(完整版)重积分期末复习题高等数学下册(上海电机学院)
高等数学(下册)期末复习试题及答案

一、填空题(共21分 每小题3分)1.曲线⎩⎨⎧=+=012x y z 绕z 轴旋转一周生成的旋转曲面方程为122++=y x z .2.直线35422:1z y x L =--=-+与直线⎪⎩⎪⎨⎧+=+-==tz t y tx L 72313:2的夹角为2π. 3.设函数22232),,(z y x z y x f ++=,则=)1,1,1(grad f }6,4,2{.4.设级数∑∞=1n n u 收敛,则=∞→n n u lim 0.5.设周期函数在一个周期内的表达式为⎩⎨⎧≤<+≤<-=,0,10,0)(ππx x x x f 则它的傅里叶级数在π=x 处收敛于21π+.6.全微分方程0d d =+y x x y 的通解为 Cxy =.7.写出微分方程xe y y y =-'+''2的特解的形式xaxe y =*.二、解答题(共18分 每小题6分)1.求过点)1,2,1(-且垂直于直线⎩⎨⎧=+-+=-+-02032z y x z y x 的平面方程.解:设所求平面的法向量为n,则{}3,2,1111121=--=k j i n(4分)所求平面方程为 032=++z y x (6分) 2.将积分⎰⎰⎰Ωv z y x f d ),,(化为柱面坐标系下的三次积分,其中Ω是曲面)(222y x z +-=及22y x z +=所围成的区域.解: πθ20 ,10 ,2 :2≤≤≤≤-≤≤Ωr r z r (3分)⎰⎰⎰Ωv z y x f d ),,(⎰⎰⎰-=221020d ),sin ,cos (d d r rz z r r f r r θθθπ (6分)3.计算二重积分⎰⎰+-=Dy x y x eI d d )(22,其中闭区域.4:22≤+y x D解 ⎰⎰-=2020d d 2r r eI r πθ⎰⎰--=-20220)(d d 212r e r πθ⎰-⋅-=202d 221r e π)1(4--=e π 三、解答题(共35分 每题7分)1.设vue z =,而22y x u +=,xy v =,求z d .解:)2(232y y x x e y ue x e xv v z x u u z x z xy v v ++=⋅+⋅=∂∂⋅∂∂+∂∂⋅∂∂=∂∂ (3分))2(223xy x y e x ue y e yv v z y u u z y z xy v v ++=⋅+⋅=∂∂⋅∂∂+∂∂⋅∂∂=∂∂ (6分) y xy x y e x y y x x e z xy xy d )2(d )2(d 2332+++++= (7分)2.函数),(y x z z =由方程0=-xyz e z所确定,求yzx z ∂∂∂∂,.解:令xyz e z y x F z-=),,(, (2分)则 ,yz F x -= ,xz F y -= ,xy e F zz -= (5分)xye yzF F x z zz x -=-=∂∂, xy e xz F F y z z z y -=-=∂∂. (7分) 3.计算曲线积分⎰+-Ly x x y d d ,其中L 是在圆周22x x y -=上由)0,2(A 到点)0,0(O 的有向弧段.解:添加有向辅助线段OA ,有向辅助线段OA 与有向弧段OA 围成的闭区域记为D ,根据格林公式⎰⎰⎰⎰+--=+-OA DL y x x y y x y x x y d d d d 2d d (5分)ππ=-⋅=022 (7分)4.设曲线积分⎰++Lx y x f x y x f e d )(d )]([与路径无关,其中)(x f 是连续可微函数且满足1)0(=f ,求)(x f .解: 由xQ y P ∂∂=∂∂ 得 )()(x f x f e x'=+, 即xe xf x f =-')()( (3分)所以 )d ()(d d )1(C x e e e x f x x x+⋅=⎰⎰---⎰)(C x e x +=, (6分) 代入初始条件,解得1=C ,所以)1()(+=x e x f x . (7分)5.判断级数∑∞=12)!2()!(n n n 的敛散性.解: 因为 )!2()!()!22(])!1[(lim lim221n n n n u u n nn n ++=∞→+∞→ (3分) )12)(22()1(lim2+++=∞→n n n n 141<= (6分) 故该级数收敛. (7分)四、(7分)计算曲面积分⎰⎰∑++y x z x z y z y x d d d d d d ,其中∑是上半球面221z y x --=的上侧.解:添加辅助曲面1,0:221≤+=∑y x z ,取下侧,则在由1∑和∑所围成的空间闭区域Ω上应用高斯公式得⎰⎰∑++y x z x z y z y x d d d d d d ⎰⎰∑+∑++=1d d d d d d y x z x z y z y x⎰⎰∑++-1d d d d d d y x z x z y z y x (4分)0d 3-=⎰⎰⎰Ωv (6分)34213π⋅⋅=π2=. (7分)五、(6分)在半径为R 的圆的内接三角形中,求其面积为最大的三角形.解:设三角形各边所对圆心角分别为z y x ,,,则π2=++z y x ,且面积为)sin sin (sin 212z y x R A ++=, 令)2(sin sin sin πλ-+++++=z y x z y x F (3分)由 ⎪⎪⎩⎪⎪⎨⎧=++=+==+==+=πλλλ20cos 0cos 0cos z y x z F y F x F z yx (4分)得32π===z y x .此时,其边长为R R 3232=⋅. 由于实际问题存在最大值且驻点唯一,故当内接三角形为等边三角形时其面积最大. (6分)六、(8分)求级数∑∞=1n nnx 的收敛域,并求其和函数.解: 1)1(lim lim1=+==∞→+∞→n n a a R n n n n ,故收敛半径为1=R . (2分) 当1-=x 时,根据莱布尼茨判别法,级数收敛; 当1=x 时, 级数为调和级数,发散.故原级数的收敛域为)1,1[-. (5分)设和为)(x S ,即∑∞==1)(n nnx x S ,求导得∑∞=-='11)(n n x x S x-=11, (6分) 再积分得 ⎰'=xx x S x S 0d )()(x xxd 110⎰-=)1ln(x --=,)11(<≤-x (8分) 七、(5分)设函数)(x f 在正实轴上连续,且等式⎰⎰⎰+=yx x yt t f x t t f y t t f 111d )(d )(d )(对任何0,0>>y x 成立.如果3)1(=f ,求)(x f . 解:等式两边对y 求偏导得)(d )()(1y f x t t f y x f x x+=⎰ (2分)上式对任何0,0>>y x 仍成立.令1=y ,且因3)1(=f ,故有⎰+=xx t t f x xf 13d )()(. (3分)由于上式右边可导,所以左边也可导.两边求导,得3)()()(+=+'x f x f x f x 即)0(3)(>='x xx f .故通解为 C x x f +=ln 3)(.当1=x 时,3)1(=f ,故3=C . 因此所求的函数为 )1(l n 3)(+=x x f . (5分)八. (5分)已知x x e xe y 21+=,x x e xe y -+=2,x x x e e xe y --+=23是某二阶线性非齐次微分方程的三个解,求此微分方程. 解1:由线性微分方程解的结构定理知xe2与xe-是对应齐次方程的两个线性无关的解,xxe 是非齐次方程的一个特解,故可设此方程为 )(2x f y y y =-'-''将x xe y=代入上式,得x x xe e x f 2)(-=,因此所求的微分方程为x x xe e y y y 22-=-'-''解2:由线性微分方程解的结构定理知xe2与xe-是对应齐次方程的两个线性无关的解,xxe 是非齐次方程的一个特解,故x x x e C e C xe y -++=221是所求微分方程的通解,从而有 x x x x e C e C xe e y --++='2212,x x x x e C e C xe e y -+++=''22142消去21,C C ,得所求的微分方程为x x xe e y y y 22-=-'-''06高数B一、填空题(共30分 每小题3分)1.xoy 坐标面上的双曲线369422=-y x 绕x 轴旋转一周所生成的旋转曲面方程为36)(94222=+-z y x .2.设函数22),,(z yz x z y x f ++=,则=-)1,0,1(grad f )2,1,2(--.3.直线35422:1z y x L =--=-+与直线⎪⎩⎪⎨⎧+=+-==tz t y tx L 72313:2的夹角为2π. 4. 设Ω是曲面222y x z --=及22y x z +=所围成的区域积分,则⎰⎰⎰Ωv z y x f d ),,(化为柱面坐标系下的三次积分形式是⎰⎰⎰-22120d ),sin ,cos (d d r rz z r r f r r θθθπ.5. 设L 是圆周22x x y -=,取正向,则曲线积分=+-⎰Ly x x y d dπ2.6. 幂级数∑∞=--11)1(n nn n x 的收敛半径1=R .7.设级数∑∞=1n n u 收敛,则=∞→n n u lim 0.8.设周期函数在一个周期内的表达式为⎩⎨⎧≤<≤<-=,0,0,0)(ππx x x x f 则它的傅里叶级数在π=x 处收敛于2π.9.全微分方程0d d =+y y x x 的通解为Cxy =.10.写出微分方程xe y y y =-'+''2的特解的形式xaxe y =*.二、解答题(共42分 每小题6分)1.求过点)1,2,1(且垂直于直线⎩⎨⎧=+-+=-+-03202z y x z y x 的平面方程.解:设所求平面的法向量为n ,则{}3,2,1111121=--=kj i n(4分) 所求平面方程为 032=++z y x (2分)2.函数),(y x z z =由方程z y x z y x 32)32sin(-+=-+所确定,求xz ∂∂. 解:令z y x z y x z y x F 32)32sin(),,(+---+=, (2分)则,1)32cos(--+=z y x F x 3)32cos(3+-+-=z y x F z . (2分))32c o s (33)32c o s (1z y x z y x F F x z z x -+--+-=-=∂∂ . (2分) 3.计算⎰⎰Dxy σd ,其中D 是由直线2 ,1==x y 及x y =所围成的闭区域.解法一: 原式⎰⎰=211d ]d [xx y xy (2分)x y x x d ]2[2112⎰⋅=x xx d )22(213⎰-= 811]48[2124=-=x x . (4分)解法二: 原式⎰⎰=212d ]d [y y x xy 811]8[2142=-=y y .(同上类似分)4.计算⎰⎰--Dy x y x d d 122,其中D 是由122=+y x 即坐标轴所围成的在第一象限内的闭区域.解: 选极坐标系原式⎰⎰-=2012d 1πθr r r d (3分))1(1)21(22102r d r ---⋅=⎰π6π= (3分) 5.计算⎰Γ-+-z x y yz x z y d d 2d )(222,其中Γ是曲线,t x =,2t y =3t z =上由01=t 到12=t 的一段弧.解:原式⎰⋅-⋅+-=122564d ]322)[(t t t t t t t (3分)⎰-=146d )23(t t t 1057]5273[t t -=351= (3分)6.判断级数∑∞=-1212n n n 的敛散性. 解: 因为 n n n nn n n n u u 2122)12(lim lim11-+=+∞→+∞→ (3分) 121<=, (2分) 故该级数收敛. (1分) 7.求微分方程043=-'-''y y y 满足初始条件,00==x y 50-='=x y 的特解. 解:特征方程 0432=--r r ,特征根 1,421-==r r通解为 x xe C e C y -+=241, (3分)x xe C e C y --='2414,代入初始条件得 1,121=-=C C ,所以特解x x e e y -+-=4.(3分)三、(8分)计算曲面积分⎰⎰∑++y x z x z y z y x d d d d d d ,其中∑是上半球面221z y x --=的上侧.解:添加辅助曲面1,0:221≤+=∑y x z ,取下侧,则在由1∑和∑所围成的 空间闭区域Ω上应用高斯公式得⎰⎰∑++y x z x z y z y x d d d d d d ⎰⎰∑+∑++=1d d d d d d y x z x z y z y x ⎰⎰∑++-1d d d d d d y x z x z y z y x (4分)0d 3-=⎰⎰⎰Ωv (2分)34213π⋅⋅=π2=. (2分) 四、(8分)设曲线积分⎰-+Ly x x xf x x yf d ])(2[d )(2在右半平面)0(>x 内与路径无关,其中)(x f 可导,且满足1)1(=f ,求)(x f .解:由xQy P ∂∂=∂∂, 得x x f x x f x f 2)(2)(2)(-'+=,即1)(21)(=+'x f xx f , (3分) 所以)d ()(d 21d 21C xeex f x x x x +=⎰⎰-⎰)(2121C dx x x+=⎰-)32(2321C x x+=-, (3分)代入初始条件,解得31=C ,所以xx x f 3132)(+=. (2分)五、(6分)求函数xy y x y x f 3),(33-+=的极值. 解:⎪⎩⎪⎨⎧=-==-=033),(033),(22x y y x f y x y x f y x 得驻点 )1,1(),0,0( (3分),6),(x y x f xx = ,3),(-=y x f xy y y x f yy 6),(=在点)0,0(处,,092>=-AC B 故)0,0(f 非极值;在点)1,1(处,,0272<-=-AC B 故1)1,1(-=f 是极小值. (3分)六、(6分)试证:曲面)(xyxf z =上任一点处的切平面都过原点.