第七章_金属及合金的回复再结晶

合集下载

第七章回复再结晶

第七章回复再结晶

注:再结晶退火温度一般比上述温度高100~200℃。
3.影响再结晶温度的因素
(1)金属冷加工变形度 变形度δ越大,驱动力越大,发生再结晶的温度越低,当变形度达 到一程度后, 趋于一个最低温度,称为最低再结晶温度,T再min。 经验表明:T再min≈0.4T熔点, (2)金属的纯度 金属中的杂质或合金元素,尤其是高熔点成分的存在,会阻碍原子 的扩散(位错的扩散),因此再结晶温度会提高。纯度越高,再结晶温 度越低。 如:纯铁T再min =450℃;碳钢T再min =500-650℃;合金钢T再min >650700℃ (3)加热速度和保温时间 a、提高加热速度,再结晶温度升高;加热速度太低,再结晶温度也会 升高。 b、延长保温时间,再结晶温度降低 综合上述因素,再结晶退火温度一般为: T再min +100-200℃
5.分散相粒子
当合金中溶质浓度超过其固溶度后,就会形成第二相,多数情 况下,这些第二相为硬脆的化合物,在冷变形过程中,一般不 考虑其变形,所以合金的再结晶也主要发生在基体上。 当第二相颗粒较粗时,变形时位错会绕过颗粒,并在颗粒周围 留下位错环,或塞积在颗粒附近,从而造成颗粒周围畸变严重, 促进再结晶,降低再结晶温度; 当第二相颗粒细小,分布均匀时,不会使位错发生明显聚集, 因此对再结晶形核作用不大,相反,其对再结晶晶核的长大过 程中的位错运动和晶界迁移起一种阻碍作用,因此使得再结晶 过程更加困难,提高再结晶温度。 间距和直径都较大时,提高畸变能,并可作为形核核心,促进 再结晶;直径和间距很小时,提高畸变能,但阻碍晶界迁移, 阻碍再结晶。
图 变形程度与再结晶温度的关系
3.微量溶质原子
阻碍位错和晶界的运动, 不利于再结晶。
图 合金元素对铁再结晶温度影响

金属的塑性变形与再结晶

金属的塑性变形与再结晶
56
➢热加工流线的利用
➢纵向(沿纤维方向),塑性、韧性增加 横向(垂直纤维方向),塑性、韧性降低 但抗剪切能力显著增强。
➢纵向具有最大的抗拉强度,横向具有最大 的抗剪切强度.
57
热加工流线的合理利用
➢流线沿零件轮廓分布不中断 ➢最大拉应力方向沿流线 ➢最大剪应力方向垂直于流线
58

59
带状组织
➢(2)杂质与合金元素
杂质元素与微量溶 质原子与晶界产生交互 作用,阻碍晶界迁移。
微量杂质元素含量 越高,晶界迁移越慢
42
➢(3)第二相(分散相)质点
阻碍晶界移动,降低晶粒长大速度
φ:分散相粒子所占的体积分数。 r:粒子的半径
43
第二相颗粒所占体积分数一定时, 颗粒愈细,其数量愈多,则晶界迁移所 受到的阻力也愈大,晶粒正常长大速度 越小。
驱动力:晶界能的降低。
47
48
49
小结:
冷变形在金属材料内部产生了储存能,退 火过程中原子活动能力增强,储存能逐渐释放。 材料内部发生回复、再结晶与晶粒长大。
退火温度较低时,产生回复。储存能部分 释放,材料中的宏观残余应力基本消除,力学性 能及显微组织均保持变形后的特点。
退火温度较高时,产生再结晶。储存能完全 释放,材料重新软化,晶粒为细小的等轴晶。
➢形变金属有回到变形前组织与性能状态 的趋势
3
7.1 形变金属及合金在退火过程中的变化
➢ 回复、再结晶、晶粒长大是形变金属退火时 经历的基本过程
➢1. 显微组织变化
4
2. 储存能释放与性能变化
➢ 经过回复与再结晶, 材料的储存能释放完 毕,材料的组织与性 能能够逐渐恢复变形 前的状态。
5

回复与再结晶

回复与再结晶

7.3 再结晶
7.3 再结晶
7.3 再结晶
7.3 再结晶
7.3 再结晶
7.3 再结晶
第二相粒子的作用
(1)增加形变储存能而 增缘故。
7.3 再结晶
(2)第二相粒子附近可能作为再结晶形核位置。
大而硬间距宽的第二相粒子,由于形变时粒子附近出现更多 不均匀形变区,这些区域有大的显微取向差,可促进形核。 (Particle Stimulated Nucleation)
7.5 金属的热变形
动态回复引起的软化过程是通过刃型位错的攀移、螺位 错的交滑移,使异号位错对消、位错密度降低的结果。 动态回复中也发生多边化,形成亚晶。层错能较高的金 属如铝合金、纯铁、铁素体钢等热加工时,易发生动态 回复,因这些金属中易发生位错的交滑移及攀移之故。
动态回复过程中,变形晶粒不发生再结晶,故仍呈纤维 状,热变形后迅速冷却,可保留伸长晶粒和等轴亚晶的 组织。在高温较长时间停留,则可发生静态再结晶而使 材料彻底软化。动态回复组织比再结晶组织的强度高, 将动态回复组织保留下来可提高金属的强度,例如热挤 压法生产的建筑用铝镁合金,采用保留动态回复组织的 方法,提高其使用强度。
晶粒正常长大后,各晶粒尺寸的分布仍然是均匀的。
7.4 晶粒长大
7.4 晶粒长大
影响晶粒长大的因素
温度:温度越高,晶粒长大越快,一定温度下,晶粒长大极 限尺寸后不再长大,提高温度长大继续。
杂质与合金元素:吸附于晶界可使界面能下降,降低了界面 移动的驱动力,使晶界不易迁动。
第二相质点:阻碍晶界迁动,使晶粒长大受到抑制。 相邻晶粒的位相差:位相差越大,晶界可动性越高,小角晶
7.3 再结晶
再结晶:冷变形后的金属加热到一定温度后,在变形 基体中重新生成无畸变的新晶粒的过程。

