图论模型及其解答

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

各种图论模型及其解答

摘要:

本文用另一种思路重新组织《图论及其应用》相关知识。首先,用通俗化语言阐述了如何对事物间联系的问题进行图论建模;接着从现实例子出发,给出各种典型图论模型,每种图论模型对应于图论一个重要内容;再者,介绍相关知识对上述提到的图论模型涉及的问题进行解答;最后,补充一些图论其他知识,包括图论分支、易混概念。

符号约定:

Q(Question)表示对问题描述,M(Modeling)表示数学建模过程,A(Answer)表示原问题转化为何种图论问题。

一、引言

图论是研究点、线间关系的一门学科,属于应用数学的一部分。现实生活中,凡是涉及到事物间的关系,都可以抽象为图论模型。点表示事物,连线表示事物间的联系。整个求解过程如下:

原问题——>图论建模——>运用图论相关理论求解——>转化为原问题的解

整个过程关键在于图论建模,所谓图论建模,就是明确点表示什么,连线表示什么,原问题转化为图论中的什么问题。存在以下两种情况:

①若事物间联系是可逆的(比如双行道,朋友),则抽象成无向图

②若事物间联系是不可逆的(比如单行道,状态转化不可逆),则抽象成有向图

如果需要进一步刻画事物间的联系(比如城市间的距离),就给连线赋一个权值,从而抽象成赋值图。

综上,根据实际问题,可建模成下列图论模型的一种:无向赋权图、有向赋权图、无向非赋权图、有向非赋权图。

例1.宴会定理:任何一宴会中,一定存在两个人有相同的数量朋友M:点表示人,连线表示当且仅当该两个人是朋友

A:问题转化为任何一个图一定存在两个顶点的度相等

二、图论模型

接下来介绍若干典型的图论模型,每种模型几乎对应于图论的一个重要内容,这些内容将在第三章进行讨论,也就给出了这些模型的解答思路。

2.1 偶图模型

凡涉及两类事物间的联系(即只考虑两类事物间的联系,而不考虑同类事物间的联系),均可抽象成偶图模型。作图时,将两类事物分成两行或者两列。这类模型通常被包含在后续的模型中,但因许多现实问题可抽象成该模型,所以单列出来讨论。

(1) 仓库与销售间

M:点代表仓库或销售点,连线代表仓库与销售店间的关联

(2) 上课安排问题

Q:学校有6位教师将开设6门课程。六位教师的代号是Xi

(i=1,2,3,4,5,6),六门课程代号是Yi (i=1,2,3,4,5,6)。已知,教师X1能够胜任课程Y2和Y3;教师X2能够胜任课程Y4和Y5;教师X3能够胜任课程Y2;教师X4能够胜任课程Y6和Y3;教师Y5能够胜任课程Y1和Y6;教师X6能够胜任课程Y5和Y6。

M:点表示教师或者课程,连线表示当且仅当该教师能胜任该课程

2.2 最短路模型

凡涉及到最小状态转换问题,均可转化为最短路模型。点表示允许的状态,连线表示状态的转换(可逆与不可逆分别对应于无向图、有向图)。

(1) 最短航线

M:点表示城市,连线表示当且仅当两城市有直达航线,并在该线上注明两城市的距离,即权值

A:问题转化为求两点间的最短路径

(2) 状态转换

Q:某两人有一只8升的酒壶装满了酒,还有两只空壶,分别为5升和3升。求最少的操作次数能均分酒。

M:设x1,x2,x3分别表示8,5,3升酒壶中的酒量,则

点表示组合(x1,x2,x3) ,连线表示当且仅当可通过倒酒的方式相互变换A:问题转化为在该图中求点(8,0,0)到点(4,4,0)的一条最短路

(3) 狼羊菜渡河

Q:在一河岸有狼,羊和卷心菜。摆渡人要将它们渡过河去,由于船太小,每次只能载一样东西。由于狼羊,羊卷心菜不能单独相处。问摆渡人至少要多少次才能将其渡过河?

M:但是以下组合不能允许出现:狼羊菜,羊菜,狼羊,人,人狼,人菜,共6种。岸上只能允许出现10种组合:人狼羊菜,人狼羊,人狼菜,人羊,空,菜,羊,狼,狼菜,人羊菜。

点表示可允许的组合,连线当且仅当两种情况可用载人(或加一物)的渡船相互转变。

A:问题转化为求由顶点“人狼羊菜”到顶点“空”的一条最短路。

2.3 最小生成树模型

道路铺设

Q:道路铺设,使得任意两个地方均可达,并且费用最小

M:点表示工厂(假设是工厂),任意两点连线,并标出铺设需要的费用

A:问题转化为求该图的最小生成树

2.4 欧拉图模型

通俗地讲,G是欧拉图当且仅当G存在经过每条边恰好一次,并且回到起始点的迹。

(1) 哥尼斯堡七桥问题

Q:能否从一点出发,走遍7座桥,且通过每座桥恰好一次,最后仍回到起始地点

M:点表示陆地,连线表示桥

A:问题转化为G是否存在E图

(2) 中国邮递员问题

Q:邮递员必须走过他投递范围内的每一条街道至少一次,选择一条尽可能短的路线

M:点表示路口,连线表示当且仅当两路口有直达街道

A:若G是E图,通过Fleury算法构造Euler环游,即为所求。否则,按一定规则添加重复边,再用Fleury算法构造Euler环游。

2.5 哈密尔顿圈模型

(1) 旅行售货员问题——TSP

一售货员要到若干城市去售货,每座城市只经历一次,问如何安排行走路线,使其行走的总路程最短。

例子:

Q:一电脑代理商要从她所在城市出发,乘飞机去六个城市,然后回到出发点,如果要求每个城市只经历一次,能否办到?给出行走方案。

M:点表示城市,连线表示两城市有直达航线

A:该图是否存在H圈

(2) 圆桌会议座位安排

Q:若干人围圆周开会,每个人会不同的语言,如何安排座位,使得每个人能够和他身边的交流

M:点表示人,连线表示当且仅当两个人能交流,即至少会同一种语言。(可能你一下子想到的偶图模型,的确该问题可以抽象成偶图模型,但很难转化为图论问题)

A:给出该图的一个H圈

2.6 匹配模型

相关文档
最新文档