证:因),()(xyf x y x y f x z '-=∂∂ )(1)(x y f x x y f x y z '=⋅'=∂∂ (3分) 则取任意点),,(0000z y x M ,有)(0000x y f x z =,得切平面方程为))(())](()([)(00000000000000y y x yf x x x y f x y x y f x y f x z -'+-'-=- 即 0)()]()([0000000=-'+'-z y x y f x x y f x y x y f 故切平面过原点. (3分)07A一、 填空题(每小题3分,共21分).1.设向量}5,1,{},1,3,2{-==λb a ,已知a 与b垂直,则=λ1-2.设3),(,2,3π===b a b a ,则=-b a 6-3.yoz 坐标面上的曲线12222=+bz a y 绕z 轴旋转一周生成的旋转曲面方程为122222=++bz a y x4.过点)0,4,2(且与直线⎩⎨⎧=--=-+023012z y z x 垂直的平面方程0832=+--z y x5.二元函数)ln(y x x z +=的定义域为}0,0,({>+≥=y x x y x D6.函数)ln(),,(222z y x z y x f ++=,则=)1,0,1(gradf }1,0,1{7.设xy e z=,则=dz )(xdy ydx e xy +8.设),(x y x xf u =,f 具有连续偏导数,则=∂∂x u21f xyxf f -+ 9.曲线32,,t z t y t x ===上点)1,1,1(处的切向量=T}3,2,1{10.交换积分顺序:⎰⎰=ydx y x f dy 010),(⎰⎰110),(xdyy x f dx11.闭区域Ω由曲面222y x z+=及平面1=z 所围成,将三重积分⎰⎰⎰Ωdv z y x f ),,(化为柱面坐标系下的三次积分为⎰⎰⎰πθθθ20101),sin ,cos (r dz z r r f rdr d12.设L 为下半圆周21x y--=,则=+⎰ds y xL )(22π13.设L 为取正向圆周922=+y x,则=-+-⎰dy x x dx y xy L )4()22(2π18-14.设周期函数在一个周期内的表达式为⎩⎨⎧<≤≤<-=ππx xx x f 000)(则它的傅里叶级数在π=x 处收敛于2π15.若0lim ≠∞→nn u ,则级数∑∞=1n n u 的敛散性是 发散16.级数∑∞=1!2n n n nn 的敛散性是 收敛17.设一般项级数∑∞=1n n u ,已知∑∞=1n n u 收敛,则∑∞=1n n u 的敛散性是 绝对收敛18.微分方程05)(23=+'-''xy y y x 是 2 阶微分方程19.微分方程044=+'+''y y y 的通解=y xx xe C e C 2221--+20.微分方程x xe y y y 223=+'-''的特解形式为xe b ax x 2)(+二、(共5分)设xy v y x u v u z ===,,ln 2,求yz x z ∂∂∂∂,解:]1)ln(2[1ln 2222+=⋅+⋅=∂∂⋅∂∂+∂∂⋅∂∂=∂∂xy y x y v u y v u x v v z x u u z x z]1)ln(2[)(ln 23222--=⋅+-⋅=∂∂⋅∂∂+∂∂⋅∂∂=∂∂xy yx x v u y x v u y v v z y u u z y z 三、(共5分) 设022=-++xyz z y x ,求xz∂∂ 解:令xyz z y x z y x F 22),,(-++=x y zyzxyz F x -=xyzxyxyz F z -=xyxyz xyz yz F F x zz x --=-=∂∂ 四、(共5分)计算⎰⎰⎰Ωxdxdydz ,其中Ω为三个坐标面及平面1=++z y x 所围成的闭区域解:y x z x y x --≤≤-≤≤≤≤Ω10,10,10:⎰⎰⎰⎰⎰⎰⎰⎰----Ω--==xyx xdy y x x dx xdz dy dx xdxdydz 1010101010)1(241)2(21)1(213102102=+-=-=⎰⎰dx x x x dx x x 五、(共6分)计算⎰-+-Lx x dy y e dx y y e )1cos ()sin (,其中L 为由点)0,(a A 到点)0,0(O 的上半圆周ax y x =+22解:添加有向辅助线段OA ,则有向辅助线段OA 和有向弧段OA 围成闭区域记为D ,根据格林 公式⎰-+-Lxx dy y e dx y y e )1cos ()sin ( ⎰⎰⎰-+--=DOAx x dy y e dx y y e dxdy )1cos ()sin (0)2(212-=a π 381a π= 六、(共6分)求幂级数∑∞=-13)3(n nn n x 的收敛域 解:对绝对值级数,用比值判敛法3313131lim 333)1(3lim lim 111-=-⋅+=-+-=∞→++∞→+∞→x x n n n x n x u u n n nn n n n n n 当1331<-x 时,即60<<x ,原级数绝对收敛 当1331>-x 时,即60><x x 或,原级数发散 当0=x 时,根据莱布尼兹判别法,级数∑∞=-1)1(n nn收敛当6=x时,级数∑∞=11n n发散,故收敛域为)6,0[七、(共5分) 计算dxdy z⎰⎰∑2,其中∑为球面1222=++z y x 在第一卦限的外侧解:∑在xoy 面的投影xy D :0,0,122≥≥≤+y x y xdxdy z ⎰⎰∑2dxdy y x xyD )1(22--+=⎰⎰rdr r d )1(20102⎰⎰-=πθ412⋅=π8π=八、(共7分)设0)1(=f ,求)(x f 使dy x f ydx x f x x )()](1[ln ++为某二元函数),(y x u 的全微分,并求),(y x u解:由x Q y P ∂∂=∂∂,得)()(1ln x f x f x x '=+,即x x f xx f ln )(1)(=-' 所以)ln 21()1ln ()ln ()(211C x x C dx x x x C ex ex f dxx dxx+=+⋅=+=⎰⎰⎰⎰---带入初始条件,解得0=C,所以x x x f 2ln 21)(=⎰++=),()0,0(22ln 21)ln 21(ln ),(y x xdy x ydx x x y x u⎰⎰+=xyxdy x 002ln 210x xy 2ln 21=07高数B一、(共60分 每题3分)1. 设向量}4 ,2 ,6{-=a ,}2 ,1 ,{-=λb ,已知a 与b平行,则=λ3-.2. yoz 坐标面上的曲线12222=-c z a y 绕z 轴旋转一周生成的旋转曲面方程为122222=-+bz a y x . 3.设3),(,1,2π===∧b a b a ,则a b -=3.4. 设一平面经过点)1,1,1(,且与直线⎩⎨⎧=+=--03042z y y x 垂直,则此平面方程为032=-+z y x .5. 二元函数12ln2+-=x y z 的定义域为{}012|),(2>+-x y y x .6. 设xye z =,则=z d )d d (y x x y e xy +.7. 函数)ln(),,(222z y x z y x f ++=,则=)1,0,1(grad f )1,0,1(.8.设(,)y u xf x x =,f 具有连续导数,则u x ∂=∂12yf xf f x''+-.9. 曲面1222=++z y x 在点)2,0,1(-处的法向量=n{}4,0,2-. 10. 交换积分顺序:⎰⎰=1d ),(d x y y x f x ⎰⎰101d ),(d yx y x f y .11.闭区域Ω由曲面22y x z +=及平面1=z 所围成,将三重积⎰⎰⎰Ωv z y x f d ),,(化为柱面坐标系下的三次积分为⎰⎰⎰11202d ),sin ,cos (d d rz z r r f r r θθθπ.12. 设∑是闭区域Ω的整个边界曲面的外侧,V 是Ω的体积,则 ⎰⎰∑++y x z x z y x y x d d d d d d =V 3.13. 设L 为上半圆周21x y -=,则=+⎰Ls y x d )(22π.14. 设周期函数在一个周期内的表达式为⎩⎨⎧≤<≤<-=,0,0,0)(ππx x x x f 则它的傅里叶级数在π=x 处收敛于2π.15. 若lim 0n n u →∞≠,则级数∑∞=1n n u 的敛散性是 发散 . 16. 级数∑∞=1!5n n nn n 的敛散性是 收敛 .17.级数∑∞=12sin n nn的敛散性是 收敛 . 18. 微分方程06)(542=+'+''y y y x 是 2 阶微分方程. 19. 微分方程02=+'-''y y y 的通解为)(21x C C e x +.20.微分方程x xe y y y 2365-=+'+''的特解的形式xe bx ax y 22*)(-+=.三、(共5分)函数),(y x z z =由方程04222=-++z z y x 所确定,求xz∂∂. 解:令=),,(z y x F z z y x 4222-++, (1分)则 ,2x F x = ,42-=z F z (2分)zxF F x z z x -=-=∂∂2 (2分) 五、(共6分)计算曲线积分⎰+--Ly y x x y x d )sin (d )2(22,其中L 为由点)0,2(A 到点)0,0(O 的上半圆周x y x 222=+.解:添加有向辅助线段,它与上半圆周围成的闭区域记为D ,根据格林公式⎰+--Ly y x x y x d )sin (d )2(22⎰⎰⎰+---+-=OADy y x x y x y x d )sin (d )2(d d )21(22 (3分)⎰⎰=Dy x d d ⎰-22d x x 3823212132-=-⋅⋅=ππ (3分)七、(共6设0)1(=f ,确定)(x f 使y x f x xyx f x d )(d )]([sin +-为某二元函数(,)u x y 的全微分.解: 由xQy P ∂∂=∂∂ 得 )()(sin x f x x f x '=-, 即 xxx f x x f s i n )(1)(=+' (2分) 所以 )d sin ()(d x 1d 1C xe xx ex f x x x+⋅=⎰⎰⎰-)d sin (ln ln C x e xx e xx +⋅=⎰- (2分) )cos (1C x x+-=, (1分) 代入初始条件,解得1cos =C ,所以)cos 1(cos 1)(x xx f -=. (1分) 八、(共6分) 计算⎰⎰∑y x z d d 2,其中∑是球面1222=++z y x 外侧在,0≥x 0≥y 的部分.解:⎰⎰∑y x z d d ⎰⎰∑=1d d y x z ⎰⎰∑+2d d y x (2分)⎰⎰--=xyD y x y x d d )1(22⎰⎰----xyD y x y x d )d 1()1(22 (2分) ⎰⎰--=xyD y x y x d )d 1(222r r r d )1(d 21220⋅-=⎰⎰πθ 4π=(2分)08高数A一、选择题(共24分 每小题3分)1.设{}1111,,p n m s =,{}2221,,p n m s =分别为直线1L ,2L 的方向向量,则1L 与2L 垂直的充要条件是 (A )(A )0212121=++p p n n m m (B )212121p p n n m m ==(C )1212121=++p p n n m m (D )1212121=++p pn n m m 2.Yoz 平面上曲线12+=y z 绕z 轴旋转一周生成的旋转曲面方程为 ( C )(A )12+=y z (B )22x y z +=(C )122++=x y z (D )x y z +=23.二元函数12ln2+-=x y z 的定义域为 (B )(A ){}02|),(2>-x y y x (B ){}012|),(2>+-x y y x (C ){}012|),(2≤+-x y y x (D ){}0,0|),(≥>y x y x4.交换积分顺序:1d (,)d yy f x y x =⎰⎰ ( A )(A )dy y x f dx x ⎰⎰110),((B )dx y x f dy y ⎰⎰110),((C )dx y x f dy y⎰⎰110),((D )dy y x f dx x⎰⎰110),(5.空间闭区域Ω由曲面1=r 所围成,则三重积分⎰⎰⎰Ωv d 2= ( C ) (A )2 (B )2π (C )38π (D )34π 6.函数),(y x z z =由方程04222=-++z z y x 所确定,则xz∂∂= ( D ) (A )zy -2 (B )y x-2 (C )zz-2 (D )zx-27.幂级数∑∞=13n n nn x 的收敛域是 ( C )(A )][3,3- (B )](3,0(C ) [)3,3- (D )()3,3-8.已知微分方程xe y y y =-'+''2的一个特解为x xe y =*,则它的通解是( B )(A )x xe x C x C ++221(B )x x x xe e C e C ++-221(C )x e x C x C ++221(D )x x x xe e C e C ++-21二、填空题(共15分 每小题3分)1.曲面z y x =+22在点)1,0,1(处的切平面的方程是012=--z x . 2.若lim 0n n u →∞≠,则级数∑∞=1n n u 的敛散性是 发散 . 3.级数∑∞=12cos n nn的敛散性是 绝对收敛 . 4.二元函数2221sin)(),(xy x y x f +=,当()()0,0,→y x 时的极限等于 0 。
高等数学(下)B试卷

