第13讲-----函数图像

合集下载

第13讲 函数与导数之导数及其应用(学生版)

第13讲 函数与导数之导数及其应用(学生版)

第13讲 函数与导数之导数及其应用一. 基础知识回顾1.函数的平均变化率:一般地,已知函数y =f (x ),x 0,x 1是其定义域内不同的两点,记Δx=x 1-x 0,Δy =y 1-y 0=f (x 1)-f (x 0)=f (x 0+Δx )-f (x 0),则当Δx ≠0时,商 =Δy Δx 称作函数y =f (x )在区间[x 0,x 0+Δx ](或[x 0+Δx ,x 0])的平均变化率.2.函数y =f (x )在x =x 0处的导数:(1)定义:函数y =f (x)在点x 0处的瞬时变化率 通常称为f (x )在x =x 0处的导数,并记作f ′(x 0),即 .(2)几何意义:函数f (x )在点x 0处的导数f ′(x 0)的几何意义是过曲线y =f (x )上点(x 0,f (x 0))的 .导函数y =f ′(x )的值域即为 .3.函数f (x )的导函数:如果函数y =f (x )在开区间(a ,b )内每一点都是可导的,就说f (x )在开区间(a ,b )内可导,其导数也是开区间(a ,b )内的函数,又称作f (x )的导函数,记作 .4.基本初等函数的导数公式表(右表) 5.导数运算法则 (1)[f (x )±g (x )]′= ; (2)[f (x )g (x )]′= ; (3)⎣⎡⎦⎤f (x )g (x )′= [g (x )≠0]. 5.导数和函数单调性的关系:(1)若f ′(x )>0在(a ,b )上恒成立,则f (x )在(a ,b )上是 函数,f ′(x )>0的解集与定义域的交集的对应区间为 区间;(2)若f ′(x )<0在(a ,b )上恒成立,则f (x )在(a ,b )上是 函数,f ′(x )<0的解集与定义域的交集的对应区间为 区间(3)若在(a ,b )上,f ′(x )≥0,且f ′(x )在(a ,b )的任何子区间内都不恒等于零⇔f (x )在(a ,b )上为 函数,若在(a ,b )上,f ′(x )≤0,且f ′(x )在(a ,b )的任何子区间内都不恒等于零⇔f (x )在(a ,b )上为 函数.6.函数的极值:(1)判断f (x 0)是极值的方法:一般地,当函数f (x )在点x 0处连续时,①如果在x 0附近的左侧 ,右侧 ,那么f (x 0)是极大值;②如果在x 0附近的左侧 ,右侧 ,那么f (x 0)是极小值.(2)求可导函数极值的步骤①求f ′(x );②求方程 的根;③检查f ′(x )在方程 的根左右值的符号.如果左正右负,那么f (x )在这个根处取得 ;如果左负右正,那么f (x )在这个根处取得 .7.函数的最值:(1)函数f (x )在[a ,b ]上必有最值的条件如果函数y =f (x )的图象在区间[a ,b ]上 ,那么它必有最大值和最小值.(2)求函数y =f (x )在[a ,b ]上的最大值与最小值的步骤:①求函数y =f (x )在(a ,b )内的 ;②将函数y =f (x )的各极值与 比较,其中最大的一个是最大值,最小的一个是最小值.二.典例精析探究点一:导数的运算例1:求下列函数的导数:(1)y =(1-x )⎝⎛⎭⎫1+1x ; (2)y =ln x x ;(3)y =x e x ; (4)y =tan x .原函数 导函数 f (x )=C f ′(x )= f (x )=x α (α∈Q *) f ′(x )= (α∈Q *) F (x )=sin x f ′(x )= F (x )=cos x f ′(x )= f (x )=a x (a >0,a ≠1) f ′(x )= (a >0,a ≠1) f (x )=e x f ′(x )= f (x )=log a x (a >0,a ≠1,且x >0) f ′(x )= (a >0,a ≠1,且x >0) f (x )=ln x f ′(x )=变式迁移1:求下列函数的导数:(1)y =x 2sin x ; (2)y =3x e x -2x +e ; (3)y =ln x x 2+1.探究点二:导数的几何意义例2:已知曲线y =13x 3+43.(1)求曲线在点P (2,4)处的切线方程; (2)求曲线过点P (2,4)的切线方程; (3)求满足斜率为1的曲线的切线方程.变式迁移2:求曲线f (x )=x 3-3x 2+2x 过原点的切线方程.探究点三:函数的单调性例3:已知a ∈R ,函数f (x )=(-x 2+ax )e x (x ∈R ,e 为自然对数的底数).