人教版八年级下学期数学期末试卷
最新人教版数学八年级下学期《期末检测卷》有答案解析
C.菱形的对角线互相垂直D.矩形的对角线互相垂直
【答案】D
【解析】
【分析】
根据几种四边形的性质进行判断即可.
【详解】解:矩形对角线一定相等,但不一定相互垂直,选D说法错误.
其它三个选项说法均正确.
故选:D.
【点睛】本题考查了平行四边形以及三种特殊平行四边形的性质,掌握这几种四边形的性质是解题的键.
27.如图1,在正方形A B C D中,P是对角线B D上的一点,点E在A D的延长线上,且PA=PE,PE交C D于F
(1)证明:PC=PE;
(2)求∠CPE的度数;
(3)如图2,把正方形A B C D改为菱形A B C D,其他条件不变,当∠A B C=120°时,连接CE,试探究线段AP与线段CE的数量关系,并说明理由.
【答案】13或
【解析】
【分析】
分情况讨论当 的木棒为直角边时以及当 的木棒为斜边时,利用勾股定理解答即可.
【详解】解:当 的木棒为直角边时,第三根木棒的长度为 ;
当 的木棒为斜边时,第三根木棒的长度为 ;
A. B. C. D.
【答案】C
【解析】
【分析】
绝对值小于1的正数也可以利用科学记数法表示,一般形式为A×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
详解】2.3μm=2.3×0.000001m=2.3×10-6m,
故选:C.
【点睛】本题考查用科学记数法表示较小的数,一般形式为A×10-n,其中1≤|A|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.
22.在一次函数 中,随 的 增大而增大,则 ________.
新部编人教版八年级数学下册期末考试卷及参考答案
新部编人教版八年级数学下册期末考试卷及参考答案班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.2-的相反数是()A.2-B.2 C.12D.12-2.若点A(1+m,1﹣n)与点B(﹣3,2)关于y轴对称,则m+n的值是()A.﹣5 B.﹣3 C.3 D.13.设42-的整数部分为a,小数部分为b,则1ab-的值为()A.2-B.2C.212+D.212-4.如图,在四边形ABCD中,∠A=140°,∠D=90°,OB平分∠ABC,OC平分∠BCD,则∠BOC=()A.105°B.115°C.125°D.135°5.已知a与b互为相反数且都不为零,n为正整数,则下列两数互为相反数的是()A.a2n-1与-b2n-1 B.a2n-1与b2n-1 C.a2n与b2n D.a n与b n6.已知关于x的不等式组320x ax->⎧⎨->⎩的整数解共有5个,则a的取值范围是()A.﹣4<a<﹣3 B.﹣4≤a<﹣3 C.a<﹣3 D.﹣4<a<3 27.在平面直角坐标系中,一次函数y=kx+b的图象如图所示,则k和b的取值范围是()A .k >0,b >0B .k >0,b <0C .k <0,b >0D .k <0,b <08.如图所示,点A 、B 分别是∠NOP 、∠MOP 平分线上的点,AB ⊥OP 于点E ,BC ⊥MN 于点C ,AD ⊥MN 于点D ,下列结论错误的是( )A .AD +BC =ABB .与∠CBO 互余的角有两个C .∠AOB =90°D .点O 是CD 的中点9.夏季来临,某超市试销A 、B 两种型号的风扇,两周内共销售30台,销售收入5300元,A 型风扇每台200元,B 型风扇每台150元,问A 、B 两种型号的风扇分别销售了多少台?若设A 型风扇销售了x 台,B 型风扇销售了y 台,则根据题意列出方程组为( )A .530020015030x y x y +=⎧⎨+=⎩B .530015020030x y x y +=⎧⎨+=⎩C .302001505300x y x y +=⎧⎨+=⎩D .301502005300x y x y +=⎧⎨+=⎩10.下列图形中,是中心对称图形的是( )A .B .C .D .二、填空题(本大题共6小题,每小题3分,共18分)1.已知直角三角形的两边长分别为3、4.则第三边长为________.2.将二次函数245y x x =-+化成2()y a x h k =-+的形式为__________.3.分解因式:2x 3﹣6x 2+4x =__________.4.如图,△ABC 中,CD ⊥AB 于D ,E 是AC 的中点.若AD=6,DE=5,则CD 的长等于________.5.正方形111A B C O 、2221A B C C 、3332A B C C 、…按如图所示的方式放置.点1A 、2A 、3A 、…和点1C 、2C 、3C 、…分别在直线1y x =+和x 轴上,则点n B 的坐标是__________.(n 为正整数)6.如图所示,在△ABC 中,∠BAC=106°,EF 、MN 分别是AB 、AC 的垂直平分线,点E 、N 在BC 上,则∠EAN=________.三、解答题(本大题共6小题,共72分)1.解方程组:4311213x y x y -=⎧⎨+=⎩2.先化简,再求值:2282442x x x x x ⎛⎫÷-- ⎪-+-⎝⎭,其中2x =.3.已知方程组713x y m x y m+=--⎧⎨-=+⎩的解满足x 为非正数, y 为负数. (1)求m 的取值范围;(2)化简:||32m m --+;(3)在m 的取值范围内,当m 为何整数时,不等式221mx x m +<+的解为1x >.4.如图,矩形ABCD中,AB=6,BC=4,过对角线BD中点O的直线分别交AB,CD边于点E,F.(1)求证:四边形BEDF是平行四边形;(2)当四边形BEDF是菱形时,求EF的长.5.如图所示,在△ABC中,D是BC边上一点,∠1=∠2,∠3=∠4,∠BAC=63°,求∠DAC的度数.6.一商店销售某种商品,平均每天可售出20件,每件盈利40元.为了扩大销售、增加盈利,该店采取了降价措施,在每件盈利不少于25元的前提下,经过一段时间销售,发现销售单价每降低1元,平均每天可多售出2件.(1)若降价3元,则平均每天销售数量为________件;(2)当每件商品降价多少元时,该商店每天销售利润为1200元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、D3、D4、B5、B6、B7、C8、B9、C10、D二、填空题(本大题共6小题,每小题3分,共18分) 1、52、22()1y x =-+3、2x (x ﹣1)(x ﹣2).4、8.5、1(21,2)n n -- 6、32°三、解答题(本大题共6小题,共72分)1、53x y =⎧⎨=⎩.2、22x -,12-.3、(1)23m -<≤;(2)12m -;(3)1m =-4、(1)略;(2)3.5、24°.6、(1)26;(2)每件商品降价10元时,该商店每天销售利润为1200元.。
人教版八年级下册数学期末试卷综合测试卷(word含答案)
人教版八年级下册数学期末试卷综合测试卷(word 含答案)一、选择题1.要使式子﹣3x -有意义,则x 的值可以为( )A .﹣6B .0C .2D .π2.下列语句不能判定ABC 是直角三角形的是( )A .2220a b c +-=B .::3:4:5A BC ∠∠∠= C .::3:4:5a b c =D .A B C ∠+∠=∠3.如图,四边形ABCD 的对角线AC 、BD 相交于O ,下列判断正确的是( )A .若AC ⊥BD ,则四边形ABCD 是菱形B .若AC =BD ,则四边形ABCD 是矩形C .若AB =DC ,AD ∥BC ,则四边形ABCD 是平行四边形 D .若AO =OC ,BO =OD ,则四边形ABCD 是平行四边形4.为了丰富校园文化,学校艺术节举行初中生书法大赛,设置了10个获奖名额.结果共有21名选手进入决赛,且决赛得分均不相同.若知道某位选手的决赛得分,要判断它是否获奖,只需知道学生决赛得分的( ) A .平均数B .中位数C .众数D .方差5.如图,在△ABC 中,AC =6,AB =8,BC =10,点D 是BC 的中点,连接AD ,分别以点A ,B 为圆心,CD 的长为半径在△ABC 外画弧,两弧交于点E ,连接AE ,BE .则四边形AEBC 的面积为( )A .2B .3C .24D .366.如图,在平面直角坐标系上,直线y =34x ﹣3分别与x 轴、y 轴相交于A 、B 两点,将△AOB 沿x 轴翻折得到△AOC ,使点B 刚好落在y 轴正半轴的点C 处,过点C 作CD ⊥AB 交AB 于D ,则CD 的长为( )A.185B.245C.4 D.57.如图,在平行四边形ABCD上,尺规作图:以点A为圆心,AB的长为半径画弧交AD于点F,分别以点B、F为圆心,以大于12BF的长为半径画弧交于点P,作射线AP交BC于点E,连接EF.若12BF=,10AB=,则线段AE的长为()A.18 B.17 C.16 D.148.如图,在平面直角坐标系中,点A的坐标是(4,0),点B的坐标是(3,4),点P 是y轴正半轴上的动点,连接AP交线段OB于点Q,若△OPQ是等腰三角形,则点P的坐标是()A.(0,53)B.(0,43)C.(0,43)或(0,163)D.(0,53)或(0,163)二、填空题9.2x-x的取值范围为__________.10.如图,在菱形ABCD中,AC=6,BD=8,则菱形的面积等于 ___.11.图中阴影部分是一个正方形,则此正方形的面积为_______ .12.在平行四边形ABCD 中,AB =5,AD =3,AC ⊥BC ,则BD 的长为____.13.已知一次函数y=kx +b 图像过点(0,5)与(2,3),则该一次函数的表达式为_____. 14.如图,O 是矩形ABCD 的对角线AC 、BD 的交点,OM ⊥AD ,垂足为M ,若AB=8,则OM 长为_______.15.如图,将一块等腰直角三角板ABC 放置在平面直角坐标系中,90,ACB AC BC ∠=︒=,点A 在y 轴的正半轴上,点C 在x 轴的负半轴上,点B 在第二象限,AC 所在直线的函数表达式是22y x =+,若保持AC 的长不变,当点A 在y 轴的正半轴滑动,点C 随之在x 轴的负半轴上滑动,则在滑动过程中,点B 与原点O 的最大距离是_______.16.如图,矩形ABCD 中,AB=8,AD=5,点E 为DC 边上一个动点,把△ADE 沿AE 折叠,点D 的对应点D ’落在矩形ABCD 的对称轴上时,DE 的长为____________.三、解答题17.计算:(1)80205-+;+-.(2)(53)(53)18.由于过度采伐森林和破坏植被,我国部分地区频频遭受沙尘暴的侵袭.近日,A城气象局测得沙尘暴中心在A城的正西方向240km的B处,以每时12km的速度向北偏东60°方向移动,距沙尘暴中心150km的范围为受影响区域.(1)A城是否受到这次沙尘暴的影响?为什么?(2)若A城受这次沙尘暴影响,那么遭受影响的时间有多长?A B C均在格点上.19.如图,网格中的每个小正方形的边长为1,点、、(1)直接写出AC的长为___________,ABC的面积为_____;(2)请在所给的网格中,仅用无刻度的直尺作出AC边上的高BD,并保留作图痕迹.20.已知:如图,在Rt△ABC中,D是AB边上任意一点,E是BC边中点,过点C作CF∥AB,交DE的延长线于点F,连接BF、CD.(1)求证:四边形CDBF是平行四边形.(2)当D点为AB的中点时,判断四边形CDBF的形状,并说明理由.21.先化简,再求值:a+2-+,其中a=1007.12a a如图是小亮和小芳的解答过程.(1)的解法是错误的;(2)错误的原因在于未能正确地运用二次根式的性质:;(3)先化简,再求值:a+2269-+,其中a=﹣2018.a a22.某电商在线销售甲、乙、丙三种水果,已知每千克乙水果的售价比每千克甲水果的售价多3元,每千克丙水果的售价是每千克甲水果售价的2倍,用200元购买丙水果的数量是用80元购买乙水果数量的2倍.(1)求丙水果每千克的售价是多少元?(2)电商推出如下销售方案:甲、乙、丙三种水果搭配销售共7千克,其中乙水果的数量是丙水果数量的2倍,且甲、乙两种水果数量之和不超过丙水果数量的6倍.请直接写出按此方案购买7千克水果最少要花费元.23.如图1,以平行四边形的顶点O为坐标原点,以所在直线为x轴,建立平面直角坐标系,,D是对角线AC的中点,点P从点A出发,以每秒1个单位的速度沿AB方向运动到点B,同时点Q从点O出发,以每秒3个单位的速度沿x轴正方向运动,当点P到达点B时,两个点同时停止运动.(1)求点A的坐标.(2)连结PQ,AQ,CP,当PQ经过点D时,求四边形的面积.(3)在坐标系中找点F,使以Q、D、C、F为顶点的四边形是菱形,则点F的坐标为________.(直接写出答案)24.(1)[探究]对于函数y=|x|,当x≥0时,y=x;当x<0时,y=﹣x.在平面直角坐标系中画出函数图象,由图象可知,函数y=|x|的最小值是.(2)[应用]对于函数y =|x ﹣1|+12|x +2|.①当x ≥1时,y = ;当x ≤﹣2时,y = ;当﹣2<x <1时,y = . ②在平面直角坐标系中画出函数图象,由图象可知,函数y =|x ﹣1|+12|x +2|的最小值是 .(3)[迁移]当x = 时,函数y =|x ﹣1|+|2x ﹣1|+|3x ﹣1|+…+|8x ﹣1|取到最小值.(4)[反思]上述问题解决过程中,涉及了一些重要的数学思想或方法,请写出其中一种. 25.如图,已知平面直角坐标系中,1,0A 、()0,2C ,现将线段CA 绕A 点顺时针旋转90︒得到点B ,连接AB .(1)求出直线BC 的解析式;(2)若动点M 从点C 出发,沿线段CB 10,过M 作//MN AB 交y 轴于N ,连接AN .设运动时间为t 分钟,当四边形ABMN 为平行四边形时,求t 的值. (3)P 为直线BC 上一点,在坐标平面内是否存在一点Q ,使得以O 、B 、P 、Q 为顶点的四边形为菱形,若存在,求出此时Q 的坐标;若不存在,请说明理由. 26.如图1,ABC ∆中,CD AB ⊥于D ,且::2:3:4BD AD CD =; (1)试说明ABC ∆是等腰三角形;(2)已知Δ40ABC S =cm 2,如图2,动点M 从点B 出发以每秒1cm 的速度沿线段BA 向点A 运动,同时动点N 从点A 出发以相同速度沿线段AC 向点C 运动,当其中一点到达终点时整个运动都停止.设点M 运动的时间为t (秒). ①若DMN ∆的边与BC 平行,求t 的值;②在点N 运动的过程中,ADN ∆能否成为等腰三角形?若能,求出t 的值;若不能,请说明【参考答案】一、选择题 1.D 解析:D 【分析】根据二次根式有意义的条件列出不等式,解不等式即可. 【详解】解:由题意得:x ﹣3≥0, 解得:x ≥3,各个选项中,π符合题意, 故选:D . 【点睛】此题主要考查二次根式有意义的条件,解题的关键是熟知二次根式的性质.2.B解析:B 【分析】由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方或最大角是否是90°即可. 【详解】解:A 、由2220a b c +-=,可得222+=a b c ,故是直角三角形,不符合题意; B 、∵::3:4:5A B C ∠∠∠=,∴∠C =180°×575345=︒++,故不是直角三角形,符合题意;C 、32+42=52,能构成直角三角形,不符合题意;D 、∵∠A +∠B =∠C ,∴∠C =90°,故是直角三角形,不符合题意; 故选:B . 【点睛】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.3.D解析:D【分析】根据平行四边形及特殊平行四边形的判定方法,对选项逐个判断即可. 【详解】解:A :对角线相互垂直平行四边形才是菱形,四边形ABCD 不一定是平行四边形,故选项错误,不符合题意;B :对角线相等的平行四边形才是矩形,四边形ABCD 不一定是平行四边形,故选项错误,不符合题意;C :一组对边相等,另外一组对边平行,不一定是平行四边形,还有可能是等腰梯形,故选项错误,不符合题意;D :对角线互相平分的四边形是平行四边形,故选项正确,符合题意; 故选D . 【点睛】此题考查了平行四边形的判定方法,熟练掌握平行四边形及特殊平行四边形的判定方法是解题的关键.4.B解析:B 【解析】 【分析】由于书法大赛设置了10个获奖名额,共有21名选手进入决赛,根据中位数的意义分析即可. 【详解】解:将21名选手进入决赛不同的分数按从小到大排序后,中位数及中位数之后的共有11个数,故只要知道自己的分数和中位数就可以知道是否获奖了, 故选B . 【点睛】本题主要考查中位数,以及相关平均数、众数、方差的意义,熟练掌握相关知识是解题的关键.5.D解析:D 【分析】根据勾股定理的逆定理求出90BAC ∠=,求出BD CD AD AE BE ====,根据菱形的判定求出四边形AEBD 是菱形,根据菱形的性质求出//AE BD ,求出1122ABE ABD ACD ABC S S S S ∆∆∆∆====,再求出四边形AEBC 的面积即可.【详解】 解:6AC =,8AB =,10BC =,222AB AC BC ∴+=,ABC ∆∴是直角三角形,即90BAC ∠=︒,点D 是BC 的中点,10BC =,5BD DC AD ∴===,即5BE AE BD AD ====,∴四边形AEBD 是菱形,//AE BC ∴,1116812222ABE ABD ACD ABC S S S S ∆∆∆∆∴====⨯⨯⨯=,∴四边形AEBC 的面积是12121236++=,故选:D . 【点睛】本题考查了勾股定理的逆定理,直角三角形斜边上的中线的性质,菱形的性质和判定,三角形的面积等知识点,解题的关键是能求出12ABE ABD ACD ABC S S S S ∆∆∆∆===是解此题的关键,注意:①如果一个三角形的两边a 、b 的平方和等于第三边c 的平方,那么这个三角形是直角三角形,②等底等高的三角形的面积相等.6.B解析:B 【解析】 【分析】利用一次函数图象上点的坐标特征可求出点A ,B 的坐标,在Rt △AOB 中,利用勾股定理可求出AB 的长,由折叠的性质可得出OC =OB ,进而可得出BC 的长,再利用面积法,即可求出CD 的长. 【详解】解:当x =0时,y =34×0﹣3=﹣3,∴点B 的坐标为(0,﹣3);当y =0时,34x ﹣3=0,解得:x =4,∴点A 的坐标为(4,0).在Rt △AOB 中,∠AOB =90°,OA =4,OB =3, ∴5AB = 由折叠可知:OC =OB =3, ∴BC =OB +OC =6.∵S △ABC =12BC •OA =12AB •CD , ∴245BC OA CD AB == 故选B . 【点睛】本题主要考查了一次函数与坐标轴的交点问题,折叠的性质,三角形的面积公式,勾股定理等等,解题的关键在于能够熟练掌握相关知识进行求解.7.C解析:C 【解析】 【分析】证明四边形ABEF 是菱形,得到OA=OE ,OB=OF =6,AE ⊥BF ,再在Rt △AOB 中由勾股定理求出OA 即可解决问题. 【详解】解:∵以点A 为圆心,AB 的长为半径画弧交AD 于点F , ∴AF=AB ,∵分别以点B 、F 为圆心,以大于12BF 的长为半径画弧交于点P ,作射线AP 交BC 于点E ,∴直线AE 是线段BF 的垂直平分线, 且AP 为∠F AB 的角平分线, ∴EF=EB ,∠F AE=∠BAE , ∵四边形ABCD 为平行四边形, ∴AD ∥BC ,∠F AE =∠AEB , ∴∠AEB =∠BAE , ∴BA =BE , ∴BA =BE=AF=FE , ∴四边形ABEF 是菱形; ∴AE ⊥BF ,OB =OF =6,OA =OE , ∴∠AOB =90°,在Rt △AOB 中:8AO =, ∴216AE AO ==, 故选:C . 【点睛】本题考查的是菱形的判定、垂直平分线、角平分线的尺规作图、勾股定理等相关知识点,掌握特殊四边形的判定方法及重要图形的尺规作图是解决本题的关键.8.C解析:C 【分析】利用待定系数法分别求出OB 、PA 的函数关系式,设(0,)P m ,4(,)3Q n n ,并由P 、Q 点坐标,可表示出OP 、OQ 和PQ ,根据△OPQ 是等腰三角形,可得OP OQ =或OP PQ =或OQ PQ =,则可得到关于m 的方程,求得m 的值,即可求得P 点坐标.【详解】解:设OB 的关系式为y kx =,将B (3,4)代入得:43k =, ∴43OB y x =, 设(0,)P m ,4(,)3Q n n , ∴OP m =,53OQ n =,PQ = 设PA 的关系式为y kx b =+,将(0,)P m ,(4,0)A 代入得:40b m k b =⎧⎨+=⎩, 解得4b m m k =⎧⎪⎨=-⎪⎩, ∴4PA m y x m =-+, 将4PA m y x m =-+,43OB y x =联立方程组得: 443PA OB m y x m y x ⎧=-+⎪⎪⎨⎪=⎪⎩, 解得12163Q m x n m==+, 若△OPQ 是等腰三角形,则有OP OQ =或OP PQ =或OQ PQ =,当OP OQ =时,53m n =,12163m n m =+, 即5123163m m m=⨯+, 解得43m =,则P 点坐标为(0,43), 当OP PQ =时,m =,12163m n m =+, 解得176m =-,不合题意,舍去, 当OQ PQ =时,根据等腰三角形性质可得:点Q 在OP 的垂直平分线上,12Q y OP =, ∴4132n m =,且12163m n m =+, 即412131632m m m ⨯=+, 解得163m =,则P 点坐标为(0,163)综上可知存在满足条件的点P,其坐标为(0,43)或(0,163).故选:C.【点睛】本题是一次函数的综合问题,考查了待定系数法、等腰三角形的性质等知识,掌握待定系数法与两点间的距离公式并注意分类讨论思想及方程思想的应用是解题的关键,综合性较强.二、填空题9.x≥2且x≠3【解析】【分析】0,且分子二次根式的被开方数非负,则可求得x的取值范围.【详解】由题意得:3020xx-≠⎧⎨-≥⎩,解不等式组得:x≥2且x≠3.故答案为:x≥2且x≠3.【点睛】本题是求使式子有意义的自变量的取值范围的问题,涉及二次根式的意义,分母不为零,不等式组的解法等知识;一般地,当式子为分式时,分母不为零;当式子中含有二次根式时,要求被开方数非负.10.24【解析】【分析】根据菱形的面积=对角线积的一半,可求菱形的面积.【详解】四边形ABCD是菱形,∴116824 22S AC BD=⋅=⨯⨯=.故答案为:24.【点睛】本题考查菱形的性质,解题的关键是熟练运用菱形的性质.11.36cm2【解析】【分析】利用勾股定理求正方形边长,从而求正方形的面积.