高一数学下期中考试数学

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

江苏无锡一中

2010—2011学年度高一(下)期中考试数学试题

一.填空题(每题5分共70分)

1。若集合,集合,则

2。已知一个等差数列的前三项分别为,则它的第五项为

3. △ABC中,内角A,B,C所对边分别为且则=

4. 等比数列中,则的通项公式为_________________

5。已知△ABC中,AB=6,∠A=30且△ABC的面积为6,则边AC的长为

6。若实数满足不等式组,则的最大值为______________

7. 已知二次函数的定义域为A,若对任意的,不等式成立, 则实数的最小值为__________________

8。若正实数满足,且. 则当取最大值时的值为

9。已知数列是等差数列,若,

且,则

10。若△的内角的对边分别为,且成等比数列,,则的值为

11。实数满足不等式组,若在平面直角坐标系中,由点构成的区域的面积是22,则实数的值为

12.将全体正整数排成一个三角形数阵:按照右图排列的规律,第行从左向右的第3个数为

13.已知数列{}中,,,则的前项乘积

..最大。

14。已知函数数列的通项公式为.

当取得最小值时,的所有可能取值集合为

二.解答题(共90分)

15.(14分)已知△,内角A,B,C所对的边分别为,且满足下列三个条件:

①②③

求(1)内角和边长的大小;

(2)△的面积。

16(14分).设{a n}是公差大于

....0.的等差数列,b n=,已知b1+b2+b3=,b1b2b3=,⑴求证:数列{b n}是等比数列;

⑵求等差数列{a n}的通项a n.

17。(14分)某小区规划一块周长为(为正常数)的矩形停车场,其中如图所示的直角三角形内为绿化区域.且.设矩形的长,

(1)求线段的长关于的函数表达式并指出定义域;

(2)应如何规划矩形的长,使得绿化面积最大?

18。(16分)一个公差不为零的等差数列{a n}共有100项,首项为5,其第1、4、16项分别为正项等比数列{b n}的第1、3、5项。记{a n}各项和的值为S.

⑴求S (用数字作答);

⑵若{b n}的末项不大于,求{b n}项数的最大值N;

⑶记数列,。求数列的前项的和。

19.(16分)已知函数。

(1)若,解不等式;

(2) 若,解关于的不等式;

(3) 若时,恒成立.求实数的取值范围。

20。(16分)已知,数列的首项.

(1)比较的大小

(2) 判断并证明数列是否能构成等比数列?

(3)若, 求证:

参考答案

一填空题

1。2。 3.4。5. 6。7。8. 9.10。11. 12. 13。14。

二解答题

16。(1)证明:设{}的公差为。为常数,又>0。

即为以为首项,公比为的等比数列.---—————-----—--—-——-—--—--—-————--——6分

(2) 由得,,由公比为

所以, 所以—-———-————-—-————--——-------———-————---——--—-——--—--———-———-—-—---12分

所以,即——-—-———--—-—-—--—————--—-—-——-—-——---14分

15。(1) 由,所以,

又,即-————------—----—--——-—-—---———-—-———--——----—6分

(2),-—-———--—--———-—---—-—-——-—-—-—-—-———-———---—------——-————-—--—--———---——-———-—-8分

,得,---—-—--—-—--—---—-—-————----———---———12分

—--————-——----—-——-——-———----—--———-—--—-----—-—-—---—-——---—-——--—--—-—-14分

17。解(1)由,得

设,因为,,

得,所以,定义域为—-——————---—-———-—-—----—--——7分(2)——-——--——-—--————---——-----———-—--—----——-—-———----9分

因为,仅当时取等号. 又

所以,此时AB=-———-——----—----——-—-—————--——---—----—————-—13分答: 当矩形的长为时,绿化面积最大。—---———-———-——--—--—-———-—--—-—-—————-—————---—-——--—-

——14分

18。解(1)设的公差为(),由成等比数列,得

. 所以()

-—--——----————--——--—-——-—--———--——-——---———--———-—-—--—--——————-6分

(2)由,所以

由,所以的最大值为12.又,所以

时,所以。-—--—————----———-——--———-——--—---———12分

(3)

得=

———-—-———-—-------——-—----———-—-——-—16分

19。(1)-———-———--———-—--——-—--———-—-——---———-————————-———-——--——-———-———-——--—--——-——-—--—--2分

(2) 时--————-——-——-———-——————-—--—---—--——-—-—-——-——-——--——-—-———-————---------—-4分

当,; —-—-----—-------——-—---—----—-——-———----——--——--——-------—-——-—---—-—-—--—6分

----————--—-—-————---————--——-————--—-----———--—————-—-——8分

(3) 由题意:任意的成立

当时,不等式显然成立—————-----——---——----—---————--——-—————--—-————————-————————----——---—-10分

当,即

综上: —-———-————---—--—-----———-—————--————-—--————-——-—--—-——--———-————16分

20。(1)由,依次递推

得,.所以.——--—-—-——-—-————-—--—--—-—-——-——---———4分

(另证:若存在使得,则,又与矛盾)

(2)若为等比数列,设公比为,则为常数,所以即。所以不能为等比数列。-—-——--—-——------——-—-————-—-—-—--——-—-—-——---——-—---—-——-—--—10分

(3)因为,所以—-—---——12分

因为所以

即--——----——-——----———---—-——-16分

相关文档
最新文档