第3章 流体运动学下--计算流体力学
流体力学习题及答案-第三章
第三章 流体运动学3-1粘性流体平面定常流动中是否存在流函数? 答:对于粘性流体定常平面流动,连续方程为:()()0=∂∂+∂∂yv x u ρρ; 存在函数:v t y x P ρ-=),,(和()u t y x Q ρ=,,,并且满足条件:()()yP x Q ∂∂=∂∂。
因此,存在流函数,且为:()()()dy u dx v Qdy Pdx t y x ρρψ+-=+=⎰⎰,,。
3-2轴对称流动中流函数是否满足拉普拉斯方程?答:如果流体为不可压缩流体,流动为无旋流动,那么流函数为调和函数,满足拉普拉斯方程。
3-3 就下面两种平面不可压缩流场的速度分布分别求加速度。
(1)22222 ,2yx ym v y x x m u +⋅=+⋅=ππ (2)()()()222222222 ,yxKtxyv yxx y Kt u +-=+-=,其中m ,K 为常数。
答:(1)流场的加速度表达式为:yv v x v u t v a y u v x u u t u a x ∂∂+∂∂+∂∂=∂∂+∂∂+∂∂=y ,。
由速度分布,可以计算得到:0 ,0=∂∂=∂∂tvt u ,因此: ()222222y x x y m x u +-⋅=∂∂π,()22222y x xy m y u +-⋅=∂∂π;()22222y x xy m x v +-⋅=∂∂π,()222222y x y x m y v +-⋅=∂∂π。
代入到加速度表达式中:()()()22222222222222222222220y x x m y x xym y x y m y x x y m y x x m a x +⋅⎪⎭⎫⎝⎛-=+-⋅⋅+⋅++-⋅⋅+⋅+=πππππ()()()22222222222222222222220y x y m y x y x m y x y m y x xym y x x m a y +⋅⎪⎭⎫⎝⎛-=+-⋅⋅+⋅++-⋅⋅+⋅+=πππππ(2)由速度分布函数可以得到:()()()322222222 ,y x Kxyt v y x x y K t u +-=∂∂+-=∂∂ ()()3222232y x y x Ktx x u +-⋅=∂∂,()()3222232y x y x Kty y u +-⋅=∂∂; ()()3222232y x x y Kty x v +-⋅-=∂∂,()()3222232yx y x Ktx y v +-⋅-=∂∂。
流体力学(流体运动学)
随时间的变化率,称为当地加速度(时变加速度)。后三项之和 则表示流体质点在同一时间内,因坐标位置变化而形成的加速度, 称为位变加速度(迁移加速度)。
同理可得:
ห้องสมุดไป่ตู้
ay =
duy dt
=
∂uy ∂t
+ ux
∂uy ∂x
+ uy
∂uy ∂y
+ uz
∂uy ∂z
du z ∂u z ∂u z ∂u z ∂u z az = = + ux + uy + uz dt ∂t ∂x ∂y ∂z
三、一维、二维、三维流动 一维、二维、
流体的运动要素是空间坐标和时间的函数。按照流体运动要素 与空间坐标有关的个数(维数),可以把流体分为一维流、二维流 、三维流。 一维(一元)流动,若流场中的运动参数仅与一个空间自变量 有关,这种流动称为一维流动。即
u = u ( x, t)
之为二维流动。
p = p ( x, t )
∂u x =0 ∂t ∂t
∂u y ∂t ∂t
=0
∂u z =0 ∂t ∂t
∂p =0 ∂t ∂t
其速度和压强表示为:
u x = u x ( x, y , z )
u y = u y ( x, y, z )
u z = u z ( x, y, z )
p = p ( x, y, z )
若流场的流动参数的全部或其中之一与时间变化有关,即随时 间变化而改变,则这类流场的流动称为非恒定流,其速度和压强的 描述为
第三章
流体运动学
流体运动的描述方法 流场的基本概念 流体微团的运动 连续性方程
引言
静止(包括相对静止) 静止(包括相对静止)是流体的一种特殊的 存在形态,运动(或流动) 存在形态,运动(或流动)才是流体更普遍的存 在形态,也更能反映流体的本质特征。 在形态,也更能反映流体的本质特征。因此相对 流体静力学而言, 流体静力学而言,研究流体的运动规律及其特征 具有更加深刻的意义。这也为流体动力学——研 具有更加深刻的意义。这也为流体动力学 研 究在外力作用下流体的运动规律, 究在外力作用下流体的运动规律,打下了理论的 基础。 基础。
计算流体力学CFD课件
V
dV
0
空间位置固定的无穷小微团模型 V 0 t
随流体运动的无穷小微团模型
方程不同形式之间的转换
空间位置固定的有限控制体模型 tV dVSVdS0