【详解】6∴正方形的面积为:6²=36故答案为:36 cm 2.【点睛】本题考查勾股定理解直角三角形,题目比较简单,正确计算是解题关键.12.A 解析:213【分析】根据AC ⊥BC ,AB =5,AD =3,可以得到AC 的长,再根据平行四边形的性质,可以得到DE 和BE 的长,然后根据勾股定理即可求得BD 的长.【详解】解:∵四边形ABCD 是平行四边形,∴AD =BC ,∵AC ⊥BC ,AB =5,AD =3,∴∠ACB =90°,BC =3,∴AC =4,作DE ⊥BC 交BC 的延长线于点E ,∵AC ⊥BC ,∴AC ∥DE , 又∵AD ∥CE ,∴四边形ACED 是矩形,∴AC =DE ,AD =CE ,∴DE =4,BE =6,∵∠DEB =90°,∴BD 222264213BE DE ++=故答案为:213【点睛】本题考查了平行四边形的判定和性质、勾股定理,解答本题的关键是熟练掌握勾股定理. 13.y =-x +5【分析】由直线y =kx +b 经过(0,5)、(2,3)两点,代入可求出函数关系式.【详解】解:把点(0,5)和点(2,3)代入y =kx +b 得532b k b =⎧⎨=+⎩,解得:15k b =-⎧⎨=⎩,所以一次函数的表达式为y =-x +5,故答案为:y =-x +5.【点睛】此题主要考查了待定系数法求一次函数解析式,注意利用一次函数的特点,来列出方程组求解是解题关键.14.A解析:4【解析】【分析】根据三角形的中位线即可求解.【详解】∵O 是矩形ABCD 的对角线AC 、BD 的交点,∴O 是AC 中点,又OM ⊥AD ,AD ⊥CD ∴12∥OM CD ,又AB=CD=8 故OM=4故填:4【点睛】此题主要考查矩形的性质,解题的关键是熟知三角形中位线的性质.15.【分析】根据自变量与函数值得对应关系,可得A ,C 点坐标,根据勾股定理,可得AC 的长度;根据全等三角形的判定与性质,可得CD ,BD 的长,可得B 点坐标;首先取AC 的中点E ,连接BE ,OE ,OB ,可求【分析】根据自变量与函数值得对应关系,可得A ,C 点坐标,根据勾股定理,可得AC 的长度;根据全等三角形的判定与性质,可得CD ,BD 的长,可得B 点坐标;首先取AC 的中点E ,连接BE ,OE ,OB ,可求得OE 与BE 的长,然后由三角形三边关系,求得点B 到原点的最大距离.【详解】解:当x =0时,y =2x +2=2,∴A (0,2);当y =2x +2=0时,x =-1,∴C (-1,0).∴OA =2,OC =1,∴AC如图所示,过点B 作BD ⊥x 轴于点D .∵∠ACO +∠ACB +∠BCD =180°,∠ACO +∠CAO =90°,∠ACB =90°,∴∠CAO =∠BC D .在△AOC 和△CDB 中,AOC CDB CAO BCD AC CB ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△AOC ≌△CDB (AAS ),∴CD =AO =2,DB =OC =1,OD =OC +CD =3,∴点B 的坐标为(-3,1).如图所示.取AC 的中点E ,连接BE ,OE ,OB ,∵∠AOC =90°,AC =5, ∴OE =CE =12AC =52, ∵BC ⊥AC ,BC =5,∴BE =22BC CE +=52, 若点O ,E ,B 不在一条直线上,则OB <OE +BE =5522, 若点O ,E ,B 在一条直线上,则OB =OE +BE =5522, ∴当O ,E ,B 三点在一条直线上时,OB 取得最大值,最大值为552+, 故答案为:552+.【点睛】此题考查了一次函数综合题,利用自变量与函数值的对应关系是求AC 长度的关键,又利用了勾股定理;求点B 的坐标的关键是利用全等三角形的判定与性质得出CD ,BD 的长;求点B 与原点O 的最大距离的关键是直角三角形斜边上的中线的性质以及三角形三边关系.此题难度较大,注意掌握辅助线的作法,注意掌握数形结合思想的应用.16.或【详解】分析:过点D′作MN ⊥AB 于点N ,MN 交CD 于点M ,由矩形有两条对称轴可知要分两种情况考虑,根据对称轴的性质以及折叠的特性可找出各边的关系,在直角△EMD′与△AND′中,利用勾股定理解析:52或533【详解】分析:过点D′作MN⊥AB于点N,MN交CD于点M,由矩形有两条对称轴可知要分两种情况考虑,根据对称轴的性质以及折叠的特性可找出各边的关系,在直角△EMD′与△AND′中,利用勾股定理可得出关于DM长度的一元二次方程,解方程即可得出结论.详解:过点D′作MN⊥AB于点N,MN交CD于点M,如图1、所示.设DE=a,则D′E=a.∵矩形ABCD有两条对称轴,∴分两种情况考虑:①当DM=CM时,AN=DM=12CD=12AB=4,AD=AD′=5,由勾股定理可知:22=3AD AN'-,∴MD′=MN-ND′=AD-ND′=2,EM=DM-DE=4-a,∵ED′2=EM2+MD′2,即a2=(4-a)2+4,解得:a=52;②当MD′=ND′时,MD′=ND′=12MN=12AD=52,由勾股定理可知:2253 =AD ND'-'∴53,∵ED′2=EM2+MD′2,即a2=53−a)2+(52)2,解得:53.综上知:DE=5253.故答案为52.. 点睛:本题考查了翻转变换、轴对称的性质、矩形的性质以及勾股定理,解题的关键是找出关于DM 长度的一元二次方程.本题属于中档题,难度不大,但在做题过程中容易丢失一种情况,解决该题型题目时,结合勾股定理列出方程是关键.三、解答题17.(1)3;(2)2【分析】(1)先把二次根式化为最简二次根式,然后合并即可;(2)利用平方差公式计算即可.【详解】解:(1)原式=(2)原式=5﹣3=2.【点睛】本题考查的是二次根式解析:(1)2)2【分析】(1)先把二次根式化为最简二次根式,然后合并即可;(2)利用平方差公式计算即可.【详解】解:(1)原式==(2)原式=5﹣3=2.【点睛】本题考查的是二次根式的加减运算,二次根式的混合运算,掌握利用平方差公式进行简便运算是解题的关键.18.(1)受影响,理由见解析;(2)15小时【分析】(1)过点作AC ⊥BM ,垂足为C ,在Rt △ABC 中,由题意可知∠ABC=30°,由此可以求出AC 的长度,然后和150km 比较大小即可判断A 城是否解析:(1)受影响,理由见解析;(2)15小时【分析】(1)过点作AC ⊥BM ,垂足为C ,在Rt △ABC 中,由题意可知∠ABC =30°,由此可以求出AC 的长度,然后和150km 比较大小即可判断A 城是否受到这次沙尘暴的影响;(2)如图,设点E 、F 是以A 为圆心,150km 为半径的圆与BM 的交点,根据勾股定理可以求出CE 的长度,也就求出了EF 的长度,然后除以沙尘暴的速度即可求出遭受影响的时间.【详解】解:(1)过点A 作AC ⊥BM ,垂足为C ,在Rt △ABC 中,由题意可知∠CBA =30°,∴AC =12AB =12×240=120,∵AC =120<150,∴A 城将受这次沙尘暴的影响.(2)设点E ,F 是以A 为圆心,150km 为半径的圆与MB 的交点,连接AE ,AF , 由题意得,222221*********CE AE AC =-=-=,CE =90∴EF =2CE =2×90=180180÷12=15(小时)∴A 城受沙尘暴影响的时间为15小时.【点睛】本题考查了直角三角形中30°的角所对的直角边等于斜边的一半及勾股定理的应用,正确理解题意,把握好题目的数量关系是解决问题的关键.19.(1),;(2)见解析【解析】 【分析】(1)根据勾股定理和三角形的面积公式即可得到结论;(2)根据无刻度直尺作图中作垂直的技巧画出线段BD 即可;【详解】解:(1),:(2)如图所示,解析:(1)29AC =9ABC S=;(2)见解析【解析】【分析】(1)根据勾股定理和三角形的面积公式即可得到结论;(2)根据无刻度直尺作图中作垂直的技巧画出线段BD 即可;【详解】解:(1)222529,AC +, 111452425149222ABC S =⨯-⨯⨯-⨯⨯-⨯⨯=:(2)如图所示,BD 即为所求.【点睛】本题考查了作图-应用与设计作图,三角形的面积的计算,勾股定理,正确的作出图形是解题的关键.20.(1)见解析;(2)四边形CDBF 是菱形,理由见解析【分析】(1)证△CEF ≌△BED (ASA ),得CF=BD ,再由CF ∥DB ,即可得出结论; (2)由直角三角形斜边上的直线性质得CD=DB ,即解析:(1)见解析;(2)四边形CDBF 是菱形,理由见解析【分析】(1)证△CEF ≌△BED (ASA ),得CF =BD ,再由CF ∥DB ,即可得出结论;(2)由直角三角形斜边上的直线性质得CD =DB ,即可证平行四边形CDBF 是菱形.【详解】(1)证明:∵CF ∥AB ,∴∠ECF =∠EBD ,∵E 是BC 中点,∴CE =BE ,在△CEF 和△BED 中,ECF EBD CE BECEF BED ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△CEF ≌△BED (ASA ),∴CF =BD ,又∵CF ∥AB ,∴四边形CDBF 是平行四边形.(2)解:四边形CDBF 是菱形,理由如下:∵D 为AB 的中点,∠ACB =90°,∴CD =12AB =BD ,由(1)得:四边形CDBF 是平行四边形,∴平行四边形CDBF 是菱形.【点睛】本题考查了平行四边形的判定和性质、菱形的判定、全等三角形的判定和性质、直角三角形斜边上的中线性质等知识;熟练掌握平行四边形的判定与性质,证明△CEF ≌△BED 是解题的关键,属于中考常考题型.21.(1)小亮(2)=-a (a <0)(3)2024.【解析】【详解】试题分析:(1)根据二次根式的性质=|a|,判断出小亮的计算是错误的; (2)错误原因是:二次根式的性质=|a|的应用错误;(解析:(1)小亮(2(a <0)(3)2024.【解析】【详解】试题分析:(1,判断出小亮的计算是错误的;(2的应用错误;(3)先根据配方法把被开方数配成完全平方,然后根据正确的性质化简,再代入计算即可. 试题解析:(1)小亮(2(a <0)(3)原式=a+2(3-a )=6-a=6-(-2018)=2024.22.(1)10;(2)46【分析】(1)设每千克甲水果的售价是元,则每千克乙水果的售价是元,每千克丙水果的售价是元,利用数量总价单价,结合用200元购买丙水果的数量是用80元购买乙水果数量的2倍,即解析:(1)10;(2)46【分析】(1)设每千克甲水果的售价是x 元,则每千克乙水果的售价是(3)x +元,每千克丙水果的售价是2x 元,利用数量=总价÷单价,结合用200元购买丙水果的数量是用80元购买乙水果数量的2倍,即可得出关于x 的分式方程,解之经检验后即可得出结论;(2)设搭配方案中含丙水果m 千克,则含乙水果2m 千克,甲水果(72)m m --千克,根据甲、乙两种水果数量之和不超过丙水果数量的6倍,即可得出关于m 的一元一次不等式,解之即可得出m 的取值范围,设购买7千克水果的费用为w 元,利用总价=单价⨯数量,即可得出w 关于m 的函数关系式,再利用一次函数的性质即可解决最值问题.【详解】解:(1)设每千克甲水果的售价是x 元,则每千克乙水果的售价是(3)x +元,每千克丙水果的售价是2x 元, 依题意得:80200232x x⨯=+, 解得:5x =,经检验,5x =是原方程的解,且符合题意,3538x ∴+=+=,22510x =⨯=.答:每千克丙水果的售价是10元.(2)设搭配方案中含丙水果m 千克,则含乙水果2m 千克,甲水果(72)m m --千克, 依题意得:7226m m m m --+,解得:1m .设购买7千克水果的费用为w 元,则5(72)82101135w m m m m m =--+⨯+=+.110>,w ∴随m 的增大而增大,∴当1m =时,w 取得最小值,最小值1113546=⨯+=(元).故答案为:46.【点睛】本题考查了分式方程的应用、一元一次不等式的应用以及一次函数的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,找出w 关于m 的函数关系式.23.(1);(2)21;(3)或或或【分析】(1)过点作轴于,求出AH 和OH 即可;(2)证明≌,表示出AP ,CQ ,根据OC=14求出t 值,得到AP ,CQ ,再根据面积公式计算;(3)由Q 、D 、C 、解析:(1);(2)21;(3)或或或【分析】(1)过点A 作轴于H ,求出AH 和OH 即可; (2)证明≌,表示出AP ,CQ ,根据OC =14求出t 值,得到AP ,CQ ,再根据面积公式计算;(3)由Q 、D 、C 、F 为顶点的四边形是菱形得到以C ,D ,Q 为顶点的三角形是等腰三角形,求出CD ,得到点Q 坐标,再分情况讨论.【详解】解:(1)过点A 作轴于H , ∵,,, ∴, ∴A 点坐标为.(2)∵,∴C点坐标为,∵点D是对角线AC的中点,∴点D的坐标为,∵四边形ABCD是平行四边形,∴,∴,当PQ经过点D时,,在和中,,∴≌,∴,∵,∴,∴,∴,∴四边形APCQ的面积为,即当PQ经过点D时,四边形APCQ的面积为21.(3)∵F是平面内一点,以Q,D,C,F为顶点的四边形是菱形,则以C,D,Q为顶点的三角形是等腰三角形,∵,,∴,∴当时,Q点坐标为或,当Q点坐标为时,F点坐标为,当Q点坐标为时,F点坐标为,当时,点F与点D关于x轴对称,∴点F的坐标为,当时,设Q点坐标为,∴,解得,∴Q点坐标为,∴F点坐标为,∴综上所述,以Q,D,F,C为顶点的四边形是菱形,点F的坐标为或或或.【点睛】本题考查了平行四边形的性质,全等三角形的判定和性质,菱形的性质,等腰直角三角形的判定和性质,综合性较强,解题的关键是根据菱形的性质进行分类讨论.24.(1)见解析;0;(2)①x,﹣x,﹣x+2,②见解析;;(3);(4)分段去绝对值.【解析】【分析】(1)画出函数图象,直接得出结论;(2)先去绝对值,得出函数关系式,再画出函数图象,即可解析:(1)见解析;0;(2)①32x,﹣32x,﹣12x+2,②见解析;32;(3)16;(4)分段去绝对值.【解析】【分析】(1)画出函数图象,直接得出结论;(2)先去绝对值,得出函数关系式,再画出函数图象,即可得出结论;(3)分段去绝对值,合并同类项,得出函数关系式,即可得出结论;(4)直接得出结论.【详解】解:(1)[探究]图象如图1所示,函数y=|x|的最小值是0,故答案为0;(2)[应用]①当x≥1时,y=x﹣1+12(x+2)=32x;当x≤﹣2时,y=﹣x+1﹣12(x+2)=﹣32x;当﹣2<x<1时,y=﹣x+1+12(x+2)=﹣12x+2;②函数图象如图2所示,由图象可知,函数y=|x﹣1|+12|x+2|的最小值是32,故填:①32x,﹣32x,﹣12x+2,②32;(3)[迁移]当x≤18时,y=﹣x+1﹣2x+1﹣3x+1﹣4x+1﹣5x+1﹣6x+1﹣7x+1﹣8x+1=﹣36x+8,∴y≥72,当18<x≤17时,y=﹣x+1﹣2x+1﹣3x+1﹣4x+1﹣5x+1﹣6x+1﹣7x+1+8x﹣1=﹣20x+6,∴227≤y<72,当17<x≤16时,y=﹣x+1﹣2x+1﹣3x+1﹣4x+1﹣5x+1﹣6x+1+7x﹣1+8x﹣1=﹣6x+4,∴3≤y<227,当16<x≤15时,y=﹣x+1﹣2x+1﹣3x+1﹣4x+1﹣5x+1+6x﹣1+7x﹣1+8x﹣1=6x+2,∴3<y≤165,当15<x≤14时,y=﹣x+1﹣2x+1﹣3x+1﹣4x+1+5x﹣1+6x﹣1+7x﹣1+8x﹣1=16x,∴165<y≤4,当14<x≤13时,y=﹣x+1﹣2x+1﹣3x+1+4x﹣1+5x﹣1+6x﹣1+7x﹣1+8x﹣1=24x﹣2,∴4<y≤6,当13<x≤12时,y=﹣x+1﹣2x+1+3x﹣1+4x﹣1+5x﹣1+6x﹣1+7x﹣1+8x﹣1=30x﹣4,∴6<y≤11,当12<x≤1时,y=﹣x+1+2x﹣1+3x﹣1+4x﹣1+5x﹣1+6x﹣1+7x﹣1+8x﹣1=34x﹣6,∴11<y≤28,当x>1时,y=x﹣1+2x﹣1+3x﹣1+4x﹣1+5x﹣1+6x﹣1+7x﹣1+8x﹣1=36x﹣8,∴y>28,∴当x=16时,函数y=|x﹣1|+|2x﹣1|+|3x﹣1|+…+|8x﹣1|取到最小值;(4)[反思]用到的数学思想有:数形结合的数学思想,分段去绝对值,故答案为:分段去绝对值.【点睛】此题主要考查了一次函数的应用,去绝对值,函数图象的画法,用分类讨论的思想解决问题是解本题的关键.25.(1);(2)t=s时,四边形ABMN是平行四边形;(3)存在,点Q坐标为:或或或.【分析】(1)如图1中,作BH⊥x轴于H.证明△COA≌△AHB(AAS),可得BH=OA=1,AH=OC=2解析:(1)123y x=-+;(2)t=23s时,四边形ABMN是平行四边形;(3)存在,点Q坐标为:618,55⎛⎫⎪⎝⎭或(3,1)-或(3,1)-或155,88⎛⎫-⎪⎝⎭.【分析】(1)如图1中,作BH⊥x轴于H.证明△COA≌△AHB(AAS),可得BH=OA=1,AH=OC=2,求出点B坐标,再利用待定系数法即可解决问题.(2)利用平行四边形的性质求出点N的坐标,再求出AN,BM,CM即可解决问题.(3)如图3中,当OB为菱形的边时,可得菱形OBQP,菱形OBP1Q1.菱形OBP3Q3,当OB为菱形的对角线时,可得菱形OP2BQ2,点Q2在线段OB的垂直平分线上,分别求解即可解决问题.【详解】(1)如图1中,作BH⊥x轴于H.∵A(1,0)、C(0,2),∴OA=1,OC=2,∵∠COA=∠CAB=∠AHB=90°,∴∠ACO+∠OAC=90°,∠CAO+∠BAH=90°,∴∠ACO=∠BAH,∵AC=AB,∴△COA≌△AHB(AAS),∴BH=OA=1,AH=OC=2,∴OH=3,∴B(3,1),设直线BC的解析式为y=kx+b,则有231 bk b=⎧⎨+=⎩,解得:132k b ⎧=-⎪⎨⎪=⎩, ∴123y x =-+; (2)如图2中,∵四边形ABMN 是平行四边形,∴AN ∥BM ,∴直线AN 的解析式为:1133y x =-+, ∴10,3N ⎛⎫ ⎪⎝⎭, ∴103BM AN ==, ∵B (3,1),C (0,2),∴BC=10,∴2103CM BC BM =-=, ∴21021033t =÷=, ∴t=23s 时,四边形ABMN 是平行四边形; (3)如图3中,如图3中,当OB 为菱形的边时,可得菱形OBQP ,菱形OBP 1Q 1.菱形OBP 3Q 3, 连接OQ 交BC 于E ,∵OE⊥BC,∴直线OE的解析式为y=3x,由3123y xy x=⎧⎪⎨=-+⎪⎩,解得:3595xy⎧=⎪⎪⎨⎪=⎪⎩,∴E(35,95),∵OE=OQ,∴Q(65,185),∵OQ1∥BC,∴直线OQ1的解析式为y=-13x,∵OQ1,设Q1(m,-1m3),∴m2+19m2=10,∴m=±3,可得Q1(3,-1),Q3(-3,1),当OB为菱形的对角线时,可得菱形OP2BQ2,点Q2在线段OB的垂直平分线上,易知线段OB的垂直平分线的解析式为y=-3x+5,由3513y xy x=-+⎧⎪⎨=-⎪⎩,解得:15858xy⎧=⎪⎪⎨⎪=-⎪⎩,∴Q2(158,58-).综上所述,满足条件的点Q坐标为:618,55⎛⎫⎪⎝⎭或(3,1)-或(3,1)-或155,88⎛⎫-⎪⎝⎭.【点睛】本题属于一次函数综合题,考查了平行四边形的判定和性质,菱形的判定和性质,一次函数的性质等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.26.(1)证明见解析;(2)①t值为5或6;②点N运动的时间为6s,,或时,为等腰三角形. 【分析】(1)设BD=2x,AD=3x,CD=4x,则AB=5x,由勾股定理求出AC,即可得出结论;(2解析:(1)证明见解析;。
人教版数学八年级下册期末考试试题带答案
人教版数学八年级下册期末考试试卷一、选择题(本大题10小题,每小题3分,共30分),每小题只有一个正确答案。
1.下列各式是最简二次根式的是( )A.B.C.D.2.要使式子有意义,则x的取值范围是( )A.x>0B.x≥﹣3C.x≥3D.x≤33.数据2,4,3,4,5,3,4的众数是( )A.5B.4C.3D.24.一次函数y=﹣2x+1的图象不经过下列哪个象限( )A.第一象限B.第二象限C.第三象限D.第四象限5.如图,在菱形ABCD中,对角线AC,BD相交于点O,下列结论中不一定成立的是( )A.AB∥DC B.AC=BD C.AC⊥BD D.OA=OC6.如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB′=60°,则矩形ABCD的面积是( )A.12B.24C.12D.167.如图,在△ABC中,AB=8,∠C=90°,∠A=30°,DE是中位线,则DE的长为( )A.2B.3C.4D.28.由线段a,b,c组成的三角形不是直角三角形的是( )A.a=3,b=4,c=5B.a=12,b=13,c=5C.a=15,b=8,c=17D.a=13,b=14,c=159.已知直角三角形的两条边长分别是3和5,那么这个三角形的第三条边的长为( )A.4B.16C.D.4或10.已知点(﹣4,y1),(2,y2)都在直线y=﹣x+2上,则y1,y2大小关系是( )A.y1>y2B.y1=y2C.y1<y2D.不能比较二、填空题(本大题6小题,每小题4分,共24分)。
