垂径定理在实际问题中的应用
垂径定理判定
垂径定理判定引言垂径定理是初中数学中的重要概念,用来判断两条线段是否垂直。
本文将详细探讨垂径定理的定义、证明方法以及应用场景。
垂径定理的定义垂径定理是指:如果一个线段作为另一个线段的垂径,那么这两条线段垂直。
垂径定理的证明方法证明方法一:利用斜率证明要证明两条线段垂直,可以检查它们的斜率是否互为倒数。
具体步骤如下: 1. 通过两个点来确定两条线段的斜率。
2. 计算这两条线段的斜率。
3. 判断两个斜率是否互为倒数,若互为倒数,则说明两条线段垂直。
证明方法二:利用向量证明要证明两条线段垂直,还可以利用向量的性质来证明。
具体步骤如下: 1. 通过两个点来确定两条线段的向量。
2. 计算这两条线段的向量。
3. 判断两个向量是否互为垂直向量,若互为垂直向量,则说明两条线段垂直。
垂径定理的应用场景垂径定理在几何学中有广泛的应用,以下是几个常见的应用场景:应用场景一:判断三角形的垂直条件可以利用垂径定理来判断三角形的垂直条件。
如果一个三角形的任意两条边的垂径相交于同一点,则该三角形是直角三角形。
应用场景二:证明平行四边形的对角线相互垂直利用垂径定理可以轻松证明平行四边形的对角线相互垂直。
因为平行四边形的对边互相平行,所以可以使用斜率法证明对角线的斜率互为倒数,从而证明对角线相互垂直。
应用场景三:判断直线与平面的垂直关系垂径定理也可以用于判断直线与平面的垂直关系。
如果一条直线的向量与平面的法向量互为垂直向量,那么这条直线与该平面垂直。
总结垂径定理是一个简单而有用的定理,在几何问题中经常用到。
本文通过详细的讨论和案例应用,阐述了垂径定理的定义、证明方法和应用场景。
掌握了垂径定理的概念和应用,有助于解决更复杂的几何问题。
垂径定理及应用
和你谈谈“垂径定理及应用”我们先来探究一下垂径定理的推导过程:在透明的纸片上面画一个圆O ,作任意一条非直径的弦CD ,再作直径AB 与CD 垂直,交点为P (如图1).沿着这条直径将圆对折(如图2),我们不难发现:弧AC=弧AD , 弧BC=弧BD ,CP=DP ,即垂直于弦的直径平分这条弦,并且平分弦所对的弧.垂径定理是根据圆是特殊轴对称图形得到的.由轴对称图形及轴对称的特征,我们还可以发现:如果一条直线具备①经过圆心;②垂直于弦;③平分弦;④平分弦所对的优弧;⑤平分弦所对的劣弧.这五个条件中的任意两个,不然具备其余的三个,简称“知二推三” .但注意把“经过圆心平分弦”作为题设时,必须是平分非直径的弦,是因为圆的任意两条直径都相互平分. 垂径定理及其推论能使很多问题轻松获解,下面结合例题加以分析.一、求圆半径、弦长或弦心距的长度例1 小唐同学掷出的铅球在场地上砸出一个直径约为10cm ,深约为2cm 的小坑,则该铅球的直径约为( )A .10cmB .14.5cmC .19.5cmD .20cm 解析:根据题意抽象出几何图形(如图3),则问题可转化为:“在⊙O 中,AB 是弦,OC 是半径,OC ⊥AB 于点D ,且AB=10cm ,CD=2cm ,求⊙O 的直径” . 设⊙O 的半径是r ,由垂径定理可得AD=AB 21=5cm ,且OD=OC —CD=r —2. 在Rt △AOD 中,由勾股定理可得222)2(5—r r +=.解得r =7.25.所以⊙O 的直径为14.5cm .故选B .练习:1.如图4,AB 是⊙O 的直径,C 是⊙O 上的一点,若AC=8,AB=10,OD ⊥BC 于点D ,则BD 的长为( )A .23 B .3 C .5 D .62.如图5,AB 是⊙O 的直径,CD 是弦,若AB=10cm ,CD=8cm ,那么A 、B 两点到直线CD 的距离之和为( ) 图1 图2 图3 图4 图5A.12cm B.10cm C.8cm D.6cm 二、求相关角的度数例2 如图6,⊙O的半径为5,弦AB=35,则∠AOB= .解析:过圆心O作OC⊥AB,垂足为C.由垂径定理可得BC=AB21=325,在Rt△BCO中,OC=22BCOB—=22)325(5—=25,∵∠OCB=090,OB=2OC,∴∠OBC=030.又∵OB=OC,∴∠OAC=∠OBC=030,故∠AOB=0180—∠OAC—∠OBC=0120.练习:3.如图7,OA是⊙O的半径,BC是⊙O的弦,OA⊥BC.若∠AOB=046,则∠ADC为()A.044B.046C.023D.088 4.如图8,已知AB是⊙O的直径(∠ACB=090),弦CD⊥AB,AC=3,BC=1,则∠ABD的度数为.反思:在运用垂径定理解题过程中,常见的一条辅助线是过圆心作弦的垂线,构造出垂径定理的基本图形.这条辅助线的功能并不只局限于产生定理的结论,适当延伸,当我们连接弦的端点和圆心时便形成一个直角三角形,进而通过解此直角三角形求弦长、半径、直径、圆心到弦的距离,甚至还可求一些相关角的度数.因此,应该重视这条辅助线.参考答案:1.B;2.D;3.C;4.060.图6图7 图8。
垂径定理及其应用
垂径定理应用举例垂径定理是圆中最基本和最重要的定理之一,利用垂径定理,可以解决许多数学问题,如证明圆中线段相等,角相等,线段垂直,证明弧相等,也是后面学习圆的其他性质的重要依据,利用它可以综合运用勾股定理和三角函数,使解决问题的思路更宽。
在运用垂径定理的时候,必须掌握常见的辅助线的作法,那就是作过圆心的直线或直径、弦心距。
从而构造直角三角形来处理问题。
在垂径定理部分共涉及四条线段的长:弦长a、圆半径r、弦心距d、弓形高h它们之间存在重要的关系式:r = h+d ; r2 = d2 + (a/2)2下面介绍一下垂径定理在解题中的应用。
1、应用公式r2 = d2 + (a/2)2 解决问题。
例1、已知:⊙O的半径为5 ,弦AB∥CD ,AB = 6 ,CD =8 .求:AB与CD间的距离.解:分两种情况:(1)当弦AB、CD在圆心O的两侧过点O作EF⊥AB于E,连结OA、OC,又∵AB∥CD,∴EF⊥CD.(注意:作辅助线是难点,学生往往作OE⊥AB,OF⊥AB,就得EF=OE+OF,错误的结论)由EF过圆心O,EF⊥AB,AB = 6,得AE=3,在Rt△OEA中,由勾股定理,得,∴同理可得:∴EF=OE+OF=4+3=7.(2)当弦AB、CD在圆心O的同侧同(1)的方法可得:OE=4,OF=3.∴.评析:①此题主要是渗透分类思想,培养学生的严密性思维和解题方法:确定图形——分析图形——数形结合——解决问题;②培养学生作辅助线的方法和能力.例2、已知:如图,AB是⊙O的弦,半径OC∥AB ,AB=24 ,OC = 15 .求:BC的长.解:过O作OE⊥AB于E ,则AE=BE=12,过B作BF⊥OC于F ,连结OB.在Rt△OEB中,由勾股定理,得OE=9。
由已知条件可得四边形OEBF是矩形,则BF=OE=9,OF=BE=12。
在Rt△FCB中,由勾股定理,得BC =评析:通过添加辅助线,构造直角三角形,并把已知与所求线段之间建立关系.2、在实际问题中的应用例1、在直径为650mm的圆柱形油槽内装入一些油后.截面如图所示,若油面宽AB=600mm,求油的最大深度.分析:要求油的最大深度,就是求有油的弓形的高,弓形的高是半径与圆心O到弦的距离差,从而不难看出它与半径和弦的一半可以构造直角三角形,然后垂径定理和勾股定理来解决.解:过O点作OC┷AB于E,交弧AB于D点,Rt△OBC中,由勾股定理可求OC=125,所以CD=OD-OC=200。
3.3垂径定理的应用
如图,在⊙O中,AB、AC为互相垂直且 相等的两条弦,OD⊥AB于D,OE⊥AC于E, 求证:四边形ADOE是正方形. C
E
A
· O D
B
A C
.
O
┓ E D B
证明:过O作OE⊥AB,垂足为E,则根据 垂径定理,得AE=BE,CE=DE。 ∴AE-CE=BE-DE。
∴AC=BD
变式:
图中两圆为同心圆
变式1:隐去大圆,连接OA,OB,设
OA=OB,AC、BD有什么关系?为什
么?
O
A C
D B
变式:
图中两圆为同心圆
变式2:隐去小圆,连接OC,OD,设
已知:AB是⊙O直径,CD
是弦,AE⊥CD,BF⊥CD 求证:EC=DF
A E C
M
B
O
.
D F
AB是⊙O的直径,直线MN不经过圆心O,交⊙O于C、 D两点,AE⊥MN于E,BF⊥MN于F。 (1)如图,在下面2个圆中分别补画出满足上述 条件的具有不同位置关系的图形; (2)请你观察(1)中所画的图形,写出一个各 图都具有的两条线段相等的结论(不再标注其它 字母,找结论的过程中所连辅助线不能出现在结 论中,不写推理过程);
.O
.P
垂径定理三角形在生活中的应用
生活应用 1. 测公路的弯道的半径 如图,一条公路的转弯处是一段圆弧(即图中弧CD, 点O是圆心),其中CD=600m,E为弧CD上一点,且 OE⊥CD,垂足为F,EF=90m.求这段弯路的半径. 解:连接OC. C 设弯路的半径为Rm,则0F=(R-90)m. E ∵OE⊥CD, ∴CF= =300(m). F D R 在Rt 中,根据勾股定理,得 OC2=CF2+OF2, 0 即 R2=3002+(R-90)2 解这个方程,得R=545. 答:这段弯路的半径为545m.