空间位置固定的无穷小微团模型 V 0 t
方程不同形式之间的转换
空间位置固定的无穷小微团模型 V 0 t
随流体运动的无穷小微团模型
流动控制方程经常用物质导数来表达。
物质导数(运动流体微团的时间变化率)
采用流体微团模型来理解物质导数的概念:
沿流线运动的无穷小 流体微团,其速度等 于流线上每一点的当
物质导数(运动流体微团的时间变化率)
流体微团在流场中的运动-物质导数的示意图
物质导数(运动流体微团的时间变化率)
考虑非定常流动:
随流体运动的无穷小微团模型
动量方程
作用在流体微团上的体 积力的X方向分量=
fxdxdydz
随流体运动的无穷小微团模型
动量方程
作用在流体微 团上的X方向的 压力=
动量方程
作用在流体微 团上的X方向的 正应力=
动量方程
作用在流体微 团上的X方向的 切应力=
动量方程
作用在流体微 团上的X方向总 的表面力=
t
或
txuyv zw0
空间位置固定的无穷 小微团模型
空间位置固定的无穷小微团模型
连续性方程:
txuyv zw0
或
V0
t
空间位置固定的无穷 小微团模型
随流体运动的无穷小微团模型
随流体运动的无穷小微团模型
连续性方程 流体微团的质量:
质量守恒定律
随流体运动的无穷小 微团模型
随流体运动的无穷小微团模型
流体微团在流场中的 运动-物质导数的示 意图
计算流体力学知识点
计算流体力学知识点计算流体力学这玩意儿,听起来是不是有点高大上,有点让人摸不着头脑?其实啊,它就藏在我们生活的方方面面,就像一个神秘的小伙伴,时不时地跳出来给我们一些惊喜或者挑战。
咱们先来说说啥是计算流体力学。
简单来讲,它就是一门专门研究流体流动的学问。
比如说,水流过河道、风吹过城市、汽车在空气中飞驰,这些都涉及到流体的流动。
那计算流体力学就是用数学和计算机的方法,来搞清楚这些流动是怎么回事,会产生啥影响。
我记得有一次,我去公园里散步。
那天风挺大的,湖边的柳枝被吹得左摇右摆。
我就突然想到,这风不就是一种流体嘛!它的速度、方向还有力量,都在不断地变化。
如果用计算流体力学的知识来分析,就能算出风在经过不同的障碍物时,速度会怎么降低,压力会怎么变化。
计算流体力学里有一个特别重要的概念,叫控制方程。
这就像是流体流动的“宪法”,规定了它们得怎么动。
比如说连续性方程,它说的是流入一个区域的流体质量,得等于流出这个区域的流体质量,就跟咱们过日子一样,收入和支出得平衡。
还有动量方程,它描述了流体的受力和运动之间的关系,就像你推一个箱子,用的力越大,箱子跑得就越快。
在实际应用中,计算流体力学可厉害了。
比如说在航空航天领域,设计飞机的外形就得靠它。
飞机在天上飞,周围的空气就是流体。
通过计算流体力学的模拟,可以知道怎么设计飞机的翅膀、机身,才能让飞机飞得更快、更稳,还能省油。
汽车行业也是一样,要让汽车的外形更符合空气动力学,减少风阻,提高速度和燃油效率,都得靠计算流体力学来帮忙。
还有能源领域,像火力发电厂的冷却塔,里面热气腾腾的水蒸气往外冒,怎么让这些水蒸气排放得更顺畅,提高发电效率,也得靠计算流体力学来优化设计。
在数值解法这一块,有限差分法、有限体积法和有限元法是常用的几招。
有限差分法就像是把流体流动的区域切成一个个小格子,然后在这些格子上算数值。
有限体积法呢,则是关注每个小体积里的物理量守恒。
有限元法就像是搭积木,把流动区域分成一个个小单元来计算。
工程流体力学-第三章
四、有效断面、流量和平均流速
1. 有效断面 流束中处处与速度方向相垂直的横截面称为该流束的有效断面, 又称过流断面。 说明:
(1)所有流体质点的
速度矢量都与有效断面 相垂直,沿有效断面切
向的流速为0。
(2)有效断面可能是 平面,也可能是曲面。
2. 流量
(1) 定义:单位时间内通过某一过流断面的流体量称为流量。
压强的拉格朗日描述是:p=p(a,b,c,t)
密度的格朗日描述是:
(a, b, c, t)
二、欧拉法(Euler)
1. 欧拉法:以数学场论为基础,着眼于任何时刻物理量在场上 的分布规律的流体运动描述方法。 2. 欧拉坐标(欧拉变数):欧拉法中用来表达流场中流体运动 规律的质点空间坐标(x,y,z)与时间t变量称为欧拉坐标或欧拉变 数。
(1)x,y,z固定t改变时, 各函数代表空间中某固
定点上各物理量随时间
的变化规律; (2)当t固定x,y,z改变 时,它代表的是某一时 刻各物理量在空间中的 分布规律。
密度场
压力场
( x, y , z , t )
p p ( x, y , z , t ) T T ( x, y , z , t )
u y du z du z ( x, y , z , t ) u z u z u z az ux uy uz dt dt t t t t du u a (u )u dt t
