静差, 空载起动到额定负载转速时转速超调量。
并绘制双闭环调速系统的动态结构图。
四、实验步骤
1. 根据原理和内容搭建电路模型;
2. 设置各元器件的参数;
3. 设置仿真参数:仿真时间设为0.06s;计算方法为ode15或ode23。
4. 仿真实现。
五、实验报告
1.Idl=0和Idl=136A时电流和转速的输出波形
2.讨论PI 调节器参数对系统的影响.
τi =TL,s
i i K R
T KT Kp βτ•∑=
…………………………取KT=0.5 转速环设计成典型二型系统
h =5, T 087.0)2(=+==∑∑on i n n T T h hT τ Kn=7.112)1(=∑+=
n
RT h CeTm
h Kn αβ
取11.7 , 11.7/0.087。
双闭环调速课程设计实践报告
运动控制实习报告班级:自动化0331班姓名:XXX学号:082222222电机参数为:调速系统的基本数据如下:晶闸管三相桥式全控整流电路供电的双闭环直流调速系统,直流电动机:220V,136A,1460r/min,电枢电阻Ra=0.2Ω,允许过载倍数λ= 1.5;电枢回路总电阻:R= 0.5Ω,电枢回路总电感:L= 15mH,电动机轴上的总飞轮力矩:GD2= 22.5N ·m2,晶闸管装置:放大系数Ks=40,电流反馈系数:β=0.05V/A,转速反馈系数:α=0.007Vmin/r,滤波时间常数:Toi=0.002s ,Ton=0.01s 设计要求:(1)稳态指标:转速无静差;(2)动态指标:电流超调量σi ≤5%,空载起动到额定转速的转速超调量σn ≤10%一、电机参数的初步计算和电机模型原理1)电机模型基本参数的计算:e 2201360.2C 0.1321460N N a N U I R n --⨯===;L=0.03s Rl T =;2m e m D R 22.50.5T 0.18375C 3750.1329.550.132G s C ⨯===⨯⨯⨯;*10.2i n U I v λβ==所以转速调节器的输出限幅值为10.2v ;*10.22n N U n v α==。
2)电机模型原理:为了分析调速系统的稳定性和动态品质,必须首先建立描述系统的动态物理规律和数学模型,对于连续的线性定长系统,其数学模型是常微分方程,经过拉氏变换,可用传递函数和动态结构图表示。
建立系统动态数学模型的基本步骤如下:(1) 根据系统中各环节的物理规律,列出描述该环节动态过程的微分方程。
(2) 求出各环节的传递函数。
(3) 组成系统动态结构框图,并求出系统的传递函数。
下图为本文直流闭环调速系统的等效电路:图1.1直流闭环调速系统的等效电路L假定主电路的电流连续,则动态方程为:dd0d tdI U RI LE d =++ (3.1) 忽略粘性摩擦及弹性转矩,电动机上的动力学方程为:2e 375C ne l m td GD R T T C d -=(3.2) 额定励磁下的感应电动势和电磁转矩分别为:e E C n = (3.3) e m d T C I = (3.4)式中 l T —包括电动机在内的负载转矩;2GD —电力拖动系统折算到电动机轴上的飞轮惯量;m C —额定励磁下电动机的转矩系数, e 30m C C π=;l T —电枢回路电磁时间常数, l LT R=;m T —电力拖动系统机电时间常数, 2e 375C m mGD RT C =。
双闭环直流电机调速系统设计报告
运动控制系统课程设计专业:自动化设计题目:双闭环直流电机调速系统设计班级:学生姓名:学号:指导教师:分院院长:教研室主任:电气工程学院一、课程设计任务书1.设计参数三相桥式整流电路,已知参数为:P N =555K W ,U N =750V ,I N =760A,n N =375r/min,电动势系数Ce=1.82V .min/r,电枢回路总电阻R=0.14Ω,允许电流过载倍数λ=1.5,触发整流环节的放大倍数Ks=75,电磁时间常数Tl=0.031s,机电时间常数Tm=0.112s 电流反馈时间常数Toi=0.002s,转速反馈滤波时间常数Ton=0.02s 。
且调节器输入输出电压U*nm=U*in=U*cm=10V ,调节器输入电阻R 0=40K Ω。
2.设计内容1)根据题目的技术要求,分析论证并确定闭环调速系统的组成,画出系统组成的原理框图。
2) 建立双闭环调速系统动态数学模型。