11.求值:= .12.某招聘考试分笔试和面试两种.其中笔试按60%、面试按40%计算加权平均数作为总成绩.小明笔试成绩为90分.面试成绩为85分,那么小明的总成绩为 分.13.将直线y=2x向上平移1个单位后所得的图象对应的函数解析式为 .14.如图,字母A所代表的正方形面积为 .15.函数y=kx与y=6﹣x的图象如图所示,则k= .16.已知,如图,正方形ABCD的边长是8,M在DC上,且DM=2,N是AC边上的一动点,则DN+MN的最小值是 .三、解答题(一)(本大题3小题,每小题6分,共18分)17.计算:÷+×﹣.18.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,BC=2,AC=2,求AB、CD的长.19.如图,在▱ABCD中,点E、F分别是AD、BC的中点,求证:AF=CE.四、解答题(二)(本大题3小题,每小题7分,共21分)20.先化简,再求值:﹣,其中x=1+2,y=1﹣2.21.已知一次函数图象经过(3,5)和(﹣4,﹣9)两点(1)求此一次函数的解析式;(2)若点(m,2)在函数图象上,求m的值.22.国家规定“中小学生每天在校体育活动时间不低于1h”,为此,某市就“每天在校体育活动”时间的问题随机调查了辖区内320名初中学生,根据调查结果绘制成的统计图(部分)如图所示,其中分组情况是:A组:t<0.5h;B组:0.5h≤t<1h;C组:1h≤t<1.5h;D组:t≥1.5h请根据上述信息解答下列问题:(1)C组的人数是 ;(2)本次调查数据的中位数落在 组内;(3)若该市辖区内约有32000名初中学生,请你估计其中达国家规定体育活动时间的人约有多少?五、解答题(三)(本大题3小题,每小题9分,共27分)23.小红星期天从家里出发骑车去舅舅家做客,当她骑了一段路时,想起要买个礼物送给表弟,于是又折回到刚经过的一家商店,买好礼物后又继续骑车去舅舅家,以下是她本次去舅舅家所用的时间与路程的关系式示意图.根据图中提供的信息回答下列问题:(1)小红家到舅舅家的路程是 米,小红在商店停留了 分钟;(2)在整个去舅舅家的途中哪个时间段小红骑车速度最快,最快的速度是多少米/分?(3)本次去舅舅家的行程中,小红一共行驶了多少米?一共用了多少分钟?24.在△ABC中,∠C=90°,AC=6,BC=8,D、E分别是斜边AB和直角边CB上的点,把△ABC 沿着直线DE折叠,顶点B的对应点是B′.(1)如图(1),如果点B′和顶点A重合,求CE的长;(2)如图(2),如果点B′和落在AC的中点上,求CE的长.25.如图,在△ABC中,点O是AC边上一个动点,过点O作直线MN∥BC,设MN交∠BCA的平分线于点E,交△BCA的外角平分线于点F.(1)求证:OE=OF;(2)若CE=12,CF=5,求OC的长;(3)当点O在AC运动到什么位置,四边形AECF是矩形,请说明理由.参考答案与试题解析一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一项是符合题目要求的,请把答题卡上对应题目所选的选项涂黑1.【分析】根据最简二次根式的定义对各选项分析判断利用排除法求解.【解答】解:A、不是最简二次根式,错误;B、不是最简二次根式,错误;C、是最简二次根式,正确;D、不是最简二次根式,错误;故选:C.【点评】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.2.【分析】根据被开方数是非负数,可得答案.【解答】解:由题意,得3﹣x≥0,解得x≤3,故选:D.【点评】本题考查了二次根式有意义的条件,利用被开方数是非负数得出不等式是解题关键.3.【分析】根据众数的定义:一组数据中出现次数最多的数据求解即可.【解答】解:这组数据的众数为:4.故选:B.【点评】本题考查了众数的知识,属于基础题,解答本题的关键是掌握一组数据中出现次数最多的数据叫做众数.4.【分析】先根据一次函数的解析式判断出k、b的符号,再根据一次函数的性质进行解答即可.【解答】解:∵解析式y=﹣2x+1中,k=﹣2<0,b=1>0,∴图象过第一、二、四象限,∴图象不经过第三象限.故选:C.【点评】本题考查的是一次函数的性质,即一次函数y=kx+b(k≠0)中,当k<0时,函数图象经过第二、四象限,当b>0时,函数图象与y轴相交于正半轴.5.【分析】直接利用菱形的性质对边互相平行、对角线互相垂直且平分进而分析即可.【解答】解:∵四边形ABCD是菱形,∴AB∥DC,故选项A正确,不合题意;无法得出AC=BD,故选项B错误,符合题意;AC⊥BD,故选项C正确,不合题意;OA=OC,故选项D正确,不合题意;故选:B.【点评】此题主要考查了菱形的性质,正确把握菱形对角线之间关系是解题关键.6.【分析】由折叠可得AE=A'E=2,∠EFB=∠EFB'=60°,根据平行线性质可得∠A'EF=120°,∠B'EF=60°,解直角三角形A'E'B'可得A'B'的长度,则可求矩形ABCD面积.【解答】解:∵折叠∴∠BFE=∠EFB'=60°,AB=A'B'∠A=∠A'=90°,AE=A'E=2∵ABCD是矩形∴AD∥BC∴∠DEF=∠EFB=60°∵A'E∥B'F∴∠A'EF+∠EFB'=180°∴∠A'EF=120°∴∠A'EB'=60°且∠A'=90°∴∠A'B'E=30°,且A'E=2∴B'E=4,A'B'=2=AB∵AE=2,DE=6∴AD=8∴S矩形ABCD=AB×AD=2×8=16故选:D.【点评】本题考查了折叠问题,等边三角形的性质,矩形的性质,关键灵活运用折叠的性质解决问题.7.【分析】先由含30°角的直角三角形的性质,得出BC的长,再由三角形的中位线定理得出DE的长即可.【解答】解:∵∠C=90°,∠A=30°,∴BC=AB=4,又∵DE是中位线,∴DE=BC=2.故选:A.【点评】本题考查了三角形的中位线定理,解答本题的关键是掌握含30°角的直角三角形的性质及三角形的中位线定理.8.【分析】根据判断三条线段是否能构成直角三角形的三边,需验证两小边的平方和是否等于最长边的平方,分别对每一项进行分析,即可得出答案.【解答】解:A、32+42=52,符合勾股定理的逆定理,是直角三角形;B、52+122=132,符合勾股定理的逆定理,是直角三角形;C、152+82=172,符合勾股定理的逆定理,是直角三角形;D、132+142≠152,不符合勾股定理的逆定理,不是直角三角形.故选:D.【点评】本题主要考查了勾股定理的逆定理:用到的知识点是已知△ABC的三边满足a2+b2=c2,则△ABC是直角三角形.9.【分析】此题要分两种情况:当3和5都是直角边时;当5是斜边长时;分别利用勾股定理计算出第三边长即可.【解答】解:当3和5都是直角边时,第三边长为:=;当5是斜边长时,第三边长为:=4.故选:D.【点评】此题主要考查了利用勾股定理,当已知条件中没有明确哪是斜边时,要注意讨论,一些学生往往忽略这一点,造成丢解.10.【分析】先根据一次函数的解析式判断出函数的增减性,再根据两点横坐标的大小即可得出结论.【解答】解:∵k=﹣<0,∴y随x的增大而减小.∵﹣4<2,∴y1>y2.故选:A.【点评】本题考查的是一次函数图象上点的坐标特点,先根据题意判断出一次函数的增减性是解答此题的关键.二、填空题(本大题6小题,每小题4分,共24分)请将下列各题正确答案填写在答题卷相应的位置上11.【分析】根据二次根式的性质,求出算术平方根即可.【解答】解:原式=.故答案为:.【点评】此题主要考查了算术平方根的定义,算术平方根的概念易与平方根的概念混淆而导致错误.12.【分析】根据笔试和面试所占的权重以及笔试成绩和面试成绩,列出算式,进行计算即可.【解答】解:∵笔试按60%、面试按40%,∴总成绩是(90×60%+85×40%)=88(分);故答案为:88.【点评】此题考查了加权平均数,关键是根据加权平均数的计算公式列出算式,用到的知识点是加权平均数.13.【分析】根据“上加下减”的原则进行解答即可.【解答】解:由“上加下减”的原则可知,将函数y=2x的图象向上平移1个单位所得函数的解析式为y=2x+1.故答案为:y=2x+1.【点评】本题考查的是一次函数的图象与几何变换,熟知“上加下减”的原则是解答此题的关键.14.【分析】根据正方形的面积等于边长的平方,由正方形PQED的面积和正方形PRQF的面积分别表示出PR的平方及PQ的平方,又三角形PQR为直角三角形,根据勾股定理求出QR的平方,即为所求正方形的面积.【解答】解:∵正方形PQED的面积等于225,∴即PQ2=225,∵正方形PRGF的面积为289,∴PR2=289,又△PQR为直角三角形,根据勾股定理得:PR2=PQ2+QR2,∴QR2=PR2﹣PQ2=289﹣225=64,则正方形QMNR的面积为64.故答案为:64.【点评】此题考查了勾股定理以及正方形的面积公式.勾股定理最大的贡献就是沟通“数”与“形”的关系,它的验证和利用都体现了数形结合的思想,即把图形的性质问题转化为数量关系的问题来解决.能否由实际的问题,联想到用勾股定理的知识来求解是本题的关键.15.【分析】首先根据一次函数y=6﹣x与y=kx图象的交点横坐标为2,代入一次函数y=6﹣x求得交点坐标为(2,4),然后代入y=kx求得k值即可.【解答】解:∵一次函数y=6﹣x与y=kx图象的交点横坐标为2,∴4=6﹣2,解得:y=4,∴交点坐标为(2,4),代入y=kx,2k=4,解得k=2.故答案为:2【点评】本题考查了两条直线平行或相交问题,解题的关键是交点坐标适合y=6﹣x与y=kx两个解析式.16.【分析】要求DN+MN的最小值,DN,MN不能直接求,可考虑通过作辅助线转化DN,MN的值,从而找出其最小值求解.【解答】解:∵正方形是轴对称图形,点B与点D是关于直线AC为对称轴的对称点,∴连接BNBD,则直线AC即为BD的垂直平分线,∴BN=ND∴DN+MN=BN+MN连接BM交AC于点P,∵点N为AC上的动点,由三角形两边和大于第三边,知当点N运动到点P时,BN+MN=BP+PM=BM,BN+MN的最小值为BM的长度,∵四边形ABCD为正方形,∴BC=CD=8,CM=8﹣2=6,BCM=90°,∴BM==10,∴DN+MN的最小值是10.故答案为10.【点评】考查正方形的性质和轴对称及勾股定理等知识的综合应用.三、解答题(一)(本大题3小题,每小题6分,共18分)17.【分析】直接利用二次根式混合运算法则计算得出答案.【解答】解:原式=+﹣2=4+﹣2=4﹣.【点评】此题主要考查了二次根式的混合运算,正确化简二次根式是解题关键.18.【分析】根据勾股定理可求出AB的长度,然后利用三角形的面积即可求出CD的长度.【解答】解:在Rt△ABC中,∠ACB=90°根据勾股定理,得AB2=AC2+BC2=16,∴AB=4,又CD⊥AB∴AB•CD=AC•BC∴4CD=2×2即CD=【点评】本题考查勾股定理,解题的关键是熟练运用勾股定理,本题属于基础题型.19.【分析】根据“平行四边形ABCD的对边平行且相等的性质”证得四边形AECF为平行四边形,然后由“平行四边形的对边相等”的性质证得结论.【解答】证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC;又∵点E、F分别是AD、BC的中点,∴AE∥CF,AE=AD,CF=BC,∴AE=CF,∴四边形AECF为平行四边形(对边平行且相等的四边形为平行四边形),∴AF=CE(平行四边形的对边相等).【点评】本题考查了平行四边形的判定与性质.平行四边形的判定方法共有五种,应用时要认真领会它们之间的联系与区别,同时要根据条件合理、灵活地选择方法.四、解答题(二)(本大题3小题,每小题7分,共21分)20.【分析】根据分式的减法可以化简题目中的式子,然后将x、y的值代入化简后的式子即可解答本题.【解答】解:﹣===x+y,当x=1+2,y=1﹣2时,原式=1+2+1﹣2=2.【点评】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.21.【分析】(1)设一次函数解析式为y=kx+b(k≠0),再把点(3,5)和(﹣4,﹣9)代入即可求出k,b的值,进而得出一次函数的解析式;(2)把点(m,2)代入一次函数的解析式,求出m的值即可.【解答】解:(1)设一次函数的解析式为y=kx+b,则有,解得:,∴一次函数的解析式为y=2x﹣1;(2)∵点(m,2)在一次函数y=2x﹣1图象上∴2m﹣1=2,∴m=.【点评】本题考查的是用待定系数法求正比例函数的解析式,此类题目需灵活运用待定系数法建立函数解析式,然后将点的坐标代入解析式,利用方程解决问题.22.【分析】(1)根据直方图可得总人数以及各小组的已知人数,进而根据其间的关系可计算C组的人数;(2)根据中位数的概念,中位数应是第160、161人时间的平均数,分析可得答案;(3)首先计算样本中达国家规定体育活动时间的频率,再进一步估计总体达国家规定体育活动时间的人数.【解答】解:(1)根据题意有:C组的人数为320﹣20﹣100﹣60=140;(2)根据中位数的概念,中位数应是第160、161人时间的平均数,分析可得其均在C组,故调查数据的中位数落在C组;(3)达国家规定体育活动时间的人数约占×100%=62.5%.所以,达国家规定体育活动时间的人约有32000×62.5%=20000(人).【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力.同时考查中位数的求法:给定n个数据,按从小到大排序,如果n为奇数,位于中间的那个数就是中位数;如果n为偶数,位于中间两个数的平均数就是中位数.五、解答题(三)(本大题3小题,每小题9分,共27分)23.【分析】(1)根据图象,路程的最大值即为小红家到舅舅家的路程;读图,对应题意找到其在商店停留的时间段,进而可得其在书店停留的时间;(2)分析图象,找函数变化最快的一段,可得小明骑车速度最快的时间段,进而可得其速度;(3)分开始行驶的路程,折回商店行驶的路程以及从商店到舅舅家行驶的路程三段相加即可求得小红一共行驶路程;读图即可求得本次去舅舅家的行程中,小红一共用的时间.【解答】解:(1)根据图象舅舅家纵坐标为1500,小红家的纵坐标为0,故小红家到舅舅家的路程是1500米;据题意,小红在商店停留的时间为从8分到12分,故小红在商店停留了4分钟.故答案为:1500,4;(2)根据图象,12≤x≤14时,直线最陡,故小红在12﹣14分钟最快,速度为=450米/分.(3)读图可得:小红共行驶了1200+600+900=2700米,共用了14分钟.【点评】本题考查利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.需注意计算单位的统一.24.【分析】(1)如图(1),设CE=x,则BE=8﹣x;根据勾股定理列出关于x的方程,解方程即可解决问题.(2)如图(2),首先求出CB′=3;类比(1)中的解法,设出未知数,列出方程即可解决问题.【解答】解:(1)如图(1),设CE=x,则BE=8﹣x;由题意得:AE=BE=8﹣x,由勾股定理得:x2+62=(8﹣x)2,解得:x=,即CE的长为:.(2)如图(2),∵点B′落在AC的中点,∴CB′=AC=3;设CE=x,类比(1)中的解法,可列出方程:x2+32=(8﹣x)2解得:x=.即CE的长为:.【点评】该题主要考查了翻折变换的性质及其应用问题;解题的关键是灵活运用翻折变换的性质,找出图形中隐含的等量关系;借助勾股定理等几何知识点来分析、判断、推理或解答.25.【分析】(1)由题意可证OE=OC,OF=OC,即可得OE=OF;(2)根据三角形内角和定理可求∠ECF=90°,根据勾股定理可求EF的长,根据直角三角形斜边上中线等于斜边的一半,可得OC的长;(3)当点O在AC的中点时,且OE=OF可证四边形AECF是平行四边形,再根据∠ECF=90°,可证四边形AECF是矩形.【解答】证明:(1)∵CF平分∠ACD,且MN∥BD∴∠ACF=∠FCD=∠CFO∴OF=OC同理可证:OC=OE∴OE=OF(2)由(1)知:OF=OC=OE∴∠OCF=∠OFC,∠OCE=∠OEC∴∠OCF+∠OCE=∠OFC+∠OEC而∠OCF+∠OCE+∠OFC+∠OEC=180°∴∠ECF=∠OCF+∠OCE=90°∴∴(3)当点O移动到AC中点时,四边形AECF为矩形理由如下:∵当点O移动到AC中点时∴OA=OC且OE=OF∴四边形AECF为平行四边形又∵∠ECF=90°∴四边形AECF为矩形【点评】本题考查了矩形的性质判定,等腰三角形的性质和判定,勾股定理,熟练运用这些性质解决问题是本题的关键.。
2023年人教版八年级数学下册期末考试题及答案【完美版】
2023年人教版八年级数学下册期末考试题及答案【完美版】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知31416181279a b c ===,,,则a b c 、、的大小关系是( )A .a b c >>B .a c b >>C .a b c <<D .b c a >>2.已知平行四边形ABCD ,下列条件中,不能判定这个平行四边形为矩形的是( )A .∠A=∠B B .∠A=∠C C .AC=BD D .AB ⊥BC3.一个正多边形的内角和为540°,则这个正多边形的每一个外角等于( )A .108°B .90°C .72°D .60°4. 20位同学在植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵,设男生有x 人,女生有y 人,根据题意,列方程组正确的是( )A .523220x y x y +=⎧⎨+=⎩B .522320x y x y +=⎧⎨+=⎩C .202352x y x y +=⎧⎨+=⎩D .203252x y x y +=⎧⎨+=⎩5.已知直角三角形的两条边长分别是3和5,那么这个三角形的第三条边的长( )A .4B .16C .34D .4或346.如图,AB ∥CD ,点E 在线段BC 上,若∠1=40°,∠2=30°,则∠3的度数是( )A .70°B .60°C .55°D .50°7.如下图,下列条件中:①∠B+∠BCD=180°;②∠1=∠2;③∠3=∠4;④∠B=∠5,能判定AB ∥CD 的条件为( )A .①②③④B .①②④C .①③④D .①②③8.已知直线a ∥b ,将一块含45°角的直角三角板(∠C=90°)按如图所示的位置摆放,若∠1=55°,则∠2的度数为( )A .80°B .70°C .85°D .75°9.李大爷要围成一个矩形菜园,菜园的一边利用足够长的墙,用篱笆围成的另外三边总长应恰好为24米.要围成的菜园是如图所示的矩形ABCD .设BC 边的长为x 米,AB 边的长为y 米,则y 与x 之间的函数关系式是( )A .y=-2x+24(0<x<12)B .y=-x +12(0<x<24)C .y=2x -24(0<x<12)D .y=x -12(0<x<24)10.如图,直线,a b 被,c d 所截,且//a b ,则下列结论中正确的是( )A .12∠=∠B .34∠=∠C .24180∠+∠=D .14180∠+∠=二、填空题(本大题共6小题,每小题3分,共18分)1.如图,数轴上点A表示的数为a,化简:a244a a+-+=________.2.已知三角形ABC的三边长为a,b,c满足a+b=10,ab=18,c=8,则此三角形为__________三角形.3.分解因式6xy2-9x2y-y3 = _____________.4.如图是一个三级台阶,它的每一级的长、宽和高分别为20 dm,3 dm,2 dm ,A和B是这个台阶两个相对的端点,A点有一只蚂蚁,想到B点去吃可口的食物,则蚂蚁沿着台阶面爬到B点的最短路程是__________dm.5.如图,圆柱形玻璃杯高为14cm,底面周长为32cm,在杯内壁离杯底5cm的点B 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到内壁B处的最短距离为___________cm(杯壁厚度不计).6.如图,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=6,BC =8,则EF的长为______.三、解答题(本大题共6小题,共72分)2.解方程组(1)43524x yx y+=⎧⎨-=⎩(2)12163213x yx y--⎧-=⎪⎨⎪+=⎩2.先化简,后求值:(a+5)(a ﹣5)﹣a(a﹣2),其中a=12+2.3.解不等式组20{5121123xx x->+-+≥①②,并把解集在数轴上表示出来.4.如图,A(4,3)是反比例函数y=kx在第一象限图象上一点,连接OA,过A作AB∥x轴,截取AB=OA(B在A右侧),连接OB,交反比例函数y=kx的图象于点P.(1)求反比例函数y=kx的表达式;(2)求点B的坐标;(3)求△OAP的面积.5.甲、乙两车分别从A、B两地同时出发,甲车匀速前往B地,到达B地立即以另一速度按原路匀速返回到A地;乙车匀速前往A地,设甲、乙两车距A地的路程为y(千米),甲车行驶的时间为x(时),y与x之间的函数图象如图所示(1)求甲车从A地到达B地的行驶时间;(2)求甲车返回时y与x之间的函数关系式,并写出自变量x的取值范围;(3)求乙车到达A地时甲车距A地的路程.6.某商店销售A型和B型两种电脑,其中A型电脑每台的利润为400元,B型电脑每台的利润为500元.该商店计划再一次性购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.(1)求y关于x的函数关系式;(2)该商店购进A型、B型电脑各多少台,才能使销售总利润最大,最大利润是多少?(3)实际进货时,厂家对A型电脑出厂价下调a(0<a<200)元,且限定商店最多购进A型电脑60台,若商店保持同种电脑的售价不变,请你根据以上信息,设计出使这100台电脑销售总利润最大的进货方案.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、B3、C4、D5、D6、A7、C8、A9、B10、B二、填空题(本大题共6小题,每小题3分,共18分)1、2.2、直角3、-y(3x-y)24、255、206、1三、解答题(本大题共6小题,共72分)1、(1)21xy=⎧⎨=-⎩;(2)53xy=⎧⎨=⎩.2、224-3、﹣1≤x<2.4、(1)反比例函数解析式为y=12x;(2)点B的坐标为(9,3);(3)△OAP的面积=5.5、(1)2.5小时;(2)y=﹣100x+550;(3)175千米.6、(1) =﹣100x+50000;(2) 该商店购进A型34台、B型电脑66台,才能使销售总利润最大,最大利润是46600元;(3)略.。
人教版数学八年级下册《期末检测题》附答案
A. B. C. D.
【答案】D
【解析】
【分析】结合函数图象,写出一次函数y1=x+b图象在一次函数y2=kx+4的图象上方所对应的自变量的范围即可.
【详解】解:∵一次函数y1=x+b与一次函数y2=kx+4的图象相交于点P(2,−2),
解得 ,
【答案】B
【解析】
【分析】根据勾股定理 逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.
【详解】解:A、 ,故不是直角三角形,错误;
B、 ,故是直角三角形,正确;
C、 故不是直角三角形,错误;
D、 故不是直角三角形,错误.
故选:B.
【点睛】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.
故选:B.
【点睛】此题考查函数的定义,函数图象,结合函数图象正确理解函数的定义是解题的关键.
7.某校八年级有11名同学参加数学竞赛,预赛成绩各不相同,要取前5名参加决赛.小兰已经知道了自己的成绩,她想知道自己能否进入决赛,还需要知道这11名同学成绩的()
A. 中位数B. 众数C. 平均数D. 不能确定
21.如图,在四边形 中, , ,点 在 上,且 ,将 沿 折叠,点 恰好与点 重合.
(1)求线段 的长;
(2)求线段 的长.