垂径定理的应用
与垂径定理有关的情景问题赏析河北 杜友平日常生活中到处都有圆,人们的生活离不开圆,圆被人们看成是最完美、最美丽的图形,垂径定理是圆的重要内容,在实际生活中有着广泛的应用。
近两年的中考中与垂径定理有关的情景问题不断出现,只有理解和掌握了垂径定理用其有关的变化,然后将垂径定理与勾股定理在机结合起来,这样的问题就迎刃而解。
一、圆中的最小值:(2007四川乐山课改,3分)如图,M N 是O 的直径,2M N =,点A 在O 上,30AMN = ∠,B为A N 的中点,P 是直径M N 上一动点,则P A PB +的最小值为( )A.C.1 D.2答案:B二、求圆的半径:利2.(2007湖南张家界课改,9分)如图,已知A B 为圆O 的弦(非直径),E 为A B 的中点,E O 的延长线交圆于点C ,C D AB ∥,且交A O 的延长线于点D .:E O O C 1:2=,4C D =,求圆O 的半径.答案:解: E 是A B 的中点,∴O E A B ⊥,即90AEO ∠=,AB C D ∥,90OCD ∴∠=,A O E D O E ∠=∠ ,∴A O E D O C △∽△,::1:2AE D C O E O C ∴==, 122A E C D ∴==.又2O A O C O E == , 而222AE OE OA +=,C224(2)O E O E ∴+=,O E ∴=∴圆O的半径22O A O E ===三、求弦长:例 3. (2007广东梅州课改,7分)如图,点C 在以A B 为直径的O 上,C D AB ⊥于P ,设A P a PB b ==,.(1)求弦C D 的长;(2)如果10a b +=,求a b 的最大值,并求出此时a b ,的值.答案:解:(1)连结22a b b a O C O C O P +-==,,,所以2222222a b a b PC O C O P ab +-⎛⎫⎛⎫=-=-= ⎪ ⎪⎝⎭⎝⎭,得2C D PC ==(也可以根据A P C C P B △∽△求解)4分(2)由于C D A B ≤,所以10a b +=,得25ab ≤,所以a b 的最大值为25,此时5a b ==.A BB。
初中数学 垂径定理的应用有哪些
初中数学垂径定理的应用有哪些
垂径定理是初中数学中一个重要的定理,它有着广泛的应用。
下面我将介绍垂径定理的几个常见应用。
1. 判断垂直关系:
垂径定理可以用于判断两条线段或弦之间是否垂直。
当一条线段垂直于圆的直径,并且与直径的两个端点相交时,根据垂径定理,与这条线段所得的弦所连接的两个交点连线一定垂直于这条直径。
因此,我们可以通过观察线段和弦的几何关系,利用垂径定理判断它们是否垂直。
2. 求解问题:
垂径定理可以帮助我们求解与垂直关系相关的问题。
例如,已知一条线段垂直于圆的直径,并且与直径的两个端点相交,我们可以利用垂径定理得到与这条线段所得的弦垂直的弦。
这样,我们可以利用已知的线段和求得的弦,进一步解决几何问题,如计算长度、角度等。
3. 证明几何定理:
垂径定理也可以作为证明其他几何定理的基础。
例如,当我们需要证明某个弦与圆的直径垂直时,可以先证明这条弦与圆的直径的一个端点连线是垂直的,然后应用垂径定理得出结论。
垂径定理的应用可以简化证明过程,使证明更加简洁和直观。
4. 解决实际问题:
垂径定理的应用不仅局限于理论推导,还可以帮助我们解决实际问题。
例如,在建筑设计中,我们需要确定某个角度的垂线位置,可以利用垂径定理判断垂线与圆的直径的关系。
在地理测量中,我们需要确定某个位置的垂直高度,也可以运用垂径定理来计算。
以上是垂径定理的几个常见应用。
垂径定理通过垂直关系的判断和问题的求解,帮助我们理解和应用几何知识,解决实际问题。
希望以上内容能够满足你对垂径定理应用的了解。
部编数学九年级上册专题24.2垂径定理的应用(重点题专项讲练)(人教版)(解析版)含答案
专题24.2 垂径定理的应用【典例1】如图,有一座圆弧形拱桥,桥下水面宽度AB为12m,拱高CD为4m.(1)求拱桥的半径;(2)有一艘宽为5m的货船,船舱顶部为长方形,并高出水面3.4m,则此货船是否能顺利通过此圆弧形拱桥,并说明理由.(1)根据垂径定理和勾股定理求解;(2)连接ON,OB,根据勾股定理即可得到结论.解:(1)如图,连接ON,OB.∵OC⊥AB,∴D为AB中点,∵AB=12m,∴BD=12AB=6m.又∵CD=4m,设OB=OC=ON=r,则OD=(r﹣4)m.在Rt△BOD中,根据勾股定理得:r2=(r﹣4)2+62,解得r=6.5.∴拱桥的半径为6.5m.(2)∵CD=4m,船舱顶部为长方形并高出水面3.4m,∴CE=4﹣3.4=0.6(m),∴OE=r﹣CE=6.5﹣0.6=5.9(m),在Rt△OEN中,EN2=ON2﹣OE2=6.52﹣5.92=7.44,∴EN m).∴MN=2EN=2×≈5.4m>5m.∴此货船能顺利通过这座拱桥.1.(2022•南海区校级一模)如图,武汉晴川桥可以近似地看作半径为250m的圆弧,桥拱和路面之间用数根钢索垂直相连,其正下方的路面AB长度为300m,那么这些钢索中最长的一根为( )A.50m B.45m C.40m D.60m【思路点拨】设圆弧的圆心为O,过O作OC⊥AB于C,交AB于D,连接OA,先由垂径定理得AC=BC=12AB=150,再由勾股定理求出OC=200,然后求出CD的长即可.【解题过程】解:设圆弧的圆心为O,过O作OC⊥AB于C,交AB于D,连接OA,如图所示:则OA=OD=250,AC=BC=12AB=150,∴OC=200,∴CD=OD﹣OC=250﹣200=50(m),即这些钢索中最长的一根为50m ,故选:A .2.(2022•旌阳区二模)筒车是我国古代发明的一种水利灌溉工具,如图1,筒车盛水桶的运行轨道是以轴心O 为圆心的圆,如图2,已知圆心O 在水面上方,且⊙O 被水面截得弦AB 长为4米,⊙O 半径长为3米.若点C 为运行轨道的最低点,则点C 到弦AB 所在直线的距离是( )A .1米B .2米C .米D .(3+米【思路点拨】连接OC ,OC 交AB 于D ,由垂径定理得AD =BD =12AB =2(米),再由勾股定理得OD 后求出CD 的长即可.【解题过程】解:连接OC ,OC 交AB 于D ,由题意得:OA =OC =3米,OC ⊥AB ,∴AD =BD =12AB =2(米),∠ADO =90°,∴OD ==∴CD=OC﹣OD=(3即点C到弦AB所在直线的距离是(3故选:C.3.(2022•宣州区二模)如图所示的是一圆弧形拱门,其中路面AB=2m,拱高CD=3m,则该拱门的半径为( )A.53m B.2m C.83m D.3m【思路点拨】取圆心为O,连接OA,由垂径定理设⊙O的半径为rm,则OC=OA=rm,由拱高CD=3m,OD=(3﹣r)m,OD⊥AB,由垂径定理得出AD=1m,由勾股定理得出方程r2=12+(3﹣r)2,解得:r=53,得出该拱门的半径为53m,即可得出答案.【解题过程】解:如图,取圆心为O,连接OA,设⊙O的半径为rm,则OC=OA=rm,∵拱高CD=3m,∴OD=(3﹣r)m,OD⊥AB,∵AB=2m,∴AD=BD=12AB=1m,∵OA2=AD2+OD2,∴r2=12+(3﹣r)2,解得:r=5 3,∴该拱门的半径为53 m,故选:A.4.(2021秋•海淀区校级期中)数学活动课上,同学们想测出一个残损轮子的半径,小的解决方案如下:如图,在轮子圆弧上任取两点A,B,连接AB,再作出AB的垂直平分线,交AB于点C,交AB于点D,测出AB,CD的长度,即可计算得出轮子的半径.现测出AB=40cm,CD=10cm,则轮子的半径为( )A.50cm B.35cm C.25cm D.20cm【思路点拨】由垂径定理,可得出BC的长;连接OB,在Rt△OBC中,可用半径OB表示出OC的长,进而可根据勾股定理求出得出轮子的半径,即可得出轮子的直径长.【解题过程】解:设圆心为O,连接OB.Rt△OBC中,BC=12AB=20cm,根据勾股定理得:OC2+BC2=OB2,即:(OB﹣10)2+202=OB2,解得:OB=25;故轮子的半径为25cm.故选:C.5.(2021秋•曾都区期中)在圆柱形油槽内装有一些油,油槽直径MN为10分米.截面如图,油面宽AB 为6分米,如果再注入一些油后,当油面宽变为8分米,油面AB上升( )A.1分米B.4分米C.3分米D.1分米或7分米【思路点拨】实质是求两条平行弦之间的距离.根据勾股定理求弦心距,作和或差分别求解.【解题过程】解:连接OA.作OG⊥AB于G,则在直角△OAG中,AG=3分米,因为OA=5cm,根据勾股定理得到:OG=4分米,即弦AB的弦心距是4分米,同理当油面宽AB为8分米时,弦心距是3分米,当油面没超过圆心O时,油上升了1分米;当油面超过圆心O时,油上升了7分米.因而油上升了1分米或7分米.故选:D.6.(2021秋•宁波期末)把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知EF=CD=6cm,则球的半径为( )A.3cm B.134cm C.154cm D.174cm【思路点拨】设球的平面投影圆心为O,过点O作ON⊥AD于点N,延长NO交BC于点M,连接OF,由垂径定理得:NF=EN=12EF=3(cm),设OF=xcm,则OM=(4﹣x)cm,再在Rt△MOF中由勾股定理求得OF的长即可.【解题过程】解:设球的平面投影圆心为O,过点O作ON⊥AD于点N,延长NO交BC于点M,连接OF,如图所示:则NF=EN=12EF=3(cm),∵四边形ABCD是矩形,∴∠C=∠D=90°,∴四边形CDNM是矩形,∴MN=CD=6cm,设OF=xcm,则OM=OF,∴ON=MN﹣OM=(6﹣x)cm,在Rt△ONF中,由勾股定理得:ON2+NF2=OF2,即:(6﹣x)2+32=x2,解得:x=15 4,即球的半径长是154cm,故选:C.7.(2022•鄂州)工人师傅为检测该厂生产的一种铁球的大小是否符合要求,设计了一个如图(1)所示的工件槽,其两个底角均为90°,将形状规则的铁球放入槽内时,若同时具有图(1)所示的A、B、E三个接触点,该球的大小就符合要求.图(2)是过球心及A、B、E三点的截面示意图,已知⊙O的直径就是铁球的直径,AB是⊙O的弦,CD切⊙O于点E,AC⊥CD、BD⊥CD,若CD=16cm,AC=BD=4cm,则这种铁球的直径为( )A .10cmB .15cmC .20cmD .24cm【思路点拨】连接OE ,交AB 于点F ,连接OA ,∵AC ⊥CD 、BD ⊥CD ,由矩形的判断方法得出四边形ACDB 是矩形,得出AB ∥CD ,AB =CD =16cm ,由切线的性质得出OE ⊥CD ,得出OE ⊥AB ,得出四边形EFBD 是矩形,AF =12AB =12×16=8(cm ),进而得出EF =BD =4cm ,设⊙O 的半径为rcm ,则OA =rcm ,OF =OE ﹣EF =(r ﹣4)cm ,由勾股定理得出方程r 2=82+(r ﹣4)2,解方程即可求出半径,继而求出这种铁球的直径.