高数大一上第一章习题
高等数学第一章总习题及答案
7. 已知 lim
x →0
f ( x) ) sin x = 3 , 求 lim f ( x) . x →0 x 2 2x − 1
解
因为 lim(2 − 1) = 0 , lim
x →0
x
ln(1 +
x →0
f ( x) ) sin x = 3 , 故必有 lim ln(1 + f ( x) ) = 0 , x →0 sin x 2x − 1
2
2
x
1 1 . = ( )2 = 2 2
1
(4) (5) (6)
lim
x →0
1 x sin x 1 = lim 2 2 = . x →0 2 x
1
x
lim(1 + 3tan 2 x)cot
x →0
= [lim(1 + 3tan 2 x) 3tan x ]3 = e3 .
2
x →0
设 k 为任一个大于 2c 的自然数, 则当 n > k 时,
0 < x ≤ e, 在 x = e 处, lim+ f ( x) = ln e = 1 , lim− f ( x) = 1 , x →e x →e x > e,
故 f ( x) 在 x = e 处连续, 故函数连续区间为 (0, + ∞) .
9.
⎧ cos x , x ≥ 0, ⎪ ⎪x + 2 设 f ( x) = ⎨ 要使 f ( x) 在 (−∞, + ∞) 内连续, 应如何选择 ⎪ a − a − x , x < 0, ⎪ x ⎩
n →∞ n →∞
(B) 无界数列必定发散; (D) 单调数列必有极限.
yn . xn
高等数学(上)第一章练习题
一、选择题1.下列函数中,无界函数为( ).(A) sin y x =; (B) tan y x =; (C) arcsin y x =; (D) arctan y x =. 2. 将函数()22f x x =--表示为分段函数时,()f x =( ).(A) 4,0,0x x x x ->⎧⎨<⎩ ; (B) 4,2,2x x x x -≥⎧⎨<⎩ ; (C) 4,04,0x x x x -≥⎧⎨+<⎩ ; (D) 4,24,2x x x x -≥⎧⎨+<⎩.3.函数31()31x x f x -=+为( ).(A) 偶函数; (B) 奇函数; (C) 非奇非偶函数; (D) 既是奇又是偶函数. 4.若()f x 是奇函数,()g x 是偶函数,则[()]f g x 为( ).(A) 偶函数; (B) 奇函数; (C) 非奇非偶函数; (D) 不确定.5.设221,0()1,0x x x f x x x ⎧++≥⎪=⎨+<⎪⎩ ,则当0x <时,[()]f f x =( ).(A) 222(1)(1)1x x ++++; (B) 22(1)1x x +++;(C) 222(1)(1)1x x x +++++; (D) 222(1)(1)1x x x +++++.6. 32lim 1knn e n -→∞⎛⎫+= ⎪⎝⎭,则k =( ).(A)32; (B) 23; (C) 32-; (D) 23-. 7.若0x →时,()f x 为无穷小,且()f x 是比2x 高阶的无穷小,则20()limsin x f x x→=( ).(A) 0; (B) 1; (C) ∞; (D)12.8.函数()f x =( ).(A) 1; (B) 2; (C) 3; (D) 0.9.当0x →时,( ).(A) 2x 与1cos x -是等价的无穷小; (B) 2x 与1cos x -是同阶的无穷小; (C) 2x 是比1cos x -高阶的无穷小; (D) 2x 是比1cos x -低阶的无穷小. 10.当0x →时,与x 等价的无穷小函数是( ).(A) 2x ; (B) 2x ; (C) 3sin x x +; (D) 22x x +.二、填空题 1.设1,||1()0,||1x f x x ≤⎧=⎨>⎩,则[()]f f x = .2.设(),[()]x f x e f g x x ==,则()g x = .3.若0()limx f x a x→=,(a 为常数),则0lim ()x f x →=______________.4.曲线3221x y x =+的渐近线方程为 .5. 极限22lim 1x x x x →∞+⎛⎫=⎪+⎝⎭. 6. 极限0(1)limcos 1x x x e x →-=- . 7.当1x →-时,2ax x b -+与1x +为等价无穷小,则a = ,b = . 8.若()f x 处处连续,且(1)2f =,则01lim [ln(1)]x f x x→+= . 9.设2sin ,0(),0xx f x x x a x ⎧>⎪=⎨⎪+≤⎩,若()f x 在0x =处连,则a = .10.要使1cos ()xf x x-=在0x =处连续,应补充定义(0)f = .三、综合题 1.求极限111lim 1223(1)n n n →∞⎛⎫+++⎪⋅⋅+⎝⎭ . 2.求极限222111lim (1)(2)n n n n →∞⎛⎫+++⎪+⎝⎭. 3.求极限n 4.设11,,1,2,n a a n +=== ,证明数列极限存在并求此极限.5.已知函数142sin ()||1xx e x f x x e ⎛⎫+ ⎪=+ ⎪ ⎪+⎝⎭,问0lim ()x f x →是否存在?6.用夹逼准则求01lim x x x +→⎡⎤⎢⎥⎣⎦. 7.求极限332lim 34sin x x x x →∞++. 8.求极限limx . 9.求极限lim )x x →+∞.10.求极限21lim (1cos)x x x →∞-. 11.求极限20(1cos )lim (1)sin x x x x e x→--. 12.求极限3230ln(1)tan lim1x x x x e -→+- . 13.求极限sin lim2x x xx→∞+. 14.求极限0x →求极限lim x x →∞.16.求极限0lim x +→. 17.求极限123lim 21x x x x +→∞+⎛⎫⎪+⎝⎭.18.求极限2lim ()()xx x x a x b →∞⎛⎫⎪-+⎝⎭. 19.求极限21lim cos x x x →∞⎛⎫ ⎪⎝⎭. 20. 已知21lim ()01x x x ax b x →∞++--=-,求a 与b 的值 .21. 已知20()1sin lim()2x f x xx x→--=,求0lim ()x f x →.22.讨论函数2()lim 1nxnxn x x e f x e →∞+=+ 的连续性.23.已知,0()1,02x x f x ae x <=⎨⎪≥⎪⎩ ,求a 为何值时,()f x 在0x =处连续.24.设(4),0()sin 10,0x x ae be x f x xx -⎧++≠⎪=⎨⎪=⎩,确定,a b 使()f x 在0x =处连续. 25.指出函数()f x =的所有间断点,并判别其类型.26.设函数()f x 在[,]a b 连续,且()a f x b ≤≤,[,]x a b ∈.证明:存在[,]a b ξ∈,使()f ξξ=成立.27.函数()f x 对一切12,x x 满足1212()()()f x x f x f x +=+,且()f x 在0x =处连续. (1)求(0)f ;(2)证明:函数()f x 在(,)-∞+∞连续.28.函数()f x 在[0,1]连续、非负且满足(0)(1)0f f ==,证明:对任意数(0,1)α∈,存 在0[0,1]x ∈使00()()f x f x α=+成立.29.设函数()f x 在[0,2]a 连续,且满足(0)(2)f f a =,证明:至少存在一点[0,]a ξ∈使()()f f a ξξ=+成立.30.设函数()f x 在[,]a b 连续,12a x x b <<<,证明:存在点(,)c a b ∈,使112212()()()()t f x t f x t t f c +=+成立.其中12,0t t >.一、选择题1. B ;2. B ;3. B ;4. A ;5. A ;6. C ;7. A ;8. C ;9. B ; 10. C. 二、填空题1. 1;2. ln x ;3. 0;4. 2y x =;5. 12e ; 6. 2-; 7. 1,0a b =-=; 8. 2; 9. 1a =; 10. 0. 三、综合题 1.解:11111111(1)()()1223(1)2231n n n n +++=-+-++-⋅⋅++ 111n =-+ ∴111lim 11223(1)n n n →∞⎛⎫+++= ⎪⋅⋅+⎝⎭ . 2.解:由于2222211111(2)(1)(2)n n n n n n n ++≤+++≤+ ,又2211lim lim 0(2)4n n n n n n →∞→∞++==,根据夹逼准则 222111lim 0(1)(2)n n n n →∞⎛⎫+++= ⎪+⎝⎭. 3.3≤=lim 33n n →∞==,根据夹逼准则3n =.4.解:102a <=,假设对n k = 成立,即02k a <<成立,则当1n k =+ 时,102k a +<=<=,由数学归纳法知02,1,2,n a n <<= ,即数列{}n a 有界;又1n n n a a a +-=2=0=>,即数列{}n a 单调,所以收敛. 设极限为a ,则由1n a +=n →∞得a =2a =.5.解:14002sin lim ()lim 1x x x x e x f x x e ++→→⎛⎫+ ⎪=+ ⎪ ⎪+⎝⎭,01lim x x+→=+∞ ,1400lim ,lim xx x x e e ++→→∴=+∞=+∞,而1144434000442212lim lim lim 011111x xxxxxx x x xx x eee e e e e e e +++→→→+++===+++. 0lim ()1x f x +→∴=,14002sin lim ()lim 1xx x xe xf x x e --→→⎛⎫+ ⎪=- ⎪ ⎪+⎝⎭,01lim x x -→=-∞ ,1400lim lim 0x x x x e e --→→∴==, 0lim ()1x f x -→∴=. 进而知 0lim ()x f x →存在且为1. 6.解:当0x ≠时1111x x x ⎡⎤-<≤⎢⎥⎣⎦ ,所以当0x >时有111x x x ⎡⎤-<≤⎢⎥⎣⎦, 又00lim (1)lim 11x x x ++→→-==,故01lim 1x x x +→⎡⎤=⎢⎥⎣⎦.7.解:3333212lim lim 4sin 34sin 3x x x x x x x x →∞→∞++=++13=. 8.解:limlimx x =02t →=. 9.解:lim )lim x x x →+∞→+∞=lim x →+∞=1arcsin26π==. 10.解:由于x →∞时,221111cos ~22x x x ⎛⎫ ⎪⎝⎭-=,所以 222111lim (1cos)lim 22x x x x x x →∞→∞-=⋅=.11.解:由于0x →时,21cos ~2x x - ,22sin ~x x ,1~xe x -.所以 22200(1cos )12limlim (1)sin ()2x x x x x x x e x x x →→⋅-==---⋅.12.解:由于0x →时,tan ~x x ,22ln(1)~x x +,3331~(3)x e x ---, 所以 3223300ln(1)tan 1limlim 331x x x x x x x x e-→→+⋅==---. 13.解:sin 1sin 1limlim 2222x x x x x x x →∞→∞+⎛⎫=+= ⎪⎝⎭. 14.解:3300011lim lim lim ln(12)ln(12)ln(12)x x x x x e e x x x →→→-=++++00132lim lim 2212x x x xx x →→-=+=.15.解:2lim lim x x x x →∞→∞⎛⎫= ⎪ ⎪⎝⎭2lim 1x x →∞⎛⎫= ⎪⎪⎝⎭2lim 1x x →∞⎛⎫- ⎪ ⎪⎝⎭221lim 3x x x →∞⎛⎫=⎪⎝⎭221lim 3x x x →∞⎛⎫-- ⎪⎝⎭23=. 16.解:0lim lim x x ++→→=01lim 2x +→=201lim2x +→=0=. 17.解:212(1)1221232lim lim 12121x x x x x x x e x x +++⋅+→∞→∞+⎛⎫⎛⎫=+= ⎪ ⎪++⎝⎭⎝⎭.18.解:22ln lim 1()()()()2lim lim ()()x xx x x x x a x b x a x b x x x eex a x b →∞⎛⎫⎛⎫⎪ ⎪- ⎪ ⎪-+-+⎝⎭⎝⎭→∞→∞⎛⎫⎪== ⎪-+⎝⎭2()2lim a b x abxa bx ax bx abx ee -+--+-→∞==.19.解:2211(cos 1)cos 111lim coslim 1cos 1x x x xx x x x ⋅-⋅-→∞→∞⎛⎫⎛⎫=+- ⎪ ⎪⎝⎭⎝⎭由于222111lim(cos1)lim()22x x x x x x →∞→∞-⋅=-⋅=-,所以2121lim cos x x ex -→∞⎛⎫==⎪⎝⎭20. 解:2211()(1)11x x x x ax b x ax b x x ++++-+---=-- 2(1)(1)11a x a b x b x -++-++=-∴当且仅当 10a -= 且10a b +-=时,21lim ()01x x x ax b x →∞++--=-, 解得1a =,2b =. 21.解:00sin ()1sin lim[()1]lim x x xf x xx f x x xx→→----=⋅ 20()1sin lim[]x f x x x x x →-=-⋅200()1sin lim[]lim 0x x f x xx x x →→-=-⋅=,sin sin lim ()lim[(()1)1]x x x xf x f x x x→→∴=--++ 00sin sin lim[()1]lim(1)2x x x x f x x x →→=--++=. 22.解:先给出分段表达式2,0(),0x x f x xx ⎧≥=⎨<⎩. 当 (0,)x ∈+∞ 时,2()f x x = 连续,当 (,0)x ∈-∞时,()f x x =连续;又(0)0f =,2lim ()lim 0x x f x x ++→→==,00lim ()lim 0x x f x x --→→==,故在0x =处()f x 也连续,从而在(,)-∞+∞内()f x 连续.23.解:(1)()f x 定义域为(,)-∞+∞;(2)由于(0)2a f =,001lim ()lim 22xx x a f x a e ++→→=⋅=,lim ()lim x x f x --→→=02sin 2lim 1x xx-→-==-,∴2a =-时,()f x 在0x = 处连续.24.解:由于(0)10f =,004lim ()lim sin x x x x ae be f x x-→→++=,要使 ()f x 在0x =处连续,首先0lim ()x f x →存在,故有lim(4)40x xx ae bea b -→++=++=,从而 004lim ()lim sin x x x x ae be f x x -→→++=0lim sin x x x ae be a bx-→+--=0(1)(1)lim x x x a e b e x -→-+-=00(1)(1)lim lim x x x x a e b e a b x x-→→--=+=- 可见要使()f x 在0x =处连续,,a b 应满足410a b a b +=-⎧⎨-=⎩,解得3,7a b ==-.25.