(1)当a =2时,求函数f (x )的单调递增区间;(2)若函数f (x )在(-1,1)上单调递增,求a 的取值范围;变式迁移3:已知函数f (x )=x 3+(1-a )x 2-a (a +2)x +b (a ,b ∈R ).(1)若函数f (x )的图象过原点,且在原点处的切线斜率是-3,求a ,b 的值;(2)若函数f (x )在区间(-1,1)上不单调,求a 的取值范围.探究点四:函数的极值例4:若函数f (x )=ax 3-bx +4,当x =2时,函数f (x )有极值-43. (1)求函数f (x )的解析式;(2)若关于x 的方程f (x )=k 有三个零点,求实数k 的取值范围.变式迁移4:设x =1与x =2是函数f (x )=a ln x +bx 2+x 的两个极值点.(1)试确定常数a 和b 的值; (2)试判断x =1,x =2是函数f (x )的极大值点还是极小值点,并说明理由.探究点五:求闭区间上函数的最值例5:已知函数f (x )=x 3+ax 2+bx +c ,曲线y =f (x )在点x =1处的切线为l :3x -y +1=0,若x =23时,y =f (x )有极值.(1)求a ,b ,c 的值;(2)求y =f (x )在[-3,1]上的最大值和最小值.变式迁移5:已知函数f (x )=ax 3+x 2+bx (其中常数a ,b ∈R ),g (x )=f (x )+f ′(x )是奇函数.(1)求f (x )的表达式; (2)讨论g (x )的单调性,并求g (x )在区间[1,2]上的最大值和最小值.三.方法规律总结1.准确理解曲线的切线,需注意的两个方面:(1)直线与曲线公共点的个数不是切线的本质特征,若直线与曲线只有一个公共点,则直线不一定是曲线的切线,同样,若直线是曲线的切线,则直线也可能与曲线有两个或两个以上的公共点.(2)曲线未必在其切线的“同侧”,如曲线y =x 3在其过(0,0)点的切线y =0的两侧.2.曲线的切线的求法:若已知曲线过点P (x 0,y 0),求曲线过点P 的切线则需分点P (x 0,y 0)是切点和不是切点两种情况求解.(1)点P (x 0,y 0)是切点的切线方程为y -y 0=f ′(x 0)(x -x 0).(2)当点P (x 0,y 0)不是切点时可分以下几步完成:第一步:设出切点坐标P ′(x 1,f (x 1));第二步:写出过P ′(x 1,f (x 1))的切线方程为y -f (x 1)=f ′(x 1)(x -x 1);第三步:将点P 的坐标(x 0,y 0)代入切线方程求出x 1;第四步:将x 1的值代入方程y -f (x 1)=f ′(x 1)(x -x 1)可得过点P (x 0,y 0)的切线方程.3.求可导函数单调区间的一般步骤和方法:(1)确定函数f (x )的定义域;(2)求f ′(x ),令f ′(x )=0,求出它在定义域内的一切实根;(3)把函数f (x )的间断点(即f (x )的无定义点)的横坐标和上面的各实数根按由小到大的顺序排列起来,然后用这些点把函数f (x )的定义区间分成若干个小区间;(4)确定f ′(x )在各个开区间内的符号,根据f ′(x )的符号判定函数f (x )在每个相应小开区间内的增减性.4.可导函数极值存在的条件:(1)可导函数的极值点x 0一定满足f ′(x 0)=0,但当f ′(x 1)=0时,x 1不一定是极值点.如f (x )=x 3,f ′(0)=0,但x =0不是极值点.(2)可导函数y =f (x )在点x 0处取得极值的充要条件是f ′(x 0)=0,且在x 0左侧与右侧f ′(x )的符号不同.5.函数的最大值、最小值是比较整个定义区间的函数值得出来的,函数的极值是比较极值点附近的函数值得出来的.函数的极值可以有多有少,但最值只有一个,极值只能在区间内取得,最值则可以在端点取得,有极值的未必有最值,有最值的未必有极值,极值可能成为最值,最值只要不在端点必定是极值.6.求函数的最值以导数为工具,先找到极值点,再求极值和区间端点函数值,其中最大的一个是最大值,最小的一个是最小值.四.课后作业设计1.在曲线y =x 2+1的图象上取一点(1,2)及附近一点(1+Δx ,2+Δy ),则Δy Δx 为 ( ) A .Δx +1Δx +2 B .Δx -1Δx -2 C .Δx +2 D .2+Δx -1Δx2.若曲线y =x -12在点(a ,a -12)处的切线与两个坐标轴围成的三角形的面积为18,则a =( )A .64B .32C .16D .83.