金属学与热处理第七章 金属及合金的回复与再结晶

金属学与热处理第七章 金属及合金的回复与再结晶
度后的硬度HV、电阻变化率ΔR/R、密度变化率Δρ/ρ和功率差ΔP
五、亚晶粒尺寸
在回复阶段的前期,亚晶粒尺寸变化不大,但在 后期,尤其在接近再结晶温度时,亚晶粒尺寸显著增 大。
第二节 回 复
一、退火温度和时间对回复过程的影响
回复是指冷塑性变形的金属在加热时,在光学 显微组织发生改变前(即在再结晶晶粒形成前)所 产生的某些亚结构和性能的变化过程。通常指冷塑 性变形金属在退火处理时,其组织和性能变化的早 期阶段。
回复机制
冷变形后,晶体中同号的刃型位错处在同一滑移 面时它们的应变能是相加的,可能导致晶格弯曲(见 图7-5a);而多边化后,上下相邻的两个同号刃型位 错之间的区域内,上面位错的拉应变场正好与下面位 错的压应变场相叠加,互相部分地抵消,从而降低了 系统的应变能(见图7-5b)。
图7-5 多边化前、后刃型位错的排列情况 a)多边化前 b)多边化后
回复机制
图7-6 刃型位错的攀移和 滑移示意图 图7-7 刃型位错攀移示意图
三、亚结构的变化
金属材料经多滑移变形后形成胞状亚结构,胞内位 错密度较低,胞壁处集中着缠结位错,位错密度很高。 在回复退火阶段,当用光学显微镜观察其显微组织时, 看不到有明显的变化。但当用电子显微镜观察时,则可 看到胞状亚结构发生了显著地变化。图7-8为纯铝多晶 体进行回复退火时亚结构变化的电镜照片。
第七章 金属及合金的回复与再结晶
第一节 形变金属与合金在退火过程 中的变化
第二节 回 复 第三节 再 结 晶 第四节 晶粒长大 第五节 金属的热加工
第一节 程
形变金属与合金在退火过
中的变化
一、显微组织的变化
将塑性变形后的金属材料加热到0.5Tm温度附近,
进行保温,随着时间的延长,金属的组织将发生一系 列的变化,这种变化可以分为三个阶段,如图7-1所示。

7.金属及合金的回复与再结晶

7.金属及合金的回复与再结晶

图 冷变形金属退火时某些性能的变化
第七 章金属及合金的回复与再结晶
硬度的变化 回复阶段的硬度变化很小,而再结晶阶段则 下降较多。
电阻率的变化 变形金属的电阻率在回复阶段巳表现明显 的下降趋势。
密度的变化 变形金属的密度在再结晶阶段发生急剧增高 的原因主要是再结晶阶段中位错密度显著降低所致。
内应力的变化 金属经塑性变形所产生的第一类内应力在 回复阶段基本得到消除,而第二、三类内应力只有通过再 结晶方可全部消除。
R m r m 0
1 R r 0 m 0
m : 冷变形后的屈服强度
:冷变形后经不同规程回火后的屈服强度
r
:纯铁充分退火后的屈服强度
0
R:屈服应力回复率
1 R:剩余加工硬化分数
第七 章金属及合金的回复与再结晶
图 同一变形度的Fe在不同 温度等温退火后的性能变化曲线
①回复过程在加热后立刻 开始,没有孕育期;
t0
回复 t1
再结晶
t2 晶粒长大 t3
冷变形金属组织随加热温度及时间的变化示意图
第七 章金属及合金的回复与再结晶
t2~t3为第Ⅲ阶段,称为晶粒长大:晶粒通过晶界 移动,发生长大,直至达到一种相对稳定的尺寸。 回复和再结晶的驱动力
储存能是变形金属加热时发生回复和再结晶的驱 动力。 储存能: 冷塑变形时,外力所做的功尚有一部分 储存在变形金属的内部,这部分能量叫储存能。
第七 章金属及合金的回复与再结晶
(2)中温回复 变形金属在中等温度下加热时所发生的 回复过程称为中温回复。此时因温度升高,原子活动能力 也增强,除点缺陷运动外,位错也被激活,在内应力作用 下位错可以在滑移面上滑移或交滑移,使异号位错相遇相 消,位错密度下降,位错缠结内部重新排列组合,使变形 亚晶规整化。