22.甲、乙两名同学沿直线进行登山,甲、乙沿相同的路线同时从山脚出发到达山顶,甲同学到达山顶休息1小时后再沿原路下山,他们离山脚的距离 (千米)随时间 (小时)变化的图象如图所示.根据图象中的有关信息回答下列问题:
新人教版八年级数学下册期末试卷(精选)
新人教版八年级数学下册期末试卷(精选)班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1的算术平方根为()A.B C.2±D.22.如果y,那么y x的算术平方根是()A.2 B.3 C.9 D.±33.在圆的周长C=2πR中,常量与变量分别是()A.2是常量,C、π、R是变量B.2π是常量,C,R是变量C.C、2是常量,R是变量D.2是常量,C、R是变量4.如果一次函数y=kx+b(k、b是常数,k≠0)的图象经过第一、二、四象限,那么k、b应满足的条件是()A.k>0,且b>0 B.k<0,且b>0C.k>0,且b<0 D.k<0,且b<05.已知a与b互为相反数且都不为零,n为正整数,则下列两数互为相反数的是()A.a2n-1与-b2n-1 B.a2n-1与b2n-1 C.a2n与b2n D.a n与b n6.已知关于x的不等式组320x ax->⎧⎨->⎩的整数解共有5个,则a的取值范围是()A.﹣4<a<﹣3 B.﹣4≤a<﹣3 C.a<﹣3 D.﹣4<a<3 27.如图,∠B=∠C=90°,M是BC的中点,DM平分∠ADC,且∠ADC=110°,则∠MAB=( )A .30°B .35°C .45°D .60°8.如图,将长方形纸片ABCD 折叠,使边DC 落在对角线AC 上,折痕为CE ,且D 点落在对角线D ′处.若AB=3,AD=4,则ED 的长为( )A .32B .3C .1D .43 9.两个一次函数1y ax b 与2y bx a ,它们在同一直角坐标系中的图象可能是( ) A . B .C .D .10.如图是由4个相同的小正方形组成的网格图,其中∠1+∠2等于( )A .150°B .180°C .210°D .225°二、填空题(本大题共6小题,每小题3分,共18分)1.已知2320x y --=,则23(10)(10)x y ÷=_______.2.若最简二次根式1a +与8能合并成一项,则a =__________.3.若m+1m =3,则m 2+21m=________. 4.如图,直线y=x+b 与直线y=kx+6交于点P (3,5),则关于x 的不等式x+b >kx+6的解集是_________.5.正方形111A B C O 、2221A B C C 、3332A B C C 、…按如图所示的方式放置.点1A 、2A 、3A 、…和点1C 、2C 、3C 、…分别在直线1y x =+和x 轴上,则点n B 的坐标是__________.(n 为正整数)6.如图,矩形ABCD 的对角线AC ,BD 相交于点O ,CE ∥BD ,DE ∥AC .若AC=4,则四边形CODE 的周长是__________.三、解答题(本大题共6小题,共72分)1.解下列分式方程:(1)32111x x =+-- (2)2531242x x x-=---2.先化简,再求值:22121244x x x x x x +-⎛⎫-÷ ⎪--+⎝⎭,其中3x =3.已知关于x ,y 的方程组325x y a x y a -=+⎧⎨+=⎩. (1)若x ,y 为非负数,求a 的取值范围;(2)若x y >,且20x y +<,求x 的取值范围.4.如图,已知AC 平分∠BAD ,CE ⊥AB 于E ,CF ⊥AD 于F ,且BC=CD .(1)求证:△BCE ≌△DCF ;(2)求证:AB+AD=2AE.5.如图,△ABC 中,AB=AC ,AD ⊥BC ,CE ⊥AB ,AE=CE .求证:(1)△AEF ≌△CEB ;(2)AF=2CD .6.在“母亲节”前期,某花店购进康乃馨和玫瑰两种鲜花,销售过程中发现康乃馨比玫瑰销售量大,店主决定将玫瑰每枝降价1元促销,降价后30元可购买玫瑰的数量是原来购买玫瑰数量的1.5倍.(1)求降价后每枝玫瑰的售价是多少元?(2)根据销售情况,店主用不多于900元的资金再次购进两种鲜花共500枝,康乃馨进价为2元/枝,玫瑰进价为1.5元/枝,问至少购进玫瑰多少枝?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、B5、B6、B7、B8、A9、C10、B二、填空题(本大题共6小题,每小题3分,共18分) 1、1002、13、74、x >3.5、1(21,2)n n -- 6、8三、解答题(本大题共6小题,共72分)1、(1)x=2;(2)32x =-2、3x3、(1)a ≥2;(2)-5<x <14、略5、(1)略;(2)略.6、(1)2元;(2)至少购进玫瑰200枝.。
初二数学下册期末考试试卷(含-答案)人教版
明.)20。
如图,在四边形ABCD 中,AB =AD ,CB =CD ,E 为AB 的中点,在AC 上求作点P ,使EP +BP 的值最小。
(1)画出点P 的位置(保留作图痕迹,不写画法);(2)若AD =6,∠DAC =30°,求EP+BP 的最小值。
21.,办场时买来的80头小羊经过精心饲养,七个月就可以出售了。
下表数据是这些羊出售时的体重:(1)求这些“大耳羊"在出售时平均体重是多少? (2)“大耳羊”购进时每只成本平均为420元,饲养时每只成本平均为1060元,若按每千克32元的价格可以全部售完,在不计其它成本的情况下,求该农民合作组织饲养这批“大耳羊”可以获得多少利润(利润=总售价-购羊成本-饲养成本).22.某车间计划生产100件产品,由于采用新技术,每天可多生产4件,这样实际生产148件产品的时间与计划生产100件产品所需要的时间相等,求计划生产100件产品所需要的时间是多少天?23。
如图,反比例函数的图象经过边长为3正方形OABC 的顶点B ,点P (m ,n )为该函数图象上的一动点,过点P 分别作x 轴、y 轴的垂线,垂足分别为E 、F ,设矩形OEPF 和正方形OABC 不重合部分的面积为S (即图中阴影部分的面积). (1)求k 的值;(2)当m =4时,求n 和S 的值; (3)求S 关于m 的函数解析式.24.如图,四边形ABCD 是直角梯形,∠B =90°,AB =8cm,AD =24cm,BC =26cm 。
点P 从A 出发,以1cm/s 的速度向点D 运动;点Q 从点C 出发,以3cm/s 的速度向B 运动,若它们同时出发,运动时间为t 秒,并且当其中一个动点到达端点时,另一动点也随之停止运动,运动时间为t 秒.(1)当t =3时,求出P 、Q 两点运动的路程分别是多少?(3)四边形PQCD 有可能为菱形吗?试说明理由。
八年级(初二)数学参考答案与评分建议一、选择题(本大题共8小题,每小题3分,共24分.)1. B ; 2.C ; 3.A ; 4.A ; 5.C ; 6.D ; 7.B; 8.C .二、填空题(本大题共8小题,每小题3分,共24分.)9.; 10.; 11.6; 12. 1;13。
新人教版八年级数学(下册)期末试卷及参考答案(往年题考)
新人教版八年级数学(下册)期末试卷及参考答案(往年题考) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.2-的相反数是( )A .2-B .2C .12D .12- 2.已知多项式2x 2+bx +c 分解因式为2(x -3)(x +1),则b ,c 的值为( ).A .b =3,c =-1B .b =-6,c =2C .b =-6,c =-4D .b =-4,c =-63.对于函数y =2x ﹣1,下列说法正确的是( )A .它的图象过点(1,0)B .y 值随着x 值增大而减小C .它的图象经过第二象限D .当x >1时,y >0 4.已知关于x 的分式方程21m x -+=1的解是负数,则m 的取值范围是( ) A .m ≤3 B .m ≤3且m ≠2C .m <3D .m <3且m ≠2 5.实数a ,b 在数轴上对应点的位置如图所示,化简|a|+2()a b +的结果是( )A .﹣2a-bB .2a ﹣bC .﹣bD .b6.如果2a a 2a 1+-+=1,那么a 的取值范围是( )A .a 0=B .a 1=C .a 1≤D .a=0a=1或7.如图,在数轴上表示实数15的点可能是( )A .点PB .点QC .点MD .点N8.如图,已知点E 在正方形ABCD 内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是()A.48 B.60C.76 D.809.如图,菱形ABCD的周长为28,对角线AC,BD交于点O,E为AD的中点,则OE的长等于()A.2 B.3.5 C.7 D.1410.如图,已知∠ABC=∠DCB,下列所给条件不能证明△ABC≌△DCB的是()A.∠A=∠D B.AB=DC C.∠ACB=∠DBC D.AC=BD二、填空题(本大题共6小题,每小题3分,共18分)1.分解因式:29a-=__________.2.分解因式:2-+=__________.2a4a23.将“对顶角相等”改写为“如果...那么...”的形式,可写为__________.4.如图,已知∠XOY=60°,点A在边OX上,OA=2.过点A作AC⊥OY于点C,以AC为一边在∠XOY内作等边三角形ABC,点P是△ABC围成的区域(包括各边)内的一点,过点P作PD∥OY交OX于点D,作PE∥OX交OY于点E.设OD=a,OE=b,则a+2b的取值范围是________.5.如图,OP平分∠MON,PE⊥OM于点E,PF⊥ON于点F,OA=OB,则图中有__________对全等三角形.6.如图,矩形ABCD的对角线AC,BD相交于点O,CE∥BD,DE∥AC.若AC=4,则四边形CODE的周长是__________.三、解答题(本大题共6小题,共72分)1.解方程组:(1)329817x yx y-=⎧⎨+=⎩(2)272253xyyx⎧+=⎪⎪⎨⎪+=⎪⎩2.先化简,再从﹣1、2、3、4中选一个合适的数作为x的值代入求值.2222444424x x xx x x x⎛⎫---÷⎪-+--⎝⎭.3.已知关于x的分式方程311(1)(2)x kx x x-+=++-的解为非负数,求k的取值范围.4.如图,在菱形ABCD中,对角线AC与BD交于点O.过点C作BD的平行线,过点D作AC的平行线,两直线相交于点E.(1)求证:四边形OCED是矩形;(2)若CE=1,DE=2,ABCD 的面积是 .5.如图,有一个直角三角形纸片,两直角边6AC =cm ,8BC = cm ,现将直角边沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,你能求出CD 的长吗?6.在东营市中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和2台电子白板需要3.5万元,购买2台电脑和1台电子白板需要2.5万元.(1)求每台电脑、每台电子白板各多少万元?(2)根据学校实际,需购进电脑和电子白板共30台,总费用不超过30万元,但不低于28万元,请你通过计算求出有几种购买方案,哪种方案费用最低.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、D3、D4、D5、A6、C7、C8、C9、B10、D二、填空题(本大题共6小题,每小题3分,共18分) 1、()()33a a +-2、()22a 1-3、如果两个角互为对顶角,那么这两个角相等4、2≤a+2b ≤5.5、36、8三、解答题(本大题共6小题,共72分)1、(1)11x y =⎧⎨=⎩;(2)23x y =⎧⎨=⎩2、x+2;当1x =-时,原式=1.3、8k ≥-且0k ≠.4、(1)略;(2)4.5、CD 的长为3cm.6、(1)每台电脑0.5万元,每台电子白板1.5万元(2)见解析。
人教版八年级数学下册期末试卷(培优篇)(Word版含解析)
人教版八年级数学下册期末试卷(培优篇)(Word 版含解析)一、选择题1.要使二次根式3x -有意义,x 的值可以是( )A .﹣1B .0C .2D .4 2.下列条件中,不能得出ABC 是直角三角形的是( ) A .13a =,5c =,12b = B .222a c b -=C .::3:3:4a b c =D .::2:5:3A B C ∠∠∠= 3.如图,在ABCD 中,点E ,F 分别在边BC ,AD 上.若从下列条件中只选择一个添加到图中的条件中.那么不能使四边形AECF 是平行四边形的条件是( )A .//AE CFB .AE CF =C .BE DF =D .BAE DCF ∠=∠ 4.每年的4月23日为“世界读书日”,某学校为了鼓励学生多读书,开展了“书香校园”的活动.如图是该校某班班长统计的全班50名学生一学期课外图书的阅读量(单位本),则这50名学生图书阅读数量的中位数和平均数分别为( )A .18,12B .12,12C .15,14.8D .15,14.5 5.如图1,园丁住宅小区有一块草坪如图所示.已知AB=3米,BC=4米,CD=12米,DA=13米,且AB ⊥BC ,这块草坪的面积是( )A .24米2B .36米2C .48米2D .72米2 6.如图,在菱形ABCD 中,M ,N 分别在AB ,CD 上,且AM =CN ,MN 与AC 交于点O ,连接BO .若∠DAC =26°,则∠OBC 的度数为( )A .54°B .64°C .74°D .26°7.如图,四边形ABCD 是矩形,点E 在线段CB 的延长线上,连接DE 交AB 于点F ,2AED CED ∠=∠,点G 是DF 的中点,若1BE =,3CD =,则DF 的长为( )A .8B .9C .42D .210 8.如图1,动点P 从菱形ABCD 的顶点A 出发,沿A →C →D 以1cm /s 的速度运动到点D .设点P 的运动时间为(s ),△PAB 的面积为y (cm 2).表示y 与x 的函数关系的图象如图2所示,则a 的值为( )A .5B .52C .2D .25二、填空题9.代数式2021x -中,字母x 的取值范围是____________.10.已知菱形ABCD 的边长为4,∠A =60°,则菱形ABCD 的面积为_________. 11.如图,在Rt ABC ∆中,90C ∠=︒,23AC BC +=,1ABC S ∆=,则斜边AB 的长为____.12.如图,四边形ABDE 是长方形,AC ⊥DC 于点C ,交BD 于点F ,AE =AC ,∠ADE =62°,则∠BAF 的度数为___.13.请你写出一个一次函数的解析式,使其满足以下要求:①图象经过()0,2;②y随x 增大而减小.该解析式可以是_______.14.如图,在矩形ABCD中,对角线AC,BD相交于点O,若∠AOD=120°, AB=2,则BC 的长为___________.15.如图,点C、B分别在两条直线y=﹣3x和y=kx上,点A、D是x轴上两点,若四边形ABCD是正方形,则k的值为 ________________.16.如图,E为矩形ABCD的边AB上一点,将矩形沿CE折叠,使点B落在ED上的点F 处,若1BE=,3BC=,则CD的长为_________.三、解答题17.计算:(162153(2241086+1218.台风是一种自然灾害,它以台风中心为圆心在周围上千米的范围内形成极端气候,有极强的破坏力,有一台风中心沿东西方向AB 由点A 行驶向点B ,已知点C 为一海港,且点C 与直线AB 上两点A 、B 的距离分别为300km 和400km ,又AB =500km ,以台风中心为圆心周围250km 以内为受影响区域.(1)海港C 会受台风影响吗?为什么?(2)若台风的速度为20km/h ,台风影响该海港持续的时间有多长?19.阅读理解:我们给出如下定义:若一个四边形中存在一组相邻两边的平方和等于一条对角线的平方,则称这个四边形为勾股四边形,这两条相邻的边称为这个四边形的勾股边.(1)写出你所学过的特殊四边形中是勾股四边形的两种图形的名称:__________,__________.(2)如图,已知格点(小正方形的顶点)()0,0O ,()3,0A ,()0,4B ,请你画出以格点为顶点,OA ,OB 为勾股边且对角线相等的两个勾股四边形OAMB .20.如图,在平行四边形ABCD 中,M ,N 是对角线BD 上的点,且BM DN =,DE 平分ADB ∠交AB 于点E ,BF 平分DBC ∠交CD 于点F .(1)求证:四边形EMFN 是平行四边形;(2)当四边形EMFN 是菱形时,求证:四边形BEDF 是菱形.21.阅读理解题:定义:如果一个数的平方等于﹣1,记为i2=﹣1,这个数i叫做虚数单位,把形如a+bi (a,b为实数)的数叫做复数,其中a叫这个复数的实部,b叫做这个复数的虚部,它的加、减、乘、除运算与代数式的运算类似.例如:计算:(2﹣i)+(5+3i)=(2+5)+(﹣1+3)i=7+2i;(1+i)×(2﹣i)=1×2﹣i+2×i﹣i2=2+(﹣1+2)i+1=3+i;根据以上信息,完成下列问题:(1)填空:i3=,i4=,i+i2+i3+…+i2021=;(2)计算:(1+i)×(3﹣4i)﹣(﹣2+3i)(﹣2﹣3i);(3)已知a+bi=2543i-(a,b为实数),求2222(24)x a x b++-+的最小值.22.暑期将至,某游泳馆面向学生推出暑期优惠活动,活动方案如下.方案一:购买一张学生暑期专享卡,每次游泳费用按六折优惠;方案二:不购买学生暑期专享卡,每次游泳费用按八折优惠.设某学生暑期游泳x(次),按照方案一所需费用为y1(元),且y1=k1x+b;按照方案二所需费用为y2(元),且y2=k2x.其函数图象如图所示.(1)求k1和b的值;(2)八年级学生小华计划暑期前往该游泳馆游泳8次,应选择哪种方案所需费用更少?请说明理由.23.如图1,在平面直角坐标系xOy中,直线l1:y=x+6交x轴于点A,交y轴于点B,经过点B的直线l2:y=kx+b交x轴于点C,且l2与l1关于y轴对称.(1)求直线l2的函数表达式;(2)点D,E分别是线段AB,AC上的点,将线段DE绕点D逆时针α度后得到线段DF.①如图2,当点D的坐标为(﹣2,m),α=45°,且点F恰好落在线段BC上时,求线段AE 的长;②如图3,当点D的坐标为(﹣1,n),α=90°,且点E恰好和原点O重合时,在直线y=313G,使得∠DGF=∠DGO?若存在,直接写出点G的坐标;若不存在,请说明理由.24.如图,已知点()4,0A 、()0,2B ,线段OA OC =且点C 在y 轴负半轴上,连接AC .(1)如图1,求直线AB 的解析式;(2)如图1,点P 是直线CA 上一点,若3ABC ABP SS =,求满足条件的点P 坐标; (3)如图2,点M 为直线5:2l x =上一点,将点M 水平向右平移6个单位至点N ,连接BM 、MN 、NC ,求BM MN NC ++的最小值及此时点N 的坐标.25.矩形ABCD 中,AB =3,BC =4.点E ,F 在对角线AC 上,点M ,N 分别在边AD ,BC 上.(1)如图1,若AE =CF =1,M ,N 分别是AD ,BC 的中点.求证:四边形EMFN 为矩形.(2)如图2,若AE =CF =0.5,02AM CN x x ==<<(),且四边形EMFN 为矩形,求x 的值.26.在平面直角坐标系xOy 中,对于点P 给出如下定义:点P 到图形1G 上各点的最短距离为1d ,点P 到图形2G 上各点的最短距离为2d ,若12d d =,就称点P 是图形1G 和图形2G 的一个“等距点”.已知点()6,0A ,()0,6B .(1)在点()6,0D -,()3,0E ,()0,3F 中,______是点A 和点O 的“等距点”;(2)在点()2,1G --,()2,2H ,()3,6I 中,______是线段OA 和OB 的“等距点”;(3)点(),0C m 为x 轴上一点,点P 既是点A 和点C 的“等距点”,又是线段OA 和OB 的“等距点”.①当8m =时,是否存在满足条件的点P ,如果存在请求出满足条件的点P 的坐标,如果不存在请说明理由;②若点P 在OAB 内,请直接写出满足条件的m 的取值范围.【参考答案】一、选择题1.D解析:D【分析】二次根式的被开方数大于等于零,由此计算解答.【详解】解:∵30x -≥,∴3x ≥,观察只有D 选项符合,故选:D .【点睛】此题考查二次根式有意义的条件:被开方数大于等于零.2.C解析:C【分析】根据三角形内角和定理可分析出D 的正误;根据勾股定理逆定理可分析出A 、B 、C 的正误.【详解】解:A 、∵22251213+= ,∴能构成直角三角形,故此选项不符合题意;B 、∵222a c b -=,∴222a b c =+ ,∴能构成直角三角形,故此选项不符合题意;C 、∵()()()222334x x x +≠,∴不能构成直角三角形,故此选项符合题意;D 、设∠A =2x °,∠B =5x °,∠C =3x °,3x +2x +5x =180,解得:x =18,则5x °=90°,△ABC 是直角三角形,故此选项不符合题意;故选:C .【点睛】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.3.B解析:B【解析】【分析】根据平行四边形的判定条件进行逐一判断即可得到答案.【详解】解:∵四边形ABCD 是平行四边形,∴AF ∥EC ,AD =BC ,∠B =∠D ,AB =CD∵AE ∥CF ,∴四边形AECF 是平行四边形,故A 不符合题意;∵BE =DF∴AF =CE ,∴四边形AECF 是平行四边形,故C 不符合题意;∵∠BAE =∠DCF ,∴△ABE ≌CDF (SAS ),∴AE =CF ,BE =DF ,∴AF =CE∴四边形AECF 是平行四边形,故D 不符合题意;由AE =CF ,一组对边平行另一组对边相等,不能判断四边形AECF 是平行四边形,故B 符合题意,故选B.【点睛】本题主要考查了平行四边形的性质与判定,全等三角形的性质与判定,解题的关键在于能够熟练掌握相关知识进行求解.4.C解析:C【解析】【分析】根据中位数和平均数的定义求解即可.【详解】解:由折线统计图知,第25、26个数据分别为12、18,∴这50名学生图书阅读数量的中位数为1218152+= (本),平均数为7812171815211014.850⨯+⨯+⨯+⨯=(本), 故选:C .【点睛】本题主要考查中位数和平均数,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.平均数是指在一组数据中所有数据之和再除以数据的个数.它是反映数据集中趋势的一项指标.5.B解析:B【分析】连接AC ,先根据勾股定理求出AC 的长,然后利用勾股定理的逆定理证明△ACD 为直角三角形.从而用求和的方法求面积.【详解】连接AC ,则由勾股定理得AC=5米,因为AC 2+DC 2=AD 2,所以∠ACD=90°.这块草坪的面积=S Rt △ABC +S Rt △ACD =12AB•BC+12AC•DC=12(3×4+5×12)=36米2. 故选B .【点睛】此题主要考查了勾股定理的运用及直角三角形的判定等知识点.6.B解析:B【解析】【分析】根据菱形的性质以及AM =CN ,利用ASA 可得△AMO ≌△CNO ,可得AO =CO ,然后可得BO ⊥AC ,继而可求得∠OBC 的度数.【详解】∵四边形ABCD 为菱形,∴AB ∥CD ,AB =BC ,∴∠MAO =∠NCO ,∠AMO =∠CNO ,在△AMO 和△CNO 中,MAO NCO AM CNAMO CNO ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△AMO≌△CNO(ASA),∴AO=CO,∵AB=BC,∴BO⊥AC,∴∠BOC=90°,∵∠DAC=26°,∴∠BCA=∠DAC=26°,∴∠OBC=90°﹣26°=64°.故选B.