在同一空间上由于流动的不稳定性引起的加速度,称 为当地加速度或时变加速度。 在同一时刻由于流动的不均匀性引起的加 速度,称为迁移加速度或位变加速度。
一元流动
按照描述流动所需的空间坐标数目划分
二元流动
三元流动
工程流体力学-第三章
三、流管、流束和总流
1. 流管:在流场中任取一不是流 线的封闭曲线L,过曲线上的每 一点作流线,这些流线所组成的 管状表面称为流管。 2. 流束:流管内部的全部流体称 为流束。 3. 总流:如果封闭曲线取在管道 内部周线上,则流束就是充满管 道内部的全部流体,这种情况通 常称为总流。 4. 微小流束:封闭曲线极限近于 一条流线的流束 。
ax
dux dt
dux (x, y, z,t) dt
ux t
ux
ux t
uy
ux t
uz
ux t
ay
du y dt
duy (x, y, z,t) dt
u y t
ux
u y t
uy
u y t
uz
u y t
az
du z dt
duz (x, y, z,t) dt
x x(a,b,c,t)
y y(a,b,c,t)
z z(a,b,c,t)
欧拉法中的迹线微分方程
速度定义
u dr (dr为质点在时间间隔 dt内所移动的距离) dt
迹线的微分方程
dx dt
ux (x, y, z,t)
dy dt uy (x, y, z,t)
dz dt uz (x, y, z,t)
说明: (1)体积流量一般多用于表示不可压缩流体的流量。 (2)质量流量多用于表示可压缩流体的流量。
(3) 质量流量与体积流量的关系
Qm Q
(4) 流量计算 单位时间内通过dA的微小流量
dQ udA
通过整个过流断面流量
Q dQ udA A
水力学 第三章 流体运动学
4
2、速度(velocity)
x xa , b, c, t ux t t y y a , b, c, t uy t t z z a , b, c, t uz t t
(1)若(a,b,c)为常数,t 为变数,可得某个指定质点在任何 时刻的速度变化情况 。 (2)若 t 为常数,(a,b,c)为变数,可得某一瞬时流体内部各 质点的速度分布。
ux
u y
uy
u y
uz
u y
斯托克斯(Stokes) 表示式
Du u a (u )u Dt t
全加速度, 随体导数, 质点导数, (material derivative) 当地加速度, 时变导数 (Local derivative) 迁移加速度, 位变导数 (Convective derivative)
拉格朗日法的优点:物理意义较易理解 。 拉格朗日法的缺点:函数求解繁难;测量不易做到。
§3-1 描述流体运动的两种方法
6
3-1-2 欧拉法
一、欧拉法(Euler Method)
从分析通过流场中某固定空间点的流体质点的运动着手,设法 描述出每一个空间点上流体质点运动随时间变化的规律。 运动流体占据的空间,称流场(flow field)。通过流场中所有 空间点上流体质点的运动规律研究整个流体运动的状况,又称流场 法。
15
例3-1 已知流体质点的运动,由拉格朗日变数表示为: (t ) (t ) x a cos 2 b sin 2 2 a b a b2 (t ) (t ) y b cos 2 a sin 2 2 a b a b2 式中, (t ) 为时间,的某一函数。试求流体质点的迹线。
流体力学 第三章
(1)有压流动 总流的全部边界受固体边界的约束, 即流体充满流道,如压力水管中的流动。
(2)无压流动 总流边界的一部分受固体边界约束,另 一部分与气体接触,形成自由液面,如明渠中的流动。
图 3-1 流体的出流
一、定常流动和非定常流动
这种运动流体中任一点的流体质点的流动参数(压强和 速度等)均不随时间变化,而只随空间点位置不同而变化的 流动,称为定常流动。
现将阀门A关小,则流入水箱的水量小于从阀门B流出的 水量,水箱中的水位就逐渐下降,于是水箱和管道任一点流 体质点的压强和速度都逐渐减小,水流的形状也逐渐向下弯 曲。
(2)如果流体是定常的,则流出的流体质量必然等于流 入的流体质量。
二、微元流束和总流的连续性方程 在工程上和自然界中,流体流动多数都是在某些周界
所限定的空间内沿某一方向流动,即一维流动的问题。 所谓一维流动是指流动参数仅在一个方向上有显著的
变化,而在其它两个方向上的变化非常微小,可忽略不计。 例如在管道中流动的流体就符合这个条件。在流场中取一 微元流束如图所示。
图 3-6 流场中的微元流束
假定流体的运动是连续、定 常的,则微元流管的形状不随时 间改变。根据流管的特性,流体 质点不能穿过流管表面,因此在 单位时间内通过微元流管的任一 过流断面的流体质量都应相等, 即
ρ1v1dA1=ρ2v2dA2=常数 dA1 、dA2—分别为1、2两个过 图 3-6 流场中的微元流束 流断面的面积,m2;