第7章 回复、再结晶-2

第7章 回复、再结晶-2
第四节
再结晶后晶粒的长大
再结晶完成后,得到细小等轴的晶粒,从 热力学角度看,晶粒长大,总的晶界面积减 少,能量降低是一个自发过程。 长大: ¾ 正常长大(连续均匀长大):参与长大的晶粒 数量多,且分布均匀;所有晶界具有大致相同 的可动性;各晶粒尺寸差异不大,且平均尺寸 连续增大。 ¾ 异常长大(二次再结晶):少数晶粒优先长 大,吞食周围晶粒而长成粗大晶粒。
式中:m 为比例常数,称为晶界的平均迁移率(即单位驱 动力作用下的晶界平均迁移速度);r 为晶界的平均曲率 半径,正常长大时r≈D。 m和σ对各种金属在一定温度均可视为常数,则:


近似有: 上式表明:在恒温下,晶粒发生正常长大时,平均直径与 保温时间的平方根成线性关系。 上述关系适用:高纯度金属在高温加热保温时。在一般情 况下,时间的指数小于1/2。
1
一、正常长大 长大方式: 依靠界面移动“大吃小、凹吃 凸”,长大中界面向曲率中心方向移 动,大晶粒吞食了小晶粒,直到晶界平 直化。
2
1、晶粒长大时的晶界迁移方向和驱动力 晶界迁移:晶界在其法线方向上的迁移。 晶界迁移的驱动力:界面能的减少,与曲率有关。(界面
向曲率中心方向移动将引起晶界面积减小,降低界面能。但这 种驱动力与储存能相比是较小的,所以晶粒长大时晶界迁移速 度比再结晶时慢。)
26
3、动态回复组织特点 在伸长的晶粒内部存在许多动态回复亚晶。 动态回复亚晶粒:胞壁位错密度小,胞内位错密度也 小。 当达到稳衡态时,动态回复亚晶有如下特征: 等轴状;胞状亚晶之间的取向差保持不变;胞壁之 间距离(亚晶尺寸)保持不变;胞壁之间的位错密度 保持不变。 注意:热加工过程中的动态回复不能看成是冷加工与 静态回复的叠加。应变与回复同时出现就避免了冷加 工效果的累积,所以,形变金属不能发展成高位错密 度,而且亚晶较细。 动态回复亚晶平均尺寸d与形变温度T和变形速率ε的 关系: d∝T/ε

七章-回复与再结晶习题答案(西北工业大学-刘智恩)

七章-回复与再结晶习题答案(西北工业大学-刘智恩)

七章-回复与再结晶习题答案(西北⼯业⼤学-刘智恩)1.设计⼀种实验⽅法,确定在⼀定温度( T )下再结晶形核率N和长⼤线速度G (若N和G都随时间⽽变)。

2.⾦属铸件能否通过再结晶退⽕来细化晶粒?3.固态下⽆相变的⾦属及合⾦,如不重熔,能否改变其晶粒⼤⼩?⽤什么⽅法可以改变?4.说明⾦属在冷变形、回复、再结晶及晶粒长⼤各阶段晶体缺陷的⾏为与表现,并说明各阶段促使这些晶体缺陷运动的驱动⼒是什么。

5.将⼀锲型铜⽚置于间距恒定的两轧辊间轧制,如图7—4所⽰。

(1) 画出此铜⽚经完全再结晶后晶粒⼤⼩沿⽚长⽅向变化的⽰意图;(2) 如果在较低温度退⽕,何处先发⽣再结晶?为什么?6.图7—5⽰出。

—黄铜在再结晶终了的晶粒尺⼨和再结晶前的冷加⼯量之间的关系。

图中曲线表明,三种不同的退⽕温度对晶粒⼤⼩影响不⼤。

这⼀现象与通常所说的“退⽕温度越⾼,退⽕后晶粒越⼤”是否有⽭盾?该如何解释?7.假定再结晶温度被定义为在1 h 内完成95%再结晶的温度,按阿累尼乌斯(Arrhenius)⽅程,N =N 0exp(RT Q n -),G =G 0exp(RT Q g -)可以知道,再结晶温度将是G 和向的函数。

(1) 确定再结晶温度与G 0,N 0,Q g ,Q n 的函数关系;(2) 说明N 0,G 0,Q g ,Q 0的意义及其影响因素。

8.为细化某纯铝件晶粒,将其冷变形5%后于650℃退⽕1 h ,组织反⽽粗化;增⼤冷变形量⾄80%,再于650℃退⽕1 h ,仍然得到粗⼤晶粒。

试分析其原因,指出上述⼯艺不合理处,并制定⼀种合理的晶粒细化⼯艺。

9.冷拉铜导线在⽤作架空导线时(要求⼀定的强度)和电灯花导线(要求韧性好)时,应分别采⽤什么样的最终热处理⼯艺才合适?10.试⽐较去应⼒退⽕过程与动态回复过程位错运动有何不同。

从显微组织上如何区分动、静态回复和动、静态再结晶? 11.某低碳钢零件要求各向同性,但在热加⼯后形成⽐较明显的带状组织。

金属学与热处理课后习题答案

金属学与热处理课后习题答案

金属学与热处理课后习题答案Standardization of sany group #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#第七章金属及合金的回复和再结晶7-1 用冷拔铜丝线制作导线,冷拔之后应如何如理,为什么答:应采取回复退火(去应力退火)处理:即将冷变形金属加热到再结晶温度以下某一温度,并保温足够时间,然后缓慢冷却到室温的热处理工艺。