上海电机学院继续教育学院2017 学年 上 半年 期末考试试卷B( 《高等数学》 ) 课程试卷班级: 成1684 学号: 姓名:一 、单项选择题(每题4分,共20分)1.设()()22,ln 1f x y y x =+-,则其定义域为 ( ) (A )y x 221+> (B )122>+y x (C )122≥+y x (D )221y x +≥2. 二元函数(),f x y 在点()00,x y 处可微是(),f x y 在该点偏导数存在的 ( ) (A )充分而非必要条件 (B )必要而非充分条件(C )充分必要条件 (D )既非充分也非必要条件3. 设()00(,),, |x y zz f x y y ∂==∂则 ( ) (A )()()00000,,lim y f x x y y f x y y ∆→+∆+∆-∆ (B )()()0000,,lim y f x y y f x y y∆→+∆-∆(C )()()00000,,lim y f x y y f x y y ∆→+∆-∆ (D )()()000,,lim x f x x y f x y x∆→+∆-∆4.积分cos 20(cos ,sin )d f d πθθρθρθρρ⎰⎰可写为 ( )(A ) 100(,)dy f x y dx ⎰ (B ) 100(,)dy f x y dx ⎰(C ) 11(,)dx f x y dy ⎰⎰ (D ) 10(,)dx f x y dy ⎰5.设D 是圆域=⎰⎰+≤+dxdy y x y x D2222 ,4则 ( )(A )38π (B )316π (C )4π (D )π二、填空题(每格4分,共20分)1. 函数2222x y z x y +=-的间断点是 。
2.设222sin , zz x y y∂==∂则 。
3.已知{}22(,)|,0D x y x y a a =+≤>,根据二重积分的几何意义,(Da d σ=⎰⎰ 。
高等数学(同济)下册期末考试题及答案(5套)

精品文档高等数学(下册)考试试卷(一)一、填空题(每小题 3分,共计24分)1、 z = log a (x 2 y 2)(a 0)的定义域为 D= ____________________2 22、 二重积分 In(x y )dxdy 的符号为 _____________ 。
|x| |y| 16、 微分方程dy y tan#的通解为 ________________________dx x x7、 方程y ⑷ 4y 0的通解为 ___________________ 。
&级数的和为 ___________________ 。
n in(n 1)二、选择题(每小题 2分,共计16分)1、二元函数z f (x, y)在(x 0, y 0)处可微的充分条件是()(A ) f (x, y)在(x °, y °)处连续;f x (x, y ), f y (x, y)在(X 0,y °)的某邻域内存在;(C ) f x (x 0,y 。
)x f y (x 0,y 。
)y 当.(x)2 y)2时,是无穷小;(D ) lim xf x (x °,y °) x f y (x °,y °) y 2 2 x) ( y) 2、设U x yf (一)y y xf(),其中 xf 具有二阶连续导数,则ux 2 y xU 2 y等于(A ) x y ;(B ) x ;(C) y ;(D)0 o3、设2 :x 2 y z 2 1,z0,则二重积分 I zdV 等于()(A ) 4和2d13 . r sincos dr ; (B )"d.1 2 .d r sin0 0dr ;2 2y3、由曲线y ln x 及直线xye 1 , y 1所围图形的面积用二重积分表示为为。
4、设曲线 L 的参数方程表示为x (t) ( x ),则弧长元素dsy(t)5、设曲面刀为 2 9x y 9介于 z0及z 3间的部分的外侧,贝U (x 2 y 2 1)ds,其值(B )精品文档2 (C) d0 13o r sin cos dr;(D)2 1 •d d r sin cos dr。
第二学期高数(下)期末考试试卷及答案

第二学期期末高数(下)考试试卷及答案1 一、 填空题(每空 3 分,共 15 分) 1。
设()=⎰22t xFx e dt ,则()F x '=-22x xe。
2.曲面sin cos =⋅z x y 在点,,⎛⎫⎪⎝⎭1442ππ处的切平面方程是--+=210x y z .3.交换累次积分的次序:()(),,-+⎰⎰⎰⎰12330010xdy f x y dx dy f x y dx=(),-⎰⎰2302xx dx f x y dy.4.设闭区域D 是由分段光滑的曲线L 围成,则:使得格林公式: ⎛⎫∂∂-=+ ⎪∂∂⎝⎭⎰⎰⎰D LQ P dxdy Pdx Qdy x y 成立的充分条件是:()(),,和在D上具有一阶连续偏导数P x y Q x y .其中L 是D 的取正向曲线;5。
级数∞=-∑1nn 的收敛域是(],-33.二、 单项选择题 (每小题3分,共15分)1。
当→0x ,→0y 时,函数+2423x yx y 的极限是()DA.等于0; B 。
等于13;C. 等于14; D 。
不存在.2.函数(),=zf x y 在点(),00x y 处具有偏导数(),'00x f x y ,(),'00y f x y 是函数在该点可微分的()CA.充分必要条件;B.充分但非必要条件; C 。
必要但非充分条件; D. 既非充分又非必要条件.3.设()cos sin =+x ze y x y ,则==10x y dz()=BA 。
e ;B 。
()+e dx dy ;C 。
()-+1e dx dy ; D. ()+x e dx dy .4。
若级数()∞=-∑11nn n a x 在=-1x 处收敛,则此级数在=2x处()AA 。
绝对收敛; B.条件收敛; C 。
发散; D.收敛性不确定。
5.微分方程()'''-+=+3691x y y y x e 的特解*y 应设为()DA. 3x ae ; B 。
高等数学(同济)下册期末考试题及答案(5套)

高等数学(同济)下册期末考试题及答案(5套)高等数学(下册)考试试卷(一)一、填空题(每小题3分,共计24分)1、z=log(a,(x+y))的定义域为D={(x,y)|x+y>0}。
2、二重积分22ln(x+y)dxdy的符号为负号。
3、由曲线y=lnx及直线x+y=e+1,y=1所围图形的面积用二重积分表示为∬(x+y-e-1)dxdy,其值为1/2.4、设曲线L的参数方程表示为{x=φ(t),y=ψ(t)}(α≤t≤β),则弧长元素ds=sqrt(φ'(t)^2+ψ'(t)^2)dt。
5、设曲面∑为x+y=9介于z=0及z=3间的部分的外侧,则∬(x+y+1)ds=27√2.6、微分方程y'=ky(1-y)的通解为y=Ce^(kx)/(1+Ce^(kx)),其中C为任意常数。
7、方程y(4)d^4y/dx^4+tan(x)y'''=0的通解为y=Acos(x)+Bsin(x)+Ccos(x)e^x+Dsin(x)e^x,其中A、B、C、D为任意常数。
8、级数∑n(n+1)/2的和为S=1/2+2/3+3/4+。
+n(n+1)/(n+1)(n+2)=n/(n+2),n≥1.二、选择题(每小题2分,共计16分)1、二元函数z=f(x,y)在(x,y)处可微的充分条件是(B)f_x'(x,y),f_y'(x,y)在(x,y)的某邻域内存在。
2、设u=yf(x)+xf(y),其中f具有二阶连续导数,则x^2+y^2等于(B)x。
3、设Ω:x+y+z≤1,z≥0,则三重积分I=∭Ω2z dV等于(C)∫0^π/2∫0^1-rsinθ∫0^1-r sinθ-zrdrdφdθ。
4、球面x^2+y^2+z^2=4a^2与柱面x^2+y^2=2ax所围成的立体体积V=(A)4∫0^π/4∫0^2acosθ∫0^4a-rsinθ rdrdφdθ。
高数重积分总习题