解:sin |1|()(1)(3)x x f x x x x ⋅-==--, 间断点有三个,分别为0x =,1,3x x ==,0000s i n |1|s i n |1|11l i m ()l i m l i m l i m l i m (1)(3)133x x xx x x x x x f x x x x x x x →→→→→⋅--==⋅⋅=---- , 11sin (1)sin1lim ()lim (1)(3)2x x x x f x x x x --→→-⋅-==--,11sin (1)sin1lim ()lim (1)(3)2x x x x f x x x x ++→→⋅-==---, 而33sin lim ()lim(3)x x xf x x x →→==∞-,所以0x =是可去间断点,1x =是跳跃间断点,而3x =为无穷间断点.26.证明:构造辅助函数()()g x f x x =-,则()g x 在[,]a b 连续,由已知条件知()()0g a f a a =-≥,()()0g b f b b =-≤. 若()0g a =,则取a ξ=;若()0g b =,则取b ξ=;若()0g a >而()0g b <,则在[,]a b 上函数()g x 满足零点定理条件, 从而存在(,)a b ξ∈,使()0g ξ=即()f ξξ=成立. 27.解:(1)在()()()f x x f x f x +=+中,取0x x ==,得(0)(0)(0f f f =+,故(0)0f =.(2)由()f x 在0x =处连续知:0lim ()(0)0x f x f ∆→∆==.任取0(,)x ∈-∞+∞,由条件知00()()()f x x f x f x +∆=+∆.从而0000lim ()()lim ()()x x f x x f x f x f x ∆→∆→+∆=+∆=,故在0x 处函数()f x 连续,由0x 的任意性知(2)成立. 28.证明:任取(0,1)α∈,若()0f α=,则由条件(0)0f =,可取00x = [0,1]∈,使得(0)(0)f f α=+; 若(1)0f α-=,则由(1)0f =,可取01x α=-[0,1]∈使得(1)(1)f f ααα-=-+;若()0f α≠且(1)0f α-≠,由非负性有()0f α>,(1)0f α->, 令()()()g x f x f x α=+-,则()g x 在[0,1]α-连续, 又(0)(0)g f α=+(0)f -()0f α=>,(1)(1)(1)(1)0g f f f ααααα-=-+--=--<,由零点定理,存在0(0,1)[0,1]x α∈-⊂使0()0g x =,即00()()f x f x α=+成立. 29.解:令()()()F x f x f x a =-+,则()F x 在[,]a b 连续,且(0)(0)()F f f a =-,()()(2)()(0)F a f a f a f a f =-=-.若(0)()f f a =,则取0ξ=或a ξ=均能使()()f f a ξξ=+成立;若(0)()f f a ≠,则(0)()0F F a ⋅<,由零点定理知,至少存在一点(0,)a ξ∈使()0F ξ=,即()()f f a ξξ=+.总之结论成立.30.解:函数()f x 在[,]a b 连续,故在12[,]x x 上连续. 于是在12[,]x x 上()f x 必有最小值m ,最大值M .第一章 函数与极限11 从而有1()m f x M ≤≤,1111()t m t f x t M ≤≤, 2()m f x M ≤≤,2222()t m t f x t M ≤≤, 112212()()t f x t f x m M t t +≤≤+. 由介值定理知,至少存在一点12(,)c x x ∈⊂(,)a b 使得112212()()()t f x t f x f c t t +=+, 即112212()()()()t f x t f x t t f c +=+.。
高数(一)第一章练习题
高等数学(一)(第一章练习题)一、 单项选择题1.设f (1-cos x )=sin 2x, 则f (x )=( A )A.x 2+2xB.x 2-2xC.-x 2+2xD.-x 2-2x2.设x 22)x (,x )x (f =ϕ=,则=ϕ)]x ([f ( D )A.2x 2B.x 2xC.x 2xD.22x3.函数y=31x1ln -的定义域是( D ) A .),0()0,(+∞⋃-∞ B .),1()0,(+∞⋃-∞ C .(0,1] D .(0,1)4.函数2x x y -=的定义域是( D )A.[)+∞,1B.(]0,∞-C.(][)+∞∞-,10,D.[0,1]5.设函数=-=)x 2(f 1x x )x 1(f ,则( A ) A.x 211- B.x 12- C.x 2)1x (2- D.x)1x (2- 6.已知f(x)=ax+b,且f(-1)=2,f(1)=-2,则f(x)=( )A.x+3B.x-3C.2xD.-2x7.设f(x+1)=x 2-3x+2,则f(x)=( B )A.x 2-6x+5B.x 2-5x+6C.x 2-5x+2D.x 2-x 8.已知f(x)的定义域是[0,3a],则f(x+a)+f(x-a)的定义域是( )A .[a,3a]B .[a,2a]C .[-a,4a]D .[0,2a]9.函数y=ln(22x 1x 1--+)的定义域是( C )A .|x|≤1B .|x|<1C .0<|x|≤1D .0<|x|<110.函数y=1-cosx 的值域是( C )A.[-1,1]B.[0,1]C.[0,2]D.(-∞,+∞) 11.设函数f(x-1)=x 2-x,则f(x)=( B )A .x(x-1)B .x(x+1)C .(x-1)2-(x-1)D .(x+1)(x-2)12.设函数f (x )的定义域为[0,4],则函数f (x 2)的定义域为( D )A.[0,2]B.[0,16]C.[-16,16]D.[-2,2]13.设f(t)=t 2+1,则f(t 2+1)=( D )A.t 2+1B.t 4+2C.t 4+t 2+1D. t 4+2t 2+2 14.设1)1(3-=-x x f ,则f (x )=( B )A .x x x 2223++B .x x x 3323++C .12223+++x x xD .13323+++x x x15.下列区间中,函数f (x)= ln (5x+1)为有界的区间是( C )A.(-1,51)B.(-51,5)C.(0,51)D.(51,+∞) 16.函数f(x)=arcsin(2x-1)的定义域是( D )A.(-1,1)B.[-1,1]C.[-1,0]D.[0,1]17.设函数y =f (x )的定义域为(1,2),则f (ax )(a <0)的定义域是( B ) A.(a a 2,1) B.(aa 1,2) C.(a ,2a) D.(a a ,2] 18.函数f (x )=2211⎪⎭⎫ ⎝⎛--x 的定义域为( B ) A .[]1,1- B .[]3,1- C .(-1,1)D .(-1,3) 19.函数f (x )=21sin 2x x++是( C )A.奇函数B.偶函数C.有界函数D.周期函数 20.函数f (x )=ln x - ln(x -1)的定义域是( C )A .(-1,+∞)B .(0,+∞)C .(1,+∞)D .(0,1) 二、填空题1.已知f (x +1)=x 2,则f (x )=________.2.设函数f(x)的定义域是[-2,2],则函数f(x+1)+f(x-1)的定义域是___________.3.函数y=x ln ln 的定义域是 .4.若f(x+1)=x+cosx 则f(1)=__________.5.函数y=1+ln(x+2)的反函数是______.6..函数y=arcsin(x-3)的定义域为___________。
高等数学第一章课后习题答案(带解析)
第一章函数与极限第一节映射与函数一、填空题1.函数ln(2)y x =+的定义域为[1,)(2,1]+∞-- .2.设函数2(1)f x x x +=+,则=)(x f x x -2.3.设函数()f x 的定义域为[0,1],则(e )xf 的定义域为(,0]-∞.4.已知()sin f x x =,[]2()1f x x ϕ=-,则()x ϕ=2arcsin(1)x -,其定义域为5.设2,0,()e ,0,x x x f x x ⎧-≥=⎨<⎩()ln x x ϕ=,则复合函数[]()f x ϕ=2ln ,1,01x x x x ⎧-≥⎨<<⎩.6.设函数1,1,()0,1,x f x x ⎧≤⎪=⎨>⎪⎩则[]()f f x =1.7.函数(10)y x =-≤<二、单项选择题1.函数lnarcsin 23x xy x =+-的定义域为C .A.(,3)(3,2)-∞-- B.(0,3)C.[3,0)(2,3]- D.(,)-∞+∞2.设(1)f x -的定义域为[0,](0)a a >,则()f x 的定义域为B.A.[1,1]a +B.[1,1]a -- C.[1,1]a a -+ D.[1,1]a a -+3.函数11x y x -=+的反函数是D .A.11x y x -=+ B.11xy x-=+ C.11x y x +=- D.11x y x+=-4.设()f x 为奇函数,()x ϕ为偶函数,且[()]f x ϕ有意义,则[()]f x ϕ为B.A.奇函数B.偶函数C.非奇非偶函数D.以上均不正确三、解答题1.判断函数(ln y x =+的奇偶性,并求其反函数.解:因为()ln(ln(()f x x x f x -=-==-=-,所以()f x 是奇函数.由e yx =,e yx --=,得e e 2y y x --=,所以反函数为e e 2x xy --=2.设)(x f 满足c b a xcx bf x af ,,()1()(=-+均为常数,且)b a ≠,求)(x f .解:x cx bf x af =-+)1()()1(令t x =-1,则t x -=1,故t c t bf t af -=+-1)()1(.xcx bf x af -=+-∴1)()1(.(2)联立(1),(2)得到1(1)(22xbcx ac b a x f ---=.四、证明2()1xf x x =+在其定义域内有界.证明:,x R ∀∈取12M =,使得21()122x x f x M x x =≤==+,所以()f x 在其定义域R 内有界.第二节数列的极限一、单项选择题1.数列极限lim n n y A →∞=的几何意义是D .A.在点A 的某一邻域内部含有{}n y 中的无穷多个点B.在点A 的某一邻域外部含有{}n y 中的无穷多个点C.在点A 的任何一个邻域外部含有{}n y 中的无穷多个点D.在点A 的任何一个邻域外部至多含有{}n y 中的有限多个点nn n 632-∞→A.65-B.31 C.35 D.13.数列有界是数列收敛的C条件.A.充分B.充要C.必要D.两者没有关系二、利用数列极限的定义证明:1cos lim0n nn→∞+=.证明:对0ε∀>,要使1cos 1cos 20n n n n nε++-=≤<,只需2n ε>.0ε∀>,取2N ε⎡⎤=⎢⎥⎣⎦,则当n N >时,就有1cos 0n n ε+-<成立,所以1cos lim0n nn→∞+=.第三节函数的极限一、单项选择题1.=+→x x x 1lim2A.A.32 B.1C.21 D.2.若函数()f x 在某点0x 极限存在,则C.A.()f x 在点0x 的函数值必存在且等于该点极限值B.()f x 在点0x 的函数值必存在,但不一定等于该点极限值C.()f x 在点0x 的函数值可以不存在D.若()f x 在点0x 的函数值存在,必等于该点极限值∞→32x x A.1B.21 C.0D.不存在4.极限0limx x x→=D .A.1B.1- C.0D.不存在二、利用函数极限的定义证明:236lim 53x x x x →--=-.证明:0ε∀>,要使26533x x x x ε---=-<-,只需取δε=,则当03x δ<-<时,就有26533x x x x ε---=-<-成立,所以236lim 53x x x x →--=-.第四节无穷小与无穷大一、单项选择题1.下列命题正确的是C.A.无穷小量的倒数是无穷大量B.无穷小量是绝对值很小很小的数C.无穷小量是以零为极限的变量D.无界变量一定是无穷大量2.下列变量在给定的变化过程中为无穷小量的是C.A.1sin(0)x x→ B.1e (0)xx →C.2ln(1)(0)x x +→ D.21(1)1x x x -→-3.下列命题正确的是D.A.两个无穷小的商仍然是无穷小B.两个无穷大的商仍然是无穷大C.112--x x 是1→x 时的无穷小D.1-x 是1→x 时的无穷小4.(附加题)设数列{}n x 与{}n y 满足lim 0n n n x y →∞=,则下列命题正确的是B.A.若{}n x 发散,则{}n y 发散B.若1n x ⎧⎫⎨⎩⎭为无穷小,则{}n y 必为无穷小C.若{}n x 无界,则{}n y 必有界 D.若{}n x 有界,则{}n y 必为无穷小提示:已知n n x y 为无穷小,当1n x 为无穷小时,必有1()n n n ny x y x =⋅为无穷小;否A,例n x n =发散,21n y n=收敛;否C,例1(1),1(1)n n n n x n y n ⎡⎤⎡⎤=+-⋅=--⋅⎣⎦⎣⎦均无界;否D,例21n x n=有界,n y n =非无穷小.第五节极限运算法则一、填空题1.21lim2x x x x →+=++12. 2.121lim1x x x →+=-∞.3.22121lim1x x x x →-+=-0.4.212lim3n n n →∞+++=+ 12.5.若232lim43x x x kx →-+=-,则常数k =3-.提示:由已知,得23lim(2)0x x x k →-+=,3k ∴=-.6.设213lim 112x a x x x →⎛⎫-=⎪--⎝⎭,则常数a =2.提示:由已知,222113lim ,lim()012x x a x x a x x x →→--=∴--=-,从而2a =.7.e 1lim e 1n nn →∞-=+1.提示:11e 1e lim lim 11e 11en n n n n n→∞→∞--==++8.=-+++∞→)2324(lim 2x x x x 21.9.11021lim 21xx x-→-=+-1,1121lim 21xx x+→-=+1,所以11021lim21xx x →-+不存在.提示:11lim 20,lim 2x xx x -+→→==+∞10.已知21sin ,0()1,0x x x f x x x ⎧<⎪⎪=>⎪⎩,则0lim ()x f x →=0.二、计算题1.220()lim h x h x h→+-解:1.2222220000()22limlim lim lim(2)2h h h h x h x x xh h x xh h x h x h h h →→→→+-++-+===+=.2.231lim (2sin )x x x x x→∞-++解:因为2332111lim lim 011x x x x x x x x→∞→∞--==++,而2sin x +为有界函数,所以根据无穷小量与有界函数的乘积仍为无穷小量,知231lim (2sin )0x x x x x→∞-+=+.3.322232lim 6x x x x x x →-++--解:32222232(1)(2)(1)2lim lim lim 6(3)(2)35x x x x x x x x x x x x x x x x →-→-→-+++++===----+-.4.21lim1x x →-解:211lim1x x x →→=-1x →=14x →=.5.lim x →+∞解:lim x →+∞=limxlimlimx x ==1=-.6.