原因:铜丝冷拔属于再结晶温度以下的冷变形加工,冷塑性变形会使铜丝产生加工硬化和残留内应力,该残留内应力的存在容易导致铜丝在使用过程中断裂。

因此,应当采用去应力退火使冷拔铜丝在基本上保持加工硬化的条件下降低其内应力(主要是第一类内应力),改善其塑性和韧性,提高其在使用过程的安全性。

7-2 一块厚纯金属板经冷弯并再结晶退火后,试画出截面上的显微组织示意图。

答:解答此题就是画出金属冷变形后晶粒回复、再结晶和晶粒长大过程示意图(可参考教材P195,图7-1)7-3 已知W、Fe、Cu的熔点分别为3399℃、1538℃和1083℃,试估算其再结晶温度。

答:再结晶温度:通常把经过严重冷变形(变形度在70%以上)的金属,在约1h的保温时间内能够完成超过95%再结晶转变量的温度作为再结晶温度。

≈δTm,对于工业纯1、金属的最低再结晶温度与其熔点之间存在一经验关系式:T再金属来说:δ值为,取计算。

2、应当指出,为了消除冷塑性变形加工硬化现象,再结晶退火温度通常要比其最低再结晶温度高出100-200℃。

=,可得:如上所述取T再W=3399×=℃再=1538×=℃Fe再Cu=1083×=℃再7-4 说明以下概念的本质区别:1、一次再结晶和二次在结晶。

2、再结晶时晶核长大和再结晶后的晶粒长大。

答:1、一次再结晶和二次在结晶。

定义一次再结晶:冷变形后的金属加热到一定温度,保温足够时间后,在原来的变形组织中产生了无畸变的新的等轴晶粒,位错密度显着下降,性能发生显着变化恢复到冷变形前的水平,称为(一次)再结晶。

第七章回复与再结晶

第七章回复与再结晶
化严重时下降。 (2)物理性能 密度:在回复阶段变化不大,在再结晶阶段急剧升高; 电阻:电阻在回复阶段可明显下降。
回复、再结晶及晶粒长大阶段中性能的变 化情况
7.2 回复
回复过程3阶段(储存能在回复阶段三个峰值所对应的) 约化温度:表征加热温度的高低,用绝对温标表示的加热温度与其熔点温度之比, TH =T/Tm。
错相遇相消,位错密度下降,位错缠结内部重新排列组合,使亚晶规整化。
(3)高温回复( TH >0.5Tm) 高温回复,原子活动能力进一步增强,位错除滑移外,还可攀移。主要机制是多边化。冷变形后由
于同号刃型位错在滑移面上塞积而导致点阵弯曲,在退火过程中通过刃型位错的攀移和滑移,使同号 刃型位错沿垂直于滑移面的方向排列成小角的亚晶界,这个过程称为多边化。其驱动力来自应变能的 下降。
位错及晶界处,对位错的运动及晶界的迁移起阻碍作用,因此不利于再结晶的形核与长大,阻碍再结 晶,使再结晶温度升高。 4.原始晶粒尺寸
其他条件相同情况下,晶粒越细,变形抗力越大,冷变形后存储能越多,再结晶温度越低。相同变 形度,晶粒越细,晶界总面积越大,可供形核场所较多,生核率也增大,再结晶速度加快。
5.分散相粒子 分散相粒子直径较大,离子间距较大的情况下,再结晶被促进;而小的粒子尺寸和小的粒子间距,
储存能的释放与性能变化
1 储存能:存在于冷变形金属内部的一小部分(~10%)变形功。
弹性应变能(3~12%) 2 存在形式 位错(80~90%)
点缺陷
3 储存能的释放:原子活动能力提高,迁移至平衡位置,储存能得以释放。
(1)力学性能 回复阶段:强度、硬度略有下降,塑性略有提高。 再结晶阶段:强度、硬度明显下降,塑性明显提高。 晶粒长大阶段:强度、硬度继续下降,塑性继续提高,粗

第7章 《材料科学》回复与再结晶.

第7章 《材料科学》回复与再结晶.
(7.1)
式中t为恒温下的加热时间,x为冷变形导致的性能增量经加热后的残留分数,c为 与材料和温度有关的比例常数,c值与温度的关系具有典型的热激活过程的特点:
c c0eQ RT
( 7.2)
式中Q为激活能,R为气体常数(8.31×10-3J/mol·K),c0为比例常数,T为绝对温度。 将式7.2代入方程7.1中并积分,以x0表示开始时性能增量的残留分数,则得: ( 7.3)
特点: ①无孕育期; ②开始变化快,随后变慢; ③长时间处理后,性能趋于一平衡值; ④加热温度越高,回复程度也越高; ⑤变形量越大,初始晶粒尺寸越小, 有助于加快回复速率。
图 同一变形度的Fe在不同温度等温退火后的性能变化曲线
§7.2 回复
§7.2.2 回复动力学
回复特征通常可用一级反应方程来表达,即:
再结晶:经冷变形的金属在足够高的温度下加热时,通过新晶粒 的形核及长大,以无畸变的等轴晶粒取代变形晶粒的过程。
(再结晶是一个显微组织彻底改组、变形储能充分释放、性能显著变化的过程。)
形核的两种方式:晶界凸出形核、亚晶形核。
(1)晶界凸出形核----晶核伸向小位错胞晶粒(畸变能较高域)内
对于变形程度较小的金属(一般小于20%),再结晶晶核往往采用凸出形核机制生 成,如图所示。
※ 注:实际再结晶退火温度一般比上述温度高 100~200℃。 19
§7.3
再结晶
§7.3.4 影响再结晶的因素
(1)退火温度 ----温度越高,再结晶速度越大。 (2) 变形量 ----变形量越大,再结晶温度越低;随变形量增大,再结晶 温度趋于稳定;变形量低于一定值,再结晶不能进行。 (3) 原始晶粒尺寸 ----晶粒越小,驱动力越大;晶界越多,有利于形核。 (4) 微量溶质元素 -----阻碍位错和晶界的运动,不利于再结晶。 (5)第二分散相 ----间距和直径都较大时,提高畸变能,并可作为形核核心, 促进再结晶;直径和间距很小时,提高畸变能,但阻碍晶 界迁移,阻碍再结晶。