【点睛】本题考查了菱形的性质和全等三角形的判定和性质,注意掌握菱形对边平行以及对角线相互垂直的性质.7.D解析:D【解析】【分析】由矩形性质及G为中点,可得∠AGE=2∠ADE=2∠CED=∠AED,从而可得AE=AG,由矩形性质AB=CD=3,由勾股定理可得AE,再根据直角形的性质从而可求得DF的长.【详解】∵四边形ABCD是矩形∴∠DAB=∠ABC=∠ABE=90゜,AB=CD=3,AD∥BC∵G点是DF的中点∴AG是Rt△DAF斜边DF上的中线∴AG=DG=1DF2∴∠GAD=∠ADE∴∠AGE=2∠ADE∵AD∥BC∴∠CED=∠ADE∴∠AGE=2∠CED∵∠AED=2∠CED∴∠AED=∠AGE∴AE=AG在Rt△ABE中,由勾股定理得:AE∴AG=∴2==DF AG故选:D.【点睛】本题考查了等腰三角形的判定,勾股定理,矩形的性质,直角三角形斜边上中线的性质等知识,关键是得出∠AED =∠AGE .8.B解析:B【分析】由图2知,菱形的边长为a ,对角线BD 为当点P 在线段AC 上运动时,y 12=AP 12⨯BD 12=,即可求解. 【详解】解:由图2知,菱形的边长为a ,对角线AC =则对角线BD 为= 当点P 在线段AC 上运动时,y 12=AP 12⨯BD 12=,由图2知,当x =y =a ,即a 12= 解得:a 52=, 故选:B .【点睛】本题考查的是动点图象问题,涉及到函数、解直角三角形等知识,此类问题关键是:弄清楚不同时间段,图象和图形的对应关系,进而求解.二、填空题9.x ≥2021【解析】【分析】直接利用二次根式的定义分析得出答案.【详解】解:∵∴20210x -≥,解得:2021x ≥.故答案为:2021x ≥.【点睛】本题主要考查了二次根式有意义的条件,正确掌握定义是解题关键.10.A解析:【解析】【分析】作出图形,利用30°直角三角形的性质求出高,利用菱形的面积公式可求解.【详解】如图所示,菱形ABCD中,AB=AD=4,∠A=60°,过点D作DE⊥AB于点E,则3sin60432DE AD=︒==∴菱形ABCD的面积为AB∙DE=4×2383故答案为:83【点睛】本题考查了菱形的性质,熟练运用30°直角三角形的性质以及菱形的面积公式是本题的关键.11.A解析:2【解析】【分析】根据三角形的面积可求得两直角边的乘积的值,再根据完全平方和公式即可求得AB的长.【详解】∵∠C=90°,∴AB2=AC2+BC2,∵S△ABC=12AC•BC=1,∴AC•BC=2,∵3∴(AC+BC)2=AC2+BC2+2AC•BC=AB232,∴AB2=8,∴2故答案为2【点睛】本题考查了勾股定理,完全平方公式,熟练掌握勾股定理的内容以及完全平方公式的变形是解题的关键.12.B解析:34°【分析】由矩形的性质可得∠BAE =∠E =90°,由HL 可证Rt △ACD ≌Rt △AED ,可得∠EAD =∠CAD =28°,即可求解.【详解】解:∵四边形ABDE 是矩形,∴∠BAE =∠E =90°,∵∠ADE =62°,∴∠EAD =28°,∵AC ⊥CD ,∴∠C =∠E =90°∵AE =AC ,AD =AD ,∴Rt △ACD ≌Rt △AED (HL )∴∠EAD =∠CAD =28°,∴∠BAF =90°-28°-28°=34°,故答案为:34°.【点睛】本题考查了矩形的性质,全等三角形的判定和性质,灵活运用这些性质进行推理是本题的关键.13.满足2(0)y kx k =+<即可,如y=-x+2,【分析】此一次函数解析式只要满足0k <且b=2即可.【详解】解:因为函数y 随x 的增大而减小,所以k <0,因为图象经过()0,2,所以b =2,故该解析式可以是:y =−x +2.【点睛】此题是开放性试题,考查函数图形及性质的综合运用,对考查学生所学函数的深入理解、掌握程度具有积极的意义,但此题若想答对需要满足所有条件,如果学生没有注意某一个条件就容易出错.本题的结论是不唯一的,其解答思路渗透了数形结合的数学思想.14.【分析】由条件可求得AOB 为等边三角形,则可求得AC 的长,在Rt ABC 中,由勾股定理可求得BC 的长.【详解】120AOD ∠=︒,∴60AOB ∠=︒,四边形ABCD 为矩形∴AO OC OB==,∴AOB为等边三角形,∴2AO OC OB AB====,∴4AC=,在Rt ABC中,由勾股定理可求得BC=故答案为:【点睛】本题主要考查矩形的性质,掌握矩形的对角线相等且互相平分是解题的关键. 15.【分析】设C(a,﹣3a),B(b,kb),由正方形的性质AB=BC,BC//AD,可得﹣3a =kb,b﹣a=kb,求出b=﹣2a,即可求k的值.【详解】解:设C(a,﹣3a),B(b,kb解析:3 2【分析】设C(a,﹣3a),B(b,kb),由正方形的性质AB=BC,BC//AD,可得﹣3a=kb,b﹣a =kb,求出b=﹣2a,即可求k的值.【详解】解:设C(a,﹣3a),B(b,kb),∵四边形ABCD是正方形,∴BC//x轴,∴﹣3a=kb,∵BC=AB,∴b﹣a=kb,∴b﹣a=﹣3a,∴b=﹣2a,∴﹣3a=﹣2ak,∴k=32,故填32.【点睛】本题主要考查正方形的性质及一次函数的综合运用,根据题意设出点坐标、再根据正方形的性质明确线段间的关系是解答本题的关键.16.【分析】证明△AED≌△FDC可得 ED=CD,据此列方程解即可.【详解】解:由题意可知AD=BC=CF, ∠AED=∠CDF, ∠A=∠CFD=90°,所以△AED≌△FDC,所以ED解析:【分析】证明△AED≌△FDC可得 ED=CD,据此列方程解即可.【详解】解:由题意可知AD=BC=CF, ∠AED=∠CDF, ∠A=∠CFD=90°,所以△AED≌△FDC,所以ED=CD,设AE=x,则x²+3²=(x+1) ²,解得x=4,所以CD=5.故答案是:5.【点睛】本题考查了矩形的性质、三角形全等的判定和性质以及勾股定理,由折叠得到相应的数量关系从而证明三角形全等是解题关键.三、解答题17.(1);(2)2.【分析】(1)利用分配率进行二次根式的乘法运算,再化简即可求值;(2)先根据二次根式的除法和乘法公式进行化简,在进行二次根式加减即可求解.【详解】解:(1)()×;解析:(1)2)2.【分析】(1)利用分配率进行二次根式的乘法运算,再化简即可求值;(2)先根据二次根式的除法和乘法公式进行化简,在进行二次根式加减即可求解.【详解】解:(1(26=2+=2.【点睛】本题考查了二次根式的运算,熟知二次根式的加减乘除运算法则,并正确计算是解题关键.18.(1)会,理由见解;(2)7h【分析】(1)利用勾股定理的逆定理得出△ABC 是直角三角形,进而利用三角形面积得出CD 的长,从而判断出海港C 是否受台风影响;(2)利用勾股定理得出ED 以及EF 的长解析:(1)会,理由见解;(2)7h【分析】(1)利用勾股定理的逆定理得出△ABC 是直角三角形,进而利用三角形面积得出CD 的长,从而判断出海港C 是否受台风影响;(2)利用勾股定理得出ED 以及EF 的长,进而得出台风影响该海港持续的时间.【详解】解:(1)如图所示,过点C 作CD ⊥AB 于D 点,∵AC =300km ,BC =400km ,AB =500km ,∴222AC BC AB +=,∴△ABC 为直角三角形, ∴1122··AC BC AB CD =, ∴300400500CD ⨯=,∴240km CD =,∵以台风中心为圆心周围250km 以内为受影响区域,∴海港C 会受到台风影响;(2)由(1)得CD =240km ,如图所示,当EC =FC =250km 时,即台风经过EF 段时,正好影响到海港C ,此时△ECF 为等腰三角形, ∵70km ED =,∴EF =140km ,∵台风的速度为20km/h ,∴140÷20=7h ,∴台风影响该海港持续的时间有7h .【点睛】本题考查的是勾股定理在实际生活中的运用,解答此类题目的关键是构造出直角三角形,再利用勾股定理解答.19.(1)矩形,正方形;(2)见解析【解析】【分析】(1)根据勾股四边形的定义即可求解;(2)由勾股定理可知可知四边形对角线为5,据此即可作图.【详解】解:(1)由勾股四边形的定义矩形、正方解析:(1)矩形,正方形;(2)见解析【解析】【分析】(1)根据勾股四边形的定义即可求解;(2)由勾股定理可知可知四边形OAMB对角线为5,据此即可作图.【详解】解:(1)由勾股四边形的定义矩形、正方形都满足一组相邻两边的平方和等于一条对角线的平方,故答案为:矩形,正方形;(2)如图,证明:∵∠AOB=90°,∴222+=,OA OB AB∴四边形OAMB为勾股四边形,由勾股定理得,22OM+345∴AB =OM ,∴四边形OAMB 都是勾股四边形,符合题意.【点睛】本题为新定义问题,考查了勾股定理等知识,矩形、正方形的性质,熟知勾股定理,理解勾股四边形的定义是解题关键.20.(1)见解析;(2)见解析【分析】(1)连接EF 交MN 于O ,证△ADE ≌△CBF (ASA ),得DE=BF ,再证DE ∥BF ,则四边形BEDF 是平行四边形,得OE=OF ,OB=OD ,然后证OM=ON 解析:(1)见解析;(2)见解析【分析】(1)连接EF 交MN 于O ,证△ADE ≌△CBF (ASA ),得DE =BF ,再证DE ∥BF ,则四边形BEDF 是平行四边形,得OE =OF ,OB =OD ,然后证OM =ON ,即可得出结论;(2)由菱形的性质得EF ⊥MN ,由(1)得四边形BEDF 是平行四边形,即可得出结论.【详解】证明:(1)连接EF 交MN 于O ,∵四边形ABCD 是平行四边形,∴∠A =∠C ,AD =BC ,AD ∥BC ,∴∠ADB =∠DBC ,∵DE 平分∠ADB ,BF 平分∠DBC ,∴∠ADE =∠EDB =∠CBF =∠FBD ,在△ADE 和△CBF 中,A C AD BCADE CBF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ADE ≌△CBF (ASA ),∴DE =BF ,∵∠EDB =∠FBD ,∴DE ∥BF ,∴四边形BEDF 是平行四边形,∴OE =OF ,OB =OD ,∵BM =DN ,∴OB -BM =OD -DN ,即OM =ON ,∴四边形EMFN 是平行四边形;(2)∵四边形EMFN 是菱形,∴EF ⊥MN ,由(1)得:四边形BEDF 是平行四边形,∴平行四边形BEDF 是菱形.【点睛】本题考查了菱形的判定与性质、平行四边形的判定与性质、全等三角形的判定与性质、平行线的平对于性质等知识;熟练掌握菱形的判定与性质,证明△ADE≌△CBF是解题的关键,属于中考常考题型.21.(1)﹣i,1,;(2)﹣i﹣6;(3)的最小值为25.【解析】【分析】(1)根据题目所给条件可得i3=i2•i,i4=i2•i2计算即可得出答案;(2)根据多项式乘法法则进行计算,及题目所解析:(1)﹣i,1,20221i ii--;(2)﹣i﹣6;(32222(24)x a x b+-+25.【解析】【分析】(1)根据题目所给条件可得i3=i2•i,i4=i2•i2计算即可得出答案;(2)根据多项式乘法法则进行计算,及题目所给已知条件即可得出答案;(3)根据题目已知条件,a+bi=4+3i,求出a、b,即可得出答案.【详解】(1)i3=i2•i=﹣1×i=﹣i,i4=i2•i2=﹣1×(﹣1)=1,设S=i+i2+i3+ (i2021)iS=i2+i3+…+i2021+i2022,∴(1﹣i)S=i﹣i2022,∴S=20221i ii--,故答案为﹣i,1,20221i ii--;(2)(1+i)×(3﹣4i)﹣(﹣2+3i)(﹣2﹣3i)=3﹣4i+3i﹣4i2﹣(4﹣9i2)=3﹣i+4﹣4﹣9=﹣i﹣6;(3)a +bi =2543i -=25(43)(43)(43)i i i +-+=10075169i ++=4+3i , ∴a =4,b =3,x ,0)到点A (0,4),B (24,3)的最小距离,∵点A (0,4)关于x 轴对称的点为A '(0,﹣4),连接A 'B 即为最短距离,∴A 'B 25,25.【点睛】此题考查了实数的运算,以及规律型:数字的变化类,弄清题中的新定义是解本题的关键.22.(1)y1=15x+30;(2)选择方案一所需费用更少,理由见解析【分析】(1)利用待定系数法求解即可;(2)求出y2与x 之间的函数关系式,将x=8分别代入y1、y2关于x 的函数解析式,比较即解析:(1)y 1=15x +30;(2)选择方案一所需费用更少,理由见解析【分析】(1)利用待定系数法求解即可;(2)求出y 2与x 之间的函数关系式,将x =8分别代入y 1、y 2关于x 的函数解析式,比较即可.【详解】解:(1)根据题意,得:138430k b b +=⎧⎨=⎩,解得:11830k b =⎧⎨=⎩, ∴方案一所需费用y 1与x 之间的函数关系式为y 1=18x +30,∴k 1=18,b =30;(2)∵打折前的每次游泳费用为18÷0.6=30(元),∴k 2=30×0.8=24;∴y 2=24x ,当游泳8次时,选择方案一所需费用:y 1=18×8+30=174(元),选择方案二所需费用:y 2=24×8=192(元),∵174<192,∴选择方案一所需费用更少.【点睛】本题考查了一次函数的应用,解题的关键是理解两种优惠活动方案,求出y 1、y 2关于x 的函数解析式.23.(1)y=-x+6;(2)①;②,或或,【分析】(1)先求出点A ,B 的坐标,再运用待定系数法求出直线直线l2的函数解析式;(2)①将点D (-2,m )代入y=x+6中,求出D (-2,4),如图2解析:(1)y =-x +6;(2)①422+;②1213(23G -,313)-或2(2,313)G -或3313(22G +,313)- 【分析】(1)先求出点A ,B 的坐标,再运用待定系数法求出直线直线l 2的函数解析式;(2)①将点D (-2,m )代入y =x +6中,求出D (-2,4),如图2,作∠DHF =45°,利用AAS 证明△ADE ≌△HFD ,再运用等腰直角三角形性质即可求出答案;②将D (-1,n )代入y =x +6中,得D (-1,5),过D 作DM ⊥x 轴于M ,作FN ⊥DM 于N ,如图3,利用AAS 可证得△FDN ≌△DEM ,进而得出F (4,6),再根据∠DGF =∠DGO 分类讨论即可.【详解】解:(1)6y x =+交x 轴于点A ,交y 轴于点B ,(6,0)A ∴-,(0,6)B ,2l 与1l 关于y 轴对称,)0(6,C ∴,设直线2l 为:y kx b =+,将B 、C 坐标代入得606k b b +=⎧⎨=⎩,解得16k b =-⎧⎨=⎩, ∴直线2l 的函数解析式为:6y x =-+;(2)①将点(2,)D m -代入6y x =+中,得:26m -+=,解得:4m =,(2,4)D ∴-,如图2,作45DHF ∠=︒,6OA OB ==,45EAD EDF DHF ∴∠=∠=∠=︒,135AED ADE ∴∠+∠=︒,135ADE HDF ∠+∠=︒,AED HDF ∴∠=∠,在ADE ∆和HFD ∆中,EAD DHF AED HDF DE FD ∠=∠⎧⎪∠=∠⎨⎪=⎩, ()ADE HFD AAS ∴∆≅∆, 22(62)442HF AD ∴==-++=,AE HD =,又6OA OB OC ===,90AOB COB ∠=∠=︒,ABO ∴∆和COB ∆均为等腰直角三角形,45ABO CBO ∴∠=∠=︒,90ABC ∴∠=︒,18090HBF ABC ∴∠=︒-∠=︒,BFH ∴∆是等腰直角三角形,242BH FH ∴==, 62AB =,62442422AE HD AB BH AD ∴==+-=+-=+.②将(1,)D n -代入6y x =+中,得:165n =-+=,(1,5)D ∴-,则5DM =,1EM =,过D 作DM x ⊥轴于M ,作FN DM ⊥于N ,如图3,DE DF =,90EDF DME FND ∠=∠=∠=︒,90MDE FDN ∴∠+∠=︒,90MDE DEM ∠+∠=︒,FDN DEM ∴∠=∠,在FDN ∆和DEM ∆中,FND DME FDN DEM DF ED ∠=∠⎧⎪∠=∠⎨⎪=⎩, FDN DEM ∴∆≅∆()AAS ,5FN DM ∴==,1DN EM ==,514BF FN BN ∴=-=-=,516EB MN DM DN ====+=,(4,6)F ∴,当点F 、O 、1G 三点共线时,如图3,11DG O DG F ∠=∠,设直线EF 的解析式为y mx =,(4,6)F ,46m ∴=, 解得:32m =, ∴直线EF 的解析式为32y x =, 当33132x =-时,21323x =-, 1213(23G ∴-,313)-; 如图4,连接DG 2,FG 2,过点D 作DM ⊥OG 2,DN ⊥FG 2,∵22DG F DG O ∠=∠,∴DM =DN ,又DO =DF ,∴2Rt DG M Rt DFN ≅△△(HL ),∴∠ODM =∠FDN ,又∠ODN +∠FDN =90°,∴∠ODM +∠ODN =90°,即∠MDN =90°,∴四边形DMG 2N 是正方形,∴∠OG 2F =90°,设2(,313)G a ,22290FG O DG O DG F ∠=∠+∠=︒,22222G O G F OF ∴+=,222222(313)(4)(3136)46a a ∴++-+=+,解得:122a a ==,2(2,313)G ∴;当3DG 平分3OG F ∠时,如图5,DO DF =,33DG O DG F ∠=∠,33OG FG ∴=,又33DG DG =,33()DOG DFG SSS ∴∆≅∆,设OF 与3DG 交于点H ,OH FH ∴=,(0,0)O ,(4,6)F ,(2,3)H ∴,设直线DG 解析式为11y k x b =+,(1,5)D -,()2,3H ,∴1111523k b k b -+=⎧⎨+=⎩, 解得:1123133k b ⎧=-⎪⎪⎨⎪=⎪⎩, ∴直线DG 解析式为21333y x =-+, 联立方程组21333313y x y ⎧=-+⎪⎨⎪=⎩, 解得:3132313x y ⎧=⎪⎨⎪=⎩ 3313(2G ∴,313); 综上所述,符合条件的G 的坐标为1213(2G ,313)或2(2,313)G 或3313(2G ,313).【点睛】本题是一次函数综合题,考查了运用待定系数法求一次函数解析式,求一次函数图象与坐标轴交点坐标,利用解方程组求两直线交点坐标,等腰直角三角形判定和性质,全等三角形判定和性质,勾股定理等,添加辅助线构造全等三角形,运用分类讨论思想和数形结合思想是解题关键.24.(1);(2)点P 的坐标为(,)或(,);(3)的最小值为;点N 的坐标为(,).【解析】【分析】(1)直接利用待定系数法,即可求出直线的解析式;(2)根据题意,先求出点C 的坐标,然后求出直线解析:(1)122y x =-+;(2)点P 的坐标为(163,43)或(83,43-);(3)BM MN NC ++的最小值为6N 的坐标为(172,711). 【解析】【分析】(1)直接利用待定系数法,即可求出直线的解析式;(2)根据题意,先求出点C 的坐标,然后求出直线AC 的解析式,由3ABC ABP S S =,得到3AC AP =,再分别求出AC 和AP 的长度,即可求出点P 的坐标;(3)根据题意,6MN =为定值,在图中找出一点B ',使得B N BM '=,即点B '、N 、C 三点共线时,使得BM MN NC ++有最小值,此时求出B C B N NC BM NC ''=+=+,即可得到答案.【详解】解:(1)设直线AB 为y kx b =+,把点()4,0A 、()0,2B ,代入,则402k b b +=⎧⎨=⎩,解得:122k b ⎧=-⎪⎨⎪=⎩, ∴122y x =-+; (2)∵线段4OA OC ==,且点C 在y 轴负半轴上,∴点C 的坐标为(0,-4),∵点A 为(4,0),∴直线AC 的解析式为:4y x =-;∵点B 到直线AC 的距离就是△ABC 和△ABP 的高,∴△ABC 和△ABP 的高相同,∵3ABC ABP SS =, ∴11322AC h AP h ••=⨯••, ∴3AC AP =,∵AC ==∴133AP =⨯, ∵点P 在直线AC 上,则设点P 为(x ,x -4),∴2242(4)(4)243AP x x x =-+-=•-=, ∴443x -=, ∴163x =或83x =, ∴点P 的坐标为(163,43)或(83,43-); (3)根据题意,∵点B 与点M 的水平距离为52, ∴在点N 的右边水平距离为52处作直线11x =,如图:令点B '为(11,2),此时有B N BM '=,∵6MN =, ∴66BM MN NC BM NC B N NC '++=++=++,∴当点B '、N 、C 三点共线时,使得BM MN NC ++有最小值,最小值为:66BM MN NC B N NC B C ''++=++=+;∵点B '(11,2),点C 为(0,-4),∴直线B C '的解析式为:6411y x =-, 2211(24)157B C '++∴BM MN NC ++有最小值为:66157B C '+=+∵点N的横坐标为:517622+=,∴点N的纵坐标为:6177411211y=⨯-=,∴点N的坐标为:(172,711).【点睛】本题考查了一次函数的性质,利用勾股定理求两点之间的距离,最短路径问题,坐标与图形,解题的关键是熟练掌握一次函数的图形和性质,正确找出使得线段之和最小时的临界点,注意运用数形结合的思想进行解题.25.(1)见详解;(2)【分析】(1)连接MN,由勾股定理求出AC=5,证出四边形ABNM是矩形,得MN=AB=3,证△AME≌△CNF(SAS),得出EM=FN,∠AEM=∠CFN,证EM∥FN,解析:(1)见详解;(2)722 x=-【分析】(1)连接MN,由勾股定理求出AC=5,证出四边形ABNM是矩形,得MN=AB=3,证△AME≌△CNF(SAS),得出EM=FN,∠AEM=∠CFN,证EM∥FN,得四边形EMFN是平行四边形,求出MN=EF,即可得出结论;(2)连接MN,作MH⊥BC于H,则MH=AB=3,BH=AM=x,得HN=BC-BH-CN=4-2x,由矩形的性质得出MN=EF=AC-AE-CF=4,在Rt△MHN中,由勾股定理得出方程,解方程即可.【详解】(1)证明:连接MN,如图1所示:∵四边形ABCD是矩形,∴AD∥BC,AD=BC,∠B=90°,∴∠EAM=∠FCN,2222345AB BC+=+,∵M,N分别是AD,BC的中点,∴AM=DM=BN=CN,AM∥BN,∴四边形ABNM是平行四边形,又∵∠B=90°,∴四边形ABNM 是矩形,∴MN=AB=3,在△AME 和△CNF 中,AM CN EAM FCN AE CF =⎧⎪∠=∠⎨⎪=⎩, ∴△AME ≌△CNF (SAS ),∴EM=FN ,∠AEM=∠CFN ,∴∠MEF=∠NFE ,∴EM ∥FN ,∴四边形EMFN 是平行四边形,又∵AE=CF=1,∴EF=AC-AE-CF=3,∴MN=EF ,∴四边形EMFN 为矩形.(2)解:连接MN ,作MH ⊥BC 于H ,如图2所示:则四边形ABHM 是矩形,∴MH=AB=3,BH=AM=x ,∴HN=BC-BH-CN=4-2x ,∵四边形EMFN 为矩形,AE=CF=0.5,∴MN=EF=AC-AE-CF=4,在Rt △MHN 中,由勾股定理得:32+(4-2x )2=42,解得:x=72, ∵0<x <2,∴x=72- 【点睛】本题考查了矩形的判定与性质、平行四边形的判定与性质、全等三角形的判定与性质、平行线的判定、勾股定理等知识;熟练掌握矩形的判定与性质和勾股定理是解题的关键. 26.(1)点E ;(2)点H ;(3)①存在,点P 的坐标为(7,7);②【分析】(1)根据“等距点”的定义,即可求解;(2)根据“等距点”的定义,即可求解;(3)①根据点P 是线段OA 和OB 的“等距点解析:(1)点E ;(2)点H ;(3)①存在,点P 的坐标为(7,7);②60m -<<【分析】(1)根据“等距点”的定义,即可求解;(2)根据“等距点”的定义,即可求解;(3)①根据点P 是线段OA 和OB 的“等距点”,可设点P (x ,x )且x >0,再由点P 是点A 和点C 的“等距点”,可得22AP CP = ,从而得到()()222286x x x x -+=-+ ,即可求解; ②根据点P 是线段OA 和OB 的“等距点”, 点P 在∠AOB 的角平分线上,可设点P (a ,a )且a >0,根据OA =OB ,可得OP 平分线段AB ,再由点P 在OAB 内,可得0<<3a ,根据点P 是点A 和点C 的“等距点”,可得22AP CP = ,从而得到()()22226a m a a a -+=-+,整理得到()()()2666m a m m -=+-,即可求解.【详解】解:(1)根据题意得:()6612AD =--= ,633AE =-= ,AF == , 6OD = ,3OE = ,3OF = ,∴AE OE = ,∴点()3,0E 是点A 和点O 的“等距点”;(2)根据题意得:线段OA 在x 轴上,线段OB 在y 轴上,∴点()2,1G --到线段OA 的距离为1,到线段OB 的距离为2,点()2,2H 到线段OA 的距离为2,到线段OB 的距离为2,点()3,6I 到线段OA 的距离为6,到线段OB 的距离为3,∴点()2,2H 到线段OA 的距离和到线段OB 的距离相等,∴点()2,2H 是线段OA 和OB 的“等距点”;(3)①存在,点P 的坐标为(7,7),理由如下:∵点P 是线段OA 和OB 的“等距点”,且线段OA 在x 轴上,线段OB 在y 轴上, ∴可设点P (x ,x )且x >0,∵点P 是点A 和点C 的“等距点”,∴22AP CP = ,∵点C (8,0),()6,0A ,∴()()222286x x x x -+=-+ , 解得:7x = ,∴点P 的坐标为(7,7);②如图,∵点P 是线段OA 和OB 的“等距点”,且线段OA 在x 轴上,线段OB 在y 轴上, ∴点P 在∠AOB 的角平分线上,可设点P (a ,a )且a >0,∵()6,0A ,()0,6B .∴OA =OB =6,∴OP 平分线段AB ,∵点P 在OAB 内,∴当点P 位于AB 上时, 此时点P 为AB 的中点,∴此时点P 的坐标为6060,22++⎛⎫ ⎪⎝⎭,即()3,3 , ∴0<<3a ,∵点P 是点A 和点C 的“等距点”,∴22AP CP = ,∵点(),0C m ,()6,0A ,∴()()22226a m a a a -+=-+, 整理得:()()()2666m a m m -=+- ,当6m = 时,点C (6,0),此时点C 、A 重合,则a =6(不合题意,舍去),当6m ≠时,62m a +=, ∴6032m +<<,解得:60m -<< , 即若点P 在OAB 内,满足条件的m 的取值范围为60m -<<.【点睛】本题主要考查了平面直角坐标系内两点间的距离,点到坐标轴的距离,等腰三角形的性质,角平分线的判定等知识,理解新定义,利用数形结合思想解答是解题的关键.。