§ 3-1描述流体运动的两种方法
连续介质模型的引入,使我们可以把流体看作为由无 数个流体质点所组成的连续介质,并且无间隙地充满它所 占据的空间。
工程流体力学 第3章 流体流动的基本方程
B F ( x, y, z, t )
比如,流体质点的速度场:
u F ( x, y, z, t )
第3章 流体流动的基本方程
速度分布的分量可表示为:
u x F1 ( x, y , z , t ) u y F2 ( x, y , z , t ) u z F3 ( x, y , z , t )
u x 2 x 2 F1 (a, b, c, t ) ax 2 t t t 2 u y 2 y 2 F2 (a, b, c, t ) ay 2 t t t 2 u z 2 z 2 F3 (a, b, c, t ) az 2 t t t 2
教学内容
第0章 绪论
第1章 流体的主要物理性质
第2章 流体静力学
第3章 流体流动的基本方程
第4章 势流理论
第5章 相似理论与量纲分析
第6章 粘性流体管内流动
第7章 粘性流体绕物体的流动
第3章 流体流动的基本方程
流体运动——满足质量守恒、牛顿第二定律、能量守恒… 推导——连续方程,动量方程,动量矩方程,能量方程…
第3章 流体流动的基本方程
流体质点的速度和加速度
u ux i uy j uz k
x F1 (a, b, c, t ) ux t t y F2 (a, b, c, t ) uy t t z F3 (a, b, c, t ) uz t t
a ax i ay j az k
两边积分 ln x 2t C ,故 x c1e
' 1
水力学-第三章流体运动学
例1 已知用欧拉变数表示的流体运动的速 度场为
ux kx, uy ky, uz 0
(式中,k 为非零常数) ,求流线与迹线。
例2 已知速度场,求流线和迹线
ux x t , u y y t , uz 0
解:流线方程
dx dy dz ux u y uz
式中,x , y , z ,t 为欧拉变数。
(2)加速度场: 加速度是速度的变化率,当速度分量 既随时间、又随空间坐标变化时,则速 度分量的全微分为:
u x u x u x u x du x dx dy dz dt x y z t u y u y u y u y du y dx dy dz dt x y z t u z u z u z u z du z dx dy dz dt x y z t
t 为流线方程的参数,积分时可视作常数。
2. 迹线
(1)定义:迹线是流体质点运动的轨迹。 (2)迹线方程 由
dx dy dz ux , u y , uz dt dt dt
得出迹线微分方程:
dx dy dz dt u x ( x, y , z , t ) u y ( x, y , z , t ) u z ( x, y , z , t )
dux (kx) (kx) (kx) (kx) ( ky) 0 k 2 x, dt t x y duy u y u y u y u y 2 ay ux uy uz k y, dt t x y z duz az 0, dt ax
得出欧拉法中的加速度表达式:
du x u x u x u x u x ax ux uy uz dt t x y z du y u y u y u y u y ay ux uy uz dt t x y z du z u z u z u z u z az ux uy uz dt t x y z
《水力学》课件——第三章 流体运动学
是否是接
均匀流 否
?
渐变流
流线虽不平行,但夹角较小; 流线虽有弯曲,但曲率较小。
急变流
流线间夹角较大; 流线弯曲的曲率较大。
• 渐变流和急变流是工程意义上对流动是否符合均匀流条件的
划分,两者之间没有明显的、确定的界限,需要根据实际情况
来判定
急变流示意图
五. 流动按空间维数的分类
一维流动 二维流动 三维流动
• 根据流线的定
• 在非恒定流情况下,流
义,可以推断:除
线一般会随时间变化。在
非流速为零或无穷
恒定流情况下,流线不随
大处,流线不能相
时间变,流体质点将沿着
交,也不能转折。
流线走,迹线与流线重
合。
• 迹线和流线最基本的差别是:迹线是同一流
体质点在不同时刻的位移曲线,与拉格朗日观
点对应,而流线是同一时刻、不同流体质点速
• 由确定的流体质点组成
的集合称为系统。系统在 运动过程中,其空间位 置、体积、形状都会随时 间变化,但与外界无质量 交换。
• 有流体流过的固定不变
的空间区域称为控制 体,其边界叫控制面。 不同的时间控制体将被 不同的系统所占据。
• 通过流场中某曲面 A 的流速通量
u nd A
A
称为流量,记为 Q ,它的物理意 义是单位时间穿过该曲面的流体 体积,所以也称为体积流量,单 位为 m3/s .