若函数f (x )=e x +a e -x 的导函数是奇函数,并且曲线y =f (x )的一条切线的斜率是32,则切点的横坐标是 ( )A .-ln 22B .-ln 2 C.ln 22D .ln 2 4.已知函数f (x )=2ln(3x )+8x ,则0lim →∆x f (1-2Δx )-f (1)Δx 的值为 ( ) A .10 B .-10 C .-20 D .205.如图是函数f (x )=x 2+ax +b 的部分图象,则函数g (x )=ln x +f ′(x )的零点所在的区间是 ( )A.⎝⎛⎭⎫14,12 B .(1,2) C.⎝⎛⎭⎫12,1 D .(2,3) 6.若曲线y =x 4的一条切线l 与直线x +4y -8=0垂直,则l 的方程为 ( )A .4x -y -3=0B .x +4y -5=0C .4x -y +3=0D .x +4y +3=07.设f (x ),g (x )是R 上的可导函数,f ′(x )、g ′(x )分别为f (x )、g (x )的导函数,且f ′(x )·g (x )+f (x )g ′(x )<0,则当a <x <b 时,有 ( C )A .f (x )g (b )>f (b )g (x )B .f (x )g (a )>f (a )g (x )C .f (x )g (x )>f (b )g (b )D .f (x )g (x )>f (a )g (a )8.函数f (x )的定义域为开区间(a ,b ),导函数f ′(x )在(a ,b )内的图象如图所示,则函数f (x )在开区间(a ,b )内有极小值点( )A .1个B .2个C .3个D .4个9.若函数y =a (x 3-x )在区间⎝⎛⎭⎫-33,33上为减函数,则a 的取值范围是 ( )A .a >0B .-1<a <0C .a >1D .0<a <110.已知函数f (x )=12x 4-2x 3+3m ,x ∈R ,若f (x )+9≥0恒成立,则实数m 的取值范围是( ) A .m ≥32 B .m >32 C .m ≤32 D .m <3211.已知点P 在曲线y =4e x +1上,α为曲线在点P 处的切线的倾斜角,则α的取值范围是 ( )A.⎣⎡⎭⎫0,π4B.⎣⎡⎭⎫π4,π2C.⎝⎛⎦⎤π2,3π4D.⎣⎡⎭⎫3π4,π 12.在下列四个函数中,满足性质:“对于区间(1,2)上的任意x 1,x 2 (x 1≠x 2),|f (x 2)-f (x 1)|<|x 2-x 1|恒成立”的只有 ( )A .f (x )=1xB .f (x )=|x |C .f (x )=2xD .f (x )=x 2 13.已知函数f (x )的导函数f ′(x )的图象如右图所示,给出以下结论:①函数f (x )在(-2,-1)和(1,2)上是单调递增函数②函数f (x )在(-2,0)上是单调递增函数,在(0,2)上是单调递减函数;③函数f (x )在x =-1处取得极大值,在x =1处取得极小值;④函数f (x )在x =0处取得极大值f (0).则正确命题的序号是②④.(填上所有正确命题的序号).14.已知函数f (x )=x 3+mx 2+(m +6)x +1既存在极大值又存在极小值,则实数m 的取值范围为 .15.已知函数f (x )=f ′(π4)cos x +sin x ,则f (π4)= 16.若点P 是曲线f (x )=x 2-ln x 上任意一点,则点P 到直线y =x -2的最小距离为17.设点P 是曲线y =x 33-x 2-3x -3上的一个动点,则以P 为切点的切线中,斜率取得最小值时的切线方程是18.已知函数f (x )=12x 2-a ln x (a ∈R ).(1)若函数f (x )的图象在x =2处的切线方程为y =x +b ,求a ,b 的值;(2)若函数f (x )在(1,+∞)上为增函数,求a 的取值范围.19.已知a 为实数,且函数f (x )=(x 2-4)(x -a ).(1)求导函数f ′(x );(2)若f ′(-1)=0,求函数f (x )在[-2,2]上的最大值、最小值.20.已知函数f (x )=x 3+mx 2+nx -2的图象过点(-1,-6),且函数g (x )=f ′(x )+6x 的图象关于y 轴对称.(1)求m ,n 的值及函数y =f (x )的单调区间;(2)若a >0,求函数y =f (x )在区间(a -1,a +1)内的极值.21.已知函数f (x )=12(1+x )2-ln(1+x ).(1)求f (x )的单调区间;(2)若x ∈[1e-1,e -1]时,f (x )<m 恒成立,求m 的取值范围.。