第七章回复与再结晶

第七章回复与再结晶

§6-2 回复
回复的定义及特点
1 定义:冷变形后的金属在加热温度不高时,其光学显微组织
未发生明显改变时所产生的某些亚结构和性能的变化过程。 2 特点:
① 加热T低:T回 = (0.25~0.3)T熔; ② 显微组织无明显变化:仍保留拉长、畸变的晶粒。 ③ 晶粒内部亚结构发生变化(电子显微镜): a 低温回复,点缺陷↓↓;主要指空位 b 高温回复,位错密度↓ (异号位错的合并;同号位错的规整
拉应力场和压应力场重叠而抵消一部分应变能。P197+9
滑移
攀 移 多边形化前 多边形化后
回复亚晶的形成 ——“多边形化” 过程
缠结 位错
位错 伸直
冷加工态
位错 网络
回复0.1h 大的稳 定网格
回复50h
回复300h
④ 性能变化: HB、ζ 略 ↓ ,δ 、ψ 略↑;
R↓↓;耐腐蚀性提高 原因:晶格畸变↓
热加工实质:是否有再结晶软化过程
衡量依据:T再
例:W 在1000℃非热加工; Sn、Pb 在室温为热加工; 动态回复和 动态再结晶
原晶粒
变形晶粒
所形成的小晶粒
全部新晶粒
残留的变形晶粒
金属在热轧时变形和再结晶的示意图
热加工对组织、性能的影响
热加工:钢材的热锻与热轧 1 消除铸态组织缺陷
⑴ 压合铸件中的疏松、气孔等缺陷,提高组织致密度和机械
再结晶应用——再结晶退火
再结晶退火的目的:
① 中间退火:消除加工硬化,有利于进一步冷变形;
如:冷拔铁铬铝电阻丝生产中: 氢气保护再结晶退火 ② 无相变金属的细晶强化(如Al、Cu等): 冷塑变 + 再结晶退火→细化的再结晶晶粒
再结晶图的应用

08第七章 回复与再结晶

08第七章 回复与再结晶

| 时散的第二相粒子一钉扎晶界一晶界迁移阻力↑ | |;
| 冷变形一变形织构一再结晶织构一位向差小一晶界迁移能力↓ 1 1 ~
热蚀沟一钉扎晶界一晶界迁移阻力↑
1~
多 .A Ii~太*-阻
.
-è ,~;I .7 装在营
,---------------------------------------------
温度高、速度快一一属于热激活过程
.1 00 <:
350'(二·
毒草
草 0.6
哥哥
4(陆℃
星 O.~
4虽
吾在
450 仁、
0.2
世)()('


100
_
200
2.
_
~
_
_
时向 (mìn)
Fe在不同温度退失 后 的性能变化曲线
') ~ Jl J 也
1. .;,二 哮
三、去应力主l!火
‘ 消除内应力: ‘ 稳定尺寸:
高温长时间加热 表面与晶界张力平衡
面、晶界交界处原子扩散离去 ~→| 热蚀沟
形成
晶界移动一一晶界面积增大一一界面能↑一一长大速度↓
一一因为再结晶己完全消除了 上述影响
|思考是 l
与回 复、再结 晶相 比 , 品粒长大的驱动力有什 么 变化 ?为什么?
\ 晶粒长大的动力 学有什么特点?
义 再结晶晶粒总是均匀的生长吗?
会和品 : 理论2 第一个新晶粒形成,或出现凸出形核锯齿状边缘的温度
工业z 完全再结晶
硬』良品:
测硬度一退火曲线,
硬度开始明显下降,或软化50% 的退火温度
会和品 : 理论2 第一个新晶粒形成,或出现凸出形核锯齿状边缘的温度

第七章 金属及合金的回复与再结晶PPT课件

第七章 金属及合金的回复与再结晶PPT课件
第七章 金属及合金的回复与再结晶
• 第一节 形变金属与合金在退火过程中的变化 • 储存能(P194)、退火(P194) • 一、显微组织的变化 • 将塑性变形后的金属材料加热到0.5Tm温度附近,进行保
温,随着时间的延长,金属的组织将发生一系列的变化, 这种变化可以分为三个阶段,如下图。
二、储存能及内应力的变化
• 特点(P206),右图为示 意图。
下图为Fe-Si箔材于1200℃退火后 的组织。