n A
dA
u
• u n d A 称为质量流量,记为Qm,单位为 kg/s . 流量计算
A
公式中,曲面 A 的法线指向应予明确,指向相反,流量将反
s s — 空间曲线坐标
元流是严格的一维流动,空间曲线坐标 s 沿着流线。
流体力学 3-3-4流体运动学讲解
uxdt
)
dx
四 空间运动的连续性方程
流入与流出微元六面体 的质量——x方向
(d ydzuxdt)
x
dx
(ux
x
)
dxd
y d z dt
y方向
(
u
y
y
)
d
x
d
y
d
z
dt
z方向
(
uz
z
)
d
x
d
y
d
z
dt
dt时间内六面体 的净流量为
[(ux) (uy )
x
y
(2)对于不稳定流,经过同一点的流线其空间方位和形状 是随时间改变的。
(3)由于稳定流动的速度分布与时间无关,所以流线的形 状和位置不随时间变化。同时流体质点只能沿着流线运动, 否则将会有一个与流线相垂直的速度分量。所以稳定流动 的迹线与流线重合。
2.流线的性质
(4)不稳定流动包含两方面的含义:大小或方向随时间变化。
3.流线方程
设流线上一点的速度矢量为u,流线上的微元线段矢量dr
由流线定义,矢量表示的微分方程为
u
dr
0
在直角坐标系中,依矢量运算法则可知u与dr成比例,即
ux
dx
x, y,
z,
t
uy
dy
x, y,
z,
t
uz
dz
x, y,
z,
t
式中的t代表的是同一瞬时,当作常数处理。
在不稳定流动中,流线微分方程积分的结果包括时间t,不
解:取控制面如图,设自由面上水位变化是均匀的,并设控制面A3上流 体的出流速度为v3,由不可压缩流体的连续方程可得
计算流体力学课件
• 引言 • 基本概念与原理 • 数值模拟方法 • 计算流体力学软件介绍 • 计算流体力学在工程中的应用 • 计算流体力学的未来发展与挑战
目录
Part
01
引言
流体力学的重要性
流体力学是物理学的一个重要分支,它研究流体(液体和气体)的运动规律、热力 学性质以及流体与其他物质的相互作用。
Part
04
计算流体力学软件介绍
Fluent软件介绍
1
商业化的计算流体动力学 软件
4
提供丰富的物理模型和材 料库,方便用户进行模拟 和分析
2
支持多种求解器和网格生
成技术
3
广泛应用于流体动力学模
拟、燃烧模拟等领域
CFX软件介绍
英国AEA公司开发的计算流体动 力学软件
提供丰富的物理模型和材料库, 方便用户进行模拟和分析
迭代法
通过迭代的方式求解离散 化的方程组,得到数值解 。
有限差分法
有限差分法的基本思想
将偏微分方程转化为差分方程,通过 求解差分方程得到数值解。
有限差分法的步骤
建立差分方程、求解差分方程、误差 估计等。
有限元法
有限元法的基本思想
将连续的物理量离散为有限个单元,通过求解每个单元的近似解得到整个问题 的数值解。
规模的流动模拟。
大涡模拟
总结词
大涡模拟是一种针对湍流中大尺度涡旋进行模拟的方法,通过过滤掉小尺度涡旋 的影响,降低计算量。
详细描述
大涡模拟只关注大尺度涡旋的运动规律,忽略小尺度涡旋的影响。这种方法能够 显著减少计算量,适用于较大尺度的流动模拟。然而,由于忽略了小尺度涡旋的 影响,大涡模拟的精度和适用范围有限。
水流模拟
第三章 流体流动的基本概念与基本方程
第三章流体流动的基本概念与方程质量守恒定律、牛顿第二定律、能量守恒定律等是物质运动的普遍原理,流体作为一类物质也应该遵循这些原理。
这些原理刚体运动的方程式在物理学和理论力学中大家已经学习过,适用于流体运动的方程式将在本章讨论。
本章首先介绍描述流体流动的一些基本概念,然后推导出流体流动的基本方程,即连续方程、动量方程、能量方程等。
这些基本概念与方程在流体运动学中的研究中是十分重要的。
3.1 描述流体流动的方法在流体力学的研究中,描述流体的运动一般有两种方法,即拉格朗日法与欧拉法。
3.1.1 拉格朗日法拉格朗日法着眼于单个流体质点是怎样运动的,以及流体质点的特性是如何随时间变化的。
为了区别流体质点,使用某特定质点在某瞬时的坐标(a, b, c)是比较方便的,坐标(a, b, c)描述的只是某一特定的质点。
在任何瞬时质点的位置可表示为(3.1)对于一给点的坐标(a, b, c),上述方程组代表的是一特定流体质点的轨迹。
此时,质点是速度可以通过将质点是位置矢量对时间求导数得到。
在笛卡尔坐标系中,质点的速度可表示为(3.2)加速度为(3.3)3.1.2欧拉法流体是由无数流体质点组成的连续介质,充满流动流体的空间称为流场。
表示流体速度的一种方法就是着眼于空间的某一点,观察流经该点的流体质点随时间的运动。
这种研究流体质点运动的方法称为欧拉法。
在更一般的意义上,欧拉法可以通过以下方面描述整个流场:(1)在空间某一点流动参数,如速度、压强等,随时间的变化;(2)这些参数相对于空间邻近点的变化。