高考一轮复习函数的图象教学设计

高考一轮复习函数的图象教学设计

高考数学一轮专题复习第13讲 函数的图象教学设计中山市第二中学 李灿泽【知识梳理】高考要求:函数的图象是高考考查的重点内容之一,它是研究和记忆函数性质的直观工具,利用它的直观性解题,可以起到化繁为简、化难为易的作用。

因此,同学们在学习复习过程中要掌握绘制函数图象的一般方法,掌握函数图象变化的一般规律,能利用函数的图象研究函数的性质。

重难点归纳 :1、 熟记基本函数的大致图像,掌握函数作图的基本方法。

(1)描点法: 列表、描点、连线;(2)图像变换法:平移变换、对称变换、伸缩变换等。

2、 高考中总是以几类基本初等函数的图像为基础来考查函数图像的 题型多以选择与填空为主,属于必考内容之一,但近年来,在大题中也有出现,须引起重视 。

知识清单: 1.描点法作图方法步骤:(1)确定函数的定义域;(2)化简函数的解析式;(3)讨论函数的性质即奇偶性、周期性、单调性、最值(甚至变化趋势);(4)描点连线,画出函数的图象. 2.图象变换 (1)平移变换(2)对称变换①y =f (x )――――――――→关于x 轴对称y =-f (x ); ②y =f (x )―――――――――→关于y 轴对称y =f (-x ); ③y =f (x )―――――――――→关于原点对称y =-f (-x );④y =a x (a >0且a ≠1)――――――――→关于y =x 对称y =log a x (a >0且a ≠1). ⑤y =f (x )――――――――――――――――→保留x 轴上方图象将x 轴下方图象翻折上去y =|f (x )|. ⑥y =f (x )――――――――――→保留y 轴右边图象,并作其关于y 轴对称的图象y =f (|x |).(3)伸缩变换①y =f (x )―――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――→a >1,横坐标缩短为原来的1a 倍,纵坐标不变0<a <1,横坐标伸长为原来的1a 倍,纵坐标不变y =f (ax ).②y =f (x )――――――――――――――→a >1,纵坐标伸长为原来的a 倍,横坐标不变0<a <1,纵坐标缩短为原来的a 倍,横坐标不变 y =af (x ).【例题精讲】题型一 作函数的图象 例1: 作出下列函数的图象: (1)y =|lg x |; (2)y =x +2x -1;(3)y =x 2-2|x |-1.解 (1)y =|lg x |=⎩⎪⎨⎪⎧lg x ,x ≥1,-lg x ,0<x <1,作出图象如图1.(2)因y =1+3x -1,先作出y =3x 的图象,将其图象向右平移1个单位,再向上平移1个单位,即得y =x +2x -1的图象,如图2.(3)y =⎩⎪⎨⎪⎧x 2-2x -1 (x ≥0),x 2+2x -1 (x <0).图象如图3.【变式训练】作函数y =|x 2-2x -1|的图象.解 y =⎩⎨⎧x 2-2x -1 (x ≥1+2或x ≤1-2)-x 2+2x +1 (1-2<x <1+2)如下图【思维升华】 (1)常见的几种函数图象如二次函数、反比例函数、指数函数、对数函数、幂函数、形如y =x +mx(m >0)的函数是图象变换的基础;(2)掌握平移变换、伸缩变换、对称变换规律,可以帮助我们简化作图过程. 题型二 识图与辨图例2: 已知定义在区间[0,2]上的函数y =f (x )的图象如图所示,则y =-f (2-x )的图象为( )解析:方法一 由y =f (x )的图象知, f (x )=⎩⎪⎨⎪⎧x (0≤x ≤1),1(1<x ≤2).当x ∈[0,2]时,2-x ∈[0,2],所以f (2-x )=⎩⎪⎨⎪⎧1(0≤x ≤1),2-x (1<x ≤2),故y =-f (2-x )=⎩⎪⎨⎪⎧-1(0≤x ≤1),x -2(1<x ≤2).图象应为B.方法二 当x =0时,-f (2-x )=-f (2)=-1; 当x =1时,-f (2-x )=-f (1)=-1. 观察各选项,可知应选B.【思维升华】 函数图象的识辨可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置; (2)从函数的单调性,判断图象的变化趋势; (3)从函数的奇偶性,判断图象的对称性; (4)从函数的周期性,判断图象的循环往复; (5)从函数的特征点,排除不合要求的图象.【变式训练】 如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线,垂足为M ,将点M 到直线OP 的距离表示成x 的函数f (x ),则y =f (x )在[0,π]的图象大致为( )解析:(排除法)由题图可知:当x =π2时,OP ⊥OA ,此时f (x )=0,排除A ,D ;当x ∈⎝⎛⎭⎫0,π2时,OM =cos x ,设点M 到直线OP 的距离为d ,则d OM =sin x ,即d =OM sin x =sin x ·cos x ,∴f (x )=sin x cos x =12sin 2x ≤12,排除B ,故选C. 题型三 函数图象的应用例3: (1)若方程x 2-|x |+a =1有四个不同的实数解,则a 的取值范围是 .(2)已知函数f (x )=⎩⎪⎨⎪⎧sin πx ,0≤x ≤1,log 2 015x ,x >1.若a ,b ,c 互不相等,且f (a )=f (b )=f (c ),则a +b +c 的取值范围是( )A .