数学人教版八年级下册第一课时认识 正比例函数同步练习(含答案)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
优质资料---欢迎下载
19.2.1 第一课时认识正比例函数
1.下列变量之间的关系中,一个变量是另一个变量的正比例函数的是 ( ) A .正方形的面积S 随着边长x 的变化而变化
B .正方形的周长
C 随着边长x 的变化而变化
C .水箱有水10 L ,以0.5 L/min 的速度往外放水,水箱中的剩余水量V(L)随着放水时间t(min)的变化而变化
D .面积为20的三角形的一边a 随着这边上的高h 的变化而变化
2.若y=(m-1)22m x 是正比例函数,则m 的值为( )
A .1
B .-1
C .1或-1
D .2-2或
3.下列四个函数中,是正比例函数的是 ( )
A .y=2x+1
B .y=2x ²+1
C .y=x
2 D .y=2x 4.若在正比例函数y=kx (k ≠0)中,自变量x 的取值每增加1,函数值相应地减小4,则k 的值为( )
A .4
B .-4
C .41
D .-4
1 5.如图19-2-1-2,在矩形AOBC 中,A (-2,0),B(O ,1).若正比例函数y=kx 的图象经过点C ,则k 的值为( )
A .-2
B .-21
C .2
D .2
1 6. 三角形的一边长为6,该边上的高为x ,则三角形的面积S 与x 之间的函数关系式为_____.
7.已知正比例函数经过点(-1,2),则该函数解析式为_______.
8.已知y 是x 的正比例函数,且函数图象经过点(-3,6).
(1)求y 关于x 的函数关系式;
(2)当x=-6时,求对应的函数值y ;
(3)当x 取何值时,y=3
2? 9.已知y+2与x+3成正比例,当x=1时,y=2.试求:
(1)y 与x 的函数关系式;
(2)当x=-3时,求y 的值;
(3)当y=5时,求x 的值.
答案解析
1.B 列出关系式,四个选项分别是S=x ²,C=4x ,y=10-0.5t ,a=h
40,只有C=4x 符合正比例函数的定义,故选B .
2.B 由题意得2-m ²=1且m-1≠0,解得m=±1且m ≠1,∴m=-1.
3.D 根据正比例函数的定义判断:形如y=kx ,其中k 为常数且k ≠0,自变量次数为1,只有y=2x 满足,故选D .
4.B 当x 变为x+1时,函数值变为y-4,所以y-4=k(x+1),即y-4=kx+k ,所以kx-4=kx+k ,所以k=-4.故选B .
5.B ∵四边形AOBC 是矩形,A (-2,0),B(O ,1),
∴AC=OB=1,BC=OA=2,
∴点C 的坐标为(-2,1),
将点C (-2,1)代入y=kx ,得1=-2k ,解得k=-
21,故选B . 6.答案S=3x
解析 由三角形的面积公式可得S=2
1×6x ,即S=3x . 7.答案y=-2x
解析 设函数的解析式为y=kx(k ≠O),因为点(-1,2)在该函数图象上,所以-k=2,即k=-2,所以函数的解析式为y=-2x.
8.解析 (1)设正比例函数的关系式为y=kx(k ≠0),
∴图象经过点(-3,6),∴-3k=6,解得k=-2,
所以,此函数的关系式是y=-2x.
(2)把x=-6代入函数关系式可得y=-2×(-6)=12.
(3)把y=32代入函数关系式可得32=-2x ,解得x=-3
1. 9.解析(1)由题意,可设y+2=k (x+3)(k ≠O),
把x=1,y=2代入,得2+2=4k ,解得k=1,
所以y+2=x+3,即y=x+1.
(2)当x=-3时,y=-3+1=-2.
(3)当y=5时,5=x+1.解得x=4.