此时,流动参数是空间点的坐标与时间的函数:(3.4)或(3.4a)(3.5)流体质点随时间将从一点运动到另一点,这意味着流体质点的位置也是时间的函数。
利用多元函数的微分连锁律,可将流体质点在x方向的加速度表示为:(3.6a)同样(3.6b)(3.6c)或写成矢量的形式(3.7)式中称为梯度,或∇运算符。
方程(3.6)右端包含两种不同类型的两项:速度关于位置的变化与速度关于时间的变化。
第3章流体运动学ppt课件
div( u )
0
——连续性方程的微分形式
t
不可压缩流体 即
c
divu 0 ux uy uz 0 x y z
例:已知速度场
ux
1
y2 x2
uy
1
2xy
uz
1
2tz
t2
此流动是否可能出现? 解:由连续性方程:
(ux ) (uy ) (uz ) 2t (2x) 2x (2t) 0
(uz )
z
dxdydzdt
dt时间内,控制体总净流出质量:
M
M x
M
y
M z
(
u
x
x
)
(u y )
y
(
u
z
z
)
dxdydzdt
udxdydzdt
div(
u )dxdydzdt
由质量守恒:控制体总净流出质量,必等于控制体内由于 密度变化而减少的质量,即
div(u)dxdydzdt dxdydzdt
➢ 根据流线的定义,可以推断:流线不能相交,也 不能转折;
➢ 在恒定流情况下,迹线与流线重合。
➢迹线和流线最基本的差别是:
迹线是同一流体质点在不同时刻的位移曲线(与拉格 朗日观点对应); 流线是同一时刻、不同流体质点速度矢量与之相切 的曲线(与欧拉观点相对应)。
例:已知速度ux=x+t,uy=-y+t 求:在t=0时过(-1,-1)点的流线和迹线方程。
微团的角变形:1
2
1 2
u y x
ux y
dt
xydt
xy
1 2
u y x
ux y
是微团在xoy平面上的角变形速度
计算流体力学课件完整版
●实验要受测量技术限制,实验周期长、费用高。
☆ 理论研究 ●在研究流体流动规律的基础上,建立了流体流动基 本方程。 ●对于一些简单流动,通过简化求出研究问题的解析 解。
计算流体力学
●对于实际流动问题,通常需运用流体力学基本方程, 借助于计算机求数值解(计算机数值模拟)— 计算流体力学CFD。
Z
skirt.plt X Y
75 50 25
0 -25 -50 -75
-2
Y(M) 0
2
0 2 4 6 10 8 X(M) 12 14
D) 16 Feb 2003 Velocity Vectors
4.5
4 velocity.plt
3.5
3
2.5
2
1.5
Z
Z
(3D) 16 Feb 2003 IJK-Ordered DZ ata
ijkcyl.plt X Y
Z
-0.4 -0.2 Y0 0.2 0.4
1
0.8
0.6
0.4
0.2
0 -0.4 -0.2 0 X 0.2 0.4
Z
jetflow.plXt Y
0.6 0.5 0.4 0.3 0.2 0.1
0 0 Y0.1 0.2
-0.6 -0.4 -0.2 0 X 0.2 0.4 0.6
轴流叶轮计算与实验叶片表面极限流线
计算流体力学
轴流叶轮计算与实验性能比较
计算流体力学
轴流叶轮计算与实验流场结构比较
计算流体力学
第二章 流体力学数值计算数学模型及定解条件
☆本章所涉及的基本方程有两类: ●流体力学基本方程,基本出发点:质量守恒、动量守恒和能
计算流体力学CFD(非常好)
气体动力学1.理想气体运动的基本方程组理想气体:无粘性、无导热性雷诺数:度量粘性效应的相对大小的量纲一的数R e=ρVLμ=惯性力粘性力●要确定理想气体的流场,一般需要知道六个参数:速度V的三个分量,压力p,密度ρ和温度T。
因此理想气体动力学要建立六个独立的基本方程,连同初边值条件,以构成定解问题。
●基本方程所依据的是三个方面的物理定律,即运动学方面的质量守恒定律,动力学方面的牛顿定律和热力学方面的第一、第二定律以及气体热状态方程。
●建立基本方程时首先面临着这么一个问题:怎样选取流体物质形态的模型作为研究对象。
有两种流体模型可供选择。
一种是随体观点的模型,它认定某个有确定质量的流体团,称为封闭系统,其特点是:(1) 系统的体积τ(t)和界面积σ(t)随流体运动而随时变化;(2) 在系统的界面上,只有能量交换,没有质量交换。
一种是当地观点的模型,它在流体空间认定一个固定的控制面所包围的区域,称为开口系统,其特点是:(1) 系统的体积τ和界面积σ是固定不变的;(2) 在系统的界面上,既有能量交换,也有质量交换。
对于上述两种流体模型,即封闭系统和开口系统,还有两种数学表达形式。
一种是选取有限质量(体积)的系统,写成积分形式的基本方程。
另一种是选取微元质量(体积)的系统,写成微分形式的基本方程。
微分形式的方程适用于连续流程,便于探讨流场各处的参数分布规律。