(1,2 015)B .(1,2 016)C .[2,2 016]D .(2,2 016)答案 (1)(1,54) (2)D解析 (1)方程解的个数可转化为函数y =x 2-|x |的图象与直线y =1-a 交点的个数,如图:易知-14<1-a <0,∴1<a <54.(2)作出函数的图象,直线y =m 交函数图象如图,不妨设a <b <c ,由正弦曲线的对称性,可得A (a ,m )与B (b ,m )关于直线x =12对称,因此a +b =1,当直线y =m =1时,由log 2 015x =1,解得x =2 015.若满足f (a )=f (b )=f (c ),且a ,b ,c 互不相等,由a <b <c 可得1<c <2 015,因此可得2<a +b +c <2 016,即a +b +c ∈(2,2 016).故选D.【思维升华】 (1)利用函数的图象研究函数的性质对于已知或易画出其在给定区间上图象的函数,其性质(单调性、奇偶性、周期性、最值(值域)、零点)常借助于图象研究,但一定要注意性质与图象特征的对应关系. (2)利用函数的图象可解决某些方程和不等式的求解问题,方程f (x )=g (x )的根就是函数f (x )与g (x )图象交点的横坐标;不等式f (x )<g (x )的解集是函数f (x )的图象位于g (x )图象下方的点的横坐标的集合,体现了数形结合思想.【变式训练】 已知函数f (x )=x |m -x |(x ∈R ),且f (4)=0. (1)求实数m 的值; (2)作出函数f (x )的图象;(3)根据图象指出f (x )的单调递减区间; (4)根据图象写出不等式f (x )>0的解集; (5)求当x ∈[1,5)时函数的值域.解 (1)∵f (4)=0,∴4|m -4|=0,即m =4. (2)f (x )=x |4-x |=⎩⎪⎨⎪⎧x (x -4)=(x -2)2-4,x ≥4,-x (x -4)=-(x -2)2+4,x <4. f (x )的图象如图所示.(3)f (x )的单调递减区间是[2,4].(4)由图象可知,f (x )>0的解集为{x |0<x <4或x >4}. (5)∵f (5)=5>4,∴由图象知,函数在[1,5)上的值域为[0,5).【高考链接】例1:(2016·课标全国1)函数y =2x 2–e |x |在[–2,2]的图像大致为( )A.B.C.D.解析:()22288 2.80f e =->->,排除A ,()22288 2.71f e =-<-<,排除B0x >时,()22xf x x e =-()4x f x x e '=-,当10,4x ⎛⎫∈ ⎪⎝⎭时,()01404f x e '<⨯-= 因此()f x 在10,4⎛⎫⎪⎝⎭单调递减,排除C故选D .例2: (2015·课标全国Ⅱ)如图,长方形ABCD 的边AB =2,BC =1,O 是AB 的中点,点P 沿着边BC ,CD 与DA 运动,记∠BOP =x .将动点P 到A ,B 两点距离之和表示为x 的函数f (x ),则y =f (x )的图象大致为( )解析:法一: 当点P 沿着边BC 运动,即0≤x ≤π4时,在Rt △POB 中,|PB |=|OB |tan ∠POB =tan x ,在Rt △P AB 中,|P A |=|AB |2+|PB |2=4+tan 2x ,则f (x )=|P A |+|PB |=4+tan 2x +tan x ,它不是关于x 的一次函数,图象不是线段,故排除A 和C ; 当点P 与点C 重合,即x =π4时,由上得f ⎝⎛⎭⎫π4=4+tan 2π4+tan π4=5+1,又当点P 与边CD 的中点重合,即x =π2时,△P AO 与△PBO 是全等的腰长为1的等腰直角三角形,故f ⎝⎛⎭⎫π2=|P A |+|PB |=2+2=22,知f ⎝⎛⎭⎫π2<f ⎝⎛⎭⎫π4,故又可排除D.综上,选B. 法二:由tanx 在[0,π4]增加的越来越快,选B【动手试试】【练习1】作函数y =|x 2-2x -1|的图象.【练习2】已知函数y =f (x )的大致图象如图所示,则函数y =f (x )的解析式应为( )A .f (x )=e x ln xB .f (x )=e -x ln |x | C .f (x )=e x ln |x |D .f (x )=e |x |ln |x |【练习3】函数f (x )=⎩⎪⎨⎪⎧4x -4,x ≤1,x 2-4x +3,x >1的图象和函数g (x )=log 2x 的图象的交点个数是( )A .4B .3C .2D .1【练习4】已知函数y =|x 2-1|x -1的图象与函数y =kx -2的图象恰有两个交点,则实数k 的取值范围是______________.【感悟提高】1.列表描点法是作函数图象的辅助手段,要作函数图象首先要明确函数图象的位置和形状:(1)可通过研究函数的性质如定义域、值域、奇偶性、周期性、单调性等等;(2)可通过函数图象的变换如平移变换、对称变换、伸缩变换等. 2.合理处理识图题与用图题 (1)识图对于给定函数的图象,要从图象的左右、上下分布范围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性、周期性,注意图象与函数解析式中参数的关系.(2)用图函数图象形象地显示了函数的性质,为研究数量关系问题提供了“形”的直观性,它是探求解题途径,获得问题结果的重要工具.要重视数形结合解题的思想方法.常用函数图象研究含参数的方程或不等式解集的情况.。