【解题过程】解:如图,连接OE ,交AB 于点F ,连接OA ,∵AC ⊥CD 、BD ⊥CD ,∴AC ∥BD ,∵AC =BD =4cm ,∴四边形ACDB 是平行四边形,∴四边形ACDB 是矩形,∴AB ∥CD ,AB =CD =16cm ,∵CD 切⊙O 于点E ,∴OE ⊥CD ,∴OE ⊥AB ,∴四边形EFBD 是矩形,AF =12AB =12×16=8(cm ),∴EF =BD =4cm ,设⊙O 的半径为rcm ,则OA =rcm ,OF =OE ﹣EF =(r ﹣4)cm ,在Rt△AOF中,OA2=AF2+OF2,∴r2=82+(r﹣4)2,解得:r=10,∴这种铁球的直径为20cm,故选:C.8.(2022•上海)如图所示,小区内有个圆形花坛O,点C在弦AB上,AC=11,BC=21,OC=13,则这个花坛的面积为 400π .(结果保留π)【思路点拨】根据垂径定理,勾股定理求出OB2,再根据圆面积的计算方法进行计算即可.【解题过程】解:如图,连接OB,过点O作OD⊥AB于D,∵OD⊥AB,OD过圆心,AB是弦,∴AD=BD=12AB=12(AC+BC)=12×(11+21)=16,∴CD=BC﹣BD=21﹣16=5,在Rt△COD中,OD2=OC2﹣CD2=132﹣52=144,在Rt△BOD中,OB2=OD2+BD2=144+256=400,∴S⊙O=π×OB2=400π,故答案为:400π.9.(2021秋•溧水区期末)在一个残缺的圆形工件上量得弦BC=8cm,BC的中点D到弦BC的距离DE=2cm,则这个圆形工件的半径是 5 cm.【思路点拨】由垂径定理的推论得圆心在直线DE上,设圆心为0,连接OB,半径为R,再由垂径定理得BE=CE=12 BC=4(cm),然后由勾股定理得出方程,解方程即可.【解题过程】解:∵DE⊥BC,DE平分弧BC,∴圆心在直线DE上,设圆心为O,半径为Rcm,如图,连接OB,则OD⊥BC,OE=R﹣DE=(R﹣2)cm,∴BE=CE=12BC=4(cm),在Rt△OEB中,OB2=BE2+OE2,即R2=42+(R﹣2)2,解得:R=5,即这个圆形工件的半径是5cm,故答案为:5.10.(2022•柯桥区一模)《九章算术》是中国传统数学重要的著作之一,奠定了中国传统数学的基本框架.其中卷九中记载了一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”其意思是:如图,AB为⊙O的直径,弦CD⊥AB于点E,BE=1寸,CD=1尺,那么直径AB的长为多少寸?(注:1尺=10寸)根据题意,该圆的直径为 26 寸.【思路点拨】连接OC,由直径AB与弦CD垂直,根据垂径定理得到E为CD的中点,由CD的长求出DE的长,设OC =OA=x寸,则AB=2x寸,OE=(x﹣1)寸,由勾股定理得出方程,解方程求出半径,即可得出直径AB 的长.【解题过程】解:连接OC,∵弦CD⊥AB,AB为圆O的直径,∴E为CD的中点,又∵CD=10寸,∴CE=DE=12CD=5寸,设OC=OA=x寸,则AB=2x寸,OE=(x﹣1)寸,由勾股定理得:OE2+CE2=OC2,即(x﹣1)2+52=x2,解得x=13,∴AB=26寸,即直径AB的长为26寸,故答案为:26.11.(2021秋•瑞安市期末)某公路上有一隧道,顶部是圆弧形拱顶,圆心为O,隧道的水平宽AB为24m,AB离地面的高度AE=10 m,拱顶最高处C离地面的高度CD为18m,在拱顶的M,N处安装照明灯,且M,N离地面的高度相等都等于17m,则MN= 10 m.【思路点拨】根据题意和垂径定理得到CG=8m,AG=12m,CH=1m,根据勾股定理求得半径,进而利用勾股定理求得MH,即可求得MN.【解题过程】解:设CD于AB交于G,与MN交于H,∵CD=18m,AE=10m,AB=24m,HD=17m,∴CG=8m,AG=12m,CH=1m,设圆拱的半径为r,在Rt△AOG中,OA2=OG2+AG2,∴r2=(r﹣8)2+122,解得r=13,∴OC=13m,∴OH=13﹣1=12m,在Rt△MOH中,OM2=OH2+MH2,∴132=122+MH2,解得MH2=25,∴MH=5m,∴MN=10m,故答案为10.12.(2022•荆州)如图,将一个球放置在圆柱形玻璃瓶上,测得瓶高AB=20cm,底面直径BC=12cm,球的最高点到瓶底面的距离为32cm,则球的半径为 7.5 cm(玻璃瓶厚度忽略不计).【思路点拨】设球心为O,过O作OM⊥AD于M,连接OA,设球的半径为rcm,由垂径定理得AM=DM=12AD=6(cm)然后在Rt△OAM中,由勾股定理得出方程,解方程即可.【解题过程】解:如图,设球心为O,过O作OM⊥AD于M,连接OA,设球的半径为rcm,由题意得:AD=12cm,OM=32﹣20﹣r=(12﹣r)(cm),由垂径定理得:AM=DM=12AD=6(cm),在Rt△OAM中,由勾股定理得:AM2+OM2=OA2,即62+(12﹣r)2=r2,解得:r=7.5,即球的半径为7.5cm,故答案为:7.5.13.(2021秋•温州校级月考)如图是郑州圆形“戒指桥”,其数学模型为如图所示.已知桥面跨径AB=20米,D为圆上一点,DC⊥AB于点C,且CD=BC=14米,则该圆的半径长为 26 米.【思路点拨】过O作ON⊥AB于N,过D作DM⊥ON于M,由垂径定理得AN=BN=12AB=10(米),再证四边形DCNM是矩形,则MN=CD=14米,DM=CN=BC+BN=24(米),设该圆的半径长为r米,然后由题意列出方程组,解方程组即可.【解题过程】解:过O作ON⊥AB于N,过D作DM⊥ON于M,如图所示:则AN=BN=12AB=10(米),∠ONC=∠DMN=90°,∵DC⊥AB,∴∠DCN=90°,∴四边形DCNM是矩形,∴MN=CD=14米,DM=CN=BC+BN=24(米),设该圆的半径长为r米,由题意得:ON2=r2−102 OM2=r2−242 OM=ON−14,解得:r=26ON=24 OM=10,即该圆的半径长为26米,故答案为:26.14.(2021秋•金安区校级期末)往直径为680mm的圆柱形油槽内装入一些油以后,截面如图所示,若油面宽AB=600mm,求油的最大深度.【思路点拨】连接OB,过点O作OC⊥AB于点D,交⊙O于点C,先由垂径定理求出BD的长,再根据勾股定理求出OD 的长,进而可得出CD的长.【解题过程】解:过点O作OC⊥AB于点D,交弧AB于点C.∵OC⊥AB于点D∴BD=12AB=12×600=300mm,∵⊙O的直径为680mm∴OB=340mm…(5分)∵在Rt△ODB中,OD=160(mm),∴DC=OC﹣OD=340﹣160=180(mm);答:油的最大深度为180mm.15.(2021秋•惠城区校级期中)如图,⊙O为水管横截面,水面宽AB=24cm,水的最大深度为18cm,求⊙O的半径.【思路点拨】由垂径定理可知AD=12cm,设⊙O的半径为rcm,则OD=(18﹣r)cm,在Rt△AOd中,再利用勾股定理即可求出r的值.【解题过程】解:作OD⊥AB于D,交⊙O于E,连接OA,∴AD=12AB=12×24=12cm,设⊙O的半径为rcm,则OD=ED﹣OE=(18﹣r)cm,在Rt△AOD中,由勾股定理得:OA2=OD2+AD2,即r2=(18﹣r)2+122,解得:r=13,即⊙O的半径为13cm.16.(2021秋•奈曼旗期中)如图所示,测得AB是8mm,测得钢珠顶端离零件表面的距离为8mm,求这个圆的直径.【思路点拨】过O作OC⊥AB于C,交优弧AB于D,连接AO,由垂径定理得AC=BC=12AB=4(mm),设⊙O的半径为rmm,则OC=CD﹣OD=(8﹣r)mm,然后在Rt△AOC中,由勾股定理得出方程,解方程即可.【解题过程】解:如图,过O作OC⊥AB于C,交优弧AB于D,连接AO,则AC=BC=12AB=4(mm),CD=8mm,设⊙O的半径为rmm,则OC=CD﹣OD=(8﹣r)mm,在Rt△AOC中,由勾股定理得:42+(8﹣r)2=r2,解得:r=5,即⊙O的半径为5mm,∴⊙O的直径为10mm.17.(2021秋•阜阳月考)《九章算术》是我国古代第一部自成体系的数学专著,代表了东方数学的最高成就,它的算法体系至今仍在推动着计算机的发展和应用.书中记载:“今有圆材埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”译为:“今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯这木材,锯口深1寸(ED=1寸),锯道长1尺(AB=1尺=10寸).问这块圆形木材的直径(AC)是多少?”如图所示,请根据所学的知识解答上述问题.【思路点拨】设⊙O的半径为x寸.在Rt△ADO中,AD=5寸,OD=(x﹣1)寸,OA=x寸,则有x2=(x﹣1)2+52,解方程即可.【解题过程】解:设⊙O的半径为x寸,∵OE⊥AB,AB=10寸,∴AD=BD=12AB=5寸,在Rt△AOD中,OA=x,OD=x﹣1,由勾股定理得x2=(x﹣1)2+52,解得x=13,∴⊙O的直径AC=2x=26(寸),答:这块圆形木材的直径(AC)是26寸.18.(2021秋•高新区期中)某居民小区的一处圆柱形的输水管道破裂,维修人员为更换管道,需要确定管道圆形截面的半径,如图是水平放置的破裂管道有水部分的截面.(1)请你补全这个输水管道的圆形截面图;(要求尺规作图,保留作图痕迹,不写作法)(2)若这个输水管道有水部分的水面宽AB=32cm,水最深处的地方高度为8cm,求这个圆形截面的半径.【思路点拨】(1)根据尺规作图的步骤和方法做出图即可;(2)先过圆心O作半径OD⊥AB,交AB于点D,设半径为r,得出AD、OD的长,在Rt△AOD中,根据勾股定理求出这个圆形截面的半径.【解题过程】解:(1)如图所示;(2)作OD⊥AB于D,并延长交⊙O于C,则D为AB的中点,∵AB=32cm,∴AD=12AB=16.设这个圆形截面的半径为xcm,又∵CD=8cm,∴OC=x﹣8,在Rt△OAD中,∵OD2+AD2=OA2,即(x﹣8)2+162=x2,解得,x=20.∴圆形截面的半径为20cm.19.(2021秋•黔西南州期末)如图,在一座圆弧形拱桥,它的跨度AB为60m,拱高PM为18m,当洪水泛滥到跨度只有30m时,就要采取紧急措施,若某次洪水中,拱顶离水面只有4m,即PN=4m时,试通过计算说明是否需要采取紧急措施.【思路点拨】由垂径定理可知AM=BM、A′N=B′N,利用AB=60,PM=18,可先求得圆弧所在圆的半径,再计算当PN =4时A′B′的长度,与30米进行比较大小即可.