浅谈湿陷性黄土地基工程特性及处理措施

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浅谈湿陷性黄土地基工程特性及处理措施

[摘要] 湿陷性黄土地基是基础工程中最为复杂的地基类型之一,通过分析湿陷性黄土的主要工程特性,采取可靠的地基处理等措施,为铁路建设提供可靠的技术支撑。

[关键词] 湿陷性黄土地基处理工程措施

1.湿陷性黄土的主要工程特性

黄土在自重压力或附加压力和自重压力共同作用下因受水浸湿而产生急剧、大量的附加下沉变形现象称为湿陷。湿陷性黄土可分为自重湿陷性黄土和非自重湿陷性黄土,浸水后需在一定附加压力作用下才发生湿陷的黄土称为非自重湿陷性黄土;在饱和自重压力作用下即产生湿陷的称为自重湿陷性黄土,其危害性远较非自重湿陷性黄土严重。

1.1湿陷性黄土的主要物性指标

(1)矿物成分和颗粒组成。湿陷性黄土的矿物成分以石英为主,其含量为60%~70%,其次为长石和云母,约占10%~20%,碳酸盐含量为10%~30%,对黄土湿陷性起主要作用的是细散粘粒的矿物成分和比例。湿陷性黄土的颗粒成分以粉粒(0.005~0.05mm)为主,约占50%~70%,其次为砂粒(>0.05mm ),约占10%~30%,粘粒含量为8%~26%。

(2)天然容重和孔隙比。湿陷性黄土的天然容重一般为13.5~19.0 kN/m3,干密度为11~16kN/m3,当干密度超过15kN/m3 时,湿陷性基本消失。孔隙比是衡量湿陷性黄土密实度的主要指标,一般在0.9~1.1之间,当黄土的孔隙比小于0.9 时,湿陷性明显减弱。

(3)含水量和饱和度。湿陷性黄土的天然含水量为10%~20%,主要受地形、降水量和地下水位的影响,在塬、梁、峁表层的黄土含水量较低,一般在8%~12%,河谷阶地较高,可达18%~20%,当黄土含水量超过23% 时,湿陷性基本消失,压缩性增加。湿陷性黄土的饱和度大多为40%~50%,当饱和度超过80%时称为饱和黄土,湿陷性消失,成为高压缩性的软土。湿陷性黄土的液限一般为22%~32%,塑限在12%~20%之间,液性指数接近于0,甚至小于0。

1.2湿陷性黄土的力学性质

湿陷性黄土的粘聚力由二部分组成,一部分是原始粘聚力,由土粒间的电场力所产生,粘粒含量和密实度越高原始粘聚力就越大;另一部分是由于易溶盐的存在,形成较高的结构强度,使黄土的粘聚力增加。内摩擦角主要与土的颗粒成分和矿物成分有关,砂粒含量越高,内摩擦角越大。天然状态下,湿陷性黄土的粘聚力一般为20~60kPa,内摩擦角在15~30°之间。

1.3黄土的湿陷性

现场采取原状土样,通过室内浸水压缩试验测定试样的湿陷系数δs和自重湿陷系数δzs 来评判黄土的湿陷性:当δs<0.015 时为非湿陷性黄土,当δs≥0.015时为湿陷性黄土。根据湿陷系数δs来划分黄土的湿陷强度:当δs<0.07为轻微湿陷性,0.03<δs<0.07为中等湿陷性,δs>0.07为强烈湿陷性。根据实测自重湿陷量或计算自重湿陷量Δzs来评判黄土场地的湿陷类型,Δzs≤70mm 为非自重湿陷性黄土场地,Δzs>70mm 为自重湿陷性黄土场地。根据湿陷性土层的累计湿陷量和自重湿陷量的计算值来确定黄土地基的湿陷等级,由累计湿陷量的大小把湿陷等级分为Ⅰ~Ⅳ级,湿陷等级越高,地基浸水后的湿陷性越严重,对建筑物的危害性也越大。

1.4黄土的渗透性

黄土的渗透性直接影响地基湿陷变形的大小和速度,是黄土的重要工程性质。由于影响黄土渗透性的因素很多,不同类型的黄土渗透系数有很大的差异。黄土有垂直大孔隙,渗透性具有明显的各向异性,一般新黄土的渗透系数为i×10-3m/s(1≤i≤9), 老黄土约为i×10-4~i×10-5m/s,垂直方向的渗透系数远大于水平方向。渗透系数随入渗时间和入渗水量的增加而变化,湿陷发生后的黄土,由于天然结构已经破坏,两个方向的渗透系数接近,渗透系数变小。