求)1111(lim 31xx x ---→.解:原式32112lim x x x x --+=→)1)(1()2)(1(lim21x x x x x x ++-+-=→112lim21-=+++-=→x x x x .第六节极限存在准则两个重要极限一、填空题1.0sin lim x x x →=1;sin lim x xx→∞=0.提示:0sin lim1x x x →=;sin 1lim lim sin 0x x x x x x →∞→∞=⋅=.2.0sin limsin x x x x x →-=+0;sin lim sin x x xx x→∞-=+1.提示:00sin 1sin lim lim 0sin sin 1x x x x x x x x x x →→--==++;11sin sin lim lim 11sin 1sin x x xx x x x x xx→∞→∞-⋅-==++⋅.3.1lim 1kxx x →∞⎛⎫-= ⎪⎝⎭e k-(k 为正整数).提示:.()11lim 1lim 1e kxx k k x x x x ---→∞→∞⎛⎫⎛⎫-=-= ⎪ ⎪⎝⎭⎝⎭.4.10lim 12xx x →⎛⎫-= ⎪⎝⎭12e-.提示:11221200lim 1lim 1e22xxx x x x ---→→⎡⎤⎛⎫⎛⎫⎢⎥-=-= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦.二、计算题1.30tan sin limx x xx →-解:3200tan sin sin 1cos lim lim cos x x x x x x x x x x →→--=⋅2220002sin sinsin 1122lim lim lim 222x x x x x x x x x →→→⎛⎫ ⎪=⋅== ⎪ ⎪⎝⎭. 2.011limsin x x→解:000011limlim lim lim sin sin sin 2x x x x x x x x x →→→→-=⋅.3.0x →解:原式2220002sin 1sin cos 1cos 2lim 6lim 6lim 311cos sin 32x x x x x x x x x x x x x →→→---====-⋅.4.lim n →∞⎛⎫+解:<++<,又1,1n n n n ====,所以根据夹逼准则知,lim 1n →∞⎛⎫+++=⎪⎭.第七节无穷小的比较一、填空题1.当0x →时,sin 3x 是2x 的低阶无穷小;2sin x x +是x 的等价(或同阶)无穷小;1cos sin x x -+是2x 的低阶无穷小;cos 1x -是2arcsin x 的同阶无穷小;1(1)1nx +-是x n的等价(或同阶)无穷小;32x x -是22x x -的高阶无穷小.提示:222000sin 32sin 1cos sin lim,lim 2,lim,x x x xx x x xx xx →→→+-+=∞==∞13222000cos 11(1)1lim ,lim 1,lim 0arcsin 22nx x x x x x x x x x x n→→→-+--=-==-.2.已知0x →时,()12311ax+-与cos 1x -为等价无穷小,则常数a =32-.提示:12230021(1)1233lim lim 1,1cos 1322x x axax a a x x →→+-==-==---.二、计算题1.21tan 1limx x x →-解:2000tan 1tan 1122lim lim lim 2x x x x xx x x x →→→--===--.2.2220(sec 1)lim3sin x x x x →-解:22222222240002(sec 1)(1cos )1lim lim lim3sin 3cos 312x x x x x x x x x x x x →→→⎛⎫ ⎪--⎝⎭===⋅⋅.3.0tan 2tan lim3sin sin 2x x x x x→--解:000sin 2sin sin tan 2tan cos 2cos cos 2cos lim lim lim 13sin sin 23sin sin 2sin (32cos )x x x x x xx xx x x x x x x x x x →→→--⋅===---.4.20sin cos 1limsin 3x x x x x →+--解:200sin cos 11limlim sin 333x x x x x x x x →→+-==-.第八节函数的连续性与间断点一、填空题1.设2,0()sin ,0a bx x f x bx x x⎧+≤⎪=⎨>⎪⎩在0x =处连续,则常数,a b 应满足的关系为a b =.提示:()2(0)lim (0)x f a bxa f --→=+==,0sin (0)lim x bxf b x-+→==.2.设0()1,0ln(1),0x f x x bx x x <=-=⎨⎪+⎪->⎪⎩在0x =处连续,则常数a =22,b =1.提示:0(0)lim lim lim x x x axf x ----→→→===,(0)1f =-,00ln(1)(0)lim lim x x bx bxf b x x--+→→+=-=-=-.3.()sin xf x x=的可去间断点为0x =;221()32x f x x x -=-+的无穷间断点为2x =.4.若函数e ()(1)x af x x x -=-有无穷间断点0x =及可去间断点1x =,则常数a =e .提示:由已知,1e lim (1)x x a x x →--存在,所以1lim(e )0xx a →-=,从而e a =.二、单项选择题1.0x =是1()sin f x x x=的A .A.可去间断点B.跳跃间断点C.无穷间断点D.振荡间断点提示:01lim ()lim sin0x x f x x x→→==2.函数21,0(),012,12x x f x x x x x ⎧-<⎪=≤≤⎨⎪-<≤⎩D.A.在0,1x x ==处都间断B.在0,1x x ==处都连续C.在0x =处连续,1x =处间断D.在0x =处间断,1x =处连续提示:(0)1,(0)0(0)f f f -+=-==;(1)(1)1,(1)1f f f -+===.3.设函数42,0(),0x f x xk x ≠=⎨⎪=⎩在0x =处连续,则k =B .A.4B.14C.2D.12提示:021lim ()limlim ,(0)4x x x f x f k x →→→===.4.函数111122,0()221,0x x x x x f x x --⎧-⎪≠⎪=⎨+⎪=⎪⎩在0x =处B .A.左连续B.右连续C.左右均不连续D.连续提示:110lim 20,lim 2xxx x -+→→==+∞,从而(0)1(0),(0)1(0)f f f f -+=-≠==.三、讨论函数11e ,0()ln(1),10x x f x x x -⎧⎪>=⎨⎪+-<≤⎩在0x =处的连续性.解:111(0)lim ln(1)0(0),(0)lim ee x x xf x f f -+-+--→→=+====,所以()f x 在0x =处不连续,且0x =是第一类跳跃型间断点.四、若2,0()0e (sin cos ),x x a xf x x x x +≤⎧=⎨>+⎩在-∞(,)∞+内连续,求a .解:由于)(x f 在0=x 处连续,所以)0()0()0(f f f ==-+.(0)lim ()lim e (sin cos )1x x x f f x x x +++→→==+=,a a x x f f x x =+==--→→-)2(lim )(lim )0(0,a f =)0(.故1=a .五、设()f x 在(,)-∞+∞内有定义,且lim ()x f x a →∞=,1,0()0,0f x g x x x ⎧⎛⎫≠⎪ ⎪=⎝⎭⎨⎪=⎩.试讨论()g x 在0x =处的连续性.解:()0011lim ()lim lim 令x x t t x g x f f t a x →→→∞=⎛⎫== ⎪⎝⎭,(0)0g =,所以当0a =时,()g x 在0x =处连续,当0a ≠时,()g x 在0x =处间断.第九节连续函数的运算与初等函数的连续性一、填空题1.设,0()1,0a x x f x x x +≤⎧=>⎩在(,)-∞+∞内连续,则常数a =12.2.设22,1()1,1x bx x f x x a x ⎧++≠⎪=-⎨⎪=⎩在(,)-∞+∞处连续,则常数a =1,b =-3.提示:由题意知,1lim ()(1)x f x f a →==,则212lim1x x bx a x→++=-21lim(2)0x x bx →∴++=,则3b =-,进而1a =.3.211lim cos1x x x →-=-cos 2. 4.()2cot 2lim 1tan xx x→+=e .5.21lim 1xx x x →∞-⎛⎫= ⎪+⎝⎭4e-.提示:41122412lim lim 1e 11xx x xx x x x x -++--→∞→∞⎡⎤-⎛⎫⎛⎫⎢⎥=-= ⎪ ⎪⎢⎥++⎝⎭⎝⎭⎣⎦.6.已知lim 82xx x a x a →∞+⎛⎫= ⎪-⎝⎭,则常数a =ln 2.提示:332233lim lim 1e 822x a x x axx a x aax a a x a x a →∞→∞--⎡⎤+⎛⎫⎛⎫⎢⎥=+== ⎪ ⎪⎢⎥--⎝⎭⎝⎭⎣⎦,所以3ln 8,ln 2a a ==.7.203sin (1)cos lim (1cos )x x x x x →++=+12.8.0x →=12.提示:原式limx→=0x →=22012limsin 222x x x x x →⋅==⋅.9.函数21()23f x x x =--的连续区间是(,1),(1,3),(3,)-∞--+∞.二、单项选择题1.当1→x 时,函数1211e 1x x x ---的极限等于D .A.2B.0C.∞D.不存在但不为∞2.设()f x 在2x =连续,(2)3f =,则2214lim ()24x f x x x →⎛⎫-=⎪--⎝⎭D .A.0B.2C.3D.34提示:22222142113lim ()lim ()lim ()(2)244244x x x x f x f x f x f x x x x →→→-⎛⎫-====⎪---+⎝⎭.三、讨论11()1exxf x -=-的连续性,若有间断点,指出其类型.解:()f x 为初等函数,故在其定义区间(,0),(0,1),(1,)-∞+∞内均连续,在其无定义点0,1x x ==间断.据011lim ()lim1ex x x xf x →→-==∞-,知0x =为第二类无穷间断点;据11111111lim ()lim 0,lim ()lim 11e1exx x x x x xxf x f x --++→→→→--====--,知1x =为第一类跳跃间断点.第十节闭区间上连续函数的性质一、单项选择题1.方程sin 2x x +=有实根的区间为A.A.π,32⎛⎫⎪⎝⎭B.π0,6⎛⎫ ⎪⎝⎭C.ππ,64⎛⎫⎪⎝⎭D.ππ,42⎛⎫⎪⎝⎭提示:令()sin 2f x x x =+-,分别在各个对应的闭区间上验证零点定理是否成立即可.2.方程(1)(2)(3)(1)(2)(4)(1)(3)(4)x x x x x x x x x ---+---+---(2)(3)(4)0x x x +---=有D 个实根.A.0B.1C.2D.3提示:令()(1)(2)(3)(1)(2)(4)(1)(3)(4)f x x x x x x x x x x =---+---+---(2)(3)(4)x x x +---,又(1)0,(2)0,(3)0,(4)0f f f f <><>,则由零点定理知,方程在(1,2),(2,3),(3,4)分别至少存在一个根;又()f x 是三次多项式,则方程至多有三个根,综上可知方程恰好有三个根.二、证明题1.证明方程e 2xx -=在区间(0,2)内至少有一实根.证明:令()e 2xf x x =--,则()f x 在[0,2]上连续,且2(0)10,(2)e 40f f =-<=->,根据零点定理,至少存在一点(0,2)ξ∈,使()0f ξ=,所以方程()0f x =,即e 2xx -=在区间(0,2)内至少有一实根.2.设()f x 在[,]a b 上连续,且(),()f a a f b b <>.证明至少存在一点(,)a b ξ∈,使()f ξξ=.证明:令()()F x f x x =-,则()F x 在[,]a b 上连续,且()()0F a f a a =-<,()()0F b f b b =->,根据零点定理,至少存在一点(,)a b ξ∈,使()0F ξ=,即()f ξξ=.3.附加题设()f x 在[,)a +∞上连续,lim ()0x f x →+∞=.证明()f x 在[,)a +∞上有界.证明:由lim ()0x f x →+∞=,对10,X a ε=>∃>,当x X >时,有()()01f x f x ε=-<=,即()f x 在(,)X +∞上有界;又()f x 在[,]a X 上连续,故()f x 在[,]a X 上有界,所以存在10,M >使[]1(),,f x M x a X ≤∀∈,取{}1max 1,M M =,则对[],x a ∀∈+∞()f x M <,即()f x 在[,)a +∞上有界.第一章自测题一、填空题(每小题3分,共18分)1.()03limsin tan ln 12x x x x →=-+14-.提示:()20003331lim lim lim 4sin tan tan (cos 1)222ln 12x x x xx x x x x x x x →→→-⋅===---+.2.2131lim2x x x →-=+-26-.提示:21lim26x x x x →→==-+-.3.已知212lim31x x ax bx →-++=+,其中b a ,为常数,则a =7,b =5.4.若()2sin 2e 1,0,0ax x x f x xa x ⎧+-≠⎪=⎨⎪=⎩在()+∞∞-,上连续,则a =-2.提示:由题意知,20sin 2e 1lim ax x x x →+-20sin 2e 1lim 22ax x x a a x x →⎛⎫-=+=+= ⎪⎝⎭,从而2a =-.5.曲线21()43x f x x x -=-+的水平渐近线是0y =,铅直渐近线是3x =.二、单项选择题(每小题3分,共18分)1.“对任意给定的()1,0∈ε,总存在整数N ,当N n ≥时,恒有ε2≤-a x n ”是数列{}n x 收敛于a 的C.A.充分条件但非必要条件B.必要条件但非充分条件C.充分必要条件D.既非充分也非必要条件2.设()2,02,0x x g x x x -≤⎧=⎨+>⎩,()2,0,0x x f x x x ⎧<=⎨-≥⎩则()g f x =⎡⎤⎣⎦D .A.22,02,0x x x x ⎧+<⎨-≥⎩ B.22,02,0x x x x ⎧-<⎨+≥⎩ C.22,02,0x x x x ⎧-<⎨-≥⎩ D.22,02,0x x x x ⎧+<⎨+≥⎩3.下列各式中正确的是D.A.01lim 1exx x +→⎛⎫-= ⎪⎝⎭B.01lim 1e xx x +→⎛⎫+= ⎪⎝⎭C.1lim 1e xx x →∞⎛⎫-=- ⎪⎝⎭D.11lim 1e xx x --→∞⎛⎫+= ⎪⎝⎭4.