【解题过程】解:设圆弧所在圆的圆心为O,连接OA、OA′,设半径为x米,则OA=OA′=OP,由垂径定理可知AM=BM,A′N=B′N,∵AB=60米,∴AM=30米,且OM=OP﹣PM=(x﹣18)米,在Rt△AOM中,由勾股定理可得AO2=OM2+AM2,即x2=(x﹣18)2+302,解得x=34,∴ON=OP﹣PN=34﹣4=30(米),在Rt△A′ON中,由勾股定理可得A′N=16(米),∴A′B′=32米>30米,∴不需要采取紧急措施.20.(2021秋•余干县期中)如图是某蔬菜基地搭建一座圆弧型蔬菜棚,跨度AB=3.2米,拱高CD=0.8米(C为AB的中点,D为弧AB的中点).(1)求该圆弧所在圆的半径;(2)在距蔬菜棚的一端0.4米处竖立支撑杆EF,求支撑杆EF的高度.【思路点拨】(1)设弧AB所在的圆心为O,D为弧AB的中点,CD⊥AB于C,延长DC至O点,设⊙O的半径为R,利用勾股定理求出即可;(2)利用垂径定理以及勾股定理得出HF的长,再求出EF的长即可.【解题过程】解:(1)设弧AB所在的圆心为O,D为弧AB的中点,CD⊥AB于C,延长DC经过O点,则BC=12AB=1.6(米),设⊙O的半径为R,在Rt△OBC中,OB2=OC2+CB2,∴R2=(R﹣0.8)2+1.62,解得R=2,即该圆弧所在圆的半径为2米;(2)过O作OH⊥FE于H,则OH=CE=1.6﹣0.4=1.2=65(米),OF=2米,在Rt△OHF中,HF== 1.6(米),∵HE=OC=OD﹣CD=2﹣0.8=1.2(米),∴EF=HF﹣HE=1.6﹣1.2=0.4(米),即支撑杆EF的高度为0.4米.21.如图①,圆形拱门屏风是中国古代家庭中常见的装饰隔断,既美观又实用,彰显出中国元素的韵味.图②是一款拱门的示意图,其中C为AB中点,D为拱门最高点,线段CD经过圆心,已知拱门的半径为1.5m,拱门最下端AB=1.8m.(1)求拱门最高点D到地面的距离;(2)现需要给房间内搬进一个长和宽为2m,高为1.2m的桌子,已知搬桌子的两名工人在搬运时所抬高度相同,且高度为0.5m 2.236)【思路点拨】(1)如图②中,连接AO.利用勾股定理求出OC即可;(2)如图②﹣1,弦EF=2m,且EF⊥CD,连接OE.求出CJ即可.【解题过程】解:(1)如图②中,连接AO.∵CD⊥AB,CD经过圆心O,∴AC=CB=0.9m,∴OC= 1.2(m),∴CD=OD+PC=1.5+1.2=2.7(m),∴拱门最高点D到地面的距离为2.7m;(2)如图②﹣1,弦EF=2m,且EF⊥CD,连接OE.∵CD⊥EF,CD经过圆心,∴EJ=JF=1m,≈1.118,∴OJ=2∴CJ=1.2﹣1.118=0.082(m),∵0.5>0.082,∴搬运该桌子时能够通过拱门.22.(2021秋•姑苏区校级月考)诗句“君到姑苏见,人家尽枕河”所描绘的就是有东方威尼斯之称的水城苏州.小勇要帮忙船夫计算一艘货船是否能够安全通过一座圆弧形的拱桥,现测得桥下水面AB宽度16m时,拱顶高出水平面4m,货船宽12m,船舱顶部为矩形并高出水面3m.(1)请你帮助小勇求此圆弧形拱桥的半径;(2)小勇在解决这个问题时遇到困难,请你判断一下,此货船能顺利通过这座拱桥吗?说说你的理由.【思路点拨】(1)根据垂径定理和勾股定理求解;(2)连接ON,利用勾股定理求出EN,得出MN的长,即可得到结论.【解题过程】解:(1)如图,连接OB.∵OC⊥AB,∴D为AB中点,∵AB=16m,∴BD=12AB=8(m),又∵CD=4m,设OB=OC=r,则OD=(r﹣4)m.在Rt△BOD中,根据勾股定理得:r2=(r﹣4)2+82,解得r=10.答:此圆弧形拱桥的半径为10m.(2)此货船不能顺利通过这座拱桥,理由如下:连接ON,∵CD=4m,船舱顶部为长方形并高出水面3m,∴CE=4﹣3=1(m),∴OE=r﹣CE=10﹣1=9(m),在Rt△OEN中,由勾股定理得:EN∴MN=2EN=<12m.∴此货船B不能顺利通过这座拱桥.。
第24章圆-第九讲圆的垂径定理及运用(教案)
(五)总结回顾(用时5分钟)
今天的学习,我们了解了圆的垂径定理的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对这个定理的理解。我希望大家能够掌握这些知识点,并在解决几何问题时灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
最后,我认识到,教学不仅仅是传授知识,更重要的是引导学生学会思考、学会学习。在今后的教学中,我将更加关注学生的个体差异,尽量满足不同学生的学习需求,帮助他们建立自信,培养解决问题的能力。
五、教学反思
在上完这节课之后,我思考了很多。首先,关于圆的垂径定理的教学,我发现学生们对于定理的理解和掌握程度超出了我的预期。他们能够通过直观的图形和简单的例子,快速抓住定理的核心。特别是在实践活动中,学生们通过分组讨论和实验操作,将理论知识与实际应也注意到,在定理的证明部分,有一部分学生还是感到有些困惑。我意识到,几何证明对于他们来说是一个难点,需要更多的引导和练习。在接下来的教学中,我打算多花一些时间,通过逐步引导和反复练习,帮助学生克服这个难题。
-举例:在圆中,若AB为弦,O为圆心,OD垂直于AB,则OD平分AB,并且AD=BD,同时弧AC和弧BC相等。
2.教学难点
-理解并证明垂径定理:学生需要理解定理背后的几何逻辑,并能够通过作图和逻辑推理来证明定理的正确性。
-定理在实际问题中的灵活应用:学生在面对具体问题时,可能会难以找到合适的入手点,不知道如何将定理应用到解题过程中。
针对这些教学难点和重点,教师应采用以下策略:
-使用直观的动画或实物模型来展示垂径定理的证明过程,帮助学生理解。
-通过典型例题的讲解,展示定理在实际问题中的应用方法,并指导学生进行步骤分解。
初中数学常见的命题和定理垂径定理
初中数学中,垂径定理是一个常见且重要的命题和定理,它在解决相关几何问题中起到了关键的作用。
下文将从垂径定理的概念入手,深入解析其原理和应用,并列举一些相关的例题,以便读者更加深入地理解和掌握这一重要定理。
一、垂径定理的概念垂径定理是指:如果在一个圆上,直径的两端连接圆上任意一点,那么这两条线段所夹的角都是直角。
简而言之,垂径定理可以理解为描述直径和圆上一点所构成的角是直角的规律。
二、垂径定理的证明1. 引理:直径是任意一点的最短距离。
这是基本的几何定理,无需证明。
2. 证明:设在圆上有直径AB,圆上的一点C。
连接AC和BC两条线段。
假设∠ACB不是直角,而是锐角或钝角。
那么,以AC为直径作圆,由于ACB不是直角,必定有另一个点D在圆上,使得∠ADB是锐角或钝角。
根据引理,AD+DB要小于或等于AE+EB,而AE+EB等于AB,所以AD+DB小于或等于AB,这与AD+DB等于AB矛盾。
由此可知,∠ACB必须是直角。
三、垂径定理的应用垂径定理在实际问题中有着广泛的应用。
通过运用垂径定理,我们可以解决许多与圆相关的问题,如圆的切线问题、直线与圆的位置关系问题等。
1. 圆的切线问题由垂径定理可知,连接圆上点和圆心构成的线段为直径,因此连接切点和圆心的线段垂直于切线。
这一性质是圆的切线问题得以解决的基础。
2. 直线与圆的位置关系问题利用垂径定理,可以判断直线与圆的位置关系。
当直线与圆相切时,由于切点和圆心连线垂直于切线,可根据垂径定理得出直线与圆相切的结论。
四、垂径定理的例题1. 已知AB是⊙O的直径,C,D是圆周上的两点,AC与BD相交于E,割⊙O的弦AE与BE的关系为()A. AE=BEB. AE>BEC. AE<BED. 无法确定解析:根据垂径定理可知,连接圆上点和圆心构成的线段为直径,因此以AE为直径的⊙O必定经过B点,以BE为直径的⊙O必定经过A 点,所以EA=EB。
2. 如图,在直径AB上取一点C,过点C作弦CD,与⊙O交于点E,连接AE、EB,若CD与AB垂直,求证:AC=CB。
圆中垂径定理综合应用(3大类题型)(含解析)
圆中垂径定理综合应用(3大类题型)重难点题型归纳【题型1直接运用勾股定理求线段】【题型2勾股定理与方程综合求线段】【题型3垂径定理在实际中应用】满分必练【题型1直接运用勾股定理求线段】1(2023•大连模拟)如图所示,在⊙O中,直径AB=10,弦DE⊥AB于点C,连接DO.若OC:OB =3:5,则DE的长为()A.3B.4C.6D.82(2023•杭州模拟)如图,AB是⊙O的直径,弦CD⊥AB于点E,OC=5cm,CD=8cm,则AE= ( )cm.A.8B.5C.3D.23(2023•宜昌)如图,OA,OB,OC都是⊙O的半径,AC,OB交于点D.若AD=CD=8,OD=6,则BD的长为()A.5B.4C.3D.24(2023•金寨县校级模拟)如图,AB是⊙O的直径,弦CD⊥AB于点E,若CD=6,AB=10,则AE 的长为()A.1B.2C.3D.45(2023•亳州三模)如图,在⊙O中,直径AB⊥CD于点H.若AB=10,CD=8,则BH的长为()A.5B.4C.3D.26(2023•容县一模)如图,AB是⊙O的直径,CD是⊙O的弦,AB⊥CD,垂足为点E,CD=8cm,AB=10cm,则AE=.7(2023•衡南县三模)在⊙O中,直径AB=4,弦CD⊥AB于P,OP=3,则弦CD的长为.8(2023•东台市校级模拟)如图,A、B、C是⊙O上的点,OC⊥AB,垂足为点D,若OA=5,AB= 8,则线段CD的长为=.9(2023•望城区模拟)如图,AB是⊙O的直径,且AB=10cm,弦CD⊥AB于点E,CD=8cm,连接OC,则BE=cm.10(2023•长沙县二模)如图,⊙O的半径为5,弦AB=8,点C是AB的中点,连接OC,则OC的长为.【题型2勾股定理与方程综合求线段】11(2023•邯郸模拟)如图,以CD为直径的⊙O中,弦AB⊥CD于M.AB=16,CM=16.则MD 的长为()A.4B.6C.8D.1012(2022秋•南开区校级期末)如图,在⊙O中,半径OD⊥弦AB于点C,连接AO并延长交⊙O于点E,连接EC,若AB=8,CD=2,则EC的长度为()A.215B.8C.210D.21313(2022秋•文登区期末)如图,AB为⊙O的直径,弦CD⊥AB于点E,若AE=CD=8,则⊙O的半径为()D.5A.3B.4C.9214(2022秋•西湖区校级期末)如图,AB是⊙O的直径,弦CD⊥AB交于点E.若BE=10,CD= 8,则⊙O的半径为()A.3B.4.2C.5.8D.615(2022秋•泰山区校级期末)一块圆形宣传标志牌简图如图所示,点A,B,C在⊙O上,CD垂直平分AB于点D.现测得AB=16dm,DC=4dm,则圆形标志牌的半径为()A.6dmB.5dmC.10dmD.3dm16(2022秋•任城区校级期末)如图,CD为⊙O的直径,弦AB⊥CD,垂足为E,CE=2寸,AB=16寸,直径CD的长是()A.28寸B.30寸C.36寸D.34寸17(2023•汉阳区校级一模)如图,CD为⊙O直径,弦AB⊥CD于点E,CE=1,AB=6,则CD长为()A.10B.9C.8D.518(2023•汇川区三模)在半径为r的圆中,弦BC垂直平分OA,若BC=6,则r的值是()A.3B.33C.23D.23219(2023春•仪征市期末)如图,AB是⊙O的直径,弦CD⊥AB于点E,CE=3,BE=1,则OC=.20(2023•大冶市一模)如图,AB是⊙O的弦,C是AB的中点,连接OC并延长交⊙O于点D.