三、再结晶退火后的组织
• (一)再结晶图 • 变形程度越大,则晶
粒越细;而退火温度 越高,则晶粒越粗大。 通常将晶粒大小、变 形程度和退火温度之 间的关系,绘制成立 体图形,称为“再结 晶图”。
• 右图为工业纯铝、工 业纯铁的再结晶图。
• 从图中的各条曲线不难看出,回复的程度是温度和时间的 函数。温度越高,回复的程度越大。当温度一定时,回复 的程度随时间的延长而逐渐增加。
二、回复机制
• 回复是空位和位错在退火过程中发生运动,从而改变了它 们的数量和组态的过程。
• 在低温回复时,主要涉及到空位的运动,结果使空位的密 度大大减少。
• 在较高温度回复时,主要涉及到位错的运动(下图)。
• (一)变形度 • 变形度对金属再结晶
晶粒大小的影响如右 图。 • 临界变形度(P202)
• (二)再结晶退火温度 • (三)原始晶粒尺寸
• 当变形度一定时,材料的原始晶粒度越细,则再 结晶后的晶粒也越细。(下图)
• (四)合金元素及杂质
第四节 晶粒长大
• 再结晶阶段刚刚结束时,得到的是无畸变的等轴 的再结晶初始晶粒。随着加热温度的升高或保温 时间的延长,晶粒之间就会互相吞并而长大,这 一现象称之为晶粒长大,或聚合再结晶。

7 回复与再结晶

7 回复与再结晶

(4) 对组织和性能的影响
织构明显
各向异性
优化磁导率;
晶粒大小不均,导致性能不均;晶粒粗大
降低强度和塑性、韧性;
提高表面粗糙度。

大多数情况下应当避免。

7.2.2 回复机制
)
高温回复(>0.5T
m
位错攀移(+滑移)→位错垂直排列
→多边化(亚晶粒)→弹性畸变能降低。

:回复过程中由位错重新分布而形成确定的亚晶结构的过程。

7.3.2 再结晶晶核的形成与长大
再结晶晶核的形成(非均匀形核)
亚晶形核机制
一般发生在冷变形度较大的金属中。

亚晶合并机制
适于高层错能金属。

过程:位错多边化→回复亚晶→形核。

7.3.2 再结晶晶核的形成与长大
7.3.4 再结晶晶粒大小的控制
(2) 原始晶粒尺寸
当变形度一定时,材料的原始晶粒尺寸越细,则再结晶后的晶粒也越细。

(3) 合金元素及杂质
在其他条件相同的情况下,凡延缓再结晶及阻碍晶粒长大的合金元素或杂质均使金属再结晶后得到细晶粒组织。

金属的热加工
性能变化是双向的:
变形前变形后
再结晶
软软
加工硬化
2)组织结构的变化
特点:反复形核、有限长大。

晶粒是等轴的,大小不均匀,晶界呈锯齿状,等轴晶内存在被缠结位错所分割成的影响晶粒大小的因素:应变速率低、变形温度高时,晶粒尺寸大。

动态再结晶组织包含亚晶粒,并且位错密度较高,比静态再结晶组织强度、硬度高。

第7章回复和再结晶

第7章回复和再结晶

第7章回复和再结晶第7章回复和再结晶⾦属发⽣冷塑性变形后,其组织和性能发⽣了变化,为了使冷变形⾦属恢复到冷变形前的状态,需要将其进⾏加热退⽕。

为什么将冷变形⾦属加热到适当的温度能使其恢复到冷变形前的状态呢?因为冷变形⾦属中储存了部分机械能,使能量升⾼,处于热⼒学不稳定的亚稳状态,它有⾃发向热⼒学更稳定的低能状态转变的趋势。