(中考复习)第13讲 反比例函数及其图象

(中考复习)第13讲 反比例函数及其图象

C.y1=y2
基础知识 · 自主学习
题组分类 · 深度剖析
课堂回顾 · 巩固提升
浙派名师中考
5. (2012· 达州)一次函数 y1=kx+b(k≠0)与反 m 比例函数 y2= (m≠0),在同一直角坐标 x 系中的图象如图 13-3 所示,若 y1>y2, 则 x 的取值范围是 ( A )
A.-2<x<0或x>1
基础知识 · 自主学习 题组分类 · 深度剖析
课堂回顾 · 巩固提升
浙派名师中考
2 3. (2012· 菏泽)反比例函数 y= 图象上的两个点为 (x1, y1), (x2, x y2),且 x1<x2,则下式关系成立的是 ( D ) A.y1>y2 B.y1<y2
D.不能确定 1-2k 4. (2013· 哈尔滨 )反比例函数 y= 的图象经过点 (- 2,3),则 x k 的值为 ( C ) 7 7 A. 6 B.- 6 C. D.- 2 2
轴对称图形 . ______________ 4.应用:
如图 13-1 所示,点 A 和点 C 是反比 k 例函数 y= (k≠0)的图象上任意两点, x 画 AB⊥x 轴于 B,CD⊥y 轴于 D,则 |k| 有 S△AOB=S△COD= . 2
图13-1
课堂回顾 · 巩固提升
基础知识 · 自主学习
图13-4
基础知识 · 自主学习
题组分类 · 深度剖析
课堂回顾 · 巩固提升
浙派名师中考
题组一
反比例函数解析式的确定
已知图象上一点求解析式
【 例 1】2 ( 0 1 3 · 巴 中 )如 图 1 3 -5 所 示 , 在 平 面 直 角 坐 标 系 x O y 中,一 次 函 数 y= k x + b(k≠ 0 ) 的 图 象 与 反 比 例 k 函数 y= 的 图 象 交 于 一 、 三 象 限 内 x 的 A、B 两 点 ,直线 AB 与 x 轴 交 于 点 C,点 B 的 坐 标 为 (- 6,n),线 段 OA= 5,E 为 x 轴 正 半 轴 上 一 点 ,且 4 a t n ∠A O E = . 3

2013届中考数学考前热点冲刺《第13讲 反比例函数》课件 新人教版

2013届中考数学考前热点冲刺《第13讲 反比例函数》课件 新人教版

第13讲┃ 归类示例
k 3 ∵点A与点B都在y= 的图象上,∴k=ab= ay, x 2 3 2 2 ∴y= b,即B点坐标为 a, b. 3 3 2 ∵OA=2AN,△OAB的面积为5, 5 ∴△NAB的面积为 , 2 5 15 ∴△ONB的面积=5+ = , 2 2 1 15 1 3 2 3 15 ∴ NB·OM= ,即 × b- b× a = , 2 2 2 2 3 2 2 ∴ab=12,∴k=12. 故答案为12.
第13讲┃ 归类示例
k 经过Rt△ x OMN的斜边ON上的点A,与直角边MN相交于点B. 已知 OA=2AN,△OAB的面积为5,则k的值是________. 12 [2012· 扬州] 如图13-1,双曲线y=
图13-1
第13讲┃ 归类示例
[解析] 过A点作AC⊥x轴于点C,如图,
则AC∥NM,∴△OAC∽△ONM, ∴OC∶OM=AC∶NM=OA∶ON, 而OA=2AN,即OA∶ON=2∶3,设A点坐标为(a,b), 3 3 则OC=a,AC=b,∴OM= a,NM= b, 2 2 3 3 ∴N点坐标为 a, b, 2 2 3 ∴点B的横坐标为 a.设B点的纵坐标为y. 2
第13讲┃反比例函数
第13讲┃ 考点聚焦
考点聚焦
考点1 反比例函数的概念
k y= 形如________(k≠0,k为常数)的函数叫做反 x 比例函数,其中x是________,y是x的函 自变量 数,k是____________ 比例系数 k y= 或y=kx-1或xy=k(k≠0) x
定义 关系式 防错 提醒
第13讲┃ 归类示例
7 [解析] 反比例函数y=- 的图象在二、四象限,在每 x 一个象限内,y随x的增大而增大.A(-2,y1)、B(-1,y2) 在第二象限,因为-2<-1,所以0<y1<y2,又C(2,y3)在第 四象限,所以y3<0.