若CD=1,AB=4,则⊙O的半径是 52 .【题型3垂径定理在实际中应用】21(2022秋•海淀区校级月考)如图,一条公路的转弯处是一段圆弧AB,点O是弧AB的圆心,C为弧AB上一点,OC⊥AB,垂足为D.已知AB=60m,CD=10m,求这段弯路的半径.22(2022秋•郾城区期中)如图是一根圆形下水管道的横截面,管内有少量的污水,此时的水面宽AB 为0.6米,污水的最大深度为0.1米.(1)求此下水管横截面的半径;(2)随着污水量的增加,水位又被抬升0.7米,求此时水面的宽度增加了多少?23(2022秋•沭阳县期中)如图是某蔬菜基地搭建一座圆弧型蔬菜棚,跨度AB=3.2米,拱高CD=0.8米(C为AB的中点,D为弧AB的中点).(1)求该圆弧所在圆的半径;(2)在距蔬菜棚的一端0.4米处竖立支撑杆EF,求支撑杆EF的高度.24如图,有一拱桥是圆弧形,它的跨度(所对弦长)为60m,拱高18m,当水面涨至其跨度只有30m时,就要采取紧急措施.某次洪水来到时,拱顶离水面只有4m,问是否需要采取紧急措施?25如图,残缺轮片上弦AB的垂直平分线交弧AB于点C,交弦AB于点D,已知AB=24cm,CD=8cm.(1)找出此残缺轮片所在圆的圆心(写出找到圆心的方法);(2)求此圆的半径.26某地有一座圆弧形拱桥,所在圆的圆心为点O,桥下水面宽度AB为7.2m,过点O作OC⊥AB于点D,交圆弧于点C,CD=2.4m(如图).现有一艘宽3m、船舱顶部高出水面AB2m的货船要经过这座拱桥,此货船能否顺利通过这座拱桥?27我国古算书《九章算术》中有“圆材埋壁”一题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径(直径)几何?”(注:如图,⊙O表示圆材截面,CE是⊙O的直径,AB表示“锯道”,CD表示“锯深”,1尺=10寸,求圆材的直径长就是求CE的长.)28如图,半圆拱桥的圆心为O,圆的半径为5m,一只8m宽的船装载一集装箱,箱顶宽6m,离水面AB高3.8m,这条船能过桥洞吗?请说明理由.29(2022秋•沭阳县校级月考)如图是一个半圆形桥洞截面示意图,圆心为O,直径AB是河底线,弦CD是水位线,CD∥AB,且AB=26m,OE⊥CD于点E.水位正常时测得OE:CD=5:24(1)求CD的长;(2)现汛期来临,水面要以每小时4m的速度上升,则经过多长时间桥洞会刚刚被灌满?30(2022秋•东台市期中)如图,是一张盾构隧道断面结构图.隧道内部为以O为圆心,AB为直径的圆.隧道内部共分为三层,上层为排烟道,中间为行车隧道,下层为服务层.点A到顶棚的距离为1.6m,顶棚到路面的距离是6.4m,点B到路面的距离为4.0m.请求出路面CD的宽度.(精确到0.1m)圆中垂径定理综合应用(3大类题型)重难点题型归纳【题型1直接运用勾股定理求线段】【题型2勾股定理与方程综合求线段】【题型3垂径定理在实际中应用】满分必练【题型1直接运用勾股定理求线段】1(2023•大连模拟)如图所示,在⊙O中,直径AB=10,弦DE⊥AB于点C,连接DO.若OC:OB =3:5,则DE的长为()A.3B.4C.6D.8【答案】D【解答】解:∵AB=10,∴OA=OB=5,∵OC:OB=3:5,∴OC=3,在Rt△OCD中,CD=OD2-OC2=52-32=4,∵DE⊥AB,∴DE=2CD=8,故选:D.2(2023•杭州模拟)如图,AB是⊙O的直径,弦CD⊥AB于点E,OC=5cm,CD=8cm,则AE= ( )cm.A.8B.5C.3D.2【答案】A【解答】解:∵AB⊥CD,AB是直径,∴CE=ED=4cm,在Rt△OEC中,OE=OC2-EC2=52-42=3(cm),∴AE=OA+OE=5+3=8(cm),故选:A.3(2023•宜昌)如图,OA ,OB ,OC 都是⊙O 的半径,AC ,OB 交于点D .若AD =CD =8,OD =6,则BD 的长为()A.5B.4C.3D.2【答案】B 【解答】解:∵AD =CD =8,∴OB ⊥AC ,在Rt △AOD 中,OA =AD 2+OD 2=82+62=10,∴OB =10,∴BD =10-6=4.故选:B .4(2023•金寨县校级模拟)如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,若CD =6,AB =10,则AE 的长为()A.1B.2C.3D.4【答案】A 【解答】解:连接OC ,∵直径AB ⊥CD ,∴EC =12CD =12×6=3,∵AB =10,∴OC =OA =5,∴OE =OC 2-CE 2=4,∴AE =OA -OE =1.故选:A .5(2023•亳州三模)如图,在⊙O中,直径AB⊥CD于点H.若AB=10,CD=8,则BH的长为()A.5B.4C.3D.2【答案】D【解答】解:连接OC,∵AB⊥CD,CD=8,∴CH=DH=12CD=4,∠OHC=90°,∵AB=10,∴OB=OC=5,∴OH=OC2-CH2=52-42=3,∴BH=OB-OH=2,故选:D.6(2023•容县一模)如图,AB是⊙O的直径,CD是⊙O的弦,AB⊥CD,垂足为点E,CD=8cm,AB=10cm,则AE=2cm.【答案】2cm.【解答】解:由题意可知,AB垂直平分CD,OC=OA=12AB=5cm,∴CE=12CD=4cm,在Rt△CEO中,OE=OC2-CE2=52-42=3(cm),∴AE=OA-OE=2cm.故答案为:2cm.7(2023•衡南县三模)在⊙O中,直径AB=4,弦CD⊥AB于P,OP=3,则弦CD的长为2.【答案】见试题解答内容【解答】解:连接OC,∵在⊙O中,直径AB=4,AB=2,∴OA=OC=12∴弦CD⊥AB于P,OP=3,∴CP=OC2-OP2=1,∴CD=2CP=2.故答案为:2.8(2023•东台市校级模拟)如图,A、B、C是⊙O上的点,OC⊥AB,垂足为点D,若OA=5,AB= 8,则线段CD的长为=2.【答案】2.【解答】解:∵OC⊥AB,AB=4,∴AD=BD=12在Rt△OAD中,OD=OA2-OD2=52-42=3,∴CD=OC-OD=5-3=2.故答案为:2.9(2023•望城区模拟)如图,AB是⊙O的直径,且AB=10cm,弦CD⊥AB于点E,CD=8cm,连接OC,则BE=2cm.【答案】2.【解答】解:∵弦CD ⊥AB ,CD =8cm ,∴CE =12CD =4cm ,在Rt △OEC 中,OC =12AB =5cm ,∴OE =OC 2-CE 2=3cm ,∴BE =OB -OE =2(cm ),故答案为:2.10(2023•长沙县二模)如图,⊙O 的半径为5,弦AB =8,点C 是AB 的中点,连接OC ,则OC 的长为3.【答案】3.【解答】解:∵B 是AC 的中点,∴AC =12AB =4,OC ⊥AB ,在Rt △OAC 中,OC =OA 2-AC 2=52-42=3.故答案为:3.【题型2勾股定理与方程综合求线段】11(2023•邯郸模拟)如图,以CD 为直径的⊙O 中,弦AB ⊥CD 于M .AB =16,CM =16.则MD 的长为()A.4B.6C.8D.10【答案】A【解答】解:连接OA ,如图,设⊙O 的半径为r ,则OA =r ,OM =16-r ,∵AB ⊥CD ,∴AM =BM =12AB =8,在Rt △AOM 中,82+(16-r )2=r 2,解得r =10,∴MD =CD -CM =20-16=4.故选:A .12(2022秋•南开区校级期末)如图,在⊙O 中,半径OD ⊥弦AB 于点C ,连接AO 并延长交⊙O 于点E ,连接EC ,若AB =8,CD =2,则EC 的长度为()A.215B.8C.210D.213【答案】D【解答】解:如图,连接BE ,设⊙O 的半径为R ,∵OD ⊥AB ,∴AC =BC =12AB =12×8=4,在Rt △AOC 中,OA =r ,OC =r -CD =r -2,由勾股定理,得OC 2+AC 2=OA 2,∴42+(r -2)2=r 2,解得r =5,∴OC =5-2=3,∵O 是AE 的中点,C 是AB 的中点,∴OC 是三角形ABE 的中位线,∴BE =2OC =6,∵AE 为⊙O 的直径,∴∠ABE =90°,在Rt △BCE 中,CE =BC 2+BE 2=213.故选:D .13(2022秋•文登区期末)如图,AB 为⊙O 的直径,弦CD ⊥AB 于点E ,若AE =CD =8,则⊙O 的半径为()A.3B.4C.9D.52【答案】见试题解答内容【解答】解:连接OC,∵AB为⊙O的直径,弦CD⊥AB于点E,AE=CD=8,CD=4,∴CE=DE=12设OC=r,则OE=8-r,在Rt△OCE中,OE2+CE2=OC2,即(8-r)2+42=r2,解得r=5.故选:D.14(2022秋•西湖区校级期末)如图,AB是⊙O的直径,弦CD⊥AB交于点E.若BE=10,CD= 8,则⊙O的半径为()A.3B.4.2C.5.8D.6【答案】C【解答】解:连接OC,设⊙O的半径为R,则OE=10-R,∵CD⊥AB,AB过圆心O,CD=8,∴∠OEC=90°,CE=DE=4,由勾股定理得:OC2=CE2+OE2,R2=42+(10-R)2,解得:R=5.8,即⊙O的半径长是5.8,故选:C.15(2022秋•泰山区校级期末)一块圆形宣传标志牌简图如图所示,点A,B,C在⊙O上,CD垂直平分AB于点D.现测得AB=16dm,DC=4dm,则圆形标志牌的半径为()A.6dmB.5dmC.10dmD.3dm【答案】C【解答】解:连接OA,OD,∵点A,B,C在⊙O上,CD垂直平分AB于点D,AB=16dm,DC=4dm,∴AD=8dm,设圆形标志牌的半径为r,可得:r2=82+(r-4)2,解得:r=10,故选:C.16(2022秋•任城区校级期末)如图,CD为⊙O的直径,弦AB⊥CD,垂足为E,CE=2寸,AB=16寸,直径CD的长是()A.28寸B.30寸C.36寸D.34寸【答案】D【解答】解:如图,连接OA,∵CD⊥AB,CD过圆心O,AB=16寸,∴∠AEO=90°,AE=BE=8寸,设圆的半径是r寸,在直角△OAE中,OA=r寸,OE=(r-2)寸,由勾股定理得:OA2=OE2+AE2,r2=(r-2)2+82,解得:r=17.则CD=2×17=34(寸).