2.湿陷性黄土地区铁路工程的主要技术问题

2.1地基湿陷性问题

湿陷性黄土是一种非饱和的欠压密土,在天然湿度下,具有一定的结构强度,遇水浸湿时,强度显著降低,发生湿陷变形。黄土湿陷变形是一种下沉量大、下沉速度快的失稳性变形,具有突发性、不连续性和不可逆性,对建筑物有很大的危害,是湿陷性黄土地区工程建设必须解决的主要技术问题。黄土的湿陷变形可分为三个阶段,第一阶段为压密变形,通常为线性变形;第二阶段为湿陷变形,变形量大、速度快;第三阶段为饱和黄土的固结变形,变形明显减小并趋于稳定。湿陷性黄土存在湿陷和压缩两种不同性质的变形,以湿陷性变形为主,地基处理的原则是首先消除地基的湿陷变形。

2.2填料改良问题

天然状态下黄土的含水量较低,渗透性与崩解性较强,不易压实。黄土经过碾压改变了土体结构,消除了部分湿陷性,但仍存在水稳性差、浸水软化等问题,在冬季寒冷条件下还易发生冻胀。因此,对沉降变形控制严格的路堤不宜直接用湿陷性黄土作路基填料。通过在湿陷性黄土中掺入一定比例的水泥、石灰、粉煤灰等掺合剂,按最优含水率充分拌合,即可得到满足工程要求的改良土。在黄土地区通常采用石灰掺合剂,石灰中的钙离子与土粒表面的阳离子发生交换和凝聚作用,加强了土颗粒间的联系,改善了土体的物理力学性质,提高了土体的水稳

性。

3.湿陷性黄土地区铁路工程的技术措施

3.1桥梁通过深厚湿陷性黄土地段

湿陷性黄土层的厚度越大,湿陷性可能越严重,危害也越大。对深厚的湿陷性黄土场地,采用通常的地基处理方法难以从根本上消除其湿陷性。为确保建筑物的安全,对沉降变形有严格要求的重要建筑物应进行路桥方案比选。采用桩基础可穿透湿陷性黄土层,使上部结构的荷载通过桩尖传到下部坚实的非湿陷性土层,避免地基受水浸湿后的湿陷危害。湿陷性黄土场地的桩基长度应穿透整个湿陷性土层,桩端支承在可靠持力层上。对非自重湿陷性场地,桩端土的承载力和桩周土的摩擦力均应按饱和状态确定;对自重湿陷性黄土场地的桩基,必须克服湿陷性土层的负摩擦力。桩孔施工应采用干钻成孔,不宜采用泥浆护壁。为确保湿陷性黄土桩基的安全可靠,应通过现场浸水载荷试验确定单桩设计承载力。此外,黄土地区冲沟分布密集,如采用一涵一沟方案,密集分布的涵洞群不利于线路刚度的平顺过渡,应考虑桥梁通过。

3.2采用隧道或明洞避免深堑高边坡

黄土高边坡容易发生变形和破坏,坡面防护工程复杂。长大路堑地段排水困难,容易产生路基病害。高深路堑应与隧道或明洞方案比选,尽量采用隧道或明洞通过以减少路堑挖方高度。当隧道埋深较浅,进出口段隧底为湿陷性黄土层时,对明洞和隧底地基必须采取可靠的加固和防水措施。

3.3采取可靠的防排水措施

湿陷性黄土结构松散、节理发育,极易受地表水的冲刷和溶蚀。地表水沿黄土裂隙下渗,产生机械侵蚀和化学溶蚀作用,形成黄土陷穴等潜蚀地貌,发育在路基基底的黄土陷穴对线路行车将造成极大的隐患。黄土地区铁路的地质灾害与降水具有很强的关联性,做好路基防排水对确保黄土区铁路工程安全有特别重要的作用。必须结合地形、地貌和水文地质条件,研究防排水工程的整体布设方案,确保地表水的顺畅排放,防止路基冲刷和积水。同时加强路基本体的防排水措施,防止地表水的下渗。黄土地区地表排水不宜集中,所有排水沟必须采取加固防渗措施。对地下水发育的地段,必须采取可靠的截排措施。对地下水位可能上升的湿陷性黄土地段,地基处理深度要考虑地下水上升的不利影响。

相关文档
最新文档