重积分总复习题一 判 断1.若(,)f x y 在D 上的二重积分存在,则必定有(,)(,)DDf x y d f x y d σσ≤⎰⎰⎰⎰( )2.111(,)(,)yxdy f x y dx dx f x y dy =⎰⎰⎰⎰. ( )二 填空题1.改换二次积分的积分次序⎰⎰yy dx y x f dy 2202),(= .2.化2220)adx x y dy +⎰为极坐标形式下的二次积分为 .3.将极坐标系下的二重积分化为直角坐标系下的二重积分21(cos ,sin )d f r r rdr πθθθ⋅=⎰⎰ ___________________4.二次积分2xdx f dy ⎰的极坐标形式的二次积分为 .5.交换二次积分201111(,)(,)xxdx f x y dy dx f x y dy --+⎰⎰⎰⎰的积分次序为 .三 选择题1.设区域D :221x y +≤,f 是域D 上的连续函数,则22()Df xy dxdy +=⎰⎰( )A.12()rf r dr π⎰B .104()rf r dr π⎰ C.122()rf r dr π⎰ D.04()rrf r dr π⎰2.设4(,)xI dx f x y dy =⎰⎰,交换积分次序,得( )A.24104(,)y y dy f x y dx ⎰⎰ B.21440(,)y ydy f x y dx -⎰⎰C.44104(,)dy f x y dx ⎰⎰ D.20144(,)y y dy f x y dx ⎰⎰3.设积分区域D 由x 轴,y 轴及直线1x y +=围成,则二重积分(,)Df x y d σ⎰⎰化为累次积分后为( ).A.10dx ⎰1(,)0x f x y dy -⎰. B.10x dy -⎰1(,)0f x y dx ⎰. C.10dx ⎰1(,)0f x y dy ⎰.D.10dy ⎰1(,)0f x y dx ⎰.4.),(z y x f =在有界闭区域D 上连续是二重积分σd ),(D⎰⎰y x f 存在的( )条件。
上海电机学院高等数学考试及答案

上海电机学院高等数学考试及答案一、选择题(10分)1在yoz 坐标面上,求与三个点A(3,1,2),B(4,-2,-2),C(0,5,-1)等距离的点的坐标( )(若C 为(0,5,1)就选B ) A(0,1,-1) B(0,1,-2) C(1,0,-2) D(1,-2,0)2.直线341222--=+=-z y x 与平面x+y+z=4的关系是( A )A 直线在平面上B 平行C 垂直D 三者都不是 3.考虑二元函数f (x,y )的下面四条性质 (1)f(x,y)在点(x 0,y 0)连续(2)f x (x,y )、f y (x,y)在点(x 0,y 0)连续. (3)f(x,y)在点(x 0,y 0)可微分(4)f x (x 0,y 0)、f y (x 0,y 0)存在若用“P →Q ”表示可由性质P 推出性质Q ,则下列四个选项中正确的是( A )A (2)→(3)→(1)B (3)→(2)→(1)C (3)→(4)→(1)D (3)→(1)→(4) 4.设f (x,y )在点(x 0,y 0)处存在偏导,则limℎ→0f (x 0+2ℎ,y 0)−f(x 0−ℎ,y 0)ℎ=( D )A.0B.f x (x 0,y 0)C.2f x (x 0,y 0)D.3f x (x 0,y 0)二、填空题(40分)1.两平行平面2x-3y+4z+9=0与2x-3y+4z-15=0的距离是_√29__。
2.求过点P(2,1,3)且与直线l:X+13=y−12=z−1垂直相交的直线方程__x−22=y−1−1=z−34__________。
3.xoz平面上曲线z=e x(x>0)绕x轴旋转所得旋转曲面方程为___+−√y2+z2=e x_________。
4球面z=√4−x2−y2与锥面z=√3(x2+y2)的交线在xoy面上的投影曲面方程为__{x2+y2=1z=0_________。
5.设u=f(x,xy,xyz),f可微,则∂u∂x=__f'1+yf'2+yzf'3_____6.求z=√xy 的全微分dz=__12√xydx−√xy2y2dy________。
(完整版)曲线积分与曲面积分期末复习题高等数学下册(上海电机学院)

第十章 曲线积分与曲面积分答案一、选择题 1.曲线积分()sin ()cos xL f x e ydx f x ydy ⎡⎤--⎣⎦⎰与路径无关,其中()f x 有一阶连续偏导数,且(0)0f =,则()f x = BA.1()2x x e e -- B. 1()2x x e e -- C. 1()2x x e e -+ D.0 2.闭曲线C 为1x y +=的正向,则Cydx xdyx y -+=+⎰Ñ C A.0 B.2 C.4 D.6 3.闭曲线C 为2241x y +=的正向,则224Cydx xdyx y -+=+⎰Ñ D A.2π- B. 2π C.0 D. π 4.∑为YOZ 平面上221y z +≤,则222()xy z ds ∑++=⎰⎰ DA.0B. πC.14π D. 12π 5.设222:C x y a +=,则22()Cx y ds +=⎰Ñ CA.22a πB. 2a πC. 32a πD. 34a π 6. 设∑为球面2221x y z ++=,则曲面积分∑[ B ]A.4πB.2πC.πD.12π7. 设L 是从O(0,0)到B(1,1)的直线段,则曲线积分⎰=Lyds [ C ]A. 21B. 21- C. 22 D. 22-8. 设I=⎰Lds y 其中L 是抛物线2x y =上点(0, 0)与点(1, 1)之间的一段弧,则I=[D ]A.655 B.1255 C.6155- D. 12155- 9. 如果简单闭曲线 l 所围区域的面积为 σ,那么 σ 是( D ) A.⎰-l ydy xdx 21; B. ⎰-l xdx ydy 21;C.⎰-l xdy ydx 21; D. ⎰-lydx xdy 21。
10.设2222:(0)S x y z R z ++=≥,1S 为S 在第一卦限中部分,则有 CA.14SS xds xds =⎰⎰⎰⎰ B.14SS yds yds =⎰⎰⎰⎰C.14SS zds zds =⎰⎰⎰⎰ D.14SS xyzds xyzds =⎰⎰⎰⎰二、填空题1. 设L 是以(0, 0), (1, 0), (1, 1), (0, 1)为顶点的正方形边界正向一周,则曲线积分⎰=+-L y dy x eydx )(2-22.S 为球面2222a z y x =++的外侧,则⎰⎰=-+-+-sdxdy y x dzdx x z dydz z y )()()(03.⎰=++-12222y x yx xdyydx =π2-4.曲线积分22()Cx y ds +⎰Ñ,其中C 是圆心在原点,半径为a 的圆周,则积分值为32a π 5.设∑为上半球面)0z z =≥,则曲面积分()222ds y x z ∑++⎰⎰= 32π6. 设曲线C 为圆周221x y +=,则曲线积分()223d Cxy x s +-⎰Ñ 2π .7. 设C 是以O(0,0),A(1,0),B(0,1)为顶点的三角形边界,则曲线积分⎰=+C ds )yx (8. 设∑为上半球面z=,则曲面积分∑的值为 83π。
高数下学期复习题答案

高数下学期复习题答案1. 极限的概念及运算极限是微积分中的基础概念,它描述了函数在某一点附近的行为。
对于函数f(x),当x趋近于某点a时,如果f(x)的值趋近于一个确定的值L,则称L为f(x)在a点的极限。
极限的运算法则包括:- 极限的和:\(\lim_{x \to a} [f(x) + g(x)] = \lim_{x \to a} f(x) + \lim_{x \to a} g(x)\)- 极限的积:\(\lim_{x \to a} [f(x) \cdot g(x)] = \lim_{x\to a} f(x) \cdot \lim_{x \to a} g(x)\)- 极限的商:\(\lim_{x \to a} \frac{f(x)}{g(x)} =\frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)}\)(前提是\(\lim_{x \to a} g(x) \neq 0\))2. 导数的定义及计算导数是函数在某一点处的切线斜率,表示函数在该点的变化率。
对于函数f(x),其在点x=a的导数定义为:\( f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h} \) 导数的计算通常涉及基本初等函数的导数公式,例如:- \(\frac{d}{dx} x^n = nx^{n-1}\)- \(\frac{d}{dx} e^x = e^x\)- \(\frac{d}{dx} \ln x = \frac{1}{x}\)3. 不定积分与定积分不定积分是求函数原函数的过程,而定积分则是计算函数在某一区间上的累积效果。
不定积分的表示为:\(\int f(x) \, dx\)定积分的表示为:\(\int_a^b f(x) \, dx\)定积分的基本性质包括:- \(\int_a^b f(x) \, dx = F(b) - F(a)\),其中F(x)是f(x)的一个原函数。
重积分复习题word版

重积分复习题一.二重积分1.交换积分顺序2111d (,)d x x f x y y --⎰⎰(011d (,)d d (,)d y f x y x y f x y x -=+⎰⎰⎰)2.交换积分顺序2113(3)201d (,)d d (,)d xx x f x y y x f x y y -+⎰⎰⎰⎰(1320d (,)d y y f x y x -=⎰)3.计算112111224d d d d y y xxyy e x y e x +⎰⎰⎰⎰(=3182e -)4.求二重积分66cos d d yx y x x ππ⎰⎰(=12) 5.计算二重积分2d d Dx y x y ⎰⎰,D由221x y -=,0y =,1y =围成(21)15-.6.计算d d D yx y x⎰⎰,D 由2,,4,2y x y x x x ====围成(=9).7.计算22d d D xx y y⎰⎰,D 由2,,1x y x xy ===围成(=94). 二.极坐标下的二重积分1.化二重积分为极坐标形式20d (,)d Ry f x y x⎰⎰(2sin 20d (cos ,sin )d R f πρθρθρθρρ=⎰⎰)2.化二重积分为极坐标形式22d ()d Rx f x y y +⎰⎰(20()dRf πρρρ=⎰)3.利用极坐标计算sin d Dx y ⎰⎰,D :22224x y ππ≤+≤(26π-),4.利用极坐标计算(123)d d Dx y x y --⎰⎰,D 为圆222x y R +=围成(2R π)5.利用极坐标计算d Dx y ⎰⎰,D 由22x y Rx +=围成.三.二重积分的应用1.计算由曲面24z x =-、坐标面及平面24x y +=所围的立体的体积(403=).2.计算由221,0z x y z =--=所围立体的体积(13π=)3.求锥面z =被柱面22z x =所割下部分的面积(=)4.求球面2221x y z ++=为平面11,42z z ==所夹部分的面积(2π=)5.设半径为R 的球面∑的球心在定球面2222(0)x y z a a ++=>上,问R 为何值时,∑在定球面内部的那部分的面积最大?四.三重积分1.利用直角坐标计算3d d d (1)x y zx y z Ω+++⎰⎰⎰,Ω是0,0,0,1x y z x y z ===++=所围成的四面体(=15(ln 2)28- 2.利用直角坐标计算3d d d ()x y zx y z Ω++⎰⎰⎰,Ω:12,12,12x y z ≤≤≤≤≤≤(=73ln 2ln522-) 3.用柱面坐标计算22d d d 1x y zx y Ω++⎰⎰,Ω由222x y z +=及1z =围成(=(ln 22)2ππ-+.4.用柱坐标计算22()d d d x y x y z Ω+⎰⎰⎰,Ω由222x y z +=,2z =围成(=163π).5.计算22()dV x y z Ω++⎰⎰⎰,Ω由曲线220y zx ⎧=⎨=⎩绕z 轴旋转一周所得曲面与4z =所围成.(2563π)6.利用球面坐标计算d d d xyz x y z Ω⎰⎰⎰,Ω由0x =,0y =,0z =及2221x y z ++=所围在第一卦限内的区域.(=148)7. 利用球面坐标计算22()d d d x y x y z Ω+⎰⎰⎰,Ω由z z ==及0z =所围成.(=12415π)8.计算()dV x z Ω+⎰⎰⎰,Ω由z =与z =围成(=8π)(注:本资料素材和资料部分来自网络,仅供参考。
(完整版)无穷级数期末复习题高等数学下册(上海电机学院)