积分形式的方程便于从总体上研究问题,而且可以用来求解系统中有间断面存在的情况。
综上所述,理想气体运动的基本方程组的要点可归为:六个方程、三个方面、两种观点、两种形式。
1.1 连续性方程质量守恒方程(当地观点、微分形式)微元体的质量平衡式:微元体内质量的增加率=进入微元体的质量净流率微元体内质量的增加率:ððt (ρδxδyδz)=ðρðtδxδyδz进入微元体的质量流率的净变化率:通过微元体每一个表面的质量流率等于密度、速度分量和面积的乘积。
第3章 流体运动学下--计算流体力学
流体不可压缩 const : v ndS 0 (流入、流出CS 体积相等) S
沿流管定常流动: 1v1S1 2v2 S2
沿流管不可压流动:
vS const (沿流管) vS const (沿流管)
不可压流动中,流管的截面积与流速成反 比,S小的地方流速快,S大的地方流速慢。
3.7 无旋运动的势函数(Velocity Potential)
v 0
v
速度势
d v dl
u , v , w
x
y
z
(x, y, z,t) udx vdy wdz
vr
r
,
v
1 r
d
vj ) xi
ij
1 ( vi 2 x j
v j ) xi
ij
1 ( vi 2 x j
v j xi
)
xx xy xz
ij yx yy yz ij
zx
zy
zz
u
x
一般运动一般运动平移平移线变形线变形角角变形变形旋转旋转352352流体微团的运动几何分析流体微团的运动几何分析平移运动平移运动平移速度v代表微团平移运动
3.4 连续方程
——质量守恒定律在流体力学中的应用。
3.4.1 积分形式的连续方程
在流场中任取一空间固定的封闭曲面S(控制面 control surface ) , 所 围 体 积 V ( 控 制 体 control volume)。
1 2 1 2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
dr d r
vr dr rv d
d l dxi dyj dzk
l
积分与路径无关,
drer rd eθ dzez
时间 t 为参数,积分 时当作常数处理。
yr x
速度势函数的性质:
1. 速度势沿任一方向的方向导数等于速度在该方向的投影;
4. 势函数具有可叠加性 若 21 0, 22 0,
令 1 2 3
2 21 22 0
3.8 流函数 (Stream Function)
dl
u v 0
引入
u , v
x y
el
l
2. 等势面与流面垂直 (平面流: 等势线与流线垂直)
梯度(速度)垂直等势面,流面与速度相切,故等势面垂直流面。
3. 不可压缩流体的势函数为调和函数 v 2 0
直系中:
2 2 2
0 2x 2y 2z
势流:不可压缩流体的无旋流动。
vj ) xi
ij
1 ( vi 2 x j
v j ) xi
ij
1 ( vi 2 x j
v j xi
)
xx xy xz
ij yx yy yz ij
zx
zy
zz
u
x
v
ndS
t
V
dV
S
v
ndS
V
t
dV
—— Euler型连续性方程
它反映了cs上速度分布与cv内密度变化之间的积分关系。
特例:
S
v
ndS
V
t
dV
流动定常( t 0 ): S v ndS 0 (流入、流出CS 质量相等)
ω
dr
积分时时间变量t 作常数处理。
涡管(vortex tube): 某一时刻,由涡线组成的管状曲面。截 面积无限小的涡管称为涡束(涡线)。
Ω
涡通量(vortex flowrate): 涡量场的通量(涡强)。
J SΩ ds SΩnds
速度环量(velocity circulation):
微团体积膨胀率:流体微团的体积在单位时间的相对变化。
1 d ( V ) u v w v V dt x y z
3. 角变形运动
由对应的角速度 d1 v
dt x
d 2 u
dt y
平面上两垂直流体线的平均角变形速率:
1 2
(d1
d 2 )
t t
t
M
M0 一般运动 = 平移 + 线变形 + 旋转 + 角变形
3.5.1 亥姆霍兹(Helmholtz)速度分解定理
t 时刻:流体微团
M (x x, y y, z z)
M 0 (x, y, z)
vM (x x, y y, z z,t) uM i vM j wM k r xi yj zk
Helmholtz速度分解定理 —— 流体微团中任意两点间速度关系:
vM i vi ij x j ij x j
vM v E r ω r
可见,流体微团中任意一点的速度由 平移、变形和旋转三部分速度构成。
E ijeie j
ij
1 ( vi 2 x j
v j ) xi
ω 1v 2
M (x x, y y, z z) M 0 (x, y, z)