3)动态设计计算:根据技术要求,对系统进行动态校正,确定ASR 调节器与ACR 调节器的结构形式及进行参数计算,使调速系统工作稳定,并满足动态性能指标的要求。
4) 利用MATLAB 进行双闭环调速系统仿真分析,并研究参数变化时对直流电动机动态性能的影响。
3.设计要求:1)该调速系统能进行平滑地速度调节,负载电机不可逆运行,具有较宽地转速调速范围(10D ≥),系统在工作范围内能稳定工作。
2)系统静特性良好,无静差(静差率2S ≤)。
3)动态性能指标:转速超调量δn ≤10%,电流超调量5%i δ<,动态最大转速降810%n ∆≤~,调速系统的过渡过程时间(调节时间)1s t s ≤。
4)系统在5%负载以上变化的运行范围内电流连续。
5)主电路采用三项全控桥。
1)、要求在课程设计答辩时提交课程设计报告。
2)、报告应包括以下内容:A、系统各环节选型双闭环直流调速系统的工作原理调节器的工程设计Simulink仿真B、系统调试过程介绍,在调试过程中出现的问题,解决办法等;C、课程设计总结。
双闭环直流调速系统设计及仿真
双闭环直流调速系统设计及仿真———————————————————————————————— 作者:———————————————————————————————— 日期:1绪论直流调速是现代电力拖动自动控制系统中开展较早的技术。
在20世纪60年代,随着晶闸管的出现,现代电力电子和控制理论、计算机的结合促进了电力传动控制技术研究和应用的繁荣。
晶闸管-直流电动机调速系统为现代工业提供了高效、高性能的动力。
尽管目前交流调速的迅速开展,交流调速技术越趋成熟,以及交流电动机的经济性和易维护性,使交流调速广泛受到用户的欢送。
但是直流电动机调速系统以其优良的调速性能仍有广阔的市场,并且建立在反响控制理论根底上的直流调速原理也是交流调速控制的根底[1]。
现在的直流和交流调速装置都是数字化的,使用的芯片和软件各有特点,但根本控制原理有其共性。
对于那些在实际调试过程中存在很大风险或实验费用昂贵的系统,一般不允许对设计好的系统直接进展实验。
然而没有经过实验研究是不能将设计好的系统直接放到生产实际中去的。
因此就必须对其进展模拟实验研究。
当然有些情况下可以构造一套物理装置进展实验,但这种方法十分费时而且费用又高,而且在有的情况下物理模拟几乎是不可能的。
近年来随着计算机的迅速开展,采用计算机对控制系统进展数学仿真的方法已被人们采纳。
但是长期以来,仿真领域的研究重点是仿真模型的建立这一环节上,即在系统模型建立以后要设计一种算法。
以使系统模型等为计算机所承受,然后再编制成计算机程序,并在计算机上运行。
因此产生了各种仿真算法和仿真软件[2]。
由于对模型建立和仿真实验研究较少,因此建模通常需要很长时间,同时仿真结果的分析也必须依赖有关专家,而对决策者缺乏直接的指导,这样就大大阻碍了仿真技术的推广应用。
MATLAB提供动态系统仿真工具Simulink,那么是众多仿真软件中最强大、最优秀、最容易使用的一种。
它有效的解决了以上仿真技术中的问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
TG n
ASR ACR U *n + - U n U i U *i + - U c TA V M + - U d I d UPE L - M T 双闭环直流调速系统的设计与仿真
1、实验目的
1.熟悉晶闸管直流调速系统的组成及其基本原理。
2.掌握晶闸管直流调速系统参数及反馈环节测定方法。
3.掌握调节器的工程设计及仿真方法。
2、实验内容
1.调节器的工程设计
2.仿真模型建立
3.系统仿真分析
3、实验要求
用电机参数建立相应仿真模型进行仿真
4、双闭环直流调速系统组成及工作原理
晶闸管直流调速系统由三相调压器,晶闸管整流调速装置,平波电抗器,电动机—发电机组等组成。
本实验中,整流装置的主电路为三相桥式电路,控制回路可直接由给定电压U ct 作为触发器的移相控制电压,改变U ct 的大小即可改变控制角,从而获得可调的直流电压和转速,以满足实验要求。
为了实现转速和电流两种负反馈分别起作用,可在系统中设置两个调节器,分别调节转速和电流,即分别引入转速负反馈和电流负反馈,二者之间实行嵌套联接,如图。
把转速调节器的输出当作电流调节器的输入,再用电流的输出去控制电力电子变换器UPE 。
在结构上,电流环作为内环,转速环作为外环,形成了转速、电流双闭环调速系统。