第十一章无穷级数一、选择题1.在下列级数当中,绝对收敛的级数是( C )(A)∑∞=+1121n n(B)()()2311nnn∑∞=-(C)()∑--nn3111(D)()nnnn111--∑∞=2.()∑∞=-2!1nnnnx在-∞<x<+∞的和函数()=xf(A )(A)e x2-(B) e x2(C) e x--2(D) e x2-3.下列级数中收敛的是( B )(A)∑+∞=11n nn(B)∑+∞=111n nn(C)()∑+∞=1121n n(D)()∑+∞=12111n n4.lim=∞→u nn是级数∑∞=1nnu收敛的( B )(A)充分条件(B) 必要条件(C) 充要条件(D) 无关条件5.级数∑∞=1nnu收敛的充分必要条件是( C )(A)lim=∞→u nn(B)1lim1<=+∞→ruunnn(C)s nn∞→lim存在(s n=u1+u2+…+u n)(D) nu n21≤6.下列级数中,发散的级数是( B )(A)∑∞=121n n(B)∑∞=11cosnn(C)()∑∞=131nn(D)()∑∞=-1132nn7.级数()()nx nnn51111-∑-∞=-的收敛区间是( B )(A)(0,2)(B)(]2,0 (C)[)2,0(D) [0,2]8.()+∞<<∞-∑∞=xnnnx1!的和函数是( B )(A)e x(B) 1-e x(C) 1+e x(D) x-119.下列级数中发散的是( A )(A)∑∞=12sinnnπ(B)()∑-∞=-1111nnn(C) ∑⎪⎭⎫⎝⎛∞=143nn(D)∑⎪⎭⎫⎝⎛∞=131n n10.幂级数()∑∞=-13nnx的收敛区间是( B )(A)()1,1-(B)()4,2(C) [)4,2(D)(]4,211.在下列级数中发散的是( D )(A)∑∞=123nn(B)()nnn1111∑∞=--(C) ∑∞=+1312n nn(D)∑∞=+13)1(1n nn12.幂级数()()xnnnn120!121+∞=∑+-的和函数是( D )(A)e x(B) xcos(C)()x+1ln(D) xsin13. 级数()()nx nn n 51111-∑-∞=-的收敛区间是(B )(A )(0,2) (B) (]2,0 (C) [)2,0 (D) [0,2]14. 在下列级数当中,绝对收敛的级数是( C )(A )∑∞=+1121n n (B)()()2311nn n∑∞=-(C)()∑--n n 3111 (D)()n n n n111--∑∞=15. 下列级数中不收敛的是( A ).A .∑∞=+-11)1(n nn n B .∑∞=-11)1(n n n C .∑∞=-1321)1(n n n D .∑∞=-121)1(n nn16.在下列级数中发散的是(C )(A )∑∞=131n n(B )Λ+++++321161814121 (C )Λ+++3001.0001.0001.0(D )()()()Λ+-+-53535353432 17.幂级数x n n nn ∑∞=++11)1ln(的收敛区间是(C ) (A )[]1,1- (B)(-1,1)(C) [)1,1- (D) (]1,1-18.下列级数中条件收敛的是( B )A .∑∞=--11)32()1(n n n B .∑∞=--11)1(n n nC .∑∞=--11)31()1(n nn D .∑∞=-+-1212)1(n n n n19.幂级数∑∞=++11)21(n nn x 的收敛区间是( C ) A .)2123(,- B .]2123[,- C .)2123[,-D .]2123(,-20.在下列级数中,条件收敛的是( B )(A )()111+∑-∞=n n n n(B) ()n n n 111∑-∞= (C)()∑-∞=1211n nn (D)∑∞=11n n21.级数∑⎪⎭⎫⎝⎛∞=+1152n n 的和S=( D )(A )23 (B) 35 (C) 52 (D) 3222. 设f(x)是周期为π2的周期函数,他在),[ππ-上的表达式为f(x)=x, 若f(x)的傅立叶级数 展开式为∑∞=++1)sin cos (2n n n nx b nx a a ,则=n a [D] A.1)1(2+-n n B.n n )1(2- C. 1)1(1+-n nD. 0 23. 设f(x)是周期为π2的周期函数,他在),[ππ-上的表达式为f(x)=2x , 若f(x)的傅立叶级数 展开式为∑∞=++1)sin cos (2n n n nx b nx a a ,则=n b [A] A. 0 B.n n)1(4- C. 1)1(2+-n n D. 1)1(4+-n n二、填空题 1.幂级数()∑∞=-02!1n nnn x的和函数是 e x 2-2.幂级数∑∞=02n nnx的收敛半径为21=R 。
高数下期末考试题及答案

高数下期末考试题及答案一、选择题(每题2分,共20分)1. 函数f(x) = 3x^2 + 2x - 5在x=1处的导数是:A. 8B. 6C. 4D. 2答案:B2. 若曲线y = x^3 - 2x^2 + x - 6在点(1, -6)处的切线斜率为-1,则该曲线在该点的切线方程是:A. y = -x - 5B. y = x - 5C. y = -x + 5D. y = x + 5答案:A3. 定积分∫[0,1] x^2 dx的值是:A. 1/6B. 1/3C. 1/2D. 2/3答案:B4. 函数f(x) = sin(x) + cos(x)的原函数F(x)是:A. -cos(x) + sin(x) + CB. -sin(x) + cos(x) + CC. sin(x) - cos(x) + CD. cos(x) + sin(x) + C答案:D5. 微分方程dy/dx + y = x^2的解是:A. y = (1/2)x^3 + CB. y = x^3 + CC. y = (1/3)x^3 + CD. y = x^2 + C答案:C6. 函数f(x) = e^x - x^2的极小值点是:A. x = 0B. x = 1C. x = -1D. x = 2答案:A7. 曲线y = ln(x)在x=1处的切线斜率是:A. 0B. 1C. -1D. 2答案:B8. 定积分∫[1,e] e^x dx的值是:A. e^e - eB. e - 1C. e^e - 1D. e^e答案:C9. 函数f(x) = x^3 - 6x^2 + 11x - 6的单调增区间是:A. (-∞, 1)B. (1, 2)C. (2, +∞)D. (-∞, 2)答案:C10. 函数f(x) = x^4 - 4x^3 + 6x^2 - 4x + 1的拐点是:A. x = 0B. x = 1C. x = 2D. x = 3答案:B二、填空题(每题2分,共20分)1. 若f(x) = x^3 - 5x^2 + 4x + 6,则f'(2) = ______。
(完整版)多元函数微分法及其应用期末复习题高等数学下册(上海电机学院)

A. 538. 函数 z = xy + 50第八章 偏导数与全微分参考答案第八章 偏导数与全微分一、选择题1.若 u=u(x, y)是可微函数,且 u ( x,y) y = x 2 = 1,1 1A.-B.C. -1D. 122∂u ∂x y = x 2= x, 则∂u∂y y = x 2 = [A ]2.函数 z = x 2 + y 2 - 6x + 2 y + 6 [ D ]A. 在点(-1, 3)处取极大值B. 在点(-1, 3)处取极小值C. 在点(3, -1)处取极大值D. 在点(3, -1)处取极小值3.二元函数 f (x, y )在点 (x , y 0) 处的两个偏导数 f (x , y ), f x 0 0y (x , y )存在是函数 f 在0 0该点可微的 [ B ]A. 充分而非必要条件B.必要而非充分条件C.充分必要条件D.既非充分也非必要条件4. 设 u= x 2 +2 y 2+3 z 2 +xy+3x-2y-6z 在点 O(0, 0, 0)指向点 A(1, 1, 1)方向的导数5 3 5 3 5 3 B. -C.D.-66335. 函数 z = x 3 + y 3 - 3xy [ B ]A. 在点(0, 0)处取极大值B. 在点(1, 1)处取极小值C. 在点(0, 0), (1, 1)处都取极大值 D . 在点(0, 0), (1, 1)处都取极小值6.二元函数 f (x, y )在点 (x , y)处可微是 f (x, y )在该点连续的[ A ]0 0A. 充分而非必要条件B.必要而非充分条件C.充分必要条件D.既非充分也非必要条件∂u∂l= [ D ]7. 已知 y - ε sin y - x = 0(0 < ε < 1) , 则 dy dx= [ B ]A. 1 + ε cos yB. 1 1C. 1 - ε cos yD.1 - ε cos y 1 + ε cos y20 + (x>0,y>0)[ D ] x yA. 在点(2, 5)处取极大值B. 在点(2, 5)处取极小值C.在点(5, 2)处取极大值D. 在点(5, 2)处取极小值-1-C.充分必要条件D.既非充分也非必要条件10.曲线x=t,y=-t2,z=t3所有切线中与平面x+2y+z=4平行的切线有[B]A.1条B.2条C.3条D.不存在11.设f(x,y)=xy x y,则f(,)=B y2-x2y xA.xyy4-x2 B.x2y2x2+y2y2-x2C.D.y4-x4y4-x4y4-x412.为使二元函数f(x,y)=为B x+yx-y沿某一特殊路径趋向(0,0)的极限为2,这条路线应选择A.x x x2x=y B.=y C.=y D.=y 432313.设函数z=f(x,y)满足∂2z∂y2=2,且f(x,1)=x+2,f'(x,1)=x+1,则f(x,y)=ByA.y2+(x+1)y+2B.y2+(x-1)y+2C.y2+(x-1)y-2D.y2+(x+1)y-2 14.设f(x,y)=3x+2y,则f(x y,f(x,y))=CA.3xy+4x+4yB.xy+x+2yC.3xy+6x+4yD.3xy+4x+6y15.为使二元函数f(x,y)=xy2x2+y2在全平面内连续,则它在(0,0)处应被补充定义为BA.-1B.0C.1D.16.已知函数f(x+y,x-y)=x2-y2,则∂f(x,y)∂f(x,y)+=C ∂x∂yA.2x-2yB.2x+2yC.x+yD.x-yy 17.若f()=x x2+y2x(x>0),则f(x)=BA.x2-1B.x2+1C.∂z∂z 18.若z=y x,则在点D处有=∂y∂x x2+1x D.xx2-1A.(0,1)B.(e,1)C.(1,e)D.(e,e)20.函数f(x,y)=⎨11x sin+y sin,xy≠0y x4(C)(D)-119.设z=x y2,则下列结论正确的是AA.∂2z∂2z∂2z∂2z -=0B.->0∂x∂y∂y∂x∂x∂y∂y∂xC.∂2z∂2z-<0 D.两者大小无法确定∂x∂y∂y∂x⎧0,xy=0⎪⎪⎩,则极限lim f(x,y)(C).x→0y→0(A)等于1(B)等于2(C)等于0(D)不存在21.函数z=xy在点(0,0)(D).(A)有极大值(B)有极小值(C)不是驻点(D)无极值22.二元函数z=x2+y2在原点(0,0)处(A).(A)连续,但偏导不存在(B)可微(C)偏导存在,但不连续(D)偏导存在,但不可微23.设u=f(r),而r=x2+y2+z2,f(r)具有二阶连续导数,则(B).12(A)f''(r)+f'(r)(B)f''(r)+f'(r)r r 1112f''(r)+f'(r)(D)f''(r)+f'(r) (C)r2r r2r ∂2u∂2u∂2u++∂x2∂y2∂z2=24.函数z=f(x,y)在点(x,y)处连续是它在该点偏导存在的(D).00(A)必要而非充分条件(B)充分而非必要条件(C)充分必要条件(D)既非充分又非必要条件25.函数z=1-x2-y2的极大值点是(D).(A)(1,1)(B)(1,0)(C)(0,1)(D)(0,0)26.设f(x,y)=arcsin yx,则f'(2,1)=(B).x(A)14(B)-112227.极限limx→0x2yx4+y2(B).∂x 0z = u 2ln v , u =xy , v = xy, 则 x 22 x x(D ) y 232.设f ( x , y) =xy(A) f x, ⎪ = f ( x , y) ;(B) f ( x + y , x - y) = f ( x , y) ;33.设 z = e x cos y ,则 ∂2z34.已知 f ( x + y , x - y) = x 2- y2 ,则∂f第八章 偏导数与全微分参考答案(A) 等于 0(B) 不存在(C) 等于 12(D) 存在且不等于 0 及 1228. z = f ( x , y) 若在点 P ( x , y ) 处的两个一阶偏导数存在,则(B ).0 0(A) f ( x , y) 在点 P 连续(B) z = f ( x , y ) 在点 x 连续0 0(C) dz = ∂z|⋅dx +P ∂z| ⋅dy (D) A,B,C 都不对 ∂y P 029. 设函数 z = x y ,则 d z =( A ).(A). yx y -1d x + x y ln x d y (B). yx y -1d x + x y d y(C). x y d x + x y ln x d y(D). yx y -1d x + x y ln y d y∂z 30. 已知∂y =( C )2 x 2 (A ) y 3ln xy + x2 y3 2 x 2 (B ) y 3 ln xy - x 2y 3- 2 x 2(C ) y3ln xy +31.函数 z = 1 - x 2 - y 2 的定义域是( D)(A.) D={(x,y)|x 2+y 2=1} (B.)D={(x,y)|x 2+y 2 ≥ 1} (C.) D={(x,y)|x 2+y 2<1}(D.)D={(x,y)|x 2+y 2 ≤ 1} x 2 + y 2 ,则下列式中正确的是( C);⎛ y ⎫ ⎝ x ⎭(C) f ( y , x) = f ( x , y) ;(D) f ( x ,- y) = f ( x , y)∂x ∂y = (D);(A)e x sin y ; (B) e x + e x sin y ; (C) -e x cos y ; (D) -e x sin y∂x + ∂f ∂y = ( C );∂x⎛x,y⎫,lim f(x+∆x,y+∆y)-f(x,y)f(x+∆x,y)-f(x,y)lim∆x∆xf(x+∆x,y)-f(x,y)f(x+∆x,y)lim∆x∆x37.设由方程e-xyz=0确定的隐函数z=f(x,y),则(((A)2x+2y;(B)x-y;(C)2x-2y(D)x+y.35.设z=2x2+3xy-y2∂z=,则∂x∂y(B)(A)6(B)3(C)-2(D)2.36.设z=f(x,y)则∂z=⎝00⎭(B)0000000(A)∆x→0(B)∆x→0lim (C)∆x→0000000(D)∆x→0z∂z∂x=(B)z z y y (A)1+z(B)x(z-1)(C)x1+z)(D)x1-z)38.二次函数z=ln(4-x2-y2)+1x2+y2-1的定义域是(D)A.1<x2+y2≤4;B.–1≤x2+y2<4;C.–1≤x2+y2≤4;D.1<x2+y2<4。
曲线积分与曲面积分 期末复习题 高等数学下册 (上海电机学院)