设0→x 时,tan e 1x-与n x 是等价无穷小,则正整数n =A.A.1B.2C.3D.4提示:由题意知,当0→x 时,tan e 1tan xx x - 从而n 取1.5.曲线221e 1ex x y --+=-D .A.没有渐近线B.仅有水平渐近线C.仅有铅直渐近线D.既有水平渐近线又有铅直渐近线6.下列函数在给定区间上无界的是C.A.1sin ,(0,1]x x x ∈ B.1sin ,(0,)x x x∈+∞C.11sin ,(0,1]x x x∈ D.1sin ,(0,)x x x∈+∞三、计算题(每小题7分,共49分)1.2x →解:2222(1)(2)(413)(1)(413)9limlim 4(2)42x x x x x x x →→→+-+===-.2.()21ln(1)lim cos x x x +→解:()()2211ln(1)ln(1)0limcos lim 1cos 1x x x x x x ++→→=+-222001cos 112limlim ln(1)2eeex x x x x x →→---+===.3.()1lim123nnnn →∞++解:()1312333,31233n n n nnnn<++<⋅∴<++<⋅Q1n =,()1lim 1233nnnn →∞∴++=.4.21sinlimx x x解:2111sinsin sinlim lim limlim 112x x x x x x x x x x→+∞→+∞→+∞→+∞=⋅⋅.5.设函数()()1,0≠>=a a a x f x ,求()()()21lim ln 12n f f f n n →∞⎡⎤⎣⎦ .解:()()()()()()22ln 1ln 2ln 1limln 12lim n n f f f n f f f n n n →∞→∞+++=⎡⎤⎣⎦L L ()()222ln 12ln ln limlim22n n n n a n aan n →∞→∞++++===L .6.1402e sin lim 1e xx x x x →⎛⎫+ ⎪+ ⎪ ⎪+⎝⎭解:1144002e sin 2e sin 2lim lim 1111e 1e x x x x x x x x x x --→→⎛⎫⎛⎫++ ⎪ +=-=-= ⎪ ⎪ ⎪++⎝⎭⎝⎭,11114444000e 2e 12e sin 2e sin sin lim lim lim 1e 1e e e 1x x x xx x x x x x x x x x x x x +++-→→→-⎛⎫⎛⎫+ ⎪⎛⎫⎛⎫ ⎪++⎝⎭ ⎪ ⎪ ⎪+=+=+ ⎪ ⎪ ⎪⎛⎫ ⎪ ⎪++ ⎪+⎝⎭⎝⎭ ⎪⎪⎝⎭⎝⎭301lim 1e xx +-→=+=,所以,原式1=.7.已知(lim 1x x →-∞=,求,.a b解:左边22(1)lim limlim x x x x a x b x →-∞→-∞⎡⎤--+⎢==,右边1=,故[]lim (1)1x a x b →-∞--=+,则1,2a b ==-.四、讨论函数,0()(0,0,1,1)0,0x xa b x f x a b a b x x ⎧-≠⎪=>>≠≠⎨⎪=⎩在0x =处的连续性,若不连续,指出该间断点的类型.(本题8分)解:当a b =时,()0f x ≡,此时()f x 在0x =处连续;当a b ≠时,000011lim ()lim lim lim ln (0)0x x x x x x x x a b a b af x f x x x b→→→→---==-=≠=,故()f x 在0x =处不连续,所以0x =为()f x 得第一类(可去)间断点.五、附加题设()f x 在[0,1]上连续,且(0)(1)f f =.证明:一定存在一点10,2ξ⎡⎤∈⎢⎣⎦,使得1()2f f ξξ⎛⎫=+ ⎪⎝⎭.(本题7分)证明:设1()()2F x f x f x ⎛⎫=-+⎪⎝⎭,显然()F x 在10,2⎡⎤⎢⎥⎣⎦上连续,而1(0)(0)2F f f ⎛⎫=-⎪⎝⎭,()()11110222F f f f f ⎛⎫⎛⎫⎛⎫=-=- ⎪ ⎪ ⎝⎭⎝⎭⎝⎭,211(0)(0)022F F f f ⎡⎤⎛⎫⎛⎫=--≤ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,若1(0)02F F ⎛⎫= ⎪⎝⎭,即(0)0F =或102F ⎛⎫= ⎪⎝⎭时,此时取0ξ=或12ξ=即可;若1(0)02F F ⎛⎫< ⎪⎝⎭时,由零点定理知:一定存在一点10,2ξ⎡⎤∈⎢⎣⎦,使()0Fξ=,即1()2f fξξ⎛⎫=+⎪⎝⎭.。
高等数学(上)第一章习题
高等数学(上)习题 第一章 函数与极限 习题1-1 映射与函数1、 求下列函数的定义域。
1)11)1arcsin(-+-=x x y 2) y =lg (4x -3)-arcsin (2x -1)3))1ln(1-=x y 4) 2412-+-=x xy5)631arcsin 2--+-=x xx y6)xx y1arctan3+-=7) )6ln(2-+=x x y 8)51arcsin211-+-+=x x y ;2、设)(x f 的定义域为(0,1),求)1(xf ,)(2x f ,)(lg x f 的定义域。
3、判断下列函数的奇偶性。
1))()31()31()(3232+∞<<-∞+--=x x x x f 2))1lg()(2++=x x x f3)242)(x x x f -= 4))1(1)(>-=a ax x f x5))1(11)(>+-=a aa xx f xx 6)xx x f +-=11lg )(4、指出下列函数中的周期函数,并写出其周期。
1)y =sin (2x +5) 2)y =x sin (5x -3)3)y =|sin x | 4)y =sin x +21sin2x5)y=sin x 25、求下列函数的反函数。
1)2101-x -=y 2)⎩⎨⎧<-≥+=0012x ,x x ,x y3)x y 54-=4)31+=x y5)xx y 211211+++-=6)⎪⎭⎫ ⎝⎛<--++=0,21),1ln()1ln(x x x y6、指出下列复合函数的复合过程。
1)9)12(+=x y 2)2sinx e y =。
3)211arctanxy += 4))y 1ln(x22+=5))13(c 2+=x os y 6))ln(ln x y = 7)2tan3x y = 8)x y 31sin +=7、若存在两个实数a ,b ,且a <b ,使f (x )对一切实数 x 满足f (a -x )= -f (a +x ),f (b -x )=f (b +x ),试证明:f (x )是以T=4(b -a )为周期的周期函数。
高数第一章测试题
高数第一章测试题高等数学作为大学课程中的重要基础学科,对于很多同学来说是一个不小的挑战。
而第一章往往是为后续的学习打下基石的关键部分。
接下来,就让我们一起通过这份测试题来检验一下对第一章知识的掌握程度。
一、选择题(每题 5 分,共 30 分)1、函数\(f(x) =\frac{1}{x 1}\)的定义域为()A \(x \neq 1\)B \(x > 1\)C \(x < 1\)D \(x \neq 0\)2、设\(f(x) =\sqrt{x}\),则\(f(f(4))\)的值为()A 2B \(\sqrt{2}\)C 4D \(\sqrt{4}\)3、当\(x \to 0\)时,下列函数中与\(x\)等价无穷小的是()A \(x^2\)B \(\sin x\)C \(1 \cos x\)D \(e^x 1\)4、函数\(f(x) = x^3 3x + 1\)的单调递增区间是()A \((\infty, -1)\)和\((1, +\infty)\)B \((-1,1)\)C \((\infty, +\infty)\)D 以上都不对5、曲线\(y = x^2 + 1\)在点\((1, 2)\)处的切线方程为()A \(2x y = 0\)B \(x 2y + 3 = 0\)C \(2x + y 4 = 0\)D \(x + 2y 5 = 0\)6、设函数\(f(x)\)在\(x = 0\)处连续,且\(f(0) =2\),则\(\lim_{x \to 0} f(x)\)的值为()A 0B 1C 2D 不存在二、填空题(每题 5 分,共 30 分)1、函数\(f(x) =\ln(x + 1)\)的导数为________。
2、极限\(\lim_{x \to 1} \frac{x^2 1}{x 1}\)的值为________。
3、曲线\(y = e^x\)在点\((0, 1)\)处的切线斜率为________。
大一高数1-9的习题答案
大一高数1-9的习题答案大一高数1-9的习题答案大一高数是大学数学的基础课程之一,对于理工科学生来说是非常重要的一门课程。
在学习过程中,习题是帮助我们巩固知识、提高能力的重要工具。
下面我将为大家提供大一高数1-9章节的习题答案,希望能对大家的学习有所帮助。
第一章:极限与连续1. 求以下极限:a) lim(x→2) (x^2 - 4) / (x - 2)答案:2b) lim(x→1) (x^2 - 1) / (x - 1)答案:2c) lim(x→0) sinx / x答案:12. 判断以下函数在给定点是否连续:a) f(x) = x^2 + 3x - 2, x = 2答案:连续b) f(x) = 1 / x, x = 0答案:不连续第二章:导数与微分1. 求以下函数的导数:a) f(x) = 3x^2 - 2x + 1答案:f'(x) = 6x - 2b) f(x) = sinx + cosx答案:f'(x) = cosx - sinxc) f(x) = e^x + ln(x)答案:f'(x) = e^x + 1 / x2. 求以下函数的微分:a) f(x) = 2x^3 - 5x^2 + 3x - 1答案:df(x) = (6x^2 - 10x + 3)dx b) f(x) = √x + ln(x)答案:df(x) = (1 / (2√x) + 1 / x)dx 第三章:定积分1. 求以下定积分:a) ∫(0 to 1) x^2 dx答案:1 / 3b) ∫(1 to 2) 2x dx答案:3c) ∫(0 to π) sinx dx答案:22. 求以下定积分:a) ∫(0 to 1) (x^3 + 2x^2 + x) dx 答案:7 / 12b) ∫(1 to 2) (2x^2 + 3x + 1) dx答案:19 / 3第四章:不定积分1. 求以下函数的不定积分:a) ∫(3x^2 - 2x + 1) dx答案:x^3 - x^2 + x + Cb) ∫(2sinx + cosx) dx答案:-2cosx + sinx + C2. 求以下函数的不定积分:a) ∫(2x^3 + 3x^2 + x) dx答案:(1 / 2)x^4 + x^3 + (1 / 2)x^2 + C b) ∫(e^x + 1 / x) dx答案:e^x + ln|x| + C第五章:级数1. 判断以下级数是否收敛:a) ∑(n = 1 to ∞) (1 / n^2)答案:收敛b) ∑(n = 1 to ∞) (1 / n)答案:发散2. 判断以下级数是否收敛:a) ∑(n = 1 to ∞) (1 / 2^n)答案:收敛b) ∑(n = 1 to ∞) (n / 2^n)答案:收敛第六章:多元函数微分学1. 求以下函数的偏导数:a) f(x, y) = x^2 + 2xy + y^2答案:∂f / ∂x = 2x + 2y, ∂f / ∂y = 2x + 2yb) f(x, y) = sinx + cosy答案:∂f / ∂x = cosx, ∂f / ∂y = -siny2. 求以下函数的全微分:a) f(x, y) = x^3 + 2xy^2答案:df = (3x^2 + 2y^2)dx + (4xy)dyb) f(x, y) = e^x + ln(y)答案:df = e^xdx + (1 / y)dy第七章:多元函数积分学1. 求以下二重积分:a) ∬(D) x^2 dA, D为单位圆盘答案:π / 3b) ∬(D) y dA, D为正方形区域,顶点为(0, 0), (1, 0), (0, 1), (1, 1) 答案:12. 求以下二重积分:a) ∬(D) (x + y) dA, D为上半平面答案:无穷大b) ∬(D) (2x + 3y) dA, D为单位正方形答案:5 / 2第八章:无穷级数1. 判断以下级数是否收敛:a) ∑(n = 1 to ∞) (1 / n^3)答案:收敛b) ∑(n = 1 to ∞) (1 / 2^n)答案:收敛2. 判断以下级数是否收敛:a) ∑(n = 1 to ∞) (n / 2^n)答案:收敛b) ∑(n = 1 to ∞) (n^2 / 2^n)答案:收敛第九章:常微分方程1. 求以下常微分方程的通解:a) dy / dx = x^2答案:y = (1 / 3)x^3 + Cb) dy / dx = 2x + 1答案:y = x^2 + x + C2. 求以下常微分方程的特解:a) dy / dx = y^2, y(0) = 1答案:y = 1 / (1 - x)b) dy / dx = 2x, y(0) = 3答案:y = x^2 + 3以上是大一高数1-9章节的习题答案,希望能对大家的学习有所帮助。
高数上1-习题课
lim f ( x) A 或
x x0
f ( x) A(当x x0 )
" "定义 0, 0,使当0 x x0 时, 恒有 f (x) A .
左极限 0, 0,使当x0 x x0时, 恒有 f (x) A .
记作 lim f ( x) A 或 x x0 0
两个重要 极限
等价无穷小 及其性质
无穷小 的性质
唯一性
求极限的常用方法
极限的性质
1、极限的定义
定义 如果对于任意给定的正数(不论它多么
小),总存在正数N ,使得对于n N 时的一切xn ,不
等式 xn a 都成立,那末就称常数a 是数列xn
的极限,或者称数列 xn 收敛于a ,记为
lim
n
2、函数的性质
(1) 单值性与多值性:
若对于每一个x D ,仅有一个值y f ( x) 与之对 应,则称 f ( x)为单值函数,否则就是多值函数.
y
y
( x 1)2 y2 1
y ex
o
x
o
x
(2) 函数的奇偶性:
设D关于原点对称, 对于x D,有
f ( x) f ( x) 称f ( x)为偶函数;
f (x) f (x)
y
称f ( x)为奇函数;
y
y x
y x3
o
x
偶函数
o
x
奇函数
(3) 函数的单调性:
设函数f(x)的定义域为D,区间I D,如果对于区间I上
任意两点 x1及 x2,当 x1 x2时,恒有:
(1) f (x1) f (x2 ),则称函数 f (x) 在区间I上是单调增加的; 或(2) f (x1) f (x2 ), 则称函数 f (x)在区间I上是单调递减的;
大学高数第一章例题
2
解
x
lim
1 x
0,
| arctan
x |
- 12 -
2
. lim
a rcta n x x
x
0
习题课(一)
(3)
第 一 章 函 数 极 限 连 续
lim
sin 2 x x 2 2
x 0
解
原式
lim
(
x 2
2 ) sin 2 x
x 0
x 22
n
lim x n
N 0,
M 0,
使得当 n
N
时, 恒有
xn M
成立, 则称 x n 是 n
时的负无穷大量
-7-
习题课(一)
(2) lim f ( x ) 2
x 3
第 一 章 函 数 极 限 连 续
0, 0,
使当
0 x 3
第 一 章 函 数 极 限 连 续
x n x n1 x n1 ,
2
证明 lim
n
xn
存在, 并求 lim 解 由于 x 1
n
xn .
2
x 0 x 0 x 0 ( 1 x 0 ),
0 x 0 1,
所以 0
x1 1 .