故选:D.17(2023•汉阳区校级一模)如图,CD为⊙O直径,弦AB⊥CD于点E,CE=1,AB=6,则CD长为()A.10B.9C.8D.5【答案】A【解答】解:设⊙O的半径为R,则OE=R-1,∵AB⊥CD,AB=6,∴AE=BE=3,∠AEO=90°,在Rt△AEO中,由勾股定理得:AO2=AE2+OE2,R2=(R-1)2+32,解得:R=5,即CD =10,故选:A .18(2023•汇川区三模)在半径为r 的圆中,弦BC 垂直平分OA ,若BC =6,则r 的值是()A.3B.33C.23D.232【答案】C 【解答】解:设OA 交BC 于点D ,如图,∵BC 垂直平分OA ,∴OD =12r ,BD =CD =12BC =3,在Rt △OBD 中,(12r )2+32=r 2,解得r 1=23,r 2=-23(舍去),即r 的值为23.故选:C .19(2023春•仪征市期末)如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,CE =3,BE =1,则OC =2.【答案】2.【解答】解:设OC =x ,则OE =x -1,在Rt △COE 中由勾股定理得,OC 2=CE 2+OE 2,即x 2=(3)2+(x -1)2,解得x =2,即OC =2,故答案为:2.20(2023•大冶市一模)如图,AB 是⊙O 的弦,C 是AB 的中点,连接OC 并延长交⊙O 于点D .若CD =1,AB =4,则⊙O 的半径是 52 .【答案】见试题解答内容【解答】解:连接OA ,∵C 是AB 的中点,∴AC =12AB =2,OC ⊥AB ,∴OA 2=OC 2+AC 2,即OA 2=(OA -1)2+22,解得,OA =52,故答案为:52.【题型3垂径定理在实际中应用】21(2022秋•海淀区校级月考)如图,一条公路的转弯处是一段圆弧AB ,点O 是弧AB 的圆心,C 为弧AB 上一点,OC ⊥AB ,垂足为D .已知AB =60m ,CD =10m ,求这段弯路的半径.【答案】这段弯路的半径为50m .【解答】解:连接OB ,∵OC ⊥AB ,∴AD =BD =12AB =30m ,设半径为r ,则OD =r -10,在Rt △OBD 中,OD 2+BD 2=OB 2,即(r -10)2+302=r 2,解得r =50m ,答:这段弯路的半径为50m .22(2022秋•郾城区期中)如图是一根圆形下水管道的横截面,管内有少量的污水,此时的水面宽AB 为0.6米,污水的最大深度为0.1米.(1)求此下水管横截面的半径;(2)随着污水量的增加,水位又被抬升0.7米,求此时水面的宽度增加了多少?【答案】(1)下水管半径为0.5米;(2)水位又被抬升0.7米,水面的宽度增加了0.2米.【解答】解:(1)作半径OD ⊥AB 于C ,连接OB ,则CD =0.1米,由垂径定理得:BC =12AB =0.3米,在Rt △OBC 中,OB 2=OC 2+BC 2,∴OB 2=(OB -0.1)2+0.09,∴BO =0.5,即下水管半径为0.5米;(2)如图,过点O 作OH ⊥MN 于H ,∴NH =MH ,∵水位又被抬升0.7米,∴OH =0.1+0.7-0.5=0.3米,∴NH =ON 2-OH 2=0.25-0.09=0.4米,∴MN =0.8米,∴增加了0.2米,∴水位又被抬升0.7米,水面的宽度增加了0.2米.23(2022秋•沭阳县期中)如图是某蔬菜基地搭建一座圆弧型蔬菜棚,跨度AB =3.2米,拱高CD =0.8米(C 为AB 的中点,D 为弧AB 的中点).(1)求该圆弧所在圆的半径;(2)在距蔬菜棚的一端0.4米处竖立支撑杆EF ,求支撑杆EF 的高度.【答案】0.4米.【解答】解:(1)设弧AB 所在的圆心为O ,D 为弧AB 的中点,CD ⊥AB 于C ,延长DC 经过O 点,则BC =12AB =1.6(米),设⊙O 的半径为R ,在Rt △OBC 中,OB 2=OC 2+CB 2,∴R 2=(R -0.8)2+1.62,解得R =2,即该圆弧所在圆的半径为2米;(2)过O 作OH ⊥FE 于H ,则OH =CE =1.6-0.4=1.2=65(米),OF =2米,在Rt △OHF 中,HF =OF 2-OH 2=22-652=1.6(米),∵HE =OC =OD -CD =2-0.8=1.2(米),∴EF =HF -HE =1.6-1.2=0.4(米),即支撑杆EF 的高度为0.4米.24如图,有一拱桥是圆弧形,它的跨度(所对弦长)为60m ,拱高18m ,当水面涨至其跨度只有30m 时,就要采取紧急措施.某次洪水来到时,拱顶离水面只有4m ,问是否需要采取紧急措施?【答案】不需要.【解答】解:∵AB =60米,MP =18米,OP ⊥AB ,∴AM =12AB =30(米),OM =OP -MP =(x -18)米,在Rt △OAM 中,由勾股定理得OA 2=AM 2+OM 2,∴x 2=302+(x -18)2,∴x =34(米).当PN =4时,∵PN =4,OP =x ,∴ON =34-4=30(米),设A ′N =y 米,在Rt △OA ′N 中,∵OA ′=34,A ′N =y ,ON =30,∴342=y 2+302,∴y =16或y =-16(舍去),∴A ′N =16,∴A ′B ′=16×2=32(米)>30米,∴不需要采取紧急措施.25如图,残缺轮片上弦AB 的垂直平分线交弧AB 于点C ,交弦AB 于点D ,已知AB =24cm ,CD =8cm .(1)找出此残缺轮片所在圆的圆心(写出找到圆心的方法);(2)求此圆的半径.【答案】(1)圆的圆心如图所示;(2)13.【解答】解:(1)连接AC,作线段AC的垂直平分线交直线CD为O,则点O为此残缺轮片所在圆的圆心;(2)连接OA,设此圆的半径为rcm,则OD=(r-8)cm,∵CD是弦AB的垂直平分线,AB=24cm,∴AD=12cm,在Rt△AOD中,OA2=OD2+AD2,即r2=(r-8)2+122,解得:r=13.26某地有一座圆弧形拱桥,所在圆的圆心为点O,桥下水面宽度AB为7.2m,过点O作OC⊥AB于点D,交圆弧于点C,CD=2.4m(如图).现有一艘宽3m、船舱顶部高出水面AB2m的货船要经过这座拱桥,此货船能否顺利通过这座拱桥?【答案】此货船能顺利通过这座拱桥.【解答】解:如图,连接ON,OB.∵OC⊥AB,∴D为AB中点,∵AB=7.2m,AB=3.6m.∴BD=12又∵CD=2.4m,设OB=OC=ON=rm,则OD=(r-2.4)m.在Rt△BOD中,根据勾股定理得:r2=(r-2.4)2+3.62,解得r=3.9.∵CD=2.4m,船舱顶部为正方形并高出水面AB2m,∴CE=2.4-2=0.4m,∴OE=r-CE=3.9-0.4=3.5m,在Rt△OEN中,EN2=ON2-OE2=3.92-3.52=2.96(m2),∴EN= 2.96(m).∴MN=2EN=2× 2.96≈3.44m>3m.∴此货船能顺利通过这座拱桥.27我国古算书《九章算术》中有“圆材埋壁”一题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径(直径)几何?”(注:如图,⊙O 表示圆材截面,CE 是⊙O 的直径,AB 表示“锯道”,CD 表示“锯深”,1尺=10寸,求圆材的直径长就是求CE 的长.)【答案】见试题解答内容【解答】解:连接OA ,如图所示:∵AB ⊥CE ,∴AD =BD ,∵AB =10,∴AD =5,在Rt △AOE 中,∵OA 2=OD 2+AD 2,∴OA 2=(OA -1)2+52,解得:OA =13,∴CD =2A 0=26;即直径为26寸.28如图,半圆拱桥的圆心为O ,圆的半径为5m ,一只8m 宽的船装载一集装箱,箱顶宽6m ,离水面AB 高3.8m ,这条船能过桥洞吗?请说明理由.【答案】见试题解答内容【解答】解:如图,过点O 作OF ⊥DE 于点F ,则EF =DF =12DE ,假设DE =6m ,则DF =3m ,∵圆的半径为5m ,∴OD =5m ,∴OF =OD 2-DF 2=52-32=4>3.8,∴这条船能过桥洞.29(2022秋•沭阳县校级月考)如图是一个半圆形桥洞截面示意图,圆心为O ,直径AB 是河底线,弦CD 是水位线,CD ∥AB ,且AB =26m ,OE ⊥CD 于点E .水位正常时测得OE :CD =5:24(1)求CD 的长;(2)现汛期来临,水面要以每小时4m 的速度上升,则经过多长时间桥洞会刚刚被灌满?【答案】见试题解答内容【解答】解:(1)∵直径AB=26m,∴OD=12AB=12×26=13m,∵OE⊥CD,∴DE=12CD,∵OE:CD=5:24,∴OE:ED=5:12,∴设OE=5x,ED=12x,∴在Rt△ODE中(5x)2+(12x)2=132,解得x=1,∴CD=2DE=2×12×1=24m;(2)由(1)得OE=1×5=5m,延长OE交圆O于点F,∴EF=OF-OE=13-5=8m,∴84=2(小时),即经过2小时桥洞会刚刚被灌满.30(2022秋•东台市期中)如图,是一张盾构隧道断面结构图.隧道内部为以O为圆心,AB为直径的圆.隧道内部共分为三层,上层为排烟道,中间为行车隧道,下层为服务层.点A到顶棚的距离为1.6m,顶棚到路面的距离是6.4m,点B到路面的距离为4.0m.请求出路面CD的宽度.(精确到0.1m)【答案】见试题解答内容【解答】解:如图,连接OC,AB交CD于E,由题意知:AB=1.6+6.4+4=12,所以OC=OB=6,OE=OB-BE=6-4=2,由题意可知:AB⊥CD,∵AB过O,∴CD=2CE,在Rt△OCE中,由勾股定理得:CE=OC2-OE3=62-22=42,∴CD=2CE=82≈11.3m,所以路面CD的宽度为11.3m.。
专题02 垂径定理及其应用(解析版)
专题02 垂径定理及其应用圆的对称性圆的轴对称性:过圆心的任一条直线(直径所在的直线)都是它的对称轴。
垂径定理⎩⎨⎧平分弦所对的两条弧。
)的直径垂直于弦,且推论:平分弦(非直径对的两条弧;平分弦,并且平分弦所定理:垂直于弦的直径垂径定理包含两个条件和三个结论,即条件⇒⎩⎨⎧)直线和弦垂直,()直线过圆心,(21结论⎪⎩⎪⎨⎧弧。
)直线平分弦所对的优(弧,)直线平分弦所对的劣()直线平分弦,(543符号语言:⎩⎨⎧⊥AB CD O ,O ,的弦,为圆的直径是圆AB CD ⎪⎩⎪⎨⎧===⇒BD AD BC AC BE AE 推论1:在(1)、(2)、(3)、(4)、(5)中,任意两个成立,都可以推出另外三个都成立。
推论2:平行的两弦之间所夹的两弧相等。
相关概念:弦心距:圆心到弦的距离(垂线段OE )。
应用链接:垂径定理常和勾股定理联系在一起综合应用解题(利用弦心距、半径、半弦构造Rt △OAE )。