第十章 曲线积分与曲面积分答案一、选择题 1.曲线积分()sin ()cos xL f x e ydx f x ydy ⎡⎤--⎣⎦⎰与路径无关,其中()f x 有一阶连续偏导数,且(0)0f =,则()f x = BA.1()2x x e e -- B. 1()2x x e e -- C. 1()2x x e e -+ D.0 2.闭曲线C 为1x y +=的正向,则Cydx xdyx y -+=+⎰Ñ C A.0 B.2 C.4 D.6 3.闭曲线C 为2241x y +=的正向,则224Cydx xdyx y -+=+⎰Ñ D A.2π- B. 2π C.0 D. π 4.∑为YOZ 平面上221y z +≤,则222()xy z ds ∑++=⎰⎰ DA.0B. πC.14π D. 12π 5.设222:C x y a +=,则22()Cx y ds +=⎰Ñ CA.22a πB. 2a πC. 32a πD. 34a π 6. 设∑为球面2221x y z ++=,则曲面积分∑[ B ]A.4πB.2πC.πD.12π7. 设L 是从O(0,0)到B(1,1)的直线段,则曲线积分⎰=Lyds [ C ]A. 21B. 21- C. 22 D. 22-8. 设I=⎰Lds y 其中L 是抛物线2x y =上点(0, 0)与点(1, 1)之间的一段弧,则I=[D ]A.655 B.1255 C.6155- D. 12155- 9. 如果简单闭曲线 l 所围区域的面积为 σ,那么 σ 是( D ) A.⎰-l ydy xdx 21; B. ⎰-l xdx ydy 21;C.⎰-l xdy ydx 21; D. ⎰-lydx xdy 21。
10.设2222:(0)S x y z R z ++=≥,1S 为S 在第一卦限中部分,则有 CA.14SS xds xds =⎰⎰⎰⎰ B.14SS yds yds =⎰⎰⎰⎰C.14SS zds zds =⎰⎰⎰⎰ D.14SS xyzds xyzds =⎰⎰⎰⎰二、填空题1. 设L 是以(0, 0), (1, 0), (1, 1), (0, 1)为顶点的正方形边界正向一周,则曲线积分⎰=+-L y dy x eydx )(2-22.S 为球面2222a z y x =++的外侧,则⎰⎰=-+-+-sdxdy y x dzdx x z dydz z y )()()(03.⎰=++-12222y x yx xdyydx =π2-4.曲线积分22()Cx y ds +⎰Ñ,其中C 是圆心在原点,半径为a 的圆周,则积分值为32a π 5.设∑为上半球面)0z z =≥,则曲面积分()222ds y x z ∑++⎰⎰= 32π6. 设曲线C 为圆周221x y +=,则曲线积分()223d Cxy x s +-⎰Ñ 2π .7. 设C 是以O(0,0),A(1,0),B(0,1)为顶点的三角形边界,则曲线积分⎰=+C ds )yx (8. 设∑为上半球面z=,则曲面积分∑的值为 83π。
重积分期末练习题及答案5-23

重积分期末练习题及答案一、选择题 1、交换积分0(,)(aydy f x y dx a ⎰⎰为常数)的次序后得( B )A 00(,)yadx f x y dy ⎰⎰ B0(,)aaxdx f x y dy ⎰⎰C(,)axdx f x y dy ⎰⎰ C(,)aydx f x y dy ⎰⎰2、设2222222()()x y z t F t f x y z dv ++≤=++⎰⎰⎰,其中 f 为连续函数,(0)f '存在,而(0)0,(0)1f f '==,则50()limt F t t →=( B )A πB 45πC 35πD 25π3、球面22224x y z a ++=与柱面222x y ax +=所围成立体体积(含在柱内部分)为( C )A2cos 2004a d πθθ⎰⎰ B2cos 208a d πθθ⎰⎰C2cos 204a d πθθ⎰⎰D2cos 202a d πθπθ-⎰⎰4、设D 是xy 平面上以点(1,1),(1,1),(1,1)---为顶点的三角形区域,1D 是D 在第一象限的部分,则(cos sin )Dxy x y d σ+⎰⎰=( A )A 12cos sin D x yd σ⎰⎰ B 12D xyd σ⎰⎰ C 1(cos sin )D xy x y d σ+⎰⎰ D 05、设2222222222sin()1arctan 0(,)02x y x y x y x y f x y x y π⎧++≠⎪⎪++=⎨⎪+=⎪⎩ ,区域22:(0)D x y εε+≤>,则01lim (,)Df x y d εσπε+→⎰⎰=( A )A2πB πC 0D ∞ 二、填空题 1、 设(,,)I f x y z dxdydz Ω=⎰⎰⎰,积分区域:0z z y Ω≤≥≥所确定,则I 在柱面坐标系下的三次积分为120(cos ,sin ,)d rdr f r r z dz πθθθ⎰⎰2、 设D 是由3,(0)y x y x x ==>所围成的平面区域, 则sin Dxd x σ⎰⎰= 32(cos1sin1)-+ 3、二次积分222y xdx e dy -⎰⎰=41(1)2e -- 4、 设D是由11,22x y -≤≤-≤≤围成的平面区域,则3(2)Dxy dxdy +⎰⎰= 05、 设Ω是由球面2221x y z ++=所围成的闭区域,则222222ln(1)1z x y z dxdydz x y z Ω++++++⎰⎰⎰= 0 三、计算题 1、计算222:(0)Dxy dxdyD x y a a +≤>⎰⎰解:由对称性知224142()2aaDxy dxdy dx x a x dx a ==-=⎰⎰⎰⎰2、计算2421222xxxdx dy dx dy yyππ+⎰⎰解:由于sin2xdy yπ⎰的原函数不能用初等函数表示,因此要交换积分次序原式=22314(2)sinsin22y yDxxdxdy dy dx yyππππ+==⎰⎰⎰⎰3、计算D,其中D 为 221x y +≤的第一象限部分 解:原式=220(2)48d t r πππθπ==-⎰⎰⎰ 4、22224:9Dx y dxdy D x y +-+≤⎰⎰解:12222222222322024(4)(4)41(4)(4)2DD D x y dxdy x y dxdy x y dxdyd r rdr d r rdr ππθθπ+-=-+++-=-+-=⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰5、设2222{(,)0,0},[1]D x y x y x y x y =+≤≥≥++表示不超过221x y ++的最大整数,计算二重积分22[1]Dxy x y dxdy ++⎰⎰解:22322132332001[1]sin cos [1]13sin cos [1]()28Dxy xy dxdy d r drd r dr r dr r dr ππθθθθθθ++=+=+=+=⎰⎰⎰⎰⎰6、计算Ω,其中 Ω为2216,4,0x y y z z +=+==所围成的区域解:原式=244sin 05123r d rdr rdz πθπθ-=⎰⎰⎰7、计算.,)(22222的球体是其中R z y x dxdydz z y x ≤++Ω++⎰⎰⎰Ω8、(1)把下列二重积分化为定积分:.1:,)(≤++⎰⎰y x D dxdy y x f D(2)计算.2,2,21:,z xy z y zx y xyzxyzdxdydz ≤≤≤≤≤≤Ω⎰⎰⎰Ω其中 9 (2009-11)椭球面1S 是椭圆13422=+y x 绕x 轴旋转而成,圆锥面2S 是过点(4,0)且与椭圆13422=+y x 相切的直线绕x轴旋转而成,(1)求1S ,2S 的方程,(2)求1S ,2S 之间的立体体积.。
无穷级数 期末复习题 高等数学下册 (上海电机学院)