- 11 -
习题课(一)
(1)
第 一 章
x 8
lim
1 x 3 2
3
x
( 1 x 3 )(
1 1
1
2
解
原式
x 8
lim
1 x 3 )( 4 2 x 3 x 3 )
高数第一册习题及答案
高数第一册习题及答案第一章初等函数及其图形练习1.1 初等函数及其图形一. 确定下列各函数中哪些是偶函数,哪些是奇函数:x,xf(x),a,a 1. (); a,0x,xx,x,,,,,,?f,x,a,a,fx?fx,a,a解: 为偶函数.1,xf(x),ln2.; 1,x1,x1,x1,x解: ,,, ,,,,为奇函数. ?fx,ln?f,x,ln,,ln,,fx1,x1,x1,x23. f(x),ln(x,1,x)122,,,,,,,,?f,x,ln,x,1,x,ln,,lnx,1,x,,fx解: , 2x,1,x 2为奇函数. ,,,,?fx,lnx,1,x二. 设f(sinx),3,cos2x,求f(cosx)。
22,,,,?fsinx,3,cos2x,2,2sinx?fcosx,2,2cosx解: ,f(x),,x,0,x,0三.设f(x)在(0,)上定义, 。
求证: 若单调上升,则12xf(x,x),f(x),f(x)。
1212fx,,,,fx,,,,,,?gx,x,gx,解: 令gx,, ?单调上升, 121xx ,,,,,,gx,x,gx x,x,0, 故12212,,,,,,,,,,,,,,fx,x,x,xgx,x,xgx,x,xgx,x,xgx,xgx 1212121122121122,,,,,fx,fx. 12f(x),arccosx,g(x),sinxf(g(x)),g(f(x))四. 设,试求复合函数的定义域和值域,并作图。
,,,,,,,,,,fgx,arccossinxD,,,.,,R,0,,解: , , ,,,,,,,,,,gfx,sinarccosxD,,1,1R,0,1, , .,x,1,x,0,,0xx,,f(x), , 求复合函数。
五.设(),f(g(x)),g(f(x))gx,,2,x,x,0xx,0,,,x,1,,1,x,0,,,1,,0xx,,2,,,,,,gfx,,1,x,x,,1,解: , fgx,,,,,,2x,1,x,0,2,,x,x,0,第二章极限与连续2.1 数列极限一. 填空:n,12,n|x,1|,,x,1.设,对于任意的正数,当大于正整数[,1]时, ,所以N,nnn,1, ,4n|x,1|,10;当大于正整数19.999时, 。
高数第一章复习题和答案
高数第一章复习题和答案1. 极限的概念和性质- 极限的定义是什么?答案:极限是指当自变量趋近于某一点时,函数值趋近于某个确定的数值。
- 极限的性质有哪些?答案:极限的性质包括极限的非负性、极限的乘法法则、极限的加法法则等。
2. 无穷小与无穷大- 无穷小的定义是什么?答案:无穷小是指当自变量趋近于某一点时,函数值趋近于0。
- 无穷大的定义是什么?答案:无穷大是指当自变量趋近于某一点时,函数值趋近于正无穷或负无穷。
3. 极限的运算法则- 极限的加法法则如何表述?答案:如果极限存在,那么两个函数的和的极限等于它们极限的和。
- 极限的乘法法则如何表述?答案:如果极限存在,那么两个函数的积的极限等于它们极限的积。
4. 极限的计算方法- 极限的夹逼定理是什么?答案:如果对于任意的x,都有f(x) ≤ g(x) ≤ h(x),并且lim(x->a) f(x) = lim(x->a) h(x) = L,那么lim(x->a) g(x) = L。
- 极限的洛必达法则是什么?答案:如果两个函数的比值的极限形式为0/0或∞/∞,那么可以通过对分子和分母分别求导,再求极限来计算。
5. 连续性的概念- 连续性的定义是什么?答案:如果函数在某点的极限存在且等于该点的函数值,则称该函数在该点连续。
- 连续函数的性质有哪些?答案:连续函数的性质包括连续函数的和、差、积、商(分母不为0)都是连续的。
6. 连续函数的运算- 连续函数的和如何计算?答案:连续函数的和等于它们各自极限的和。
- 连续函数的积如何计算?答案:连续函数的积等于它们各自极限的积。
7. 间断点的分类- 可去间断点的定义是什么?答案:如果函数在某点的极限存在,但不等于该点的函数值,那么该点称为可去间断点。
- 无穷间断点的定义是什么?答案:如果函数在某点的极限为无穷大,那么该点称为无穷间断点。
8. 连续函数的介值定理- 介值定理的内容是什么?答案:如果函数在闭区间[a, b]上连续,且f(a) ≠ f(b),那么对于任意的y在f(a)和f(b)之间,都存在一个c属于(a, b),使得f(c) = y。
高等数学习题(第一章)
第一章函数与极限第一节映射与函数习题1.11.设),4()6,( A ,)4,9[ B ,写出B A ,B A ,B A \,)\(\B A A 。
2.设A 、B 、C 是任意三个集合,证明对偶律:cc c B A B A )(。
3.求下列函数的自然定义域:(1)x y cos;(2))1tan(x y ;(3))2arcsin( x y ;(4)xx y 1arctan5 ;4.下列各题中,函数)(x f 和)(x g 是否相同?为什么?(1))(x f =2lg x ,)(x g =x lg 2;(2))(x f =334x x ,)(x g =x x x 1 ;5.设3,03,sin )( x x x x ,求6( ,4( ,)4( ,)2( ,并作出函数)(x y 的图形.6.试证下列函数在指定区间内的单调性:(1)xxy1,)1,( ;(2)x x y ln ,),0( 7.设)(x f 为定义在),(l l 内的奇函数,若)(x f 在),0(l 内单调增加,证明)(x f 在)0,(l 内也单调增加。
8.设下面所考虑的函数都是定义在区间),(l l 上的,证明:(1)两个偶函数的和是偶函数,两个奇函数的和是奇函数;(2)两个偶函数的乘积是偶函数,两个奇函数的乘积是偶函数,偶函数与奇函数的乘积是奇函数。
9.下列函数中哪些是偶函数,哪些是奇函数,哪些既非偶函数又非奇函数?(1))1(24x x y ;(2)323x x y ;(3))1ln(2 x x y .10.下列各函数中哪些是周期函数?对于周期函数,指出其周期:(1))2sin( x y ;(2)x y 4sin ;(3)x y 2cos .11.求下列函数的反函数:(1)y 35 x ;(2)xxy22;(3))3ln(1 x y .12.设函数)(x f 在数集X 上有定义,试证:函数)(x f 在X 上有界的充分必要条件是它在X 上既有上界又有下界。
《高等数学一》第一章-函数--课后习题(含答案解析)
第一章函数历年试题模拟试题课后习题(含答案解析)[单选题]1、设函数,则f(x)=()A、x(x+1)B、x(x-1)C、(x+1)(x-2)D、(x-1)(x+2)【正确答案】B【答案解析】本题考察函数解析式求解.,故[单选题]2、已知函数f(x)的定义域为[0,4],函数g(x)=f(x+1)+f(x-1)的定义域是().A、[1,3]B、[-1,5]C、[-1,3]D、[1,5]【正确答案】A【答案解析】x是函数g(x)中的定义域中的点,当且仅当x满足0≤x+1≤4且0≤x-1≤4即-1≤x≤3且1≤x≤5也即1≤x≤3,由此可知函数g(x)的定义域D(g)={x|1≤x≤3}=[1,3]. [单选题]3、设函数f(x)的定义域为[0,4],则函数f(x2)的定义域为().A、[0,2]B、[0,16]C、[-16,16]D、[-2,2]【正确答案】D【答案解析】根据f(x)的定义域,可知中应该满足:[单选题]4、函数的定义域为().A、[-1,1]B、[-1,3]C、(-1,1)D、(-1,3)【正确答案】B【答案解析】根据根号函数的性质,应该满足:即[单选题]写出函数的定义域及函数值().A、B、C、D、【正确答案】C【答案解析】分段函数的定义域为各个分段区间定义域的并集,故D=(-∞,-1]∪(-1,+∞).[单选题]6、设函数,则对所有的x,则f(-x)=().A、B、C、D、【正确答案】A【答案解析】本题考察三角函数公式。
.[单选题]7、设则=().A、B、C、D、【正确答案】B【答案解析】令则,故[单选题]8、则().A、B、C、D、【正确答案】D【答案解析】[单选题]9、在R上,下列函数中为有界函数的是().xA、eB、1+sin xC、ln x【正确答案】B【答案解析】由函数图像不难看出在R上e x,lnx,tanx都是无界的,只有1+sinx可能有界,由于|sinx|≤1,|1+sinx|≤1+|sinx|≤2所以有界.[单选题]10、不等式的解集为().A、B、C、D、【正确答案】D【答案解析】[单选题]11、().A、B、C、D、【正确答案】A【答案解析】根据二角和公式,[单选题]12、函数的反函数是().A、B、C、D、【正确答案】A【答案解析】由所以,故.[单选题]13、已知则().A、B、C、D、【正确答案】C【答案解析】[单选题]14、已知为等差数列,,则().A、-2B、1C、3D、7【正确答案】A因为同理可得:故d=a4-a3=-2.[单选题]15、计算().A、B、C、D、【正确答案】A【答案解析】根据偶次根式函数的意义,可知,故[单选题]16、计算().A、0B、1C、2D、4【正确答案】C【答案解析】原式=[单选题]将函数|表示为分段函数时,=().A、B、C、D、【正确答案】B【答案解析】由条件[单选题]18、函数f(x)=是().A、奇函数B、偶函数C、有界函数D、周期函数【正确答案】C【答案解析】易知不是周期函数,,即不等于,也不等于,故为非奇、非偶函数.,故为有界函数.[单选题]19、函数,则的定义域为().A、[1,5]C、(1,5]D、[1,5)【正确答案】A【答案解析】由反正切函数的定义域知:,故定义域为[1,5].[单选题]20、下列等式成立的是()A、B、C、D、【正确答案】B【答案解析】A中(e x)2=,C中,D中[单选题]21、下列函数为偶函数的是()A、y=xsinxB、y=xcosxC、y=sinx+cosxD、y=x(sinx+cosx)【正确答案】A【答案解析】sinx是奇函数,cosx是偶函数。
高数大一(上)复习题(按章节分)
第一章 函数与极限 一、无穷小的应用1、 (09)设0x →时,tan e e x x -与n x 是同阶无穷小,则n =_________3______;2、(07) [3分] 设()572xxf x =+-,则当0x →时(B )A.()f x 与x 是等价无穷小量B. ()f x 与x 是同阶但非等价无穷小量C. ()f x 是比x 高阶的无穷小量D. ()f x 是比x 低阶的无穷小量二、求定义域、极限、特殊极限、连续性 1.(06)[3分] 函数1arcsin3x y -=的定义域是[]{}2,40⋃ 2、(06) [3分]201cos3limx x x →-=923、(06) [3分] 极限lim 23x x →∞+ (D )A. 2=B.2=-C.2=±D. 不存在4、(08) [5分] 设)sin n a n n π=,求lim n n a →∞解:lim lim n n n n n a n π→∞→∞====5、(07) [3分]()20lim 1sin xx x →+=2e6、(08) [5分]求极限011cos lim 12xx x x →⎡⎤+⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦解:原式22ln cos22000ln cos 112lim cos1lim 1lim 2ln102xxx x x x xx x e x x x→→→⎡⎤⎡⎤⎛⎫=-=-===⎢⎥⎢⎥ ⎪⎝⎭⎢⎥⎣⎦⎣⎦7、(07) [3分]在下列函数中,在定义域上连续的函数是(B )(A) ()sin ,00,0x x f x x x ⎧≠⎪=⎨⎪=⎩ (B) ()1sin ,00,0x x f x xx ⎧≠⎪=⎨⎪=⎩ (C)()00,0x f x x ≠=⎪=⎩(D) ()1,00,0x e x f x x x ⎧-≠⎪=⎨⎪=⎩三、间断点的判断及类型 1、(08) [3分] 设()()21lim1n n x f x nx →∞-=+,则()f x 的间断点为0x =,它是第 二 类间断点2、(09)已知)1(||)(22--=x x xx x f ,指出函数的间断点及其类型. 1230,1,1x x x ===-为间断点……….2分222200(00)lim 1,(00)lim 1,(1)(1)x x x x x xf f x x x x →-→+---==-+==---2222101011(10)lim ,(10)lim ,(1)2(1)2x x x x x x f f x x x x →-→+---==+==-- ()221010(1)(10)lim ,(10)lim ,(1)1(1)x x x x x x f f x x x x x →--→+----==+∞-+==-∞--+--………3分从而10x =为第一类跳跃间断点,21x =为第一类可去间断点,31x =-为第二类无穷型间断点………………………………………………………………………………..1分3、(06) [本小题8分]设)()()()()1b x b f x x a x -=--有无穷间断点10x =,有可去间断点21x =,求,a b 的值解 由()()()1(1)lim01x a f x b b →--==--,得0,0,1a b b =≠≠ 因()1lim x f x →存在,故()()())()()11lim 1lim120x x x b b x f x b b x→→--==--=从而2b =第二章 导数与微分导数、定义、高阶导数2.(06) [3分]设x ey x π=+,则y '=1ln x e ex ππ-+2.(08) [3分]若()()()()()1232008f x x x x x x =----,则()0f '=2008!2.(09)设x y 211+=,则=)()6(x y 76)21(!6)2(x +-;2、(08) [5分] 已知()f x 有一阶连续导数,且()()001f f '==,求极限()()sin 1limln x f x f x →-解:原式=()()()()()()0sin 0sin 11lim011ln ln 0sin 0ln 0x x f x f x f f x f x x f x x →=-'=⋅⋅=--'⎡⎤⎣⎦-2(07)求曲线x y xe -=在拐点处的切线方程 解:()()11xx x y exe x e ---'=+-=-,()()(1)12x x x y e x e x e ---''=-+--=-令0,2y x ''=⇒=,由于2x >时0y ''>,2x <时0y ''<,2(2,2)e -为拐点 故要求的切线为:()222222,4y ee x y e e x -----=--=-2、(07) [3分] 设()()()2,d f x g x h x x dx ==,则()()d f h x dx=(D ) A. ()2g x B. ()2xg x C. ()22x g x D. ()22xg x微分2.(07) [3分]设y =0x dy==4dx 2.(06) [3分] 设()220xy a a x =≠+,则=dy ()22222a x dx a x-+2.(08) [3分]设()f u 可微,且()2sin3y fx =,则dy =()()6sin3sin3cos3f x f x xdx '2.(09)由方程02=+-y x x y 确定了隐函数)(x y y =,求微分d y .()()ln ln 2ln ln 20y x y x d e x y e xdy yd x dx dy -+=+-+=……………5分即()2ln 20,1ln y y y y x y x xdy x dx dx dy dy dx x x x x -+-+==+……………1分隐函数方程2(08)设函数()y y x =)0,0x y =>>确定,求dydx解:对方程两边求导书ln ln ,ln ln y xy y x x x y=⇒= 两边求导书,得ln 1(ln 1)ln 1,ln 1x y y x y y +''+=+⇒=+参数方程2(08)设函数()y y x =由参数方程3292x t ty t t⎧=+⎪⎨=-⎪⎩确定,求曲线()y y x =向下凸的x 的取值范围 解:()22222223222322239,39399(3)t t t dy t d y t dx t dx t t '-⎛⎫ ⎪+--+⎝⎭===+++ 曲线下凸要求()0y x ''>,即()()()232310,1,3t t t t t +-=-+>∈-因此对于()39,10,54x t t x =+∈-,由于在端点连续,可取x 的取值范围为[]10,54-2.