圆的对称性以及垂径定理例题讲解一、概念考察【例1】下面四个命题中正确的一个是()A.平分一条直径的弦必垂直于这条直径B.平分一条弧的直线垂直于这条弧所对的弦C.弦的垂线必过这条弦所在圆的圆心D.在一个圆内平分一条弧和它所对弦的直线必过这个圆的圆心【答案】D【解析】平分弦(不是直径)的直径,垂直于弦,A说法错误过圆心且平分一条弧的直线垂直于这条弧所对的弦,B错误弦的垂直平分线必经过这条弦所在圆的圆心,C错误【例2】下列命题中,正确的是( ). A.过弦的中点的直线平分弦所对的弧 B.过弦的中点的直线必过圆心 C.弦所对的两条弧的中点连线垂直平分弦,且过圆心 D.弦的垂线平分弦所对的弧【答案】C【解析】A、B都未指出这条直线应该为垂线,所以AB都错误D未说明过弦的中点,所以错误【例3】如图,AB是⊙O的直径,弦CD⊥AB于点E,那么以下结论正确的选项是〔 〕A、AE=BEB、=C、△BOC是等边三角形D、四边形ODBC是菱形【答案】B【解析】∵AB⊥CD,AB过O,∴DE=CE,=,(垂径定理)不能推出DE=BE,△BOC是等边三角形,四边形ODBC是菱形.【例4】如图,已知在⊙O中,AB是弦,半径OC⊥AB,垂足为点D,要使四边形OACB为菱形,还需要添加一个条件,这个条件可以是( )A.AD=BD B.OC=2CD C.∠CAD=∠CBD D.∠OCA=∠OCB【答案】B【解析】OC=2CD.理由如下:∵在⊙O中,AB是弦,半径OC⊥AB,∴AD=DB,∵OC=2CD,∴AD=BD,DO=CD,AB⊥CO,∴四边形OACB为菱形.【例5】下列命题:(1)垂直于弦的直线平分弦;(2)平分弦的直径必垂直于弦,并且平分弦所对的两条弧;(3)平分弦的直线必过圆心;(4)弦所对的两条弧的中点连线垂直平分弦。
垂径定理的应用课件
若一条直线过圆心且垂直于给定 直径,则该直线被直径分为两段 ,其中一段长度是另一段长度的 两倍。
定理的证明
证明方法一
利用圆的性质和勾股定理进行证 明。
证明方法二
利用相似三角形的性质进行证明。
证明方法三
利用三角形的中线性质进行证明。
定理的重要性
01
在几何学中,垂径定理是基础且 重要的定理之一,广泛应用于解 决与圆和直线相关的问题。
在椭圆中的应用
总结词:推广应用
详细描述:在椭圆中,垂径定理也有其应用。我们可以利用垂径定理找到椭圆的中心和长轴、短轴。这对于解决与椭圆相关 的几何问题非常有帮助,如求面积、周长等。
在其他图形中的应用
总结词:拓展应用
详细描述:除了圆和椭圆,垂径定理还可以应用于其他一些图形中。例如,在抛物线、双曲线等中, 垂径定理可以帮助我们找到与图形中心相关的信息,从而解决一些复杂的几何问题。此外,在一些更 复杂的组合图形中,垂径定理也可以发挥重要作用。
案例三:机械制造中的垂径定理应用
总结词
机械零件的精确性与垂径定理
详细描述
在机械制造中,垂径定理被广泛应用于确定机械零件 的位置和尺寸,以确保机械零件的精确性和稳定性。 通过应用垂径定理,可以计算出零件的最佳位置和尺 寸,从而提高机械设备的效率和精度。
THANKS FOR WATCHING
感谢您的观看
详细描述
在解决与圆相关的几何问题时,垂径定理与 三角函数经常一起使用。垂径定理可以确定 直径与弦的关系,而三角函数则可以用于计 算角度和弧长等几何量。通过结合这两个知 识点,可以方便地计算出圆上任意两点之间 的角度、弧长等几何量。
与解析几何的结合应用
总结词
解析几何提供了一种用代数方法研究几何的 方法,垂径定理与解析几何的结合,使得几 何问题可以通过代数方法求解。
第07讲 垂径定理
第07讲垂径定理(核心考点讲与练)【知识梳理】一.垂径定理(1)垂径定理垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.(2)垂径定理的推论推论1:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.推论2:弦的垂直平分线经过圆心,并且平分弦所对的两条弧.推论3:平分弦所对一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.二.垂径定理的应用垂径定理的应用很广泛,常见的有:(1)得到推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.(2)垂径定理和勾股定理相结合,构造直角三角形,可解决计算弦长、半径、弦心距等问题.这类题中一般使用列方程的方法,这种用代数方法解决几何问题即几何代数解的数学思想方法一定要掌握.【核心考点精讲】一.垂径定理(共5小题)1.(2022•拱墅区一模)已知AB是⊙O的弦,半径OC⊥AB于点D.若DO=DC,AB=12,则⊙O的半径为()A.4B.4C.6D.62.(2016秋•北仑区期末)⊙O的直径AB和弦CD相交于点E,已知AE=6,EB=2,∠CEA=30°,则弦CD的长为()A.8B.4C.2D.23.(2022春•长兴县月考)如图,AB是⊙O的直径,CD⊥AB于点E,连结CO并延长,交弦AD于点F.若AB=10,BE=2,则OF的长度是()A.B.3C.D.4.(2022•博山区一模)如图,在平面直角坐标系中,半径为5的⊙E与y轴交于点A(0,﹣2),B(0,4),与x轴交于C,D,则点D的坐标为()A.B.C.D.5.(2021秋•北仑区校级期中)如图,⊙•O的直径AB=5,弦AC=3,点D是劣弧BC上的动点,CE⊥DC交AD于点E,则OE的最小值是()A.B.C.2﹣D.﹣1二.垂径定理的应用(共4小题)6.(2021秋•鹿城区校级期中)如图是一个小圆同学设计的一个鱼缸截面图,弓形ACB是由优弧AB与弦AB组成,AC是鱼缸的玻璃隔断,弓形AC部分不注水,已知CD⊥AB,且圆心O在CD上,AB=CD=80cm.注水时,当水面恰好经过圆心时,则水面宽EF为cm;注水过程中,求水面宽度EF的最大值为cm.7.(2022•旌阳区二模)筒车是我国古代发明的一种水利灌溉工具,如图1,筒车盛水桶的运行轨道是以轴心O为圆心的圆,如图2,已知圆心O在水面上方,且⊙O被水面截得弦AB长为4米,⊙O半径长为3米.若点C为运行轨道的最低点,则点C到弦AB所在直线的距离是()A.1米B.2米C.米D.米8.(2021秋•温岭市期末)把一个球放入长方体纸盒,球的一部分露出盒外,球与纸盒内壁都刚好相切,其截面如图所示,若露出部分的高度为6cm,AF=DE=3cm,则这个球的半径是cm.9.(2021秋•诸暨市期末)一根排水管的截面如图所示,已知排水管的半径OB=10,水面宽AB=12,如果再注入一些水,当水面AB的宽变为16时,则水面AB上升的高度为.【过关检测】一.选择题(共7小题)1.(2022春•市中区校级月考)如图,在⊙O中,OC⊥AB于点C,若⊙O的半径为10,OC=5,则弦AB的长为()A.5B.10C.5D.102.(2021秋•温州期末)如图,在⊙O中,半径OC⊥AB于点D.已知OC=5,OD=4,则弦AB的长为()A.3B.4C.5D.63.(2021秋•嘉兴期末)如图,⊙O的直径AB=12,弦CD垂直AB于点P.若BP=2,则CD的长为()A.2B.4C.4D.84.(2021秋•嵊州市期末)如图,CD是⊙O的弦,直径AB⊥CD,垂足为M,连结AD.若CD=8,BM=2,则AD的长为()A.10B.5C.4D.35.(2021秋•东阳市期末)在圆柱形油槽内装有一些油,截面如图所示,已知截面⊙O半径为5cm,油面宽AB为6cm,如果再注入一些油后,油面宽变为8cm,则油面AB上升了()cm.A.1B.3C.3或4D.1或7 6.(2021秋•宁波期末)把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知EF=CD=6cm,则球的半径为()A.3cm B.cm C.cm D.cm 7.(2021秋•拱墅区期中)如图,在⊙O中,直径AB=10,弦DE⊥AB于点C,若OC:OA=4:5,则DE的长为()A.6B.7C.8D.9二.填空题(共8小题)8.(2021秋•余姚市期末)如图1,水车又称孔明车,是我国最古老的农业灌溉工具,是珍贵的历史文化遗产.如图2,圆心O在水面上方,且⊙O被水面截得的弦AB长为8米,半径为5米,则圆心O到水面AB的距离为米.9.(2021秋•瑞安市期末)如图,AB为⊙O的直径,弦CD⊥AB于点E,CD=10,BE=3,则AE长为.10.(2021秋•拱墅区期末)如图,一个底部呈球形的烧瓶,球的半径为5cm,瓶内原有液体的最大深度CD=4cm.部分液体蒸发后,瓶内液体的最大深度下降为2cm,则截面圆中弦AB的长减少了cm(结果保留根号).11.(2021秋•温州校级月考)如图是郑州圆形“戒指桥”,其数学模型为如图所示.已知桥面跨径AB=20米,D为圆上一点,DC⊥AB于点C,且CD=BC=14米,则该圆的半径长为米.12.(2022•瑞安市开学)如图,矩形ABCD中,E,F分别是边AB,BC上的两个动点,将△BEF沿着直线EF作轴对称变换,得到△B′EF,点B′恰好在边AD上,过点D,F,B′作⊙O,连结OF.若OF⊥BC,AB′=CF=3时,则AE=.13.(2021秋•镇海区期末)⊙O的弦AB的长为8cm,弦AB的弦心距为3cm,则⊙O的半径为cm.14.(2020•金华模拟)如图,依据九上教材中的丁字尺,小明开始自制丁字尺:F、A、D、E在同一直线上,AF⊥AB,AB∥CD,AF=4cm,AD=DE=2cm.(1)现有一圆经过F、E,弧EF为劣弧,且与AB交于G,如果测得AG的长为10cm,那么圆的半径为;(2)小明在DC上制作单位刻度时不小心把尺子割断了,只余DM=1cm,此时只运用这把残破的丁字尺的已知数据(一条线段不能分段测量且不能作延长线),能计算或测量(不计误差)得到的最大半径是.15.(2022•海曙区一模)如图,圆O的半径为4,点P是直径AB上定点,AP=1,过P 的直线与圆O交于C,D两点,则△COD面积的最大值为;作弦DE∥AB,CH ⊥DE于H,则CH的最大值为.三.解答题(共5小题)16.(2021秋•西湖区校级月考)如图,CD为⊙O的直径,CD⊥AB于E,CE=8,DE=2,求AB的长.17.(2021•柯桥区模拟)如图,在⊙O中,过半径OD的中点C作AB⊥OD交⊙O于A、B两点,且AB=2.(1)求OD的长;(2)计算阴影部分的周长.18.(2021秋•玄武区校级月考)如图,AB是⊙O直径,弦CD⊥AB于点E,过点C作DB 的垂线,交AB的延长线于点G,垂足为点F,连结AC.(1)求证:AC=CG;(2)若CD=EG=8,求⊙O的半径.19.(2021秋•下城区校级月考)如图,有一座圆弧形拱桥,它的跨度AB为30m,拱高PM 为9m,当洪水泛滥到跨度只有15m时,就要采取紧急措施,若某次洪水中,拱顶离水面只有2m,即PN=2m时,试求:(1)拱桥所在的圆的半径;(2)通过计算说明是否需要采取紧急措施.20.(2020秋•永嘉县校级期末)如图,AB是⊙O的直径,四边形ABCD内接于⊙O,OD 交AC于点E,AD=CD.(1)求证:OD∥BC;(2)若AC=10,DE=4,求BC的长.。
垂径定理ppt
3
在实际生活中,垂径定理也广泛应用于工程、 建筑、天文、航海等领域
02
证明垂径定理
准备知识:圆和直径的定义
圆定义总结
圆是一种几何图形,由点到点的距离等于定长的点的集合构成。
直径定义总结
直径是圆上任意两点处于圆心的一条直线,或者说是圆的一侧到另一侧的直 线距离。