中考数学复习讲义课件 中考考点全攻略 第三单元 函数 第13讲 二次函数的图象与性质

中考数学复习讲义课件 中考考点全攻略 第三单元 函数 第13讲 二次函数的图象与性质

提升数学核心素 养
1.(2020·岳阳)对于一个函数,自变量x取c时,函
数值y等于0,则称c为这个函数的零点.若关于x的
二次函数y=-x2-10x+m(m≠0)有两个不相等的
零点x1,x2(x1<x2),关于x的方程x2+10x-m-2
=0有A两个不相等的非零实数根x3,x4(x3<x4),
则下A列.关0<系xx31式<1一定正确B的.xx是13>(1)
(1)解:乙求得的结果不正确,理由如下: 根据题意,知图象经过点(0,0),(1,0), 所以y=x(x-1), 当x=1/2时,y=1/2×(1/2-1)=-1/4≠-1/2, 所以乙求得的结果不正确.
(2)解:函数图象的对称轴为 x=x1+2 x2, 当 x=x1+2 x2时,函数有最小值 M, ∴M=(x1+2 x2-x1)(x1+2 x2-x2)=-(x1-4x2)2. (3)证明:因为 y=(x-x1)(x-x2),
延伸训 练
4.(2020·自贡)函数y=k/x与y=ax2+bx+c的图象
如图所示,则函数Dy=kx-b的大致图象为()
5.如图是函数y=x2-2x-3(0≤x≤4)的图象,直线
l∥x轴且过点(0,m),将该函数在直线l上方的图象
沿直线l向下翻折,在直线l下方的图象保持不变,
得到一个新图象.若新图象对应C的函数的最大值与
所以 m=x1x2,n=(1-x1)(1-x2),
所以 mn=x1x2(1-x1)(1-x2)=(x1-x12)(x2-x22)=
-(x1-12)2+14·-(x2-12)2+14.
因为 0<x1<x2<1,结合函数 y=x(1-x)的图象,可得 0<-(x1-12)2+14≤14,

新高考数学通用版总复习一轮课件第二章第13讲抽象函数

新高考数学通用版总复习一轮课件第二章第13讲抽象函数

与特殊点
的解析式及基本性质
抽象函数
解析式
抽象函数 的类型
f(x1+x2)= f(x1)+f(x2)
正比例函数型
f(x1·x2)= f(x1)+f(x2)
对数函数型
等价形式 实例
f(x1-x2)= f(x1)-f(x2)
f(x)=2x
fxx12=f(x1)-f(x2) f(x)=log2x
f(x1+x2)= f(x1)·f(x2) 指数函数型
A.-12,34
f(0)=1.令 x=0,则 f(y)+f(-y)=2f(y),f(y)=f(-y),f(x)为偶函
数.故选 B.
答案:B
题组三 真题展现
4.(2008 年四川)函数 f(x)满足 f(x)·f(x+2)=13,若 f(1)=2,
则 f(99)=( ) 答案:C
C.123
D.123
5.(2014 年陕西)下列函数中,满足“f(x+y)=f(x)f(y)”的
A.幂函数
B.对数函数
C.指数函数
D.余弦函数
解析:假设 f(x)=ax,f(x)f(y)=axay=ax+y=f(x+y).
答案:C
3. 已知 f(x +y) +f(x -y) =2f(x)·f(y) ,且 f(x)≠0 ,则 f(x) 是
()
A.奇函数
B.偶函数
C.非奇非偶函数
D.不确定
解析:令 x=y=0,则 2f(0)=2[f(0)]2,因为 f(x)≠0,所以
f(x1-x2)=ffxx21 f(x)=2x
题组一 走出误区
1.(多选题)给出下列三个等式:f(xy)=f(x)+f(y),f(x+y)=
f(x)f(y),f(x+y)=1f-xf+xffyy.下列函数中,满足其中任何一个等 式的是( )

第13讲二次函数图象与性质(课件)-2025年中考数学一轮复习讲练测(全国通用)

第13讲二次函数图象与性质(课件)-2025年中考数学一轮复习讲练测(全国通用)
2025年中考数学一轮复习讲练测
第13讲
二次函数的图象与性质
目录
C
O
N
T
E
N
T
S
01
02
考情分析
知识建构
03
考点精讲
第一部分
考情分析
考点要求
新课标要求
二次函数的相 ➢ 通过对实际问题的分析,体会二次函
关概念
二次函数的图
象与性质
二次函数与各
项系数的关系
二次函数与方
程、不等式
命题预测
数的意义.
➢ 能画二次函数的图象,通过图象了解
b
时,二次函数取得最小值
2a
4ac−b2
4a
y
当x=x2时,二次函数取得最大值y2
x1
y2
y1
当 x= −
4ac−b2
4a
y
x1≤x≤x2
b
时,二次函数取得最大值
2a
O
x1 O
b
时,二次函数取得最小值
2a
O
x2
x
当x=x1时,二次函数取得最小值y1
考点二 二次函数的图象与性质
备注:自变量的取值为x1≤x≤x2时,且二次项系数a<0的最值情况请自行推导.
a<0
开口向下,顶点是最高点,此时y有最大值.
4ac−b2
【小结】二次函数最小值(或最大值)为0(k或
).
4a

在对称轴的左边y随x的增大而减小,在对称轴的右边y随x
a>0


的增大而增大.
在对称轴的左边y随x的增大而增大,在对称轴的右边y随x
a<0
的增大而减小.