(09)求由参数方程⎩⎨⎧+=+-=23)1ln(tt y t t x 所确定函数的二阶导数22d d y x . )1)(23(++=t t dxdy……………3分 t t t dxy d )1)(56(22++=…………….3分 2(07) 设参数方程()2220ln 11t x t u y du u ⎧=+⎪⎨=⎪+⎩⎰,求22d y dx 解:2221221t dy t t t dx t +==+,222211122241d y d dy d t dt t t dxdx dx dt dx t t +⎛⎫⎛⎫==⋅== ⎪ ⎪⎝⎭⎝⎭+2(06)设(ln sin x t y ⎧=⎪⎨⎪=⎩确定了y 是x 的函数,求22d y dx解sin t t y dx dy dy t dt dt dx x '====='()()221s i n s i n c o s i nd y d d y d d d t t t t t dx dx dx dx dx dt dxdt⎛⎫===⋅=⋅= ⎪⎝⎭分段函数的连续性、可导性2(07) [本小题8分] 确定常数,a b 的值,使函数(),0()arcsin ,0xe b xf x ax x ⎧+≤⎪=⎨>⎪⎩在0x =处连续且可导解:()()()000lim lim arcsin 0x x f f x ax →+→++===,()()000lim lim ()1xx x f f x e b b →-→--==+=+()001f e b b =+=+,由()f x 在0x =处连续知()()()000,10,1f f f b b +=-=+==-()()()()0000110lim lim lim 10x x x x x f x f e b b e f x x x-→-→-→--+-+-'====-()()()()0000arcsin 00limlim lim 0x x x f x f ax axf a x xx +→+→+→---'====- 由()f x 在0x =处可导知()()00,1f f a +-''=⇒=2(08)设()x ϕ具有二阶连续导数,且()00ϕ=,若()(),0,0x x f x x a x ϕ⎧≠⎪=⎨⎪=⎩(1)确定a ,使()f x 在(),-∞+∞内连续; (2)求()f x '解:(1)连续则必有()()()()()000lim lim00x x x a f f x x ϕϕϕ→→-'====-(2)当0x ≠时()()()2x x x f x xϕϕ'-'=而()()()()()()()20000000limlim limx x x x f x f x x xf x x xϕϕϕϕ→→→'-'--'===--()()()001lim022x x xϕϕϕ→''-''== 所以()()()()2,010,02x x x x x f x x ϕϕϕ'-⎧≠⎪⎪'⎨⎪''=⎪⎩ 2(09)设函数⎪⎩⎪⎨⎧≤->-=-1,1e1,ln )()1(22x x a x x f x b 在点1x =处可导,求,a b 的值.()()()11010f f f =+=-从而()(1)1010(1)0lim lim e10,0b x x x f a -→+→-===-==…………3分()()()10101ln 11(1)limlim 111x x f x f x f x x +→+→+-+-'===--()()()1101011(1)lim lim 11b x x x f x f e f b x x --→-→+--'===--由可导知(1)(1)(1),1f f f b -+'''===……………………………………………………..2分2(06) [本题9分]设()21,0,2,0x e x f x x x ⎧-≠⎪=⎨⎪=⎩,讨论()f x 及()f x '在0x =处的连续性解 因为()()2001lim lim20x x x e f x f x→→-===,故()f x 在0x =处的连续 ()()()2222000012012220lim lim lim lim 202x x x x x x x e f x f e x e x f x x x x→→→→------'=====- 当0x ≠时,()()22221x x xe e f x x--'=()()()22220214,lim limlim 202x x xx x x xe e xe f x f x x→→→--''==== 故()f x '在0x =处连续2 (06) [本题10分]设()f x 在(),a b 连续、可导且()f x '单调增,()0,x a b ∈,()()()()00000,.,f x f x x x x x x f x x xϕ-⎧≠⎪-=⎨⎪'=⎩证明:()x ϕ在(),a b 内也单调增解 因()()()0lim 00x x f ϕϕ→'==,故()x ϕ在0x 处连续()()()()0020()()()f x x x f x f x x x x ϕ'---'=-记()()()()()()()()000,g x f x x x f x f x f x f x x ξξ'''=---=--⎡⎤⎡⎤⎣⎦⎣⎦在x 与0x 之间 当()()()00,,,0x x x x f x f g x ξξ''<<<<> 从而在()0,a x 内()0x ϕ'>。
大一高数一二章复习题
大一高数一二章复习题# 大一高数一二章复习题第一章:极限与连续一、选择题1. 函数 \( f(x) = \frac{x^2 - 1}{x - 1} \) 在 \( x = 1 \) 处的极限是:A. 1B. 0C. 2D. 不存在2. 判断下列函数在 \( x = 0 \) 处是否连续:- \( g(x) = \sin x \)- \( h(x) = x^2 \)- \( i(x) = \frac{1}{x} \)- \( j(x) = |x| \)二、填空题1. 函数 \( f(x) = x^3 - 3x \) 在 \( x = 2 \) 处的导数是________。
2. 函数 \( f(x) = \frac{1}{x} \) 在 \( x = 0 \) 处的极限是________。
三、解答题1. 证明函数 \( f(x) = x^2 \) 在 \( x = 0 \) 处的极限存在,并求其值。
2. 计算 \( \lim_{x \to 2} \frac{x^2 - 4}{x - 2} \)。
第二章:导数与微分一、选择题1. 函数 \( f(x) = x^3 + 2x^2 - 5x \) 的导数是:A. \( 3x^2 + 4x - 5 \)B. \( 3x^2 + 4x + 5 \)C. \( 3x^2 - 4x + 5 \)D. \( 3x^2 + 4x + 5 \)2. 判断下列函数的导数是否正确:- \( f(x) = e^x \) 的导数是 \( e^x \)- \( g(x) = \ln x \) 的导数是 \( \frac{1}{x} \)- \( h(x) = \sin x \) 的导数是 \( \cos x \)- \( i(x) = \frac{1}{x} \) 的导数是 \( -\frac{1}{x^2} \)二、填空题1. 函数 \( f(x) = \ln x \) 的导数是 ________。
高等数学习题及解答 (1)
普通班高数作业(上)第一章 函数1、试判断下列每对函数是否是相同的函数,并说明理由: (2))sin(arcsin x y =与x y =; (4)x y =与2x y =;(6))arctan(tan x y =与x y =; (8))(x f y =与)(y f x =。
解:判断两个函数的定义域和对应法则是否相同。
(2))sin(arcsin x y =定义域不同,因此两个函数不同; (4)x x y ==2,两个函数相同;(6))arctan(tan x y =定义域不同,因此两个函数不同;(8))(x f y =与)(y f x =定义域和对应法则都相同,因此两个函数相同。
2、求下列函数的定义域,并用区间表示:(2)xx x y -+=2; (3)x y x -+=1ln arcsin 21; (7)xey xln 111-+=。
解:(2))0,2[-∈x ;(3)]1,0()0,1[22--⋃-∈e e x ; (7)),(),0(+∞⋃∈e e x 。
3、设⎪⎩⎪⎨⎧<-≥-=0,10,1)(22x x x x x f ,求)()(x f x f -+。
解:按0>x ,0=x ,0<x 时,分别计算得,⎩⎨⎧=-≠=-+0200)()(x x x f x f 。
4、讨论下列函数的单调性(指出其单增区间和单减区间): (2)24x x y -=; (4)x x y -=。
解:(2)22)2(44--=-=x x x y 单增区间为]2,0[,单减区间为]4,2[。
(4)⎩⎨⎧≥<-=-=002x x x x x y ,定义域为实数集,单减区间为),(+∞-∞。
5、讨论下列函数的奇偶性:(2)x x x x f tan 1)(2+-=; (3))1ln()(2x x x f -+=;(6)x x f ln cos )(=; (7)⎩⎨⎧≥+<-=0,10,1)(x x x x x f 。
高数练习题 第一章 函数与极限
‰高等数学(Ⅰ)练习 第一章 函数、极限与连续________系_______专业 班级 姓名______ ____学号_______习题一 函数一.选择题 1.函数216ln 1x xx y -+-=的定义域为 [ D ] (A )(0,1) (B )(0,1)⋃(1,4) (C )(0,4) (D )4,1()1,0(⋃] 2.3arcsin 2lgxx x y +-=的定义域为 [ C ] (A ))2,3(]3,(-⋃-∞ (B )(0,3) (C )]3,2()0,3[⋃- (D )),3(+∞- 3.函数)1ln(2++=x x y 是 [ A ](A )奇函数 (B )非奇非偶函数 (C )偶函数 (D )既是奇函数又是偶函数 4.下列函数中为偶函数且在)0,(-∞上是减函数的是 [ D ](A )222-+=x x y (B ))1(2x y -= (C )||)21(x y = (D ).||log 2x y =二.填空题1. 已知),569(log )3(22+-=x x x f 则=)1(f 22. 已知,1)1(2++=+x x x f 则=)(x f3. 已知xx f 1)(=,x x g -=1)(, 则()=][x g f4. 求函数)2lg(1-+=x y 的反函数5. 下列函数可以看成由哪些基本初等函数复合而成 (1) x y ln tan 2=:(2) 32arcsin lg x y =:__________ _____________________三.计算题1.设)(x f 的定义域为]1,0[, 求)(sin ),(2x f x f 的定义域21x x -+1102()x y x R -=+∈11x -2,tan ,ln ,y u u v v w w ====23,lg ,arcsin ,y v v w w t t x =====2()[11](sin )[2,2]()f x f x k k k Z πππ-+∈的定义域为,的定义域为2.设⎪⎩⎪⎨⎧<<-≤-=2||111||1)(2x x x x x ϕ , 求)23(),21(),1(ϕϕϕ-, 并作出函数)(x y ϕ=的图形.4.已知水渠的横断面为等腰梯形,斜角40=ϕ(图1-22)。
高数(上)第1-7章 复习题(含参考答案)
高数上第一章 复习题1. 计算下列极限:(1)2)1( 321lim nn n -+⋅⋅⋅+++∞→; 解211lim 212)1(lim )1( 321lim 22=-=-=-+⋅⋅⋅+++∞→∞→∞→n n n nn n n n n n .(2)35)3)(2)(1(lim nn n n n +++∞→; 解515)3)(2)(1(lim3=+++∞→n n n n n (分子与分母的次数相同, 极限为最高次项系数之比). 或51)31)(21)(11(lim 515)3)(2)(1(lim3=+++=+++∞→∞→n n n n n n n n n .(3))1311(lim31x x x ---→; 解112lim)1)(1()2)(1(lim )1)(1(31lim )1311(lim 212122131-=+++-=++-+--=++--++=---→→→→x x x x x x x x x x x x x x x x x x x . (4)xx x 1sin lim 20→; 解01sin lim 20=→x x x (当x →0时, x 2是无穷小, 而x1sin 是有界变量).(5)xx x arctan lim ∞→. 解0arctan 1lim arctan lim =⋅=∞→∞→x x x x x x (当x →∞时, x1是无穷小, 而arctan x 是有界变量). (6)145lim1---→x x x x ;解)45)(1(44lim )45)(1()45)(45(lim 145lim111x x x x x x x x x x x x x x x x x +---=+--+---=---→→→214154454lim1=+-⋅=+-=→xx x .(7))(lim22x x x x x --++∞→.解)())((lim)(lim 22222222x x x x x x x x x x x x x x x x x x -++-++--+=--++∞→+∞→1)1111(2lim)(2lim22=-++=-++=+∞→+∞→xx x x x x xx x .(8)xx x sin ln lim 0→;解 01ln )sin lim ln(sin lnlim 00===→→x xxx x x .(9)2)11(lim xx x+∞→;解[]e e xx x x xx ==+=+∞→∞→21212)11(lim )11(lim(10))1(lim 2x x x x -++∞→; 解 )1()1)(1(lim)1(lim 2222x x x x x x x x x x x x ++++-+=-++∞→+∞→ 211111lim 1lim22=++=++=+∞→+∞→x x x x x x . (11)1)1232(lim +∞→++x x x x ;解 2121211)1221(lim )1221(lim )1232(lim ++∞→+∞→+∞→++=++=++x x x x x x x x x x 21212)1221()1221(lim ++++=+∞→x x x x e x x x x x =++⋅++=∞→+∞→21212)1221(lim )1221(lim .(12)30sin tan lim x x x x -→; 解 xx x x x x x x x x x x x cos )cos 1(sin lim )1cos 1(sin lim sin tan lim 303030-=-=-→→→ 21)2(2lim cos 2sin 2sin lim320320=⋅=⋅=→→x x x x x x x x x (提示: 用等价无穷小换) . 2. 证明: 当x →0时, arctan x ~x ;证明 因为1tan lim arctan lim0==→→yyxxy x (提示: 令y =arctan x , 则当x →0时, y →0),所以当x →0时, arctan x ~x .3. 下列函数在指出的点处间断, 说明这些间断点属于哪一类, 如果是可去间断点, 则补充或改变函数的定义使它连续: (1)23122+--=x x x y , x =1, x =2;(2)x x y tan =, x =k , 2ππ+=k x(k =0, ±1, ±2, ⋅ ⋅ ⋅);解(1))1)(2()1)(1(23122---+=+--=x x x x x x x y . 因为函数在x =2和x =1处无定义, 所以x =2和x =1是函数的间断点. 因为∞=+--=→→231lim lim 2222x x x y x x , 所以x =2是函数的第二类间断点;因为2)2()1(lim lim 11-=-+=→→x x y x x , 所以x =1是函数的第一类间断点, 并且是可去间断点. 在x =1处, 令y =-2, 则函数在x =1处成为连续的. (2)函数在点x =k π(k ∈Z)和2ππ+=k x (k ∈Z)处无定义, 因而这些点都是函数的间断点. 因∞=→x xk x tan limπ(k ≠0), 故x =k π(k ≠0)是第二类间断点;因为1tan lim0=→xxx , 0tan lim2=+→xxk x ππ(k ∈Z), 所以x =0和2ππ+=k x (k ∈Z) 是第一类间断点且是可去间断点.令y |x =0=1, 则函数在x =0处成为连续的;令2ππ+=k x 时, y =0, 则函数在2ππ+=k x 处成为连续的.4. 设函数⎩⎨⎧≥+<=00 )(x x a x e x f x 应当如何选择数a , 使得f (x )成为在(-∞,+∞)内的连续函数?解 要使函数f (x )在(-∞, +∞)内连续, 只须f (x )在x =0处连续, 即只须a f x f x f x x ===+→-→)0()(lim )(lim 0.因为1lim )(lim 00==-→-→x x x e x f , a x a x f x x =+=+→+→)(lim )(lim 0, 所以只须取a =1.5. 证明方程x =a sin x +b , 其中a >0, b >0, 至少有一个正根, 并且它不超过a +b .证明 设f (x )=a sin x +b -x , 则f (x )是[0, a +b ]上的连续函数. f (0)=b , f (a +b )=a sin (a +b )+b -(a +b )=a [sin(a +b )-1]≤0.