第十一章无穷级数一、选择题1.在下列级数当中,绝对收敛的级数是( C )(A)∑∞=+1121n n(B)()()2311nnn∑∞=-(C)()∑--nn3111(D)()nnnn111--∑∞=2.()∑∞=-2!1nnnnx在-∞<x<+∞的和函数()=xf(A )(A)e x2-(B) e x2(C) e x--2(D) e x2-3.下列级数中收敛的是( B )(A)∑+∞=11n nn(B)∑+∞=111n nn(C)()∑+∞=1121n n(D)()∑+∞=12111n n4.lim=∞→u nn是级数∑∞=1nnu收敛的( B )(A)充分条件(B) 必要条件(C) 充要条件(D) 无关条件5.级数∑∞=1nnu收敛的充分必要条件是( C )(A)lim=∞→u nn(B)1lim1<=+∞→ruunnn(C)s nn∞→lim存在(s n=u1+u2+…+u n)(D) nu n21≤6.下列级数中,发散的级数是( B )(A)∑∞=121n n(B)∑∞=11cosnn(C)()∑∞=131nn(D)()∑∞=-1132nn7.级数()()nx nnn51111-∑-∞=-的收敛区间是( B )(A)(0,2)(B)(]2,0 (C)[)2,0(D) [0,2]8.()+∞<<∞-∑∞=xnnnx1!的和函数是( B )(A)e x(B) 1-e x(C) 1+e x(D) x-119.下列级数中发散的是( A )(A)∑∞=12sinnnπ(B)()∑-∞=-1111nnn(C) ∑⎪⎭⎫⎝⎛∞=143nn(D)∑⎪⎭⎫⎝⎛∞=131n n10.幂级数()∑∞=-13nnx的收敛区间是( B )(A)()1,1-(B)()4,2(C) [)4,2(D)(]4,211.在下列级数中发散的是( D )(A)∑∞=123nn(B)()nnn1111∑∞=--(C) ∑∞=+1312n nn(D)∑∞=+13)1(1nnn12.幂级数()()xnnnn120!121+∞=∑+-的和函数是( D )(A)e x(B) xcos(C)()x+1ln(D) xsin13. 级数()()nx nn n 51111-∑-∞=-的收敛区间是(B )(A )(0,2) (B) (]2,0 (C) [)2,0 (D) [0,2]14. 在下列级数当中,绝对收敛的级数是( C )(A )∑∞=+1121n n (B)()()2311nn n∑∞=-(C)()∑--n n 3111 (D)()nn n n111--∑∞=15. 下列级数中不收敛的是( A ).A .∑∞=+-11)1(n nn n B .∑∞=-11)1(n nnC .∑∞=-1321)1(n n nD .∑∞=-121)1(n nn16.在下列级数中发散的是(C )(A )∑∞=131n n(B )+++++321161814121(C ) +++3001.0001.0001.0(D )()()()+-+-5353535343217.幂级数x n n nn ∑∞=++11)1ln(的收敛区间是(C )(A )[]1,1- (B)(-1,1)(C) [)1,1- (D) (]1,1-18.下列级数中条件收敛的是( B )A .∑∞=--11)32()1(n nnB .∑∞=--11)1(n n nC .∑∞=--11)31()1(n nn D .∑∞=-+-1212)1(n n nn19.幂级数∑∞=++11)21(n nnx 的收敛区间是( C )A .)2123(,- B .]2123[,- C .)2123[,-D .]2123(,-20.在下列级数中,条件收敛的是( B )(A )()111+∑-∞=n nn n(B)()n n n111∑-∞=(C)()∑-∞=1211n nn (D)∑∞=11n n21.级数∑⎪⎭⎫ ⎝⎛∞=+1152n n 的和S=( D )(A )23(B) 35(C) 52(D) 3222. 设f(x)是周期为π2的周期函数,他在),[ππ-上的表达式为f(x)=x, 若f(x)的傅立叶级数 展开式为∑∞=++10)sin cos (2n n nnx b nx aa ,则=n a [D]A. 1)1(2+-n nB.nn)1(2- C.1)1(1+-n nD. 023. 设f(x)是周期为π2的周期函数,他在),[ππ-上的表达式为f(x)=2x , 若f(x)的傅立叶级数 展开式为∑∞=++10)sin cos (2n n nnx b nx aa ,则=nb [A]A. 0B.nn)1(4- C.1)1(2+-n nD. 1)1(4+-n n二、填空题1.幂级数()∑∞=-02!1n nnn x 的和函数是 e x 2-2.幂级数∑∞=02n nnx的收敛半径为21=R 。
(完整版)重积分期末复习题高等数学下册(上海电机学院)