人教版八年级下册数学期末考试试题含答案
人教版八年级下册数学期末考试试卷一、选择题(本大题共16个小题;1-6小题,每题2分;7-16小题,每题3分;共42分.在每题的四个选项中,只有一项是符合要求的)1.若二次根式有意义,则x应满足的条件是()A.x=B.x<C.x≥D.x≤2.已知平行四边形ABCD的周长为32,AB=4,则BC的长为()A.4B.12C.24D.283.下列各式中,最简二次根式是()A.B.C.D.4.以下四点:(1,2),(2,3),(0,1),(﹣2,3)在直线y=2x+1上的有()A.1个B.2个C.3个D.4个5.能够判定一个四边形是矩形的条件是()A.对角线互相平分且相等B.对角线互相垂直平分C.对角线相等且互相垂直D.对角线互相垂直6.适合下列条件的△ABC中,直角三角形的个数为()①a=,b=,c=;②a=6,b=8,c=10;③a=7,b=24,c=25;④a=2,b=3,c=4.A.1个B.2个C.3个D.4个7.某班实行每周量化考核制,学期末对考核成绩进行统计,结果显示甲、乙两组的平均成2=36,S乙2=30,则两组成绩的稳定性()绩相同,方差分别是S甲A.甲组比乙组的成绩稳定B.乙组比甲组的成绩稳定C.甲、乙两组的成绩一样稳定D.无法确定8.已知正比例函数y=kx(k<0)的图象上两点A(x1,y1)、B(x2,y2),且x1<x2,则下列不等式中恒成立的是()A.y1+y2>0B.y1+y2<0C.y1﹣y2>0D.y1﹣y2<09.下列条件之一能使菱形ABCD是正方形的为()①AC⊥BD②∠BAD=90°③AB=BC④AC=BD.A.①③B.②③C.②④D.①②③10.一次函数y=kx﹣b的图象(其中k<0,b>0)大致是()A.B.C.D.11.一组数据2,4,x,2,4,7的众数是2,则这组数据的平均数,中位数分别为()A.3.5,3B.3,4C.3,3.5D.4,312.直线y=kx+b交坐标轴于A(﹣8,0),B(0,13)两点,则不等式kx+b≥0的解集为()A.x≥﹣8B.x≤﹣8C.x≥13D.x≤1313.如图所示:数轴上点A所表示的数为a,则a的值是()A.+1B.﹣+1C.﹣1D.14.如图,矩形ABCD中,点E,F分别是AB、CD的中点,连接DE和BF,分别取DE、BF的中点M、N,连接AM,CN,MN,若AB=,BC=,则图中阴影部分的面积为()A.4B.2C.2D.215.如图,周长为16的菱形ABCD中,点E,F分别在AB,AD边上,AE=1,AF=3,P为BD上一动点,则线段EP+FP的长最短为()A.3B.4C.5D.616.如图,在平面直角坐标系中,矩形OABC的边OA、OC分别在x轴、y轴的正半轴上,点B在第一象限,直线y=与边AB、BC分别交于点D、E,若点B的坐标为(m,1),则m的值可能是()A.﹣1B.1C.2D.4二、填空题(本大题共4个小题;每小题3分,共12分.把答案写在题中横线上)17.=.18.数据﹣2,﹣1,0,3,5的方差是.19.如右图,Rt△ABC的面积为20cm2,在AB的同侧,分别以AB,BC,AC为直径作三个半圆,则阴影部分的面积为.20.如图,已知直线l1:y=k1x+4与直线l2:y=k2x﹣5交于点A,它们与y轴的交点分别为点B,C,点E,F分别为线段AB、AC的中点,则线段EF的长度为.三、解答题(本大题共6个小题,共66分.解答应写出文字说明,说理过程或演算步骤)21.计算(1)(2)22.如图,在△ABC中,点D、E分别是边BC、AC的中点,过点A作AF∥BC交DE 的延长线于F点,连接AD、CF.(1)求证:四边形ADCF是平行四边形;(2)当△ABC满足什么条件时,四边形ADCF是菱形?为什么?23.如图1所示为一上面无盖的正方体纸盒,现将其剪开展成平面图,如图2所示,已知展开图中每个正方形的边长为1,(1)求线段A′C′的长度;(2)试比较立体图中∠BAC与展开图中∠B′A′C′的大小关系?并写出过程.24.甲、乙两地距离300km,一辆货车和一辆轿车先后从甲地出发驶向乙地.如图,线段OA表示货车离甲地的距离y(km)与时间x(h)之间的函数关系,折线BCDE表示轿车离甲地的距离y(km)与时间x(h)之间的函数关系,根据图象,解答下列问题:(1)线段CD表示轿车在途中停留了h;(2)求线段DE对应的函数解析式;(3)求轿车从甲地出发后经过多长时间追上货车.25.某商场统计了每个营业员在某月的销售额,统计图如下,根据统计图中给出的信息,解答下列问题:(1)设营业员的月销售额为x(单位:万元),商场规定:当x<15时为不称职,当15≤x <20时,为基本称职,当20≤x<25为称职,当x≥25时为优秀.称职和优秀的营业员共有多少人?所占百分比是多少?(2)根据(1)中规定,所有称职以上(职称和优秀)的营业员月销售额的中位数、众数和平均数分别是多少?(3)为了调动营业员的工作积极性,决定制定月销售额奖励标准,凡到达或超过这个标准的营业员将受到奖励.如果要使得称职以上(称职和优秀)的营业员有一半能获奖,你认为这个奖励标准应定月销售额为多少元合适?并简述其理由.26.我市某游乐场在暑假期间推出学生个人门票优惠活动,各类门票价格如下表:票价种类(A)夜场票(B)日通票(C)节假日通票单价(元)80120150某慈善单位欲购买三种类型的门票共100张奖励品学兼优的留守学生,设购买A种票x 张,B种票张数是A种票的3倍还多7张,C种票y张,根据以上信息解答下列问题:(1)直接写出x与y之间的函数关系式;(2)设购票总费用为W元,求W(元)与x(张)之间的函数关系式;(3)为方便学生游玩,计划购买学生的夜场票不低于20张,且节假日通票至少购买5张,有哪几种购票方案?哪种方案费用最少?参考答案与试题解析一、选择题(本大题共16个小题;1-6小题,每题2分;7-16小题,每题3分;共42分.在每题的四个选项中,只有一项是符合要求的)1.若二次根式有意义,则x应满足的条件是()A.x=B.x<C.x≥D.x≤【考点】二次根式有意义的条件.【分析】直接利用二次根式有意义的条件得出x的取值范围.【解答】解:∵要使有意义,∴5﹣2x≥0,解得:x≤.故选:D.2.已知平行四边形ABCD的周长为32,AB=4,则BC的长为()A.4B.12C.24D.28【考点】平行四边形的性质.【分析】根据平行四边形的性质得到AB=CD,AD=BC,根据2(AB+BC)=32,即可求出答案.【解答】解:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,∵平行四边形ABCD的周长是32,∴2(AB+BC)=32,∴BC=12.故选B.3.下列各式中,最简二次根式是()A.B.C.D.【考点】最简二次根式.【分析】根据最简二次根式的概念进行判断即可.【解答】解:被开方数含分母,不是最简二次根式,A错误;=2不是最简二次根式,B错误;=x不是最简二次根式,C错误;,是最简二次根式,D正确,故选:D.4.以下四点:(1,2),(2,3),(0,1),(﹣2,3)在直线y=2x+1上的有()A.1个B.2个C.3个D.4个【考点】一次函数图象上点的坐标特征.【分析】把四个点的坐标分别代入直线解析式,看其是否满足解析式,可判断其是否在直线上.【解答】解:在y=2x+1中,当x=1时,代入得y=3,所以点(1,2)不在直线上,当x=2时,代入得y=5,所以点(2,3)不在直线上,当x=0时,代入得y=1,所以点(0,1)在直线上,当x=﹣2时,代入得y=﹣4+3=﹣1,所以点(﹣2,3)不在直线上,综上可知在直线y=2x+1上的点只有一个,故选A.5.能够判定一个四边形是矩形的条件是()A.对角线互相平分且相等B.对角线互相垂直平分C.对角线相等且互相垂直D.对角线互相垂直【考点】矩形的判定.【分析】根据矩形的判定定理逐一进行判定即可.【解答】解:A、对角线互相平分且相等的四边形是矩形,故正确;B、对角线互相垂直平分的是菱形,故错误;C、对角线相等且互相垂直的四边形不一定是矩形,故错误;D、对角线互相垂直的四边形不一定是矩形,故错误,故选A.6.适合下列条件的△ABC中,直角三角形的个数为()①a=,b=,c=;②a=6,b=8,c=10;③a=7,b=24,c=25;④a=2,b=3,c=4.A.1个B.2个C.3个D.4个【考点】勾股定理的逆定理.【分析】根据勾股定理的逆定理以及直角三角形的定义,验证四组条件中数据是否满足“较小两边平方的和等于最大边的平方”由此即可得出结论.【解答】解:①∵a=,b=,c=),∵()2+()2≠();∴满足①的三角形不是直角三角形;②a=6,b=8,c=10,∵62+82=102,∴满足②的三角形是直角三角形;③a=7,b=24,c=25,∵72+242=252,∴满足③的三角形为直角三角形;④a=2,b=3,c=4.∵22+32≠42,∴满足④的三角形不是直角三角形.综上可知:满足②③的三角形均为直角三角形.故选B.7.某班实行每周量化考核制,学期末对考核成绩进行统计,结果显示甲、乙两组的平均成绩相同,方差分别是S甲2=36,S乙2=30,则两组成绩的稳定性()A.甲组比乙组的成绩稳定B.乙组比甲组的成绩稳定C.甲、乙两组的成绩一样稳定D.无法确定【考点】方差.【分析】根据方差的定义,方差越小数据越稳定,即可得出答案.【解答】解:∵甲、乙两组的平均成绩相同,方差分别是S甲2=36,S乙2=30,∴S甲2>S乙2,∴乙组比甲组的成绩稳定;故选B.8.已知正比例函数y=kx(k<0)的图象上两点A(x1,y1)、B(x2,y2),且x1<x2,则下列不等式中恒成立的是()A.y1+y2>0B.y1+y2<0C.y1﹣y2>0D.y1﹣y2<0【考点】一次函数图象上点的坐标特征;正比例函数的图象.【分析】根据k<0,正比例函数的函数值y随x的增大而减小解答.【解答】解:∵直线y=kx的k<0,∴函数值y随x的增大而减小,∵x1<x2,∴y1>y2,∴y1﹣y2>0.故选:C.9.下列条件之一能使菱形ABCD是正方形的为()①AC⊥BD②∠BAD=90°③AB=BC④AC=BD.A.①③B.②③C.②④D.①②③【考点】正方形的判定.【分析】直接利用正方形的判定方法,有一个角是90°的菱形是正方形,以及利用对角线相等的菱形是正方形进而得出即可.【解答】解:∵四边形ABCD是菱形,∴当∠BAD=90°时,菱形ABCD是正方形,故②正确;∵四边形ABCD是菱形,∴当AC=BD时,菱形ABCD是正方形,故④正确;故选:C.10.一次函数y=kx﹣b的图象(其中k<0,b>0)大致是()A.B.C.D.【考点】一次函数的图象.【分析】利用一次函数图象的性质分析得出即可.【解答】解:∵一次函数y=kx﹣b的图象(其中k<0,b>0),∴图象过二、四象限,﹣b<0,则图象与y轴交于负半轴,故选:D.11.一组数据2,4,x,2,4,7的众数是2,则这组数据的平均数,中位数分别为()A.3.5,3B.3,4C.3,3.5D.4,3【考点】中位数;算术平均数.【分析】根据题意可知x=2,然后根据平均数、中位数的定义求解即可.【解答】解:∵这组数据的众数是2,∴x=2,将数据从小到大排列为:2,2,2,4,4,7,则平均数=(2+2+2+4+4+7)÷6=3.5,中位数为:3.故选:A.12.直线y=kx+b交坐标轴于A(﹣8,0),B(0,13)两点,则不等式kx+b≥0的解集为()A.x≥﹣8B.x≤﹣8C.x≥13D.x≤13【考点】一次函数与一元一次不等式.【分析】把A(﹣8,0),B(0,13)两点代入解析式解答,再利用一次函数与一元一次不等式的关系解答即可.【解答】解:由直线y=kx+b交坐标轴于A(﹣8,0),B(0,13)两点可以看出,x轴上方的函数图象所对应自变量的取值为x≥﹣8,故不等式kx+b≥0的解集是x≥﹣8.故选:A.13.如图所示:数轴上点A所表示的数为a,则a的值是()A.+1B.﹣+1C.﹣1D.【考点】勾股定理;实数与数轴.【分析】先根据勾股定理求出三角形的斜边长,再根据两点间的距离公式即可求出A 点的坐标.【解答】解:图中的直角三角形的两直角边为1和2,∴斜边长为:=,∴﹣1到A 的距离是,那么点A 所表示的数为:﹣1.故选C .14.如图,矩形ABCD 中,点E ,F 分别是AB 、CD 的中点,连接DE 和BF ,分别取DE 、BF 的中点M 、N ,连接AM ,CN ,MN ,若AB=,BC=,则图中阴影部分的面积为()A .4B .2C .2D .2【考点】矩形的性质.【分析】利用三角形中线的性质以及平行线的性质得出S △AEM =S △AMD ,S △BNC =S △FNC ,S四边形EBNM=S 四边形DMNF ,即可得出答案.【解答】解:∵点E 、F 分别是AB 、CD 的中点,连接DE 和BF ,分别取DE 、BF 的中点M 、N ,∴S △AEM =S △AMD ,S △BNC =S △FNC ,S 四边形EBNM =S 四边形DMNF ,∴图中阴影部分的面积=×AB×BC=××=2.故选B .15.如图,周长为16的菱形ABCD中,点E,F分别在AB,AD边上,AE=1,AF=3,P为BD上一动点,则线段EP+FP的长最短为()A.3B.4C.5D.6【考点】轴对称-最短路线问题;菱形的性质.【分析】在DC上截取DG=FD=AD﹣AF=4﹣3=1,连接EG,则EG与BD的交点就是P.EG的长就是EP+FP的最小值,据此即可求解.【解答】解:在DC上截取DG=FD=AD﹣AF=4﹣3=1,连接EG,则EG与BD的交点就是P.∵AE=DG,且AE∥DG,∴四边形ADGE是平行四边形,∴EG=AD=4.故选B.16.如图,在平面直角坐标系中,矩形OABC的边OA、OC分别在x轴、y轴的正半轴上,点B在第一象限,直线y=与边AB、BC分别交于点D、E,若点B的坐标为(m,1),则m的值可能是()A.﹣1B.1C.2D.4【考点】一次函数图象上点的坐标特征.【分析】求出点E和直线y=﹣x+2与x轴交点的坐标,即可判断m的范围,由此可以解决问题.【解答】解:∵B、E两点的纵坐标相同,B点的纵坐标为1,∴点E的纵坐标为1,∵点E在y=﹣x+2上,∴点E的坐标(,1),∵直线y=﹣x+2与x轴的交点为(3,0),∴由图象可知点B的横坐标<m<3,∴m=2.故选C.二、填空题(本大题共4个小题;每小题3分,共12分.把答案写在题中横线上)17.=.【考点】二次根式的乘除法.【分析】直接利用二次根式的除法运算法则化简求出即可.【解答】解:===.故答案为:.18.数据﹣2,﹣1,0,3,5的方差是.【考点】方差.【分析】先根据平均数的计算公式要计算出这组数据的平均数,再根据方差公式进行计算即可.【解答】解:这组数据﹣2,﹣1,0,3,5的平均数是(﹣2﹣1+0+3+5)÷5=1,则这组数据的方差是:[(﹣2﹣1)2+(﹣1﹣1)2+(0﹣1)2+(3﹣1)2+(5﹣1)2]=;故答案为:.19.如右图,Rt△ABC的面积为20cm2,在AB的同侧,分别以AB,BC,AC为直径作三个半圆,则阴影部分的面积为20cm2.【考点】勾股定理.【分析】根据阴影部分的面积等于以AC、CB为直径的两个半圆的面积加上△ABC的面积再减去以AB为直径的半圆的面积列式并整理,再利用勾股定理解答.【解答】解:由图可知,阴影部分的面积=π(AC)2+π(BC)2+S△ABC﹣π(AB)2,=(AC2+BC2﹣AB2)+S△ABC,在Rt△ABC中,AC2+BC2=AB2,2.∴阴影部分的面积=S△ABC=20cm故答案为:20cm2.20.如图,已知直线l1:y=k1x+4与直线l2:y=k2x﹣5交于点A,它们与y轴的交点分别为点B,C,点E,F分别为线段AB、AC的中点,则线段EF的长度为.【考点】三角形中位线定理;两条直线相交或平行问题.【分析】根据直线方程易求点B、C的坐标,由两点间的距离得到BC的长度.所以根据三角形中位线定理来求EF的长度.【解答】解:如图,∵直线l1:y=k1x+4,直线l2:y=k2x﹣5,∴B(0,4),C(0,﹣5),则BC=9.又∵点E,F分别为线段AB、AC的中点,∴EF是△ABC的中位线,∴EF=BC=.故答案是:.三、解答题(本大题共6个小题,共66分.解答应写出文字说明,说理过程或演算步骤)21.计算(1)(2).【考点】二次根式的混合运算.【分析】(1)利用平方差公式计算;(2)先把各二次根式化为最简二次根式,然后合并即可.【解答】解:(1)原式=(2)2﹣()2=20﹣3=17;(2)原式=2﹣﹣﹣=﹣.22.如图,在△ABC中,点D、E分别是边BC、AC的中点,过点A作AF∥BC交DE 的延长线于F点,连接AD、CF.(1)求证:四边形ADCF是平行四边形;(2)当△ABC满足什么条件时,四边形ADCF是菱形?为什么?【考点】菱形的判定;平行四边形的判定.【分析】(1)首先利用平行四边形的判定方法得出四边形ABDF是平行四边形,进而得出AF=DC,利用一组对边相等且平行的四边形是平行四边形,进而得出答案;(2)利用直角三角形的性质结合菱形的判定方法得出即可.【解答】(1)证明:∵点D、E分别是边BC、AC的中点,∴DE∥AB,∵AF∥BC,∴四边形ABDF是平行四边形,∴AF=BD,则AF=DC,∵AF∥BC,∴四边形ADCF是平行四边形;(2)当△ABC是直角三角形时,四边形ADCF是菱形,理由:∵点D是边BC的中点,△ABC是直角三角形,∴AD=DC,∴平行四边形ADCF是菱形.23.如图1所示为一上面无盖的正方体纸盒,现将其剪开展成平面图,如图2所示,已知展开图中每个正方形的边长为1,(1)求线段A′C′的长度;(2)试比较立体图中∠BAC与展开图中∠B′A′C′的大小关系?并写出过程.【考点】几何体的展开图.【分析】(1)由长方形中最长的线段为对角线,从而可根据已知运用勾股定理求得最长线段的长;(2)要确定角的大小关系,一般把两个角分别放在两个三角形中,然后根据三角形的特点或者全等或者相似形来解.【解答】解:(1)如图(1)中的A′C′,在Rt△A′C′D′中,∵C′D′=1,A′D′=3,由勾股定理得,∴(2)∵立体图中∠BAC为平面等腰直角三角形的一锐角,∴∠BAC=45°.在平面展开图中,连接线段B′C′,由勾股定理可得:A'B'=,B'C'=.又∵A′B′2+B′C′2=A′C′2,由勾股定理的逆定理可得△A'B'C'为直角三角形.又∵A′B′=B′C′,∴△A′B′C′为等腰直角三角形.∴∠B′A′C′=45°.∴∠BAC与∠B′A′C′相等.24.甲、乙两地距离300km,一辆货车和一辆轿车先后从甲地出发驶向乙地.如图,线段OA表示货车离甲地的距离y(km)与时间x(h)之间的函数关系,折线BCDE表示轿车离甲地的距离y(km)与时间x(h)之间的函数关系,根据图象,解答下列问题:(1)线段CD表示轿车在途中停留了0.5h;(2)求线段DE对应的函数解析式;(3)求轿车从甲地出发后经过多长时间追上货车.【考点】一次函数的应用.【分析】(1)利用图象得出CD这段时间为2.5﹣2=0.5,得出答案即可;(2)利用D点坐标为:(2.5,80),E点坐标为:(4.5,300),求出函数解析式即可;(3)利用OA的解析式得出,当60x=110x﹣195时,即可求出轿车追上货车的时间.【解答】解:(1)利用图象可得:线段CD表示轿车在途中停留了:2.5﹣2=0.5小时;(2)根据D点坐标为:(2.5,80),E点坐标为:(4.5,300),代入y=kx+b,得:,解得:,故线段DE对应的函数解析式为:y=110x﹣195(2.5≤x≤4.5);(3)∵A点坐标为:(5,300),代入解析式y=ax得,300=5a,解得:a=60,故y=60x,当60x=110x﹣195,解得:x=3.9,故3.9﹣1=2.9(小时),答:轿车从甲地出发后经过2.9小时追上货车.25.某商场统计了每个营业员在某月的销售额,统计图如下,根据统计图中给出的信息,解答下列问题:(1)设营业员的月销售额为x(单位:万元),商场规定:当x<15时为不称职,当15≤x <20时,为基本称职,当20≤x<25为称职,当x≥25时为优秀.称职和优秀的营业员共有多少人?所占百分比是多少?(2)根据(1)中规定,所有称职以上(职称和优秀)的营业员月销售额的中位数、众数和平均数分别是多少?(3)为了调动营业员的工作积极性,决定制定月销售额奖励标准,凡到达或超过这个标准的营业员将受到奖励.如果要使得称职以上(称职和优秀)的营业员有一半能获奖,你认为这个奖励标准应定月销售额为多少元合适?并简述其理由.【考点】条形统计图;加权平均数;中位数;众数.【分析】(1)首先求出称职、优秀层次营业员人数,进而根据百分比的意义求解;(2)根据中位数、众数和平均数的意义解答即可;(3)如果要使得称职和优秀这两个层次的所有营业员的半数左右能获奖,月销售额奖励标准可以定为称职和优秀这两个层次销售额的中位数,因为中位数以上的人数占总人数的一半左右.【解答】解:(1)由图可知营业员优秀人数为2+1=3(人),由图可知营业员总人数为1+1+1+1+1+2+2+5+4+3+3+3+2+1=30(人),则称职的有18人,所占百分比为×100%=70%;(2)中位数是22万元;众数是20万元;平均数是:=22(万元).(3)这个奖励标准应定月销售额为22万元合适.因为称职以上的营业员月销售额的中位数是22万元,说明销售额达到和超过22万元的营业员占称职营业员的一半,正好使称职以上营业员有一半能获奖.26.我市某游乐场在暑假期间推出学生个人门票优惠活动,各类门票价格如下表:票价种类(A)夜场票(B)日通票(C)节假日通票单价(元)80120150某慈善单位欲购买三种类型的门票共100张奖励品学兼优的留守学生,设购买A种票x 张,B种票张数是A种票的3倍还多7张,C种票y张,根据以上信息解答下列问题:(1)直接写出x与y之间的函数关系式;(2)设购票总费用为W元,求W(元)与x(张)之间的函数关系式;(3)为方便学生游玩,计划购买学生的夜场票不低于20张,且节假日通票至少购买5张,有哪几种购票方案?哪种方案费用最少?【考点】一次函数的应用.【分析】(1)根据总票数为100得到x+3x+7+y=100,然后用x表示y即可;(2)利用表中数据把三种票的费用加起来得到w=80x+120(3x+7)+150(93﹣4x),然后整理即可;(3)根据题意得到不等式组,再解不等式组且确定不等式组的整数解为20、21、22,于是得到共有3种购票方案,然后根据一次函数的性质求w的最小值.【解答】解:(1)根据题意,x+3x+7+y=100,所以y=93﹣4x;(2)w=80x+120(3x+7)+150(93﹣4x)=﹣160x+14790;(3)依题意得解得20≤x≤22,因为整数x为20、21、22,所以共有3种购票方案(A、20,B、67,C、13;A、21,B、70,C、9;A、22,B、73,C、5);而w=﹣160x+14790,因为k=﹣160<0,所以y随x的增大而减小,(﹣160)+14790=11270,所以当x=22时,y最小=22×即当A种票为22张,B种票73张,C种票为5张时费用最少,最少费用为11270元.。