若f (a +b )=0, 则说明x =a +b 就是方程x =a sin x +b 的一个不超过a +b 的根;若f (a +b )<0, 则f (0)f (a +b )<0, 由零点定理, 至少存在一点ξ∈(0,a +b ), 使f (ξ)=0, 这说明x =ξ 也是方程x =a sin x +b 的一个不超过a +b 的根.总之, 方程x =a sin x +b 至少有一个正根, 并且它不超过a +b .6. 证明()11 2111lim 222=++⋅⋅⋅++++∞→nn n n n . 证明 因为()11 211122222+≤++⋅⋅⋅++++≤+n n n n n n n n n , 且 1111lim lim2=+=+∞→∞→nn n n n n , 1111lim 1lim 22=+=+∞→∞→n n n n n , 所以()11 2111lim 222=++⋅⋅⋅++++∞→nn n n n . 7. 已知f (x )=⎩⎨⎧≥<0 0sin x x x x , 求f '(x ) .解 当x <0时, f (x )=sin x , f '(x )=cos x ; 当x >0时, f (x )=x , f '(x )=1;因为 f -'(0)=10sin lim )0()(lim00=-=--→-→xx x f x f x x , f +'(0)=10lim )0()(lim00=-=-+→+→x x x f x f x x , 所以f '(0)=1, 从而f '(x )=⎩⎨⎧≥<0 10cos x x x . 8*、证明: 函数xxy 1sin 1=在区间(0, 1]上无界, 但这函数不是当x →0+时的无穷大.证明 函数xxy 1sin 1=在区间(0, 1]上无界. 这是因为∀M >0, 在(0, 1]中总可以找到点x k , 使y (x k )>M . 例如当221ππ+=k x k (k =0, 1, 2, ⋅ ⋅ ⋅)时, 有22)(ππ+=k x y k ,当k 充分大时, y (x k )>M .当x →0+ 时, 函数xxy 1sin 1=不是无穷大. 这是因为∀M >0, 对所有的δ>0, 总可以找到这样的点x k , 使0<x k <δ, 但y (x k )<M . 例如可取πk x k 21=(k =0, 1, 2, ⋅ ⋅ ⋅),当k 充分大时, x k <δ, 但y (x k )=2k πsin2k π=0<M .第二章 复习题1. 求下列函数的导数: (1) y =ln(1+x 2); 解 222212211)1(11xx x x x x y +=⋅+='+⋅+='.(2) y =sin 2x ;解 y '=2sin x ⋅(sin x )'=2sin x ⋅cos x =sin 2x .(3)22x a y -=;解[]22212222121222122)2()(21)()(21)(xa x x x a x a x a x a y --=-⋅-='-⋅-='-='--.(4)xx y ln 1ln 1+-=;解 22)ln 1(2)ln 1(1)ln 1()ln 1(1x x x x x x xy +-=+--+-='.(5)xx y 2sin =;解222sin 2cos 212sin 22cos xx x x x x x x y -=⋅-⋅⋅='.(6)x y arcsin =;解2222121)(11)()(11x x x x x x y -=⋅-='⋅-='.(7))ln(22x a x y ++=;解])(211[1)(12222222222'+++⋅++='++⋅++='x a x a x a x x a x x a x y 2222221)]2(211[1x a x x a x a x +=++⋅++=.(8)xx y +-=11arcsin .解 )1(2)1(1)1()1()1(1111)11(11112x x x x x x xx x x x x y -+-=+--+-⋅+--='+-⋅+--='.(9)xx y -+=11arctan ;解222211)1()1()1()11(11)11()11(11x x x x xx x x x x y +=-++-⋅-++='-+⋅-++='.(10)x x x y tan ln cos 2tan ln ⋅-=; 解)(tan tan 1cos tan ln sin )2(tan 2tan 1'⋅⋅-⋅+'⋅='x x x x x x x yx x x x x x x x x tan ln sin sec tan 1cos tan ln sin 212sec 2tan 122⋅=⋅⋅-⋅+⋅⋅.(11))1ln(2x x e e y ++=;解xx x x x x x x x x x e ee e e e e e e e e y 2222221)122(11)1(11+=++⋅++='++⋅++='.2. 求下列函数的n 阶导数的一般表达式: (1) y =sin 2 x ;解y '=2sin x cos x =sin2x , )22sin(22cos 2π+==''x x y ,)222sin(2)22cos(222ππ⋅+=+='''x x y ,)232sin(2)222cos(233)4(ππ⋅+=⋅+=x x y , ⋅ ⋅ ⋅,]2)1(2sin[21)(π⋅-+=-n x y n n .(2) y =x ln x ;解1ln +='x y ,11-==''x xy , y '''=(-1)x -2, y (4)=(-1)(-2)x -3, ⋅ ⋅ ⋅,y (n )=(-1)(-2)(-3)⋅ ⋅ ⋅(-n +2)x -n +1112)!2()1()!2()1(-----=--=n n n n xn xn . (3) y =x e x .解 y '=e x +xe x ,y ''=e x +e x +xe x =2e x +xe x , y '''=2e x +e x +xe x =3e x +xe x , ⋅ ⋅ ⋅,y (n )=ne x +xe x =e x (n +x ) .3. 求方程y =1+xe y 所确定的隐函数的二阶导数22dxyd .解 方程两边求导数得 y '=e y +x e y y ', ye y e xe e y yy y y -=--=-='2)1(11,3222)2()3()2()3()2()()2(y y e y y y e y y e y y e y y y y y --=-'-=-'---'=''.4. 求参数方程⎩⎨⎧-=+=t t y t x arctan )1ln(2所确定的函数的三阶导数33dxyd :解t tt t t t t dx dy 2112111])1[ln()arctan (222=++-='+'-=,t t tt t dx yd 4112)21(2222+=+'=,3422338112)41(tt t t t t dx yd -=+'+=. 5. 注水入深8m 上顶直径8m 的正圆锥形容器中, 其速率为4m 2/min . 当水深为5m 时, 其表面上升的速度为多少?解 水深为h 时, 水面半径为h r 21=, 水面面积为π241h S =,水的体积为3212413131h h h hS V ππ=⋅==,dtdh h dt dV ⋅⋅=2312π, dtdVh dt dh ⋅=24π.已知h =5(m ),4=dtdV (m 3/min), 因此πππ2516425442=⋅=⋅=dt dV h dt dh (m/min).6. 求下列函数的微分: (1)21arcsin x y -=;解 dx xx x dx x x dx x dx y dy 22221||)12()1(11)1(arcsin --=--⋅--='-='=.(2) y =tan 2(1+2x 2); 解dy =d tan 2(1+2x 2)=2tan(1+2x 2)d tan(1+2x 2)=2tan(1+2x 2)⋅sec 2(1+2x 2)d (1+2x2)=2tan(1+2x 2)⋅sec 2(1+2x 2)⋅4x dx =8x ⋅tan(1+2x 2)⋅sec 2(1+2x 2)dx . (3)2211arctan xx y +-=;解)11()11(1111arctan 2222222x x d x x x x d dy +-+-+=+-=dx x x dx x x x x x xx 4222222214)1()1(2)1(2)11(11+-=+--+-⋅+-+=. 7. 讨论函数⎪⎩⎪⎨⎧=≠=000 1sin )(x x xx x f 在x =0处的连续性与可导性.解 因为f (0)=0, )0(01sin lim )(lim 00f xx x f x x ===→→, 所以f (x )在x =0处连续; 因为极限xx x x x f x f x x x 1sin lim 01sin lim )0()(lim000→→→=-=-不存在, 所以f (x )在x =0处不导数.第三章 复习题1. 验证罗尔定理对函数y =ln sin x 在区间]65 ,6[ππ上的正确性.解 因为y =ln sin x 在区间]65 ,6[ππ上连续, 在)65 ,6(ππ内可导, 且)65()6(ππy y =, 所以由罗尔定理知, 至少存在一点)65 ,6(ππξ∈, 使得y '(ξ)=cotξ=0.由y '(x )=cot x =0得)65 ,6(2πππ∈.因此确有)65 ,6(2πππξ∈=, 使y '(ξ)=cot ξ=0.2. 证明: 若函数.f (x )在(-∞, +∞)内满足关系式f '(x )=f (x ), 且f (0)=1则f (x )=e x .证明 令x ex f x )()(=ϕ, 则在(-∞, +∞)内有0)()()()()(2222≡-=-'='xx x x e e x f e x f e e x f e x f x ϕ, 所以在(-∞, +∞)内ϕ(x )为常数. 因此ϕ(x )=ϕ(0)=1, 从而f (x )=e x . 3. 用洛必达法则求下列极限:(1)xe e xx x sin lim0-→-;解2cos lim sin lim 00=+=--→-→xe e x e e x x x x x x . (2)22)2(sin ln lim x x x -→ππ;解 812csc lim 41)2()2(2cot lim )2(sin ln lim 22222-=---=-⋅-=-→→→x x x x xx x x πππππ.(3)xx x x cos sec )1ln(lim20-+→;解 x x xx x x x x x x x 22022020cos 1lim cos 1)1ln(cos lim cos sec )1ln(lim -=-+=-+→→→(注: cos x ⋅ln(1+x 2)~x 2)1sin lim )sin (cos 22lim00==--=→→xxx x x x x .4. 证明不等式 :当x >0时, 221)1ln(1x x x x +>+++;解 设221)1ln(1)(x x x x x f +-+++=, 则f (x )在[0, +∞)内是连续的.因为0)1ln(1)11(11)1ln()(22222>++=+-++⋅++⋅+++='x x xx xx xx x x x x f ,所以f (x )在(0, +∞)内是单调增加的, 从而当x >0时f (x )>f (0)=0, 即 01)1ln(122>+-+++x x x x ,也就是221)1ln(1x x x x +>+++.5. 判定曲线y =x arctan x 的凹凸性: 解21arctan xx x y ++=',22)1(2x y +=''.因为在(-∞, +∞)内, y ''>0, 所以曲线y =x arctg x 在(-∞, +∞)内是凹的.6. 求下列函数图形的拐点及凹或凸的区间: (1) y =xe -x ;解 y '=e -x -x e -x , y ''=-e -x -e -x +x e -x =e -x (x -2). 令y ''=0, 得x =2. 因为当x <2时, y ''<0; 当x >2时, y ''>0, 所以曲线在(-∞, 2]内是凸的, 在[2, +∞)内是凹的, 拐点为(2, 2e -2). (2) y =ln(x 2+1); 解122+='x x y ,22222)1()1)(1(2)1(22)1(2++--=+⋅-+=''x x x x x x x y . 令y ''=0, 得x 1=-1, x 2=1.列表得可见曲线在(-∞, -1]和[1, +∞)内是凸的,在[-1, 1]内是凹的, 拐点为(-1, ln2)和(1, ln2).7. 设f (x )在[0, a ]上连续, 在(0, a )内可导, 且f (a )=0, 证明存在一点ξ∈(0, a ), 使f (ξ)+ξf '(ξ)=0.证明 设F (x )=xf (x ), 则F (x )在[0, a ]上连续, 在(0, a )内可导, 且F (0)=F (a )=0. 由罗尔定理, 在(0, a )内至少有一个点ξ , 使F (ξ )=0. 而F (x )=f (x )+x f '(x ), 所以f (ξ)+ξf '(ξ)=0. 8. 求数列}{n n 的最大项. 解 令xx x x x f 1)(==(x >0), 则x x x f ln 1)(ln =,)ln 1(1ln 11)()(1222x xx x x x f x f -=-='⋅,)ln 1()(21x x x fx -='-.令f '(x )=0, 得唯一驻点x =e .因为当0<x <e 时, f '(x )>0; 当x >e 时, f '(x )<0, 所以唯一驻点x =e为最大值点.因此所求最大项为333max{ .,2}3第四、五、六章 复习题1. 求下列不定积分: (1)⎰dx e x x 3; 解C e C e e dx e dx e xx x xxx++=+==⎰⎰13ln 3)3ln()3()3(3.(2)⎰+++dx x x x 1133224;解 C x x dx x x dx x x x ++=++=+++⎰⎰arctan )113(1133322224.(3)⎰dt tt sin;解 ⎰⎰+-==C t t d t dt t t cos 2sin2sin .(4)⎰-+dx e e xx 1; 解 ⎰-+dx e e xx 1C e de e dx e e xx xx x +=+=+=⎰⎰arctan 11122.(5)⎰--dx xx 2491;解 dx xx dx xdx xx ⎰⎰⎰---=--22249491491)49(49181)32()32(1121222x d x x d x --+-=⎰⎰C x x +-+=2494132arcsin 21. (6)⎰-+dx x x )2)(1(1;解 C x x C x x dx x x dx x x ++-=++--=+--=-+⎰⎰|12|ln 31|1|ln |2|(ln 31)1121(31)2)(1(1. (7)⎰-12x x dx ;解 C xC t dt tdt t t t tx x x dx+=+==⋅⋅=-⎰⎰⎰1arccos tan sec tan sec 1sec 12令.或 C x x d x dx x x x x dx +=--=-=-⎰⎰⎰1arccos 111111112222.(8)⎰-dx xx 92; 解 ⎰⎰⎰=-=-tdt t d tt t x dx x x 222tan 3)sec 3(sec 39sec 9sec 39令C x x C t t dt t+--=+-=-=⎰3arccos 393tan 3)1cos 1(322.(9) ⎰-xdx e x cos ; 解 因为⎰⎰⎰⎰------+=-==xdx e x e xde x e x d e xdx e x x x x x x sin sin sin sin sin cos ⎰⎰-----+-=-=xx x x x xde x e x e x d e x e cos cos sin cos sin⎰-----=xdx e x e x e x x x cos cos sin ,所以 C x x e C x e x e xdx e x x x x +-=+-=----⎰)cos (sin 21)cos sin (21cos .(10)⎰dx x 2)(arcsin ;解 ⎰⎰-⋅⋅-=dx xx x x x dx x 22211arcsin 2)(arcsin )(arcsin⎰-+=221arcsin 2)(arcsin x xd x x⎰--+=dx x x x x 2arcsin 12)(arcsin 22C x x x x x +--+=2arcsin 12)(arcsin 22.(11)⎰xdx e x 2sin .解 ⎰⎰⎰-=-=xdx e e dx x e xdx e x x x x 2cos 2121)2cos 1(21sin 2,而 dx x e x e xde xdx e x x x x ⎰⎰⎰+==2sin 22cos 2cos 2cos⎰⎰-+=+=xdx e x e x e de x x e x x x x x 2cos 42sin 22cos 2sin 22cos ,C x x e xdx e x x ++=⎰)2sin 22(cos 512cos , 所以 C x x e e xdx e x x x ++-=⎰)2sin 22(cos 10121sin 2(12)dx x x )1(12+⎰;解 C x x dx x x x dx x x ++-=+-=+⎰⎰)1ln(21||ln )11()1(1222.2. 