第九章 重积分一、选择题1.I=222222(),:1x y z dv x y z Ω++Ω++=⎰⎰⎰球面内部, 则I= [ C ]A. ⎰⎰⎰ΩΩ=dv 的体积 B.⎰⎰⎰142020sin dr r d d θϕθππC.⎰⎰⎰104020sin dr r d d ϕϕθππD.⎰⎰⎰104020sin dr r d d θϕθππ2. Ω是x =0, y=0, z=0, x+2y+z=1所围闭区域, 则⎰⎰⎰Ω=xdxdydz [ B ]A. ⎰⎰⎰---yx x dz x dy dx 21021010 B.⎰⎰⎰---y x xdz x dy dx 21021010C.⎰⎰⎰-10210210dz x dx dy yD.⎰⎰⎰---yx y dz x dx dy 21021010 3. 设区域D 由直线,y x y x ==-和1x =所围闭区域,1D 是D 位于第一象限的部分,则[B ](A )()()1cos d d 2d d DD xy x xy x y xy x y +=⎰⎰⎰⎰(B )()()()1cos d d 2cos d d DD xy x xy x y x xy x y +=⎰⎰⎰⎰(C )()()1cos d d 2(cos())d d DD xy x xy x y xy x xy x y +=+⎰⎰⎰⎰(D )()()cos d d 0Dxy x xy x y +=⎰⎰4. Ω:1222≤++z y x , 则⎰⎰⎰Ω=++++++dxdydz z y x z y x z 1)1ln(222222 [ C ]A. 1B. πC. 0D. 34π5.222{(,),0}D x y x y a y =+≤≥,其中0a >,则Dxy d σ=⎰⎰DA.220sin cos a d r dr πθθθ⎰⎰ B.30sin cos ad r dr πθθθ⎰⎰C.3(sin cos )ad r dr πθθθ-⎰⎰ D.320sin cos a d r dr πθθθ⎰⎰-302sin cos ad r dr ππθθθ⎰⎰6.设,010,()()0,a x a f x g x ≤≤⎧>==⎨⎩其余,D 为全平面,则()()D f x g y x dxdy -=⎰⎰ CA.aB.212a C. 2a D.+∞ 7.积分cos 20(cos ,sin )d f r r rdr πθθθθ⎰⎰可写为 DA. 10(,)dy f x y dx ⎰B.10(,)dy f x y dx ⎰ B.11(,)dx f x y dy ⎰⎰D.1(,)dx f x y dy ⎰8.交换二次积分22(,)x dx f x y dy ⎰⎰的积分顺序为( A ).(A) 420(,)dy f x y dx ⎰(B)40(,)dy f x y dx ⎰ (C)242(,)xdy f x y dx ⎰⎰(D)42(,)dy f x y dx ⎰9.设平面区域D 由140,0,,1x y x y x y ==+=+=围成,若31[ln()],DI x y dxdy =+⎰⎰32(),DI x y dxdy =+⎰⎰ 33[sin()],DI x y dxdy =+⎰⎰ 则123,,I I I 的大小顺序为( C ).(A) 123I I I << (B) 321I I I << (C) 132I I I << (D) 312I I I << 10.221x y ≤+≤⎰⎰的值 ( B ).(A) 大于零 (B) 小于零 (C) 0 (D) 不能确定 11.设积分区域D 由||,||(0)x a y a a ==>围成,则Dxydxdy =⎰⎰( C ).(A)1 (B) 14 (C) 0 (D) A, B, C 都不对12.221x y ≤+≤⎰⎰的值 ( B ).(A) 大于零 (B) 小于零 (C) 0 (D) 不能确定 13.把二次积分2210x y dx dy +⎰化为极坐标形式的二次积分(B ).(A) 221r d re dr πθ⎰⎰ (B)2221rd re dr ππθ-⎰⎰(C)2221r d e dr ππθ-⎰⎰ (D)221r d e dr πθ⎰⎰14. 设积分区域D 是由直线y=x,y=0,x=1围成,则有⎰⎰=Ddxdy ( A )(A )⎰⎰x dydx 01(B )⎰⎰ydxdy 01(C )⎰⎰01xdydx (D )⎰⎰yxdxdy 115. 设D 由1,2,===y x y x y 围成,则⎰⎰=D dxdy ( B )(A )21 (B )41 (C )1 (D )2316.根据二重积分的几何意义,下列不等式中正确的是( B ); (A) D x D,0d )1(⎰⎰>-σ:x ≤1,y ≤1;(B) D x D,0d )1(⎰⎰>+σ:x ≤1,y ≤1;(C)D y x D,0d )(22⎰⎰>--σ:22y x +≤1;(D) D y x D,0d )ln(22⎰⎰>-σ:x +y ≤1 17.=+⎰⎰y x y x Dd d 22( C ),其中D :1≤22y x +≤4;(A)2π421d d r r θ⎰⎰; (B)2π41d d r r θ⎰⎰;(C)2π221d d r r θ⎰⎰; (D)2π21d d r r θ⎰⎰18. 二重积分⎰⎰=≤≤≤≤1010y x xydxdy ( C )(A )1 (B )21 (C )41(D )219. dxdy y x y x ⎰⎰≤++132222的值等于( A )A. π43;B. π76;C. π56;D. π2320. 二重积分⎰⎰=≤≤≤≤1010y x xydxdy ( C )(A )1 (B )21 (C )41(D )221. 设D 是区域(){}()π8 ,|,22222=⎰⎰+≤+dxdy y x a y xy x D 又有,则a=( B )(A )1 (B )2 (C )4 (D )822. 若D 是平面区域(){}e y x y x ≤≤≤≤1 ,10|,,则二重积分=⎰⎰dxdy y xD ( B )(A )2e (B )21(C )e (D )1 23. 设D 由1,2,===y x y x y 围成,则⎰⎰=Ddxdy ( B )(A )21 (B )41 (C )1 (D )23二、填空题 1.变换积分次序(,)f x y dx =1(,)(,)f x y dy f x y dy +2.比较大小:其中D 是以(0,0),(1,1),(1,1)-为顶点的三角形22()Dx y dxdy -⎰⎰ <D3.变换积分次序2142(,)ydy f x y dx -=⎰⎰1411(,)(,)dx f x y dy dx f x y dy +⎰⎰⎰4.交换二次积分的积分次序()2211,x dx f x y dy ⎰⎰=()421,dy f x y dx ⎰5. 交换 dx e dy yx ⎰⎰1012的积分次序后的积分式为210xx dx dy e ⎰⎰,其积分值为()112e - 6、交换二次积分的积分次序后,)(1010y x ,f dx x⎰⎰-dy=⎰⎰-1010),(ydx y x f dy7、交换二次积分的次序⎰⎰-=ax ax xdy y x f dx 022),(0(,)a ya dy f x y dx ⎰⎰三、计算与证明1. 计算⎰⎰Ddxdy xy 2, 其中D 是抛物线2y =2x 与直线x=21所围闭区域解:⎰⎰Ddxdy xy 2=⎰⎰--11212122y dx xy dy=⎰--1162)8181(dy y y=2112. 计算I=⎰⎰+Ddxdy y x 22sin , D={(x, y)22224ππ≤+≤y x }解:令x=rcos θ, y=rsin θ则I=⎰⎰πππθ220sin rdr r d=26π-3. 设G(x)在10≤≤x 上有连续的)(''x G , 求I=dxdy y x xyG D⎰⎰+)(22'', 其中D 为122≤+y x 的第一象限部分解:在极坐标下计算积分,D={(r,θ)20,10πθ≤≤≤≤r }I=θθθ⎰⎰Drdrd r G r )(cos sin 2''2=⎰⎰202''13)(cos sin πθθθdr r G r d=dr r G r )(212''103⎰ =du u G u )(41''1⎰ =)]1(0)1([41'G G G -+)( 4.xy dxdy Ω⎰⎰,其中Ω是以a 为半径,坐标原点为圆心的圆。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第九章 重积分一、选择题1.I=222222(),:1x y z dv x y z Ω++Ω++=⎰⎰⎰球面内部, 则I= [ C ]A. ⎰⎰⎰ΩΩ=dv 的体积 B.⎰⎰⎰142020sin dr r d d θϕθππC.⎰⎰⎰104020sin dr r d d ϕϕθππD.⎰⎰⎰104020sin dr r d d θϕθππ2. Ω是x =0, y=0, z=0, x+2y+z=1所围闭区域, 则⎰⎰⎰Ω=xdxdydz [ B ]A. ⎰⎰⎰---yx x dz x dy dx 21021010 B.⎰⎰⎰---y x xdz x dy dx 21021010C.⎰⎰⎰-10210210dz x dx dy yD.⎰⎰⎰---yx y dz x dx dy 21021010 3. 设区域D 由直线,y x y x ==-和1x =所围闭区域,1D 是D 位于第一象限的部分,则[B ](A )()()1cos d d 2d d DD xy x xy x y xy x y +=⎰⎰⎰⎰(B )()()()1cos d d 2cos d d DD xy x xy x y x xy x y +=⎰⎰⎰⎰(C )()()1cos d d 2(cos())d d DD xy x xy x y xy x xy x y +=+⎰⎰⎰⎰(D )()()cos d d 0Dxy x xy x y +=⎰⎰4. Ω:1222≤++z y x , 则⎰⎰⎰Ω=++++++dxdydz z y x z y x z 1)1ln(222222 [ C ]A. 1B. πC. 0D. 34π5.222{(,),0}D x y x y a y =+≤≥,其中0a >,则Dxy d σ=⎰⎰DA.220sin cos a d r dr πθθθ⎰⎰ B.30sin cos ad r dr πθθθ⎰⎰C.3(sin cos )ad r dr πθθθ-⎰⎰ D.320sin cos a d r dr πθθθ⎰⎰-302sin cos ad r dr ππθθθ⎰⎰6.设,010,()()0,a x a f x g x ≤≤⎧>==⎨⎩其余,D 为全平面,则()()D f x g y x dxdy -=⎰⎰ CA.aB.212a C. 2a D.+∞ 7.积分cos 20(cos ,sin )d f r r rdr πθθθθ⎰⎰可写为 DA. 10(,)dy f x y dx ⎰B.10(,)dy f x y dx ⎰ B.11(,)dx f x y dy ⎰⎰D.1(,)dx f x y dy ⎰8.交换二次积分22(,)x dx f x y dy ⎰⎰的积分顺序为( A ).(A) 420(,)dy f x y dx ⎰(B)40(,)dy f x y dx ⎰ (C)242(,)xdy f x y dx ⎰⎰(D)42(,)dy f x y dx ⎰9.设平面区域D 由140,0,,1x y x y x y ==+=+=围成,若31[ln()],DI x y dxdy =+⎰⎰32(),DI x y dxdy =+⎰⎰ 33[sin()],DI x y dxdy =+⎰⎰ 则123,,I I I 的大小顺序为( C ).(A) 123I I I << (B) 321I I I << (C) 132I I I << (D) 312I I I << 10.221x y ≤+≤⎰⎰的值 ( B ).(A) 大于零 (B) 小于零 (C) 0 (D) 不能确定 11.设积分区域D 由||,||(0)x a y a a ==>围成,则Dxydxdy =⎰⎰( C ).(A)1 (B) 14 (C) 0 (D) A, B, C 都不对12.221x y ≤+≤⎰⎰的值 ( B ).(A) 大于零 (B) 小于零 (C) 0 (D) 不能确定 13.把二次积分2210x y dx dy +⎰化为极坐标形式的二次积分(B ).(A) 221r d re dr πθ⎰⎰ (B)2221rd re dr ππθ-⎰⎰(C)2221r d e dr ππθ-⎰⎰ (D)221r d e dr πθ⎰⎰14. 设积分区域D 是由直线y=x,y=0,x=1围成,则有⎰⎰=Ddxdy ( A )(A )⎰⎰x dydx 01(B )⎰⎰ydxdy 01(C )⎰⎰01xdydx (D )⎰⎰yxdxdy 115. 设D 由1,2,===y x y x y 围成,则⎰⎰=D dxdy ( B )(A )21 (B )41 (C )1 (D )2316.根据二重积分的几何意义,下列不等式中正确的是( B ); (A) D x D,0d )1(⎰⎰>-σ:x ≤1,y ≤1;(B) D x D,0d )1(⎰⎰>+σ:x ≤1,y ≤1;(C)D y x D,0d )(22⎰⎰>--σ:22y x +≤1;(D) D y x D,0d )ln(22⎰⎰>-σ:x +y ≤1 17.=+⎰⎰y x y x Dd d 22( C ),其中D :1≤22y x +≤4;(A)2π421d d r r θ⎰⎰; (B)2π41d d r r θ⎰⎰;(C)2π221d d r r θ⎰⎰; (D)2π21d d r r θ⎰⎰18. 二重积分⎰⎰=≤≤≤≤1010y x xydxdy ( C )(A )1 (B )21 (C )41(D )219. dxdy y x y x ⎰⎰≤++132222的值等于( A )A. π43;B. π76;C. π56;D. π2320. 二重积分⎰⎰=≤≤≤≤1010y x xydxdy ( C )(A )1 (B )21 (C )41(D )221. 设D 是区域(){}()π8 ,|,22222=⎰⎰+≤+dxdy y x a y xy x D 又有,则a=( B )(A )1 (B )2 (C )4 (D )822. 若D 是平面区域(){}e y x y x ≤≤≤≤1 ,10|,,则二重积分=⎰⎰dxdy y xD ( B )(A )2e (B )21(C )e (D )1 23. 设D 由1,2,===y x y x y 围成,则⎰⎰=Ddxdy ( B )(A )21 (B )41 (C )1 (D )23二、填空题 1.变换积分次序(,)f x y dx =1(,)(,)f x y dy f x y dy +2.比较大小:其中D 是以(0,0),(1,1),(1,1)-为顶点的三角形22()Dx y dxdy -⎰⎰ <D3.变换积分次序2142(,)ydy f x y dx -=⎰⎰1411(,)(,)dx f x y dy dx f x y dy +⎰⎰⎰4.交换二次积分的积分次序()2211,x dx f x y dy ⎰⎰=()421,dy f x y dx ⎰5. 交换 dx e dy yx ⎰⎰1012的积分次序后的积分式为210xx dx dy e ⎰⎰,其积分值为()112e - 6、交换二次积分的积分次序后,)(1010y x ,f dx x⎰⎰-dy=⎰⎰-1010),(ydx y x f dy7、交换二次积分的次序⎰⎰-=ax ax xdy y x f dx 022),(0(,)a ya dy f x y dx ⎰⎰三、计算与证明1. 计算⎰⎰Ddxdy xy 2, 其中D 是抛物线2y =2x 与直线x=21所围闭区域解:⎰⎰Ddxdy xy 2=⎰⎰--11212122y dx xy dy=⎰--1162)8181(dy y y=2112. 计算I=⎰⎰+Ddxdy y x 22sin , D={(x, y)22224ππ≤+≤y x }解:令x=rcos θ, y=rsin θ则I=⎰⎰πππθ220sin rdr r d=26π-3. 设G(x)在10≤≤x 上有连续的)(''x G , 求I=dxdy y x xyG D⎰⎰+)(22'', 其中D 为122≤+y x 的第一象限部分解:在极坐标下计算积分,D={(r,θ)20,10πθ≤≤≤≤r }I=θθθ⎰⎰Drdrd r G r )(cos sin 2''2=⎰⎰202''13)(cos sin πθθθdr r G r d=dr r G r )(212''103⎰ =du u G u )(41''1⎰ =)]1(0)1([41'G G G -+)( 4.xy dxdy Ω⎰⎰,其中Ω是以a 为半径,坐标原点为圆心的圆。
解:xy dxdy Ω⎰⎰=aadx dy -⎰=22()aaa x x dx --⎰=2202()aa x xdx -⎰(1分)=42a5.22224sin x y ππ≤+≤⎰⎰解:22224x y ππ≤+≤⎰⎰=220sin d r rdr πππϕ⎰⎰=22sin r rdr πππ⎰=26π- 6.222()xy z ze dxdydz -++Ω⎰⎰⎰,其中Ω为球体2221x y z ++≤在0z ≥上的部分。
解:利用球面坐标变换sin cos sin sin cos x r y r z r ϕθϕθϕ=⎧⎪=⎨⎪=⎩,Ω对应于1{(,,)02,01,0}2r r πϕθθπϕΩ=≤≤≤≤≤≤故222()xy z ze dxdydz -++Ω⎰⎰⎰=213sin cos r r e drd d ϕϕϕθ-Ω⎰⎰⎰=22132000sin cos r d r e dr d ππθϕϕϕ-⎰⎰⎰=11()2eπ-7.计算重积分211y xI dx e dy -=⎰⎰的值。
解:210(2)yy I dy edx -=⎰⎰分222100110()|(2)1|211(1)(1)2y yy y xe dy ye dy e e---===-=-⎰⎰分分8.计算三重积分222()x y z dv Ω++⎰⎰⎰,其中222:2x y z z Ω++≤。
解:Ω的边界曲面方程2222x y z z ++≤用球面坐标表示:22cos r r ϕ=,即2cos r ϕ=。
Ω为:02,0,02cos 2r πθπϕϕ≤≤≤≤≤≤,于是22222cos 2222200022cos 2200050()sin (2)sin 322sin cos 532(3).15x y z dv d d r r dr d d r r drd ππππϕπϕθϕϕθϕϕπϕϕϕπΩ++===⋅⋅=⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰分分9.证明:000()().a yaa xa x dy ef x dx xe f a x dx --=-⎰⎰⎰证明:左边0()(2)a aa x xdx e f x dy -=⎰⎰分()()()(3)()(3)aa x a x uu aax e f x a x dxe f a u udu xe f a x dx --==---=-⎰=⎰⎰令分分=右边所以原式得证。