vM (x x, y y, z z,t) uM i vM j wM k r xi yj zk
v(x, y, z,t) ui vj wk
y j zk
1 2
v
Summary:
t t
t
流体微团的运动由三部分组成:
• 以速度 v 作平移运动;
• 绕某瞬时轴以平均角速度 ω 旋转,不引起微团形状的改变; • 纯变形运动:线变形速率 xx , yy , zz 使微团的体积膨胀或
缩小,角变形速率 xy , yz , zx 使微团发生角变形。
Description of velocity field: Streamline, Path line and Flowrate
涡线 (Vortex line): 任一时刻,涡线上每一点的切向量都与
该点的涡向量相切。涡线微分方程
Ω dr 0
dx
dy
dz
x (x, y, z,t) y (x, y, z,t) z (x, y, z,t)
Incompressible Compressible Compressible Incompressible
classification of fluid motion
v 0 (在 流场中,irrotational flow)
v 0 (在 流场中,rotational flow)
0
连续流场中空间任意点上速度和密 度必须满足的微分(连续)方程。
v 0 (流场中)
t
u v w 0
t x y z
vr 1 v vz 0
t r r
z
v 0 ( t 0)
dt
1 2
( v x
u ) y
xy
4 旋转运动
ij
1 ( vi 2 x j
v j ) xi
绕平行于z 轴的转动轴旋转角速度 :
d1 v
dt x
d 2 u
dt y
绕z轴的平均旋转角速度:
z
1 (v 2 x
u ) y
ω
xi
1 2 1 2
( v x ( u z
u ) y w ) x
1 (v u ) 2 x y
v
y 1 (w v ) 2 y z
1 (u w)
2 z x
1 2
(w y w
z
v z
)
x y z
流体不可压缩 const : v ndS 0 (流入、流出CS 体积相等) S
沿流管定常流动: 1v1S1 2v2 S2
沿流管不可压流动:
vS const (沿流管) vS const (沿流管)
不可压流动中,流管的截面积与流速成反 比,S小的地方流速快,S大的地方流速慢。
流体微团的旋转运动与刚体转动的不同?
速度分解定理的意义:
(1)旋转运动从一般运动中分离出来,分为无旋和有旋运动;
Ω v 2ω v (0 无旋) v ( 0 有旋)
(2)变形运动从一般运动中分离出来,流体的变形速率与应
力联系起来,研究粘性流体运动规律。 ij ij
平面流动:流线间距大,流速慢;间距小, 流速快。即流线的疏密反映了流速的大小。
例3-3 某瞬时水流通过具有自由 面的蓄水通道。
解: v1 A1 v2 A2 v3 A3
3.4.2 微分形式的连续方程
Gauss公式
S
v
ndS
V
t
dV
V
t
vdV
例3-5 已知流场的速度分布为
u y ,v x ,w 0
求:流体质点的运动迹线和旋转角速度。
3.6 有旋运动的一般性质 (Rotational Flow)
有旋运动的基本特征: 存在涡量场 Ω v 0 。
3.6.1 涡线、涡管、涡通量和环量(Description of vorticity field)
v 0 ( const)
不可压流动连续方程:速度场的散度为0
—— 体积膨胀速率为0。
3.5 流体微团的运动分析
流体在运动过程中可能发生变形或旋转, 只要微团的运动分析清楚了,流场的运动 就知道了。
流体微团:指大量流体质点组成的具有线 z 性尺度效应的微小流体团。
y
dy
M0
x
dx dz
3.4 连续方程
——质量守恒定律在流体力学中的应用。
3.4.1 积分形式的连续方程
在流场中任取一空间固定的封闭曲面S(控制面 control surface ) , 所 围 体 积 V ( 控 制 体 control volume)。
质量守恒:单位时间流出控制面的净质量= 控制体内流体 质量的减少
S
在同一瞬时,沿涡管长度各截面的涡通量保持不变。
S ndS const
S3
S2
Ω2
C2
证明: 1 S1 n dS S2 n dS S3 n dS S1
S1 ndS S2 ndS
Ω1
C1
若涡量在截面 S1 , S 2 上均匀分布,记为 1 , 2,得
2 2
y
x
c
v dl
c
3.6.2 速度环量定理(Stokes定理)
Ω
Sn
C
C vd l S vd s S Ωd s
C J
沿任意开口曲面边界线的速度环量等于通过该曲面的涡通 量。即:涡通量和速度环量都是反映旋涡作用的强弱。
3.6.3 涡管强度守恒定理(Conservation of vortex flowrate)