河北省邯郸市冀南新区2023-2024学年八年级下学期期末数学试题(含答案)
2023~2024学年八年级第二学期期末考试数学(人教版)本试卷共8页.总分120分,考试时间120分钟.注意事项:1.仔细审题,工整作答,保持卷面整洁.2.考生完成试卷后,务必从头到尾认真检查一遍.一、选择题(本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列统计量中,能够反映运动员射击成绩稳定性的是( )A .平均数B .中位数C .众数D .方差2.函数的图象一定经过下列四个点中的( )A .B .C .D .3.如图1,在平行四边形中,E 是边延长线上一点,若,则的度数为()A .B .C .D .4.下列化简或计算结果与不相等的是( )ABC .D5.如图2,在中,,,,D 为边的中点,点A 与点D 的距离为()A .1.5B .2C .2.5D .36.把一个长为8,宽为3的长方形的宽增加,长不变,所得新长方形的面积y 关于x 的函数解析式为( )A .B .C .D .7.一组数据,5,3,7,增加一个数据后,众数为7,则增加数据后中位数是( )A .5B .3C .4D .72y x =-(1,2)(2,1)-1,12⎛⎫-⎪⎝⎭11,2⎛⎫- ⎪⎝⎭ABCD BC 130BAD ∠=︒DCE ∠50︒80︒100︒130︒6ABC △4AB =3AC =5BC =BC (05)x x ≤<8y x=824y x =+24y x=-824y x =-2-8.如图3,一段斜坡上有两棵树,两棵树之间的水平距离为12m ,竖直距离为5m ,树的高度都是2m .一只小鸟从一棵树的顶端飞到另一棵树的顶端,至少要飞()A .12mB .13mC .14mD .15m9.在中,,利用尺规作矩形.甲、乙两位同学的作法如图4所示,关于两人的作法判断正确的是()甲:作的垂直平分线交于点O ;连接,在射线上截取(A ,C 不重合),连接,,四边形即为所求.乙:以B 为圆心,长为半径画圆弧;以D 为圆心,长为半径画圆弧;两弧在上方交于点C ,连接,,四边形即为所求.A .只有甲的可以B .只有乙的可以C .甲、乙的都可以D .甲、乙的都不可以10.在平面直角坐标系中,直线,直线,若,与y 轴围成的三角形的面积为5,则k 的值为( )A .2B .1C .D .11.如图5,E 为菱形的对角线上的动点,以,为邻边作平行四边形,若,,则的最小值为( )A .24B .12C .20D .1012.甲、乙两个体育专卖店的优惠活动如图6所示,设购买体育用品的原价总额为x 元,甲、乙两个专卖店实际付款分别为元,元.对于结论Ⅰ,Ⅱ,判断正确的是( )结论Ⅰ:当时,与x 之间的函数解析式为;结论Ⅱ:当在甲、乙两个专卖店一次性购买商品的原价总额相同,且实际付款相差20元时,x 的值为100或800甲店:所有商品按原价八折出售;Rt ABD △90DAB ∠=︒ABCD BD BD AO AO OC OA =BC CD ABCD AD AB AB BC CD ABCD 1:24l y x =-+2:1(0)l y kx k =->1l 2l 1312ABCD AC EA EB AFBE 15AB =18AC =EF y 甲y 乙200x >y 乙0.760y x =+乙店:一次性购买商品总额不超过200元时按原价付款;超过200元时,其中200元无优惠,超过200元的部分享受七折优惠A .只有结论Ⅰ正确B .只有结论Ⅱ正确C .结论Ⅰ,Ⅱ都正确D .结论Ⅰ,Ⅱ都不正确二、填空题(本大题共4个小题,每小题3分,共12分)13.从,0,1,2中,选取两个不同的数作为一次函数的系数 k ,b ,使一次函数的y 值随着x 的增大而增大,且图象经过第一、三、四象限,写出一个满足条件的一次函数为________.14.若期末体育的综合成绩由平时成绩和期末测试成绩按4:6的比例组成.小佳的平时成绩为90分,期末测试成绩为95分,小佳期末体育的综合成绩为________分.15.一块矩形木板采用如图7所示的方式在木板上截出两个面积分别为27和75的正方形木板后,剩余的木板(阴影部分)的面积为________.16.如图8,在正方形中,E ,F 分别是边,的中点,连接,,G ,H 分别是,的中点,连接,若,则的长度为________.三、解答题(本大题共8个小题,共72分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分8分)计算下列各小题.(1)(2).18.(本小题满分8分)如图9,在平行四边形中,对角线,交于点O,过A ,C 两点作,,垂足分别为M ,N,且分别交,于点G ,H .(1)求证:四边形是平行四边形;(2)若,,,,求的长及的周长.2-y kx b =+y kx b =+2dm 2dm 2dm ABCD AB BC EC FD EC FD GH 4AB =GH --(2-++÷ABCD AC BD AG BD ⊥CH BD ⊥CD AB AHCG 3DG =2AH =5AC =8BD =AB AOB △19.(本小题满分8分)如图10,一条南北走向的高速公路经过县城C ,村庄A 位于高速公路西侧,村庄A 和县城C 之间有一大型水库.从A 村修建了两条笔直公路通往高速公路,分别是公路和,千米,千米,千米.(1)公路是否为村庄A 到高速公路的最近道路?请通过计算说明理由;(2)通过无人机测得,求村庄A 到县城C 的直线距离的长.20.(本小题满分8分)在平面直角坐标系中,函数的图象经过点.(1)求函数的解析式,并在如图11所示的坐标系中画出函数的图象;(2)判断点是否在该函数的图象上,并说明理由;(3)当时,对于x 的每一个值,函数(n 为正整数)的值不小于函数的值,直接写出n 的值.21.(本小题满分9分)某校举行校园安全知识竞赛活动,从七、八年级学生的知识问答成绩中,各随机抽取了20名学生的成绩进行统计分析,绘制了如图12所示的统计图和统计表.样本中学生成绩统计表AB AD 10AB =6BD =8AD =AD AC BC =AC 2y x b =+(1,3)A 2y x b =+(7,15)P --1x ≤-y nx =2(0)y x b k =+≠七年级八年级平均数7.657.55中位数8b 众数a7(1)根据题目信息填空:________,________,________;(2)若七年级的小宇和八年级的小乐的分数都为8分,请判断小宇、小乐在各自年级的线排名哪位更靠前?请简述你的理由;(3)若该校七年级有16个班,每个班有50名学生,请估计七年级学生中成绩优秀(9分及9分以上为优秀)的人数.22.(本小题满分9分)市政府决定实施“煤改气”供暖改造工程,现甲、乙两工程队分别同时开挖两条600米长的管道,所挖管道长度y (米)与挖掘时间x (天)之间的关系如图13所示.(1)前2天乙队平均每天挖管道________米;(2)求段及段所在直线的函数解析式(不写自变量的取值范围);(3)开始挖掘后,几天时甲、乙两队所挖管道长度相同?23.(本小题满分10分)如图14,在四边形中,,,,,.动点M 从点B 出发沿边以2的速度向终点C 运动;同时动点N 从点D 出发,以4的速度沿射线运动.当点M 到达终点时,点N 也随之停止运动,设点M 运动的时间为t s .(1)求边的长;(2)当以点A ,B ,M ,N 为顶点的四边形为平行四边形时,求t 的值;(3)当时,直接写出的值.24.(本小题满分12分)如图15-1,图15-2,在平面直角坐标系中,点B ,D 的坐标分别为,,过点B 分别作x 轴、y 轴的垂线,垂足分别为C ,A ,直线经过点A 和点D .a =b =m =OA BC ABCD AD BC ∥60ABC ∠=︒90C ∠=︒6cm AB =10cm AD =BC cm/s cm/s DP BC 2PNM ABC ∠=∠ANBM(4,3)(1,1)-1:l y kx b =+(1)四边形的形状是________;(2)求直线的函数解析式;(3)如图15-2,将直线沿y 轴以每秒1个单位长度的速度向下平移,当直线经过点C 时,停止移动,设平移的时间为t s .①在平移过程中,求直线在四边形内的线段的长度保持不变的时长;②当直线使四边形内部(不包括边界)的整点(横、纵坐标均为整数的点)平均分布在它的两侧时,直接写出t 的取值范围.河北省2023—2024学年八年级第二学期期末考试数学(人教版)参考答案评分说明:1.本答案仅供参考,若考生答案与本答案不一致,只要正确,同样得分.2.若答案不正确,但解题过程正确,可酌情给分. 一、(本大题共12个小题,每小题3分,共36分)题号123456789101112答案DCADCBABCDBA二、(本大题共4个小题,每小题3分,共12分)13.(或) 14.93 15.18 16三、17.解:(1)原式;(4分)(2)原式.(4分)18.解:(1)证明:,,,,.∵四边形是平行四边形,,∴四边形是平行四边形;(4分)(2)∵四边形是平行四边形,四边形是平行四边形,,.,;(2分)为,的中点,,,OCBA 1l 1l 1l 1l OCBA 1l OCBA 2y x =-22y x =-=6=AG BD ⊥ CH BD ⊥90AMB ∴∠=︒90HNB ∠=︒AG CH ∴∥ABCD AB CD ∴∥AHCG ABCD AHCG AB CD ∴=2CG AH ==3DG = 325AB CD DG CG ∴==+=+=O AC BD 115 2.522AO AC ∴==⨯=118422BO BD ==⨯=的周长为.(2分)19.解:(1)公路是村庄A 到高速公路的最近道路;(1分)理由:,是直角三角形,,,∴公路是村庄A 到高速公路的最近道路;(3分)(2)设千米,则千米,在中,由勾股定理得,,,解得,即村庄A 到县城C 的直线距离的长为千米.(4分)20.解:(1)将代入中,得,解得,∴函数的解析式为;(2分)如图;(1分)(2)不在;(1分)理由:当时,,∴点不在该函数的图象上;(2分)(3)n 的值为1.(2分)21.解:(1)9;7;15;(3分)(2)八年级小乐的排名更靠前;(1分)理由:∵七年级的中位数是8,八年级的中位数是7,∴分数都为8分时,小乐的排名更靠前;(3分)(3)(人),答:七年级学生中成绩优秀的约有360人.(2分)22.解:(1)150;(2分)(2)设段的函数解析式为,把点代入得,解得,段的函数解析式为;(2分)设段的函数解析式为(,b 为常数,且).将和分别代入,得解得段的函数解析式为;(3分)(3)当甲、乙两队所挖管道长度相同时,得,解得.∴开始挖掘后,4天时甲、乙两队所挖管道长度相同.(2分)23.解:(1)过点A 作,垂足为H ,则.,,,∴四边形为矩形,.AOB ∴△ 2.54511.5AO BO AB ++=++=AD 2222286100AD BD AB +=+== ABD ∴△90ADB ∠=︒AD BD ∴⊥AD AC x =(6)CD BC BD AC BD x =-=-=-Rt ACD △222AC AD CD =+2228(6)x x ∴=+-253x =AC 253(1,3)A 2y x b =+321b =⨯+1b =21y x =+7x =-2(7)11315y =⨯-+=-≠-(7,15)P --1650(3015)360⨯⨯+=%%OA 11(0)y k x k =≠(6,600)16006k =1100k =OA ∴100y x =BC 2y k x b =+2k 20k ≠(2,300)(8,600)2y k x b =+222300,8600,k b k b +=+=⎧⎨⎩250,200,k b ==⎧⎨⎩BC ∴50200y x =+10050200x x =+4x =AH BC ⊥90AHC AHB ∠=∠=︒AD BC ∥ 90C ∠=︒90ADC ∴∠=︒AHCD 10cm HC AD ∴==,,,,,;(3分)(2)当四边形为平行四边形时,,即,解得;当四边形为平行四边形时,点N 在的延长线上,此时,即,解得;综上所述,当以点A ,B ,M ,N 为顶点的四边形为平行四边形时,t的值为或5;(4分)(3)的值为.(3分)【精思博考:在点M ,N 运动过程中,逐渐变大.当点N 与点A 重合时,,此时,,,不是等边三角形,,即,∴点N 在的延长线上.如图,作的平分线,交射线于点Q ,则.,.,,为等边三角形,,.,∴四边形是平行四边形,,,解得,,,的值为】24.解:(1)矩形;(2分)(2)∵四边形为矩形,.∵点B 的坐标为,,∴点A 的坐标为.将点A ,D 的坐标代入中,得解得∴直线的解析式为;(4分)(3)①将直线向下平移,函数解析式为.6cm AB = 60ABC ∠=︒90AHB ∠=︒30BAH ∴∠=︒1163(cm)22BH AB ∴==⨯=31013(cm)BC BH HC ∴=+=+=ABMN AN BM =1042t t -=53t =ANBM DA AN BM =4102t t -=5t =53ANBM 18PNM ∠2.5t =5BM =6AB = BM AB ∴≠ABM ∴△60BAM ∴∠≠︒120PAM ∠≠︒DA PNM ∠CB 12PNQ QNM PNM ∠=∠=∠2PNM ABC ∠=∠ 60PNQ QNM ∴∠=∠=︒DP BC ∥ 60Q PNQ ∴∠=∠=︒NQM ∴△Q ABC ∠=∠NQ AB ∴∥AD BC ∥ NQBA 410QB AN t ∴==-2(410)6QM NQ AB t t ∴===+-=83t =8241033AN ∴=⨯-=816233BM =⨯=AN BM ∴18OCBA OA BC ∴=(4,3)3OA ∴=(0,3)y kx b =+3,1,b k b =⎧⎨-+=⎩2,3,k b =⎧⎨=⎩1l 23y x =+1l 23y x t =+-直线在四边形内的线段的长度先增加,经过点O 时长度最大,,∴线段长度开始保持不变,当直线经过点B 后,线段长度开始减小.当经过点O 时,,解得,当经过点B 时,,解得,∴线段长度保持不变的时长为;(4分)②t 的取值范围为.(2分)【精思博考:四边形内部的整点有6个,分别是,,,,,.当经过点时,有,解得;当经过点时,有,解得,∴t 的取值范围为】1l OCBA AB OC ∥ 1l 003t =+-3t =1l 3243t =⨯+-8t =835()s -=56t <<OCBA (1,1)(1,2)(2,1)(2,2)(3,1)(3,2)1l (2,2)2223t =⨯+-5t =1l (2,1)1223t =⨯+-6t =56t <<。
新人教版八年级数学下册期末试卷(完整)
新人教版八年级数学下册期末试卷(完整)班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.﹣2的绝对值是()A.2 B.12C.12-D.2-2.如果y=2x-+2x-+3,那么y x的算术平方根是()A.2 B.3 C.9 D.±33.如果线段AB=3cm,BC=1cm,那么A、C两点的距离d的长度为()A.4cm B.2cm C.4cm或2cm D.小于或等于4cm,且大于或等于2cm4.如果一次函数y=kx+b(k、b是常数,k≠0)的图象经过第一、二、四象限,那么k、b应满足的条件是()A.k>0,且b>0 B.k<0,且b>0C.k>0,且b<0 D.k<0,且b<05.实数a,b在数轴上对应点的位置如图所示,化简|a|+2()a b+的结果是( )A.﹣2a-b B.2a﹣b C.﹣b D.b6.菱形不具备的性质是()A.四条边都相等B.对角线一定相等C.是轴对称图形D.是中心对称图形7.下列图形中,是轴对称图形的是()A.B. C.D.8.如图,在平行四边形ABCD中,∠DBC=45°,DE⊥BC于E,BF⊥CD于F,DE,BF相交于H,BF与AD的延长线相交于点G,下面给出四个结论:①2BD BE =; ②∠A=∠BHE ; ③AB=BH ; ④△BCF ≌△DCE , 其中正确的结论是( )A .①②③B .①②④C .②③④D .①②③④ 9.如图,平行于x 轴的直线与函数11k y (k 0x 0)x =>>,,22k y (k 0x 0)x=>>,的图象分别相交于A ,B 两点,点A 在点B 的右侧,C 为x 轴上的一个动点,若ABC 的面积为4,则12k k -的值为( )A .8B .8-C .4D .4-10.已知:如图,∠1=∠2,则不一定能使△ABD ≌△ACD 的条件是 ( )A .AB =AC B .BD =CD C .∠B =∠C D .∠BDA =∠CDA二、填空题(本大题共6小题,每小题3分,共18分)116的平方根是 .2.将二次函数245y x x =-+化成2()y a x h k =-+的形式为__________.32|1|0a b -++=,则2020()a b +=_________.4.把两个同样大小的含45°角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个的直角顶点重合于点A ,且另三个锐角顶点B ,C ,D在同一直线上.若AB=2,则CD=________.5.如图,直线AB,CD被BC所截,若AB∥CD,∠1=45°,∠2=35°,则∠3= _________度。
新人教版八年级数学(下册)期末试卷(带答案)
新人教版八年级数学(下册)期末试卷(带答案) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.12-的相反数是( ) A .2- B .2 C .12- D .122.下列各数中,313.14159 8 0.131131113 25 7π-⋅⋅⋅--,,,,,,无理数的个数有( )A .1个B .2个C .3个D .4个3.若﹣2a m b 4与5a n +2b 2m +n 可以合并成一项,则m-n 的值是( )A .2B .0C .-1D .14.若x ,y 均为正整数,且2x +1·4y =128,则x +y 的值为( )A .3B .5C .4或5D .3或4或55.已知一个多边形的内角和为1080°,则这个多边形是( )A .九边形B .八边形C .七边形D .六边形6.已知关于x 的不等式组0320x a x ->⎧⎨->⎩的整数解共有5个,则a 的取值范围是( )A .﹣4<a <﹣3B .﹣4≤a <﹣3C .a <﹣3D .﹣4<a <327.下列四个图形中,线段BE 是△ABC 的高的是( )A .B .C .D .8.如图,已知点E 在正方形ABCD 内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是( )A .48B .60C .76D .809.如图,//DE BC ,BE 平分ABC ∠,若170∠=,则CBE ∠的度数为( )A .20B .35C .55D .7010.如图,将△ABC 沿DE ,EF 翻折,顶点A ,B 均落在点O 处,且EA 与EB 重合于线段EO ,若∠DOF =142°,则∠C 的度数为( )A .38°B .39°C .42°D .48°二、填空题(本大题共6小题,每小题3分,共18分)1.已知1<x <52(1)x -+|x-5|=________.2x 1-有意义,则x 的取值范围是 ▲ .3.4的平方根是 .4.如图,将三个同样的正方形的一个顶点重合放置,那么1∠的度数为__________.5.如图,正方形纸片ABCD 的边长为12,E 是边CD 上一点,连接AE .折叠该纸片,使点A 落在AE 上的G 点,并使折痕经过点B ,得到折痕BF ,点F 在AD 上.若5DE =,则GE 的长为__________.6.如图,在平行四边形ABCD 中,连接BD ,且BD =CD ,过点A 作AM ⊥BD 于点M ,过点D 作DN ⊥AB 于点N ,且DN =32,在DB 的延长线上取一点P ,满足∠ABD =∠MAP +∠PAB ,则AP =________.三、解答题(本大题共6小题,共72分)1.解方程:(1)12111x x x -=-- (2)31523162x x -=--2.先化简,再从﹣1、2、3、4中选一个合适的数作为x 的值代入求值.2222444424x x x x x x x ⎛⎫---÷ ⎪-+--⎝⎭.3.已知22a b -=,且1a ≥,0b ≤.(1)求b 的取值范围(2)设2m a b =+,求m 的最大值.4.已知:如图所示△ACB和△DCE都是等腰直角三角形,∠ACB=∠DCE=90°,连接AE,BD.求证:AE=BD.5.如图所示,在△ABC中,D是BC边上一点,∠1=∠2,∠3=∠4,∠BAC=63°,求∠DAC的度数.6.为加强中小学生安全和禁毒教育,某校组织了“防溺水、交通安全、禁毒”知识竞赛,为奖励在竞赛中表现优异的班级,学校准备从体育用品商场一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),购买1个足球和1个篮球共需159元;足球单价是篮球单价的2倍少9元.(1)求足球和篮球的单价各是多少元?(2)根据学校实际情况,需一次性购买足球和篮球共20个,但要求购买足球和篮球的总费用不超过1550元,学校最多可以购买多少个足球?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、B3、A4、C5、B6、B7、D8、C9、B10、A二、填空题(本大题共6小题,每小题3分,共18分)1、42、x1≥.3、±2.4、20°.5、49 136、6三、解答题(本大题共6小题,共72分)1、(1)2x3=;(2)10x9=.2、x+2;当1x=-时,原式=1.3、(1)12b-≤≤;(2)24、略.5、24°.6、(1)一个足球的单价103元、一个篮球的单价56元;(2)学校最多可以买9个足球.。
人教版数学八年级下学期《期末考试卷》附答案解析
【详解】A.不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合;即不满足中心对称图形的定义,故此选项错误;
B.是中心对称图形,故此选项正确;
C.不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合;即不满足中心对称图形的定义,故此选项错误;
(2)若AC=4,∠ABC=60°,求矩形AEFD 面积.