一曲线通过点(e 2, 3), 且在任一点处的切线的斜率等于该点横坐标的倒数, 求该曲线的方程.解 设该曲线的方程为y =f (x ), 则由题意得 xx f y 1)(='=',所以C x dx xy +==⎰||ln 1.又因为曲线通过点(e 2, 3), 所以有=3-2=1 3=f (e 2)=ln|e 2|+C =2+C , C =3-2=1. 于是所求曲线的方程为 y =ln|x |+1.3. 设f (x )在[a , b ]上连续, 在(a , b )内可导且f '(x )≤0, ⎰-=xadt t f a x x F )(1)(.证明在(a , b )内有F '(x )≤0.证明 根据积分中值定理, 存在ξ∈[a , x ], 使))(()(a x f dt t f x a -=⎰ξ. 于是有))(()(1)(1)(1)()(1)(22a x f a x x f a x x f a x dt t f a x x F xa----=-+--='⎰ξ)]()([1ξf x f ax --=.由f '(x )≤0可知f (x )在[a , b ]上是单调减少的, 而a ≤ξ≤x , 所以f (x )-f (ξ)≤0. 又在(a , b )内, x -a >0, 所以在(a , b )内0)]()([1)(≤--='ξf x f ax x F .4. 计算下列定积分:(1)⎰-πθθ03)sin 1(d ;解 ⎰⎰⎰⎰-+=+=-πππππθθθθθθθθ02002003cos )cos 1(cos sin )sin 1(d d d d34)cos 31(cos 03-=-+=πθθππ.(2)dx x ⎰-2022; 解 dt t tdt t tx dxx ⎰⎰⎰+=⋅=-2020202)2cos 1(cos 2cos 2sin 22ππ令2)2sin 21(20ππ=+=t t .6. 求由摆线x =a (t -sin t ), y =a (1-cos t )的一拱(0≤t ≤2π)与横轴 所围成的图形的面积.解:所求的面积为⎰⎰⎰-=--==a a a dt t a dt t a t a ydx A 20222020)cos 1()cos 1()cos 1(ππ22023)2cos 1cos 21(a dt t t a a=++-=⎰.7. 证明 由平面图形0≤a ≤x ≤b , 0≤y ≤f (x )绕y 轴旋转所成的旋转体的体积为⎰=ba dx x xf V )(2π.证明 如图, 在x 处取一宽为dx 的小曲边梯形, 小曲边梯形绕y 轴旋转所得的旋转体的体积近似为2πx ⋅f (x )dx , 这就是体积元素, 即 dV =2πx ⋅f (x )dx ,于是平面图形绕y 轴旋转所成的旋转体的体积为 ⎰⎰==ba ba dx x xf dx x xf V )(2)(2ππ.8. 利用题7的结论, 计算曲线y =sin x (0≤x ≤π)和x 轴所围成的图形绕y 轴旋转所得旋转体的体积.解 20002)sin cos (2cos 2sin 2πππππππ=+-=-==⎰⎰x x x x xd xdx x V . 9. 求心形线ρ=a (1+cos θ )的全长. 解 用极坐标的弧长公式.θθθθθρθρππd a a d s ⎰⎰-++='+=0222022)sin ()cos 1(2)()(2 a d a 82cos 40==⎰πθθ.第七章 复习题1、设m =3i +5j +8k , n =2i -4j -7k 和p =5i +j -4k . 求向量a =4m +3n -p 在x 轴上的投影及在y 轴上的分向量.解 因为a =4m +3n -p =4(3i +5j +8k )+3(2i -4j -7k )-(5i +j -4k )=13i +7j +15k , 所以a =4m +3n -p 在x 轴上的投影为13, 在y 轴上的分向量7j . 2. 设a =3i -j -2k ,b =i +2j -k , 求(1)a ⋅b 及a ⨯b ; (2)(-2a )⋅3b 及a ⨯2b ; (3)a 、b 夹角的余弦.解 (1)a ⋅b =3⨯1+(-1)⨯2+(-2)⨯(-1)=3,k j i kj i b a 75121 213++=---=⨯.(2)(-2a )⋅3b =-6a ⋅b = -6⨯3=-18, a ⨯2b =2(a ⨯b )=2(5i +j +7k )=10i +2j +14k . (3)21236143||||||) ,cos(^==⋅=b a b a b a .3. 设a 、b 、c 为单位向量, 且满足a +b +c =0, 求a ⋅b +b ⋅c +c ⋅a . 解 因为a +b +c =0, 所以(a +b +c )⋅(a +b +c )=0, 即 a ⋅a +b ⋅b +c ⋅c +2a ⋅b +2a ⋅c +2c ⋅a =0, 于是23)111(21)(21-=++-=⋅+⋅+⋅-=⋅+⋅+⋅c c b b a a a c c b b a .4、设已知向量a =2i -3j +k , b =i -j +3k 和c =i -2j , 计算: (1)(a ⋅b )c -(a ⋅c )b ; (2)(a +b )⨯(b +c ); (3)(a ⨯b )⋅c .解 (1)a ⋅b =2⨯1+(-3)⨯(-1)+1⨯3=8, a ⋅c =2⨯1+(-3)⨯(-2)=8, (a ⋅b )c -(a ⋅c )b =8c -8b =8(c -b )=8[(i -2j )-(i -j +3k )]=-8j -24k .(2)a +b =3i -4j +4k , b +c =2i -3j +3k ,k j k j i c b b a --=--=+⨯+332443)()(. (3)k j i k j i b a +--=--=⨯58311132,(a ⨯b )⋅c =-8⨯1+(-5)⨯(-2)+1⨯0=2.5、一平面过点(1, 0, -1)且平行于向量a =(2, 1, 1)和b =(1, -1, 0), 试求这平面方程.解 所求平面的法线向量可取为k j i k j i b a n 3011112-+=-=⨯=,所求平面的方程为(x -1)+(y -0)-3(z +1)=0, 即x +y -3z -4=0.6、用对称式方程及参数方程表示直线⎩⎨⎧=++=+-421z y x z y x . 解 平面x -y +z =1和2x +y +z =4的法线向量为n 1=(1, -1, 1), n 2=(2, 1,1), 所求直线的方向向量为k j i k j i n n s 3211211121++-=-=⨯=.在方程组⎩⎨⎧=++=+-421z y x z y x 中, 令y =0, 得⎩⎨⎧=+=+421z x z x , 解得x =3, z =-2. 于是点(3, 0, -2)为所求直线上的点.所求直线的对称式方程为32123+==--z y x ;参数方程为x =3-2t , y =t , z =-2+3t .7、求直线⎩⎨⎧=---=+-0923042z y x z y x 在平面4x -y +z =1上的投影直线的方程. 解 过直线⎩⎨⎧=---=+-0923042z y x z y x 的平面束方程为 (2+3λ)x +(-4-λ)y +(1-2λ)z -9λ=0.为在平面束中找出与已知平面垂直的平面, 令(4 -1, 1)⋅(2+3λ, -4-λ, 1-2λ)=0, 即4⋅(2+3λ)+(-1)⋅(-4-λ)+1⋅(1-2λ)=0. 解之得1113-=λ. 将1113-=λ代入平面束方程中, 得 17x +31y -37z -117=0.故投影直线的方程为⎩⎨⎧=--+=+-011737311714z y x z y x . 8、设3||=a , |b |=1, 6) ,(^π=b a , 求向量a +b 与a -b 的夹角.解 |a +b |2=(a +b )⋅(a +b )=|a |2+|b |2+2a ⋅b =|a |2+|b |2+2|a |⋅|b |cos(a ,^ b )76cos 3213=++=π,|a -b |2=(a -b )⋅(a -b )=|a |2+|b |2-2a ⋅b =|a |2+|b |2-2|a |⋅|b |cos(a ,^ b )16cos 3213=-+=π.设向量a +b 与a -b 的夹角为θ, 则721713||||||||||||)()(cos 22=⋅-=-⋅+-=-⋅+-⋅+=b a b a b a b a b a b a b a θ, 72arccos =θ.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
反之不然.
例如 f (x ) = x cos x 在(− ∞,+∞ ) 无界, 而当 x → +∞时, f ( x ) 不是无穷大. M ∀M > 0, 取x1 = 2kπ ∈ (− ∞,+∞ ), k ∈ N , k > , 2π f ( x1 ) = 2kπ cos 2kπ = 2kπ > M . 故无界. 若取 x = 2kπ +
2. lim f ( x ) = f ( x 0 );
x → x0
3.ε − δ 形式: ∀ε > 0, ∃δ > 0,当 x − x 0 < δ时 , 恒有 f ( x ) − f ( x0 ) < ε .
(三)间断点及其分类 满足以下三条之一 x0 为 f ( x ) 的间断点: (1)在x0 处没有定义; lim f ( x ) 不存在; (2) x →x
∞ (1 1.幂指函数 未定式)
+ [ ]) = e . 第二个重要极限 [lim(1 ]→ 0
1 []
2.代入法 3.等价无穷小替换 4.无穷小的运算性质 5.极限四则运算法则
(往往需要先作某些恒等式的变形或化简, 需要先作某些恒等式的变形或化简,比如使用某些求和公式, 比如使用某些求和公式,求
积公式, 积公式,公式的约分或通分, 公式的约分或通分,分子分母有理化, 分子分母有理化,三角函数的恒等 变形以及适当的变量代换等)
3.解 原式 = lim
x →∞
( x + 1 − x − 1)( x + 1 + x − 1) x +1 + x −1 1 x2 + 1 + x2 −1 =0
2 2
2
2
2
2
= lim
x →∞
小结:当利用极限的四则运算法则时, 当利用极限的四则运算法则时,要注意是否 满足条件。 满足条件。因此, 因此,往往需要先作某些恒等式的变形 或化简, 或化简,比如使用某些求和公式, 比如使用某些求和公式,求积公式, 求积公式,公式 的约分或通分, 的约分或通分,分子分母有理化, 分子分母有理化,三角函数的恒等 变形以及适当的变量代换等。 变形以及适当的变量代换等。 请注意利用求有理分式函数的极限公式
.
2cx x −c
使用重要极限时, 使用重要极限时,请注意结构的一致性, 请注意结构的一致性,即
lim
sin
=1
(
为无穷小);
lim(1 + ) = e ( 为无穷大)
或
1
1
lim(1 + α )α = e (α 为无穷小).
1 1 6.lim( x sin + sin x) x →0 x x
x arctan 2 7.lim 2 x → 0 x sin x 2
a0 b ,n = m 0 + am = 0, n > m (*) + bn ∞, n < m
a0 x m + a1 x m −1 + lim x →∞ b x n + b x n −1 + 0 1
x + 2 ) ( 3x − 6 ) ( (1) lim 17 x →∞ ( 2 x + 1)
n
{
}
(2)若{x n }恒正或恒负,则{xn } 与{ xn } 同敛散. (3)若 lim x = 0 则 lim x = 0 (以后常用).
n →∞ n n →∞ n
n→ ∞
n→ ∞
xn + 1 xn+1 lim 2.若 2.若 lim xn = a , 则 lim = n→∞ = 1,对吗? 对吗? n →∞ n →∞ x lim xn n n →∞ 答:不对. 在用商的极限法则时,分母的极限不能为零, 故当 a ≠ 0 时,结论正确. 当 a = 0 时,可能存在(未必是1 ),也可能不存
6.对于分段函数,在分段点处的极限必须利 用左右极限来确定极限是否存在.
ln( 2 + x ) + 2 sin x 1.lim x→0 cos x
x+c 2. lim x →∞ x − c
x
sin x 3.lim 2 x →∞ x
x arctan 2 4.lim 2 x →0 x sin x 2
4
5. lim tan 3 x ⋅ sin(
x→
π
6
π
− x)
6
3
6.lim
x →1
x −1 x −1
2 2
7. lim( x + 1 − x − 1)
x →∞
(三)连续 1.理解函数在一点和在区间上连续的概念, 明确连续定义的三个要素. 2.了解间断点的概念,会判断间断点的类型. 3.了解初等函数的连续性和闭区间上连续 函数的最大值和最小值定理和介值定理, 并会一些简单的应用.
二 要点提示
(一)求极限的方法:
1.利用极限的四则运算法则(有时需要先对函数作 变量代换,恒等变形,如通分或有理化等); 2.利用两个重要极限: sin x 1 x lim = 1, lim (1 + ) = e x→0 x→∞ x x 3.利用极限存在的两个准则(夹逼准则,单调有
t 2 −1 (t − 1)(t + 1) t +1 2 故 原式 = lim 3 = lim = lim 2 = 2 t →1 t − 1 t →1 (t − 1)(t + t + 1) t →1 t + t + 1 3
1 − an 1− b 1 − a 1.解 原式 = lim = n 2 n →∞ 1 − b 1− a 1− b
n 1 + (− 1)n 1 + (− 1) = 0, , lim 在.例如 {xn } = n →∞ n n
xn +1 n 1 + (− 1) = lim . 但 lim n →∞ x n →∞ n + 1 1 + (− 1)n n
n +1
不存在.
xn +1 1 n +1 1 {xn } = , lim = 0, lim = lim = 1. n →∞ x n →∞ n n n →∞ n n
界准则);
4.利用无穷小的性质 (1)无穷小与无穷大的关系; (2)无穷小与有界量的乘积仍是无穷小; (3)等价无穷小代换; 常用的等价无穷小: 当 x → 0 时,
sin x ~ x , arcsin x ~ x , tan x ~ x , arctan x ~ x , ln(1 + x ) ~ x , e − 1 ~ x , 1 1 2 x n 1 − cos x ~ x ,(1 + x ) − 1 ~ 2 n
4
1 1 6.解 原式 = lim x sin + lim sin x = 0 + 1 = 1 x →0 x x →0 x
其中第二个极限是第一个重要极限,而第一个极限利用 无穷小的性质,无穷小量乘以有界函数仍是无穷小 . 时
,
x x arctan ∼ sin x ∼ x , 7.解当x → 0时, 2 2 4 4
(二)极限 1.理解极限的概念,明确变量的极限是描述 变量的某种变化趋势的. 2.了解极限的性质(唯一性,有界性和保号性) 及极限存在的两个准则(夹逼、 夹逼、单调有界). 3.掌握极限的四则运算法则和两个重要极 限,并会利用它们求极限. 4.了解无穷小与无穷大的概念和性质,会用 等价无穷小求极限.
四 典型题目
1+ a + a + 1.求 lim n →∞ 1 + b + b 2 +
3
2
+a , 其中 | a |< 1,| b |< 1 2 n −1 +b
n −1
2.lim
x →1
x −1 x −1
。
3. lim( x 2 + 1 − x 2 − 1)
x →∞
2.解 令 6 x = t,则当x → 0时,t → 0,
答:对. 利用极限的四则运算法则,结论正确. 该结论经常用于求待定系数.
ex + a 例如 lim = 1, 求a的值. x →0 x
由条件 lim(e + a) = 0, 故a = −1.
x →0
x
类似的结论还有 lim f ( x ) g( x ) = a(a ≠ ∞ ), 且 lim g( x ) = ∞ , 则 lim f ( x ) = 0.
π
6
− t 当x →
π
6
t → 0,则 时,
3t 1 sin t 1 原式 = lim cot 3t sin t = lim cos 3t = t →0 t →0 sin 3t 3 t 3
x −c 2 c 2c 2c 2c 5.解1.原式=lim 1 + = lim 1 + =e x→∞ x→∞ x −c x−c x c x c c ⋅c (1 + ) lim(1 + ) c e →∞ x 2c x = x 解2.原式= lim = = e x −c x →∞ c x − ⋅( − c ) e c (1 − ) lim(1 − ) c x →∞ x x x −c 2cx ⋅ 2 c x −c
ln( 2 + x ) + 2 sin x 8.lim x→0 cos x ln 2 + 0 解 原式 = = ln 2 1
lim f ( x) lim 注:利用“ 利用“初等函数的连续性” 初等函数的连续性”求极限
x → x.0