然⽽,在这两种状态之间有⼀个能量升⾼的中间状态,成为⾃发转变的障碍,称势垒。

如果升⾼温度,⾦属中的原⼦获得⾜够的能量(激活能),就可越过势垒,转变成低能状态。

研究冷变形⾦属在加热过程中的变化有两种⽅法。

1)以⼀定的速度连续加热时发⽣的变化;2)快速加热到某⼀温度,在保温过程中发⽣的变化。

通常采⽤。

P195图1为将冷变形⾦属快速加热到0.5T m附近保温时,⾦相组织随保温时间的变化⽰意图。

可以将保温过程分三个阶段:1)在光学显微组织发⽣改变前,称回复阶段;2)等轴晶粒开始产⽣到变形晶粒刚消失之间,称再结晶阶段;3)晶粒长⼤阶段。

7-1 回复⼀、回复的定义冷变形⾦属加热时,在光学显微组织发⽣改变前所产⽣的某些亚结构和性能的变化称回复。

⼆、回复对性能的影响内应⼒降低,电阻降低,硬度和强度下降不多(基本不变)。

三、回复的机制回复的机制根据温度的不同有三种:(⼀)低温回复机制冷变形⾦属在较低温度范围就开始回复,主要表现为电阻下降,但机械性能⽆变化。

由此认为低温回复的机制是:过量点缺陷减少或消失。

(⼆)中温回复机制温度范围⽐低温回复稍⾼。

中温回复的机制是:位错发⽣滑移,导致位错的重新组合,及异号位错相遇抵消。

发⽣中温回复时,在电镜组织中,位错组态有变化;但位错密度的下降不明显。

若两个异号位错不在同⼀滑移⾯上,在相遇抵消前,要通过攀移或交滑移,这需要更⼤的激活能,只能在较⾼的温度才能发⽣。

(三)⾼温回复机制发⽣⾼温回复时,电镜组织的特征是亚晶粒呈等轴状,即⽆变形的亚晶粒。

于是,提出了⾼温回复的多边化机制(P197图5)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

变等轴晶粒逐渐取代变形晶粒,而使形变强化效应完全消
除的过程。
1.2 显微组织变化
回 复 阶 段 :显微组织仍为纤维状,无可见变化;
再 结 晶 阶 段:变形晶粒通过形核长大,逐渐转变为
新的无畸变的等轴晶粒。 晶粒长大阶段:晶界移动、晶粒粗化,达到相对稳定 的形状和尺寸。
1.2 显微组织变化
1.3 性能变化
0.35TM,对于工业纯金属来讲,经验表明最低再结晶温度
在0.35TM左右,一般再结晶温度用0.4TM来估计。
5.2 影响再结晶后的晶粒尺寸因素
预变形量:在临界变形量(不
同材料不相同,一般金属在2— 10%之间)以下,材料不发生再 结晶,维持原来的晶粒尺寸;在 临界变形量附近,刚能形核,因 核心数量很少而再结晶后的尺寸
1) 晶粒长大的动力
两晶粒界面形状如图所示,三维空
间中的任一曲面可用两个主要的曲
率半径(r1、r2)来描述,此时作用 在图中曲面单位面积上的驱动力DP 为: 当曲面为球面时,r1 = r2 =R,则:DP=2s/R。由于晶界向曲 率中心方向(即由凹→凸)移动,晶界总面积缩小,所以晶 粒长大总是与再结晶时晶界移动方向相反。晶界向晶粒 I 边 迁移,会降低自由能,所以自发过程是界面向凹边迁移。
应用实例:灯泡W丝中加ThO2质点;钢中含有Al2O3或AlN质 点、Mg中加入微量Zr,Al中含有MnAl6质点,均可明显阻止加 热时晶粒的长大。
4.3 晶粒的非正常长大
再结晶晶粒通常缓慢均匀长大,但如有少数晶粒处在特别
有利的环境,它们将吞食周围晶粒,迅速长大,这种现象
称为晶粒的异常长大。早期的研究以为异常长大也是形核 和核心的生长过程,因此称为“二次再结晶” 异常长大的实质是一次再结晶后的长大过程中,某些晶粒 的环境特殊而产生的优先长大,不存在再次形核过程。 异常长大导致晶粒分布严重不均,长大后期可能造成材料 晶粒尺寸过大,对材料的性能带来十分不利的影响。
般均采用保温 2小时,
保证再结晶充分完成而晶粒不过分长大,延长保温时间显 然会造成晶粒尺寸的长大。
5.2 影响再结晶后的晶粒尺寸因素
不溶解的第二相 讨 论:
R K r f
R是平衡状态下的晶粒半径,也即是该条件下晶粒长大的极限 尺寸。
晶粒长大的极限尺寸与二相颗粒的半径成正比,与颗粒的体积 分数成反比。
二相颗粒愈细小,数量愈多,则对晶粒长大的阻滞能力愈强。
二相颗粒对晶粒长大的阻碍作用主要取决于其大小和体积分数, 而二相颗粒本身的性质影响相对较小,因为它只影响a值。
基本条件:
正常晶粒长大过程
被(第二分散相微
粒、织构) 强烈
阻碍。
驱动力:
界面能变化。(不 是重新形核)
4.3 晶粒的非正常长大
钉扎晶界的第二相溶于基体.
机制
再结晶织构中位向一致晶粒的合并. 大晶粒吞并小晶粒. 各向异性 优化磁导率 性能不均 降低强度和塑韧性
织构明显 对组织和性能的影响 晶粒粗大
② 变形量大,弹性畸变能大,再结晶速度也快。变
形量过小,形变储能不能满足形核的基本要求时,
再结晶就不能发生。发生再结晶需要一定的变形
量,称为临界变形量δC,大多金属材料的临界变 形量在2—10%之间。
第四节 晶粒长大
再结晶刚完成时,得到的是等轴细晶粒 组织。继续提高退火温度或延长保温时 间,就会发生晶粒相互吞并而长大的现 象,晶粒长大包括均匀长大的正常长大
4) 影响晶界移动的因素
可溶解杂质及合金元素
溶质原子都能阻碍晶界移动,特别是晶界偏聚(内吸附)显
著的原子,能有效降低晶界的界面能,拖住晶界使之不易
移动,温度很高时,吸附在晶界的溶质原子被驱散,其拟 制作用减弱乃至消失。
温度:晶界移动速率G可表示为:G=G0exp(-QG/RT);
G0为常数,QG为晶界迁移激活能。通常一定温度下晶粒长
2) 晶粒长大的动力学