23.如图,在平面直角坐标系xOy中,一次函数y=-x+b的图象与反比例函数y=- 的图象交于点A(-4,a)和B(1,m).
(1)求b的值和点B的坐标;
(2)如果P(n,0)是x轴上一点,过点P作x轴垂线,交一次函数于点M,交反比例函数于点N,当点M在点N上方时,直接写出n的取值范围.
27.已知:在正方形ABCD中,点H在对角线BD上运动(不与B,D重合)连接AH,过H点作HP⊥AH于H交直线CD于点P,作HQ⊥BD于H交直线CD于点Q.
(1)当点H在对角线BD上运动到图1位置时,则CQ与PD的数量关系是______.
(2)当H点运动到图2所示位置时
①依据题意补全图形.
②上述结论还成立吗?若成立,请证明.若不成立,请说明理由.
证明:连接CD.
∵AD=CD=__________=__________,
∴四边形ABCD是().
∴AD∥l().
19.如图,▱ABCD中,E是AB的中点,连结CE并延长交DA的延长线于点F.求证:AF AD.
20.关于x的一元二次方程 .
(1) 求证:方程总有两个实数根;
(2).若方程的两个实数根都是正整数,求m的最小值.
③小华乘坐公共汽车后7:50与小明相遇;
④小华的出发时间不变,当小华由乘公共汽车变为跑步,且跑步的速度是100米/分时,他们可以同时到达学校.其中正确的个数是()
人教版八年级下学期期末考试数学试卷及答案(超经典)
八年级下学期期末考试数学模拟试卷一.选择题1.如图,在高为3米,水平距离为4米楼梯的表面铺地毯,地毯的长度至少需()米A.4 B。
5 C。
6 D.72。
当分式有意义时,字母应满足( )A。
B. C. D。
3.若点(-5,y1)、(-3,y2)、(3,y3)都在反比例函数y= -错误!的图像上,则()A.y1>y2>y3B.y2>y1>y3C.y3>y1>y2D.y1>y3>y24.如图,在三角形纸片ABC中,AC=6,∠A=30º,∠C=90º,将∠A沿DE折叠,使点A与点B重合,则折痕DE的长为()A.1 B. C. D.25。
函数的图象经过点(1,-2),则k的值为()A. B. C. 2 D。
-26. 如果矩形的面积为6cm2,那么它的长cm与宽cm之间的函数关系用图象表示大致( )A B D7.A。
正方形8. 0,则x的值为()A.3 B。
3或-3 C。
-3 D。
09。
甲、乙两人分别从两地同时出发,若相向而行,则a小时相遇;若同向而行,则b小时甲追上乙.那么甲的速度是乙的速度的()A.倍B。
倍C。
倍 D.倍10.如图,把一张平行四边形纸片ABCD沿BD对折。
使C点落在E处,BE与AD相交于点D.若∠DBC=15°,则∠BOD=A.130 ° B.140 ° C.150 °D。
160°二.填空题11。
已知-=8,则的值是12.边长为8,15,17的△ABC内有一点P到三边距离相等,则这个距离为13. 如果函数y=是反比例函数,那么k=____, 此函数的解析式是__ ______14.若点P是反比例函数上的一点,PD⊥轴于点D,则△POD的面积为15. 从一个班抽测了6名男生的身高,将测得的每一个数据(单位:cm)都减去165.0cm,其结果ABCDE如下:−1。
2,0.1,−8.3,1.2,10。
8,−7.0这6名男生中最高身高与最低身高的差是 __________ ;这6名男生的平均身高约为 ________ (结果保留到小数点后第一位)三、解答题16.( 6分)解方程:17. (7分) 先化简,再求值:,其中.18.(7分)如图,已知一次函数y=k 1x+b 的图象与反比例函数y=的图象交于A (1,-3),B (3,m )两点,连接OA 、OB .(1)求两个函数的解析式;(2)求△AOB 的面积. 19.(8(1)计算小军上学期平时的平均成绩; (2)如果学期总评成绩按扇形图所示的权重计算,问小军上学期的总评成绩是多少分? 20.(8分)如图,以△ABC 的三边为边,在BC 的同侧作三个等边△ABD 、△BEC 、△ACF .(1)判断四边形ADEF 的形状,并证明你的结论;(2)当△ABC 满足什么条件时,四边形ADEF 是菱形?是矩形? 21.(10分)为预防甲型H1N1流感,某校对教室喷洒药物进行消毒。
新人教版八年级(下)数学期末试卷及答案
新人教版八年级(下)数学期末试卷及答案八年级下期末考试数学试题一、选择题(本小题共12小题,每小题3分,共36分)1、如果分式 $\frac{1}{x-1}$ 有意义,那么 x 的取值范围是A、$x>1$B、$x<1$C、$x\neq1$D、$x=1$2、已知反比例数 $y=\frac{k}{x}$ 的图象过点(2,4),则下面也在反比例函数图象上的点是A、(2,-4)B、(4,-2)C、(-1,8)D、(16,1)3、一直角三角形两边分别为3和5,则第三边为A、4B、$\frac{3}{4}$或$\frac{4}{3}$C、4或$\frac{4}{3}$ D、24、用两个全等的等边三角形,可以拼成下列哪种图形A、矩形B、菱形C、正方形D、等腰梯形5、菱形的面积为2,其对角线分别为 x、y,则 y 与 x 的图象大致为无法确定,需补充题意)6、小明妈妈经营一家服装专卖店,为了合理利用资金,小明帮妈妈对上个月各种型号的服装销售数量进行了一次统计分析,决定在这个月的进货中多进某种型号服装,此时小明应重点参考A、众数B、平均数C、加权平均数D、中位数7、王英在荷塘边观看荷花,突然想测试池塘的水深,她把一株竖直的荷花(如右图)拉到岸边,花柄正好与水面成60夹角,测得 AB 长60cm,则荷花处水深 OA 为A、120cmB、60$\sqrt{3}$cmC、60cmD、20$\sqrt{3}$cm8、如图,□ABCD的对角线 AC、BD 相交于 O,EF 过点O 与 AD、BC 分别相交于 E、F,若 AB=4,BC=5,OE=1.5,则四边形 EFCD 的周长为A、16B、14C、12D、109、如图,把菱形 ABCD 沿 AH 折叠,使 B 点落在 BC 上的 E 点处,若∠B=70,则∠EDC 的大小为A、10B、15C、20D、3010、下列命题正确的是A、同一边上两个角相等的梯形是等腰梯形;B、一组对边平行,一组对边相等的四边形是平行四边形;C、如果顺次连结一个四边形各边中点得到的是一个正方形,那么原四边形一定是正方形。
2023-2024学年八年级第二学期期末考数学试卷附答案
第1页(共23页)2023-2024学年八年级下学期期末考数学试卷
一、选择题(本大题共8小题,每小题3分,共24分,在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)
1.(3分)下列图形是中心对称图形但不是轴对称图形的是()
A .
B .
C .
D .2.(3分)若−2在实数范围内有意义,则x 的取值范围(
)A .x ≥2B .x ≤2C .x >2
D .x <23.(3分)下列调查中,适合采用全面调查方式的是(
)A .对大运河水质情况的调查B .对端午节期间市场上粽子质量情况的调查
C .对某班40名同学体重情况的调查
D .对江苏省中小学的视力情况的调查
4.(3分)下列各式中,与2是同类二次根式的是()A .24B .18C .4
D .125.(3分)下列式子从左到右变形不正确的是()A .33=B .−=−C .2+2r
=a +b D .K11−=−16.(3分)已知点A (﹣2,y 1)、B (1,y 2)、C (3,y 3)三点都在反比例函数y =(k <0)的图象上,则下列关系正确的是(
)A .y 2<y 3<y 1B .y 3<y 2<y 1C .y 1<y 3<y 2D .y 1<y 2<y 3
7.(
3分)如图,已知四边形ABCD 是平行四边形,下列结论中错误的是(
)A .当AB =BC 时,它是菱形
B .当A
C ⊥B
D 时,它是菱形C .当AC =BD 时,它是矩形D .当∠ABC =90°时,它是正方形
8.(3分)如图,矩形ABCD 的对角线AC 、BD 交于点O ,∠AOD =60°,AD =
3,则BD 的长为()。
人教版八年级数学下册期末试卷1
故答案为: .
【点睛】本题主要考查二次根式的化简以及同类二次根式的合并,掌握二次根式的化简以及同类二次根式的合并方法是解题关键.
16.AEDF
【详解】试题解析:∵D、E、F分别是△ABC三边的中点,
∴DE∥AC,DE=AC,EF∥ AB,EF= AB,
∴四边形AEDF为平行四边形.
又∵AC=AB,
∴菱形的周长为4 .
故选C.
8.D
【分析】此类题目可直接将点的坐标代入解析式,利用方程解决问题.
【详解】 正比例函数y=(n+1)x图象经过点(2,4),
,
.
所以D选项是正确的.
【点睛】本题可直接将点的坐标代入解析式,利用方程解决问题.
9.D
【分析】一次函数y=kx+b中,k的符号决定了直线的方向,b的符号决定了直线与y轴的交点位置,据此判断即可.
5.不等式组 有3个整数解,则 的取值范围是()
A. B. C. D.
6.如图,剪两张对边平行的纸片随意交叉叠放在一起,转动其中一张,重合部分构成一个四边形,则下列结论中不一定成立的是()
A.AB=BCB.∠DAB+∠ABC=180°
C.AB=CD,AD=BCD.∠ABC=∠ADC,∠BAD=∠BCD
19.(1)画图见解析;(2)12
【详解】试题分析:(1)利用网格特点,延长AC到A1使A1C=AC,延长BC到B1使B1C=BC,C点的对应点C1与C点重合,则△A1B1C1满足条件;
(2)四边形AB1A1B的对角线互相垂直平分,则四边形AB1A1B为菱形,然后利用菱形的面积公式计算即可.
试题解析:(1)如图,△A1B1C为所作:
人教版八年级数学下册期末试卷1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
四川省华蓥市双河四中2012年春八年级(下)数学期末模拟测试2班级: 姓名:一、相信你,都能选择对! (每题3分,共24分) 1. 分式13x -有意义,则x 的取值范围是( ) A.X>3 B.X<3 C.X ≠3 D.X ≠-3 2. 若双曲线6y x=-经过点A (m ,3),则m 的值为( ) A .2 B .-2 C .3 D .-33. 10名学生分虽购买如下尺码的鞋子:20,20,21,22,22,22,23,23,24.(单位:Cm),这组数据中鞋店老板最关心的是( ) A.平均数 B.中位数 C.众数 D.方差4. 平行四边形ABCD 中,如果∠A=55°,那么∠C 的度数是( A.45°B.55°C.125°D.145°5. 小明在下面的计算中,有一道题做对了,则他做对的题目是( )A . 0(3)1-=- B . 236-=- C .9)3(2-=- D . 932-=-6. 根据物理学家波义耳1662年的研究结果:在温度不变的情况下,气球内气体的压强p (p a )与它的体积v (m 3)的乘积是一个常数k ,即pv =k (k 为常数,k >0),下列图象能正确反映p 与v 之间函数关系的是( )。
7.一个三角形的三边长分别为6,8,10,则这个三角形一定是( ) A.锐角三角形 B.直角三角形 C.钝角三角形D.以上答案都不对8. 如图,将一块边长为12的正方形纸片ABCD 的顶点A 折叠至DC 边上的点E ,使DE=5,折痕为PQ ,则PQ 的长为( )A .15B .14C .13D .12 8题图 二、希望你能填得又快又准。
(每题3分,共15分)9. 生物学家发现一种病毒的长度约为0.000043㎜,用科学记数法表示为 ㎜.10. 现有甲、乙两支球队,每支球队队员身高数据的平均数均为1.70米,方差分别为2S 甲= 0.28、2S 乙= 0.36,则身高较整齐的球队是 队(填“甲”或“乙” ).11. 如图,若D ,E 分别是AB ,AC 中点,现测得DE 的长为20米,则池塘的宽BC 是 米。
12. 如图,等腰梯形ABCD 中,A D ‖BC ,∠A =130°,则∠C =__________度。
13. 如图,依次连结一个边长为1的正方形各边的中点,得到第二个正方形,再依次连结第二个正方形各边的中点,得到第三个正方形,按此方法继续下去, 则第六个正方形的面积是 .11题图12题图 13题图三:讲究方法,得心应手。
(每题6分,共30分)14. 请将式子:112--x x ×(1+11+x )化简后,再从0,1,2三个数中选择一个你喜欢且使原式 有意义的x 的值代入求值.15. 解分式方程:pvOpvOpvOpvOABCDDECABAD13223311-=--x x A BC D O X Y图616.一司机驾驶汽车从甲地去乙地,以80千米/小时的平均速度用4小时到达目的地.(1)当他按原路匀速返回时,求汽车速度v(千米/小时)与时间t(小时)之间的函数关系式;(2)如果该司机匀速返回时,用了3.2小时,求返回时的速度。
17.如图,△ABC中,AB=AC=13,BC=24,请你建立适当的直角坐标系,并直接写出A,B,C各点的坐标。
18.水资源越来越缺乏,全球提倡节约用水。
本市水厂为了了解某小区居民的用水情况,随机抽查了该小区10户家庭的月用水量,有关数据如下表:月用水量(m3) 10 13 14 17 18户数 2 2 3 2 1(1)在这个统计中,众数是,中位数是;这10户家庭该月平均用水量是;(2)如果该小区有500户家庭,根据上面的计算结果,估计该小区居民每月需要用水多少立方米?四:圆满的解答,相信你一定表现出色(每题7分,共21分)19. 如图,甲、乙两船从港口A同时出发,甲船以16海里/小时的速度向南偏东40°的方向航行,乙船以12海里/小时的速度向另一方向航行,3小时后,甲船到达C岛,乙船到达B岛,若C、B两岛相距60海里,则乙船航行的角度是北偏东多少度?20.某运输公司准备运输一批货物,需要的货船数量y(艘)与货船的核定装载量x(吨)之间的函数关系如图所示,请根据图像提供的信息回答问题:(1)这批货物的质量是多少吨?(2)写出y与x的函数关系式。
(3)如果要求出动货船不超过4艘,那么每艘货船的核定装载量至少要多少吨?21.如图,已知△ABC 和△DEF 是两个边长都为8cm 的等边三角形,且点B,E,C,F 在同一直线上,连结AE,DC 。
(1) 求证:四边形AEDC 是平行四边形。
(2)若△ABC 沿着BF 的方向匀速运动,△DEF 不动,当△ABC 运动到点B 与点F 重合时,四边形AEDC 是什么特殊的四边形?说明理由。
五:学以致用(每题10分,共30分) 22.如图,双曲线xky =与直线)1(-+=k x y 在第一象限的交点为A ,在第三象限的交点为C ,过A 作AB ⊥x 轴于点B,且5.1=∆ABO S 。
(1) 求这两个函数的解析式;(2) 若点A 的横坐标为1,点C 的纵坐标为-1,求AOC S ∆.23.本市将进入汛期,部分路面积水比较严重.为了改善这一状况,市政公司计划将一段路的排水工程承包给甲、乙两工程队来施工.公司研究发现有不同施工方案:如果工程由甲、乙两队合作,则12天可以完成;若由某个工程队独做,则乙队单独完成这项工程所需时间是甲队单独完成这项工程所需时间的2倍。
(1)甲、乙单独完成这项工程所需时间分别需要多少天?(2)若甲队每天需要工程费用650元,乙队每天需要工程费用400元,从节约资金的角度考虑,应选择哪种施工方案?24.如图,在矩形ABCD 中,AB =3,BC =4,点P 在BC 边上运动,连结DP ,过点A 作AE ⊥DP ,垂足为E 。
(1)连结AP ,求证:ABCD APD S S 矩形21=∆ (2)设DP =y ,AE =x , 求y 与x 之间函数关系式;(3)写出自变量x 的取值范围,并求出y 的最大值。
八年级(下)期末数学复习试卷2参考答案一、选择题:(每题3分,共24分) 题号 1 2 3 4 5 6 7 8 答案CBCBDC BC二、填空题:(每题3分,共15分)9、4.3×10-5 10、甲 11、40 12、50 13、321三、解答题:(每题7分,共35分) 14、解:原式=(x +1)(x -1)x -1(1+1x +1)=(x +1)(x +1+1x +1) =x +2方法一:当x =0时,原式=2 方法二:当x =2时,原式=4(注:化简正确,取x =1带入计算全题评4分;不化简直接求值结果正确全题评2分) 15. 解:方程两边同乘以2(3x -1),去分母,得 -2-3(3x -1)=4 解这个整式方程,得13x =-检验:把13x =-代入最简公分母2(3x -1)=2(-1-1)=-4≠0.∴原方程的解是13x =-16.解:(1)由已知得:480⨯=vttv 320=(2)当(千米/小时) 答:返回时的速度100千米/17.(法一:)以BC 所在直线为x 轴,BC 边上的高AO 所在直线为 y 轴建立直角坐标系:A(0,5) B(-12,0) C(12,0)(法二:)以BC 所在直线为x 轴,过B 作垂线为y 轴建立直角 坐标系:A(12,5) B(0,0) C(24,0) 18.(1)众数是 14中位数是14 平均用水量是14(m ³)(2)解:500×14=7000(m ³)答:该小区居民每月需要用水7000立方米?19.解: 由已知可得:AC=16×3=48(海里)AB=12×3=36(海里) , BC=60(海里)∵222603648=+∴222BC AB AC =+∴△ABC 为直角三角形,且∠BAC=90 ∵∠SAC=40°∴∠NAB=180°-40°-90°=50° ∴乙船航行的角度是北偏东50°.20.解:(1)这批货物的质量是:180×2=360(吨)1002.33202.3===v t 时(2)y 与x 的函数关系式是xy 360= (3)∵y ≤4∴4360≤x∵x ﹥0 ∴ ∴x ≥90答:如果要求出动货船不超过4艘,那么每艘货船的核定装载量至少要90吨。
21.(1)证明:∵△ABC 与△DEF 是边长为8的等边三角形 ∴DE=AC,∠1=∠2=60° ∵∠1=∠2 ∴ DE ∥AC∴四边形AEDC 是平行四边形 (2)解: 四边形AEDC 是矩形,理由如下:∵点B 与点F 重合 ∴EF=CF=8,AF=DF=8∴AD=CE=16由(1)可知四边形AEDC 是平行四边形 ∴□AEDC 是矩形。
22.解:(1)设A (a,b )∵∴ ∴∵ (2)当x=0时,y=2∴E(0,2) OE=2 当y=-1时,x=-3∴C(-3,-1) ∵AOE COE AOC S S S ∆∆∆+= ∴A C AOC x OE x OE S 2121+=∆ 412213221=⨯⨯+⨯⨯= 23.解:(1)设甲队单独完成这项工程所需时间为x 天,则乙队单独完成此项工程需2x 天 由题意得:121212=+xx 解得: x=18经检验x=18是原方程的解 2x=36答:甲队单独完成这项工程需要18天,乙队单独完成此项工程需要36天 (2)如果工程由甲队单独完成,需要费用:650×18=11700(元) 如果工程由乙队单独完成,需要费用:400×36=14400(元)如果工程由甲、乙两队合作,需要费用:(650+400)×12=12600(元)∵11700﹤12600﹤14400 ∴工程应由甲队单独完成。
23335.1215.1+=========⊥∆∆x y x y k k ab x ky A ab ab S S x AB AOB AOB 直线双曲线上,在轴,x ≤436024、(1)∵四边形ABCD 是矩形 ∴∠B=∠C=90°,AB=CD∵又∵BC AB S ABCD ⋅=矩形∴ABCD APD S S 矩形21=∆ (2)∵AE ⊥PD ∴PE PD S APD ⋅=∆21由(1)可知6432121=⨯⨯==∆ABCD APD S S 矩形∴ (3)自变量x 的取值范围:4512≤≤x∵在第一象限内,y 随x 的增大而减小,∴当5,512==最大时y xBC AB ABBC BC AB ABPC BP BC AB DC PC AB BP BC AB S S S S DPCABP ABCD APD ⋅=⋅-⋅=+-⋅=⋅-⋅-⋅=--=∆∆∆2121)(212121矩形x y xy 12621==。