为了获得良好的静、动态特性,转速和电流两个调节器采用PI 调节器。
图 转速、电流双闭环调速系统 5、电机参数及设计要求 电机参数
直流电动机:220V ,136A ,1460r/min ,= • min/r ,允许过载倍数=,晶闸管装置放大系数:=40
电枢回路总电阻:R=
时间常数:=, =
电流反馈系数:=A 转速反馈系数:= V • min/r
设计要求
要求电流超调量5%,转速无静差,空载起动到额定转速时的转速超调量10%。
6、调节器的工程设计
电流调节器ACR 的设计
(1)确定电流环时间常数
1)装置滞后时间常数=;
2)电流滤波时间常数=;
3)电流环小时间常数之和=+=;
(2)选择电流调节结构
根据设计要求5%,并且保证稳态电流无差,电流环的控制对象是双惯性型的,且
==<10,故校正成典型 I 型系统,显然应采用PI 型的电流调节器,其传递函数可以写成
式中—电流调节器的比例系数;
—电流调节器的超前时间常数。
(3)计算电流调节器参数
电流调节器超前时间常数:==。
电流环开环增益:要求5%时,取=,因此
于是,ACR的比例系数为
(4)校验近似条件
电流环截止频率=
1)校验晶闸管装置传递函数的近似条件是否满足:因为>,所以满足近似条件; 2)校验忽略反电动势对电流环影响的近似条件是否满足:<,所以满足近似条件;
3) 校验小时间常数近似处理是否满足条件:>,所以满足近似条件。
按照上述参数,电流环满足动态设计指标要求和近似条件。
同理,当KT=时,可得= =;
当KT=时,可得= =
转速调节器ASR的设计
(1)确定转速环时间常数
1)电流环等效时间常数为=;
2)电流滤波时间常数根据所用测速发电机纹波情况,取=;
3)转速环小时间常数=+;
(2)转速调节器的结构选择
由于设计要求转速无静差,转速调节器必须含有积分环节;又根据动态设计要求,应按典型
型系统设计转速环,转速调节器选用比例积分调节器(PI),其传递函数为
式中—电流调节器的比例系数;
—电流调节器的超前时间常数。
(3)选择转速调节器参数
按照跟随和抗扰性能都较好的原则取h=5,则转速调节器的超前时间常数为
,
转速开环增益为
所以转速调节器的比例系数为
(4)校验近似条件
转速环截止频率
1)校验电流环传递函数简化条件是否满足:由于>,所以满足简化条件;2)校验转速环小时间常数近似处理是否满足条件:由于>,所以满足近似条件。
3)核算转速超调量
当h=5时,=%,而==,因此
=%<10%
能满足设计要求。
7、仿真模型的建立
利用MATLAB 上的SIMULINK 仿真平台,建立仿真模型。
如图为电流环的仿真模型,图为加了转速环之后的双闭环控制系统的仿真模型。
图 电流环的仿真模型
图 转速环的仿真模型
8、仿真结果分析 当取=,=时,电流环阶跃响应快,超调量小。
图 电流环仿真结果 当=,=时,电流环阶跃响应无超调,但上升时间长。
图无超调的仿真结果
当=,=时,电流环阶跃响应超调大,但上升时间短。
图超调量较大的仿真结果
当=,=时,图中“step1”中“step time”值为0,“final value”值为10,代表空载状态,此时系统起动速度快,退饱和超调量较大。
图转速环空载高速起动波形图
当=,=时,图中“step1”中“step time”值为0,“final value”值为136,代表满载状态,此时系统起动时间延长,退饱和超调量减小。
图转速环满载高速起动波形图
当=,=时,图中“step1”中“step time”值为1,“final value”值为10,加入扰动瞬间系统曲线有波动,但迅速恢复稳定。
图转速环的抗扰波形图
通过以上仿真分析,与理想的电动机起动特性相比,仿真的结果与理论设计具有差距。
为什么会出现上述情况,从理论的设计过程中不难看出,因为在“典型系统的最佳设计法”时,将一些非线性环节简化为线性环节来处理,如滞后环节近似为一阶惯性,调节器的限幅输出特性近似为线性环节等。
经过大量仿真调试,改变电流和转速环调节器的参数,兼顾电流、转速超调量和起动时间性能指标。
9、心得体会
利用MATLAB上的SIMULINK仿真平台对直流调速系统进行理论设计与调试,使得系统的性能分析过程简单且直观。
通过对系统进行仿真,可以准确地了解到理论设计与实际系统之间的偏差,逐步改进系统结构及参数,得到最优调节器参数,使得系统的调试得到简化,缩短了产品的开发设计周期。
该仿真方法必将在直流调速系统的设计与调试中得到广泛应用。