证明过程概述
证明思路
通过证明圆弧的中垂线与直径的交点为直径的中点来证明垂径定理。
定理的历史背景
最早的文字记载可 以追溯到古希腊数 学家欧几里得
之后的数学家如欧 拉、高斯等也对垂 径定理进行了深入 的研究和应用
在中国,东汉时期 的数学家赵爽也有 记载
定理的重要性和应用场景
1
定理是圆几何中的基本定理之一,也是几何学 中最基本的定理之一
2
垂径定理是圆相关问题中最常用的工具之一, 也是解决许多几何问题的关键
证明步骤
根据定义和性质,将圆等分,然后证明等分点与直径的关系,最后得出结论。
证明过程详细步骤
证明步骤一
首先将圆分成两个半圆,然后分别 在半圆上任取一点,分别连接该点 与直径的两个端点,得到两条弧。
证明步骤二
证明两条弧相等。因为它们所对的 圆心角相等,所以根据圆的定义可 知它们的弧长相等。
证明步骤三
应用场景
垂径定理在几何、建筑、工程等领域都有广泛的应用。例如,在桥梁设计和 建造中,需要应用垂径定理来保证桥梁的形状和稳定性;在几何中,垂径定 理可以用于证明各种线段相等、圆周角相等等问题。
反思定理在现代数学中的地位和作用
地位
垂径定理是平面几何中的重要定理之一,也是初中数学竞赛中的热点和难点之一 。
作用
垂径定理在数学、工程、建筑等领域都有着广泛的应用,同时也是培养数学思维 和解决问题能力的重要载体。
垂径定理的应用
垂径定理的应用
嘿,咱就说说垂径定理的应用呗。
这垂径定理啊,用处可不少哩。
比如说,在算圆里的线段长度的时候就很管用。
要是知道圆的半径和一条弦的长度,再根据垂径定理,就能算出弦心距。
啥是弦心距呢?就是圆心到弦的距离。
有了这个距离,再加上一些其他条件,就能算出好多东西来。
还有啊,在证明一些几何问题的时候也能用得上。
要是碰到跟圆有关的证明题,看看能不能用垂径定理。
有时候一用垂径定理,问题就变得简单多了。
再就是在实际生活中也有应用。
比如说盖房子的时候,要做个圆形的柱子啥的,就得用到垂径定理来保证柱子是直的。
还有做一些圆形的零件的时候,也得靠垂径定理来保证精度。
咱打个比方哈,要是有个圆形的池塘,要在池塘中间架一座桥。
这时候就得用垂径定理来确定桥的位置和长度。
先找到圆心,然后根据垂径定理算出桥的长度和位置,这样才能把桥建得稳稳当当的。
咱举个例子哈。
俺们村有个老张,他要盖个沼气池。
沼气池是圆形的,他就想用垂径定理来确定沼气池的圆心和半径。
他找了根绳子,在沼气池的边上找了三个点,然后用绳子量出这三个点到圆心的距离相等。
这样就确定了圆心的位置,再根据其他条件算出了半径。
老张按照这个方法盖的沼气池可好用了。
这垂径定理啊,虽然看起来有点难,但是用好了能解决很多问题。
咱要是学几何的时候,可得好好琢磨琢磨垂径定理,说不定啥时候就能用上呢。
垂径定理_精品文档
垂径定理垂径定理是解决几何问题中常用的一个定理,它和“垂直”有关。
垂径定理的全称是“垂直于直径的半径必垂直于圆”。
垂径定理的内容简单而明确,但它却具有重要的意义和应用价值。
本文将从垂径定理的定义、证明以及几个典型的应用来介绍垂径定理,并解释为什么它在解决几何问题中具有重要意义。
首先,我们来了解一下垂径定理的定义。
垂径定理主要是指:如果在一个圆上,有一个半径垂直于直径,那么这个半径和这个直径在圆上的交点之间的弧长就是90度。
换句话说,半径与直径的交点和圆上的其他点之间的弦垂直。
这是垂径定理的基本内容。
接下来,让我们来看一下垂径定理的证明。
首先,我们假设在一个圆上,有一个半径OA垂直于直径BC,如下图所示。
这是一个坐标证明的图。
为了简化问题,我们可以假设圆的半径为1。
因此,点O的坐标就是(0,1),点B的坐标就是(-1,0),点C 的坐标就是(1,0)。
我们知道,在直角三角形中,直角的两条边的斜率乘积为-1。
我们可以计算出OA的斜率为-1,而BC的斜率为0,因此满足垂径定理的条件。
我们可以继续应用几何知识来证明垂径定理。
根据半径垂直于弦的定义,我们知道OA垂直于BC。
根据直径的定义,我们知道BC就是圆的直径。
因此,根据垂直定理,我们可以得出结论,OA是圆的半径,它与直径BC垂直。
接下来,我们将介绍几个典型的应用垂径定理的例子。
例1:证明对称圆上的两条弦垂直在一个圆上,有两条弦AB和CD,且AB与CD以圆心为中点。
我们需要证明这两条弦互相垂直。
根据问题的设定,我们知道AB和CD以圆心O为中点。
因此,OA 等于OC,OB等于OD。
根据垂径定理的定义,OA垂直于AB,OC垂直于CD。
进一步观察,我们可以发现OA和OC重合,因为它们都是圆的半径,长度相等,方向相同。
同理,OB和OD重合。
因此,根据重合线段垂直定理,我们可以得出结论,AB垂直于CD。
例2:证明正方形的对角线相互垂直在一个正方形中,连接两个相对顶点的线段被称为对角线。
垂径定理应用
一工厂的厂门是由一个半圆与矩形组成的。
如图所示,AD =2.3米,CD =2米,现有一辆集装箱卡车要开进工厂,卡车高2.5米,宽1.6米,请你通过计算说明这辆卡车能否通过厂门?
如图是“明清影视城”的圆弧形门,黄红同学到影视城游玩,很想知道
这扇门的相关数据.于是她从景点管理人员处打听到:这个圆弧形门所在的圆与水平地面是相切的AB=CD=20 cm ,BD=200 cm ,且 与水平地
面都是垂直的.根据以上数据,请你帮助黄红同学计算出这
个圆弧形门的最高点离地面的高度是多少?
一条30M 宽的河(AB)上架有一半径为25M 的圆弧形拱桥,
请问顶部宽为6M 且高出水面4M 的船能否通过此桥,并说
明理由
一条河上架有一半径55米的圆弧形拱桥,已知水面宽60米,请问:一顶部宽12米且高出水面8米的船能否通过此桥
一个拱形桥洞最顶部高出水面2.4米,水面宽7.2米,一艘前部为方形宽3米的船高出水面2米,问该船能不能通过桥洞
某圆桥的水面跨度20M ,拱高4M ,现有一船,宽10M ,水面以上高3M ,这条船能否从桥下通过?
水上涨,卸掉货物 一辆货车要过一座桥,但是货物高出桥2厘米,问在不卸掉货物的情况怎么过桥?一艘货船沿着小河顺水而下,当通过一座小桥时,才发现货物装的太多了,比小桥的洞高出了两厘米,船长想卸掉一些货可奈何货是整箱装的,一时没法卸。
有什么办法,既不用卸货,又能让船顺利通过呢?
A B C D。
垂径定理在实际问题中的应用
垂径定理在实际问题中的应用垂径定理是《圆》中的一个重要的定理,由垂径定理可解决一些实际问题.现举例说明.一、实际计算问题例1 如图1,在直径为130mm的圆铁片上切去一块高为32mm的弓形铁片.求这个弓形铁片弦AB的长.解:将实物图转化为几何图形,如图2,则有CD=32mm,1130mm65mmOA=⨯=,OC⊥AB于D,2因为OC⊥AB,根据垂径定理,得AB=2AD.在Rt△ADO中,∠ADO=90°,OA=OC=65mm,OD=OC-CD=65-32=33mm,所以2222AD OA OD=-=-=mm,653356(mm)所以弦AB的长为56×2=112mm.二、弧形物体平分问题例3 如图5,是一自行车内胎的一部分,如何将它平均分给两个小朋友做玩具分析:根据实物画出几何图形,利用垂径定理解决问题.作法:如图6,用表示自行车内胎的一部分.(1)连接AB .(2)作AB 的垂直平分线CD ,交于点E ,则点E 为的中点.从点E 处将内胎剪开后,即可分给两个小朋友.三、判断问题例4 某地方有一座弧形的拱桥,桥下的水面宽度为米,拱顶高出水面米,现由一艘宽3米,船舱顶部为长方形并高出水面2米的货船要经过这里,此货船能顺利通过这座拱形桥吗分析:判断货船能否通过这座拱桥,关键是看船舱顶部两角是否会被拱桥顶部挡住.用表示拱桥,画出如图7几何图形,实际问题就转化为求FN 的长度.解:设圆心为O ,连接OA 、0B ,作OD ⊥AB 于D ,交圆于点C ,交MN 于点H ,由垂径定理可知,D 为AB 的中点.设OA =r ,则OD =OC -DC =,1 3.62AD AB ==, 在Rt△AOD 中,OA 2=AD 2OD 2,即r 2=()2,解得r =,在Rt△OHN 中,22223.9 1.5 3.6OH ON NH =-=-=.所以FN=DH=OH-OD=()=,因为米>2米.所以货船可以通过这座拱桥.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
垂径定理在实际问题中的应用
垂径定理是《圆》中的一个重要的定理,由垂径定理可解决一些实际问题.现举例说明.
一、实际计算问题
例1 如图1,在直径为130mm 的圆铁片上切去一块高为32mm 的弓形铁片.求这个弓形铁片弦AB 的长.
解:将实物图转化为几何图形,如图2,则有CD =32mm ,1130mm 65mm 2
OA =⨯=,OC ⊥AB 于D ,
因为OC ⊥AB ,根据垂径定理,得AB =2AD .
在Rt △ADO 中,∠ADO =90°,OA =OC =65mm ,OD =OC -CD =65-32=33(mm),
所以2222653356(mm)AD OA OD =-=-= (mm),
所以弦AB 的长为56×2=112(mm).
例2 今有一圆木砌入壁中,不知大小,以锯锯之,深一寸,锯道长一尺.问径几何? 分析:如图4,将实物图(图3)转化为几何图形,则BE 表示锯道,CD 表示锯深,求⊙O 的直径是多少?
解:如图4,设圆木的半径OB =x 寸,
则OC =(x -1)寸,152BC BE =
=寸,
在Rt △OCB 中,由勾股定理得x 2=(x -1)2+52,
解得x =13.
所以圆木半径是13寸,直径为26寸.
二、弧形物体平分问题
例3 如图5,是一自行车内胎的一部分,如何将它平均分给两个小朋友做玩具? 分析:根据实物画出几何图形,利用垂径定理解决问题.
作法:如图6,用表示自行车内胎的一部分.
(1)连接AB .
(2)作AB 的垂直平分线CD ,交于点E ,则点E 为的中点.从点E 处将内胎剪开后,即可分给两个小朋友.
三、判断问题
例4 某地方有一座弧形的拱桥,桥下的水面宽度为7.2米,拱顶高出水面2.4米,现由一艘宽3米,船舱顶部为长方形并高出水面2米的货船要经过这里,此货船能顺利通过这座拱形桥吗?
分析:判断货船能否通过这座拱桥,关键是看船舱顶部两角是
否会被拱桥顶部挡住.用表示拱桥,画出如图7几何图形,实际问
题就转化为求FN 的长度.
解: 设圆心为O ,连接OA 、0B ,作OD ⊥AB 于D ,交圆于点
C ,交MN 于点H ,由垂径定理可知,
D 为AB 的中点.
设OA =r ,则OD =OC -DC =r -2.4,1 3.62AD AB =
=, 在Rt △AOD 中,OA 2=AD 2+OD 2,
即r 2=3.62+(r -2.4)2,解得r =3.9,
在Rt △OHN 中,22223.9 1.5 3.6OH ON NH =-=-=.
所以FN =DH =OH -OD =3.6-(3.9-2.4)=2.1,
因为2.1米>2米.所以货船可以通过这座拱桥.。