Beck及其同事首先建立了纯金属和单相合金等温退火时 晶粒长大动力学的经验公式:D=Ktn
其中:t是退火时间,而K和n是与材料和温度有关的
参量。通常n随退火温度的升高而增大,一般小于0.5, 只有接近熔点时才等于0.5。由此可见纯金属和单相合 金,在较低温退火时,随保温时间的延长,晶粒长大得 较慢。相反,在高温退火时,晶粒长大得较快。
很大,有时甚至可得到单晶;
一般情况随着变形量的增加,再结晶后的晶粒尺寸不断减小; 当变形量过大(>70%)后,可能产生明显织构,在退火温度高时 发生晶粒的异常长大。
5.2 影响再结晶后的晶粒尺寸因素
退火温度和时间:
退火温度高,完成再结晶用 的时间少,长大的时间就长, 所以随退火温度的提高而晶 粒尺寸增大。再结晶退火一
突然移动,高密度一侧的原子转移到位错低的一侧,新
的排列应为无畸变区,这个区域就是再结晶核心。
晶界凸出形核现象在铜、镍、银、铝及 铝-铜合金中曾直接观察到。
3.3 长大
变形晶粒晶界附近的原子移动到新的未变形晶粒上,
从而可以减少变形应变能,新晶粒不断长大到相遇,
最后全部为新晶粒,再结晶完成。
3.3.4 影响再结晶的因素
位错,通过滑移和攀移形成 与滑移面垂直的亚晶界的过 程。多边化的驱动力是弹性 应 降低。 变 能 的
3) 多边化。
2.4 回复应用
去应力退火
降低应力(保持加工硬化效果)
防止工件变形、开裂,提高耐蚀性。
第三节 再结晶
(Recrystallization)
3.1 再结晶的基本过程
冷变形后的金属加热到一定温度或保温足够时间后, 在原来的变形组织中产生了无畸变的新晶粒,新生成 的晶粒逐渐全部取代塑性变形过的晶粒,位错密度显
1.4 内应力变化
回 复 阶 段: 大部分或全部消除第一类 内应力,部分消除第二、 三类内应力; 再结晶阶段: 内应力可完全消除。
第二节 回 复 (Recovery)
所谓回复,即在加热温度较低时,仅因金属
中的一些点缺陷和位错的迁移而引起的某些
晶内的变化。
2.1 回复时组织性能变化
1) 宏观应力基本去除,微观应力仍然残存;
-
空位与间隙原子的相遇而互相中和 空位或间隙原子运动到刃位错处消失,引起位错的攀移 点缺陷运动到界面处消失。
中温阶段:
缠结位错重新组合; 异号位错抵消, 位错密度略有降低。 亚晶粒长大。
多边化 是指冷变形金属加
热时,原来处于滑移面上的
高温回复
1) 位错攀移和位错环缩小; 2) 亚晶粒合并;
I
O’
II
TB
3) 晶界移动的规律
③ 二维坐标中,晶界边数少于6的晶粒(其晶界外凸) 必然逐步缩小乃至消失。而边数大于6的晶粒(晶界
内凹)则逐渐长大。当晶界边数为6时,晶界很平直
且夹角为120o时,则晶界处于稳定状态,不再移动, 要达到这样的平衡状态需要很长的保温时间。 ④ 晶界迁移的速度G随晶界曲率半径的增大而减小,因 此它随时间而变。Johnson-Mehl公式中假设G不变是 不符合实际的。
第七章 金属及合金的回复与再结晶
1. 形变金属材料退火过程中的组织和 性能变化 2. 回复 3. 再结晶 4. 晶粒长大 5. 金属的热加工
形变储能: 弹性应变能(3~12%)
晶格畸变能(80~90%)
退火: 将材料加热到一定温度保持一定时间的热处理
工艺,按目的又可分为去应力退火、成分均匀 化退火等多种。 变形储能使金属内能升高,处于热力学亚稳状态。退火
力学性能
回复阶段: 强度、硬度略有下降,塑性略有提高。
再结晶阶段: 强度、硬度明显下降,塑性明显提高。
晶粒长大阶段:强度、硬度继续下降,塑性继续提高,粗化 严重时下降。
物理性能
密 电 度 : 在回复阶段变化不大,在再结晶阶段急剧升高; 阻 :电阻在回复阶段可明显下降。
形变储能:回复阶段部分释放,再结晶至长大初期完全释放。
大到一定尺寸就不再长大了,提高温度晶粒会继续长大。
4) 影响晶界移动的因素
相邻晶粒的位向差
晶界的界面决定于相邻晶粒间的位向差。小角
度晶界的界面能小于大角度晶界的界面能,而
驱使界面移动的力又与界面能成正比,因此前 者的迁移速度要小于后者。
4) 影响晶界移动的因素
不溶解的第二相
弥散的第二相质点对于阻碍晶界的运动去重要作用。 当运动的晶界遇到球形(简化起见)第二相质点时, 第二相质点对晶界运动产生阻力。
过程中,原子活动能力升高,形变金属就能从亚稳态向
稳态转变,而变形储能则是形变金属退火过程中组织变 化的驱动力。
第一节 冷变形金属在加热时ቤተ መጻሕፍቲ ባይዱ组 织与性能变化
1.1 回复与再结晶
回 复:冷变形金属较低温加热时,显微组织无可见变化,但其物理、 力学性能却部分恢复到冷变形以前的过程。 再结晶:冷变形金属被加热到适当温度时,在变形组织内部新的无畸
著降低,性能发生显著变化并恢复到冷变形前的水平,
这个过程称为再结晶。再结晶的驱动力也是变形储能 的降低。
冷塑性变形后的发生再结晶,晶粒以形核和晶核长大来进 行,但再结晶过程不是相变。原因有: 变化前后的晶粒成分相同,晶体结构并未发生变化,因
此它们是属于同一个相。
再结晶过程是不可逆的,相变过程在外界条件变化后可 以发生可逆变化。
2) 物理性能,如电阻率,有明显降低,有的可基本回 到未变形前的水平; 3) 力学性能,如硬度和流变应力,觉察不到有明显的 变化; 4) 光学金相组织看不出任何变化,温度较高发生回复, 在电子显微镜下可见到晶粒内部组织的变化。(位错
的胞状组织转变为亚晶)
2.2 回复机制
低温阶段 —点缺陷的迁移和减少, 表现为:
3) 晶界移动的规律
相关文档
最新文档