中考数学第一轮系统复习夯实基础第三章函数及其图象第13讲二次函数课件

中考数学第一轮系统复习夯实基础第三章函数及其图象第13讲二次函数课件
【解析】二次函数中 a=-14,所以二次函数的开口向下,∵-2ba=2, ∴对称轴为 x=2,当 x=2 时,取得最大值,最大值为-3,所以 B 正 确.
1.将抛物线解析式写成 y=a(x-h)2+k 的形式,则顶点坐标为(h,k), 对称轴为直线 x=h,也可应用对称轴公式 x2.解题时尽可能画出草图.
【解析】如图所示:图象与x轴有两个交点,则b2-4ac>0,故①错 误;根据图象有a>0, b<0, c<0,∴abc>0,故②正确;当x=-1时 ,a-b+c>0,故③错误;二次函数y=ax2+bx+c的顶点坐标纵坐 标为-2,∵关于x的一元二次方程ax2+bx+c-m=0有两个不相等的 实数根,∴m>-2,故④正确.故选B.
二次函数是中考的重点内容: 1.直接考查二次函数的概念、图象和性质等. 2实际情境中构建二次函数模型,利用二次函数的性质来解释、解决实 际问题. 3在动态的几何图形中构建二次函数模型,常与方程、不等式、几何知 识等结合在一起综合考查. 4.体现数形结合思想、转化的思想、方程的思想.
1.(2016·衢州)二次函数y=ax2+bx+c(a≠0)图象上部分点的坐标(x, y)对应值列表如下:
(2)∵将 x=0 代入 y=12x+32得 y=32,将 x=1 代入得 y=2,∴直线 y=12x +32经过点(0,32),(1,2).直线 y=12x+32的图象如图所示,由函数图象可 知:当 x<-1.5 或 x>1 时,一次函数的值小于二次函数的值 (3)先向上平移54个单位,再向左平移12个单位,平移后的顶点坐标为 P(-1, 1).平移后的表达式为 y=(x+1)2+1,即 y=x2+2x+2.点 P 在 y=12x+32的 函数图象上.理由:∵把 x=-1 代入得 y=1,∴点 P 的坐标符合直线的 解析式,∴点 P 在直线 y=12x+32的函数图象上

2011届新课标人教版高中第1轮总复习理科数学课件第13讲函数与方程

2011届新课标人教版高中第1轮总复习理科数学课件第13讲函数与方程
5
2.已知函数 已知函数f(x)=x3-x-1仅有一个正零点 , 仅有一个正零点, 已知函数 仅有一个正零点 则此零点所在区间是( 则此零点所在区间是 C ) A.(3,4) C.(1,2) B.(2,3) D.(0,1)
利用零点存在的判定条件, 利用零点存在的判定条件,判断零 点存在的区间.由于 由于f(0)=-1<0,f(1)=-1<0, 点存在的区间 由于 f(2)=5>0,f(3)=23>0,f(4)=59>0.根据选择支 根据选择支 只有区间( , )满足. 只有区间(1,2)满足
13
(1)令f(x)=x3+x2-2x-1, 令 , 则f(-2)f(-1)=(-1)×1=-1<0, × , 所以方程在(-2,-1)上有根, 上有根, 所以方程在 上有根 同理②④皆可,故所求区间为①②④. 同理②④皆可,故所求区间为①②④ ②④皆可 ①②④ (2)令 y=3x,y=-x2+2x+1=-(x+1)2+2,则原方 令 则原方 程的根即为两函数图象交点的横坐标, 程的根即为两函数图象交点的横坐标 , 如图,两交点的横坐标,一个小于0, 如图,两交点的横坐标,一个小于 , 一个等于0 故原方程有两个根, 一个等于 , 故原方程有两个根 , 其 一为负,其一为0. 一为负,其一为
4
1.若函数 若函数f(x)=ax-b(b≠0)有一个零点3,那么函 有一个零点3 若函数 有一个零点 那么函 0,-1 . 数g(x)=bx2+3ax的零点是 的零点是 因为函数f(x)=ax-b(b≠0)的零点是 的零点是 因为函数 所以x=3是方程 是方程ax-b=0的根 , 所以 的根, 3 , 所以 是方程 的根 b=3a.将它代入函数 将它代入函数g(x)=bx2+3ax中 , 可 将它代入函数 中 得g(x)=bx(x+1),令g(x)=0,得x=0或x=-1. 令 得 或

2023年河北省中考数学复习全方位第13讲 反比例函数及其应用 课件

2023年河北省中考数学复习全方位第13讲 反比例函数及其应用 课件

4
.
返回子目录
7. (2020·河北,19)如图是8个台阶的示意图,每个台阶的高和宽分别是1和2,每


个台阶凸出的角的顶点记作Tm(m为1~8的整数).函数y= (x<0)的图象为曲线L.
(1)若L过点T1,则k= -16
;
(2)若L过点T4,则它必定还过另一点Tm,则m= 5
;
(3)若曲线L使得T 1 ~T 8 这些点分布在它的两侧,每侧各4个点,则k的整数值有
(2)通过计算,说明一次函数y=kx+3-3k
(k≠0)的图象一定过点C;
(3)对于一次函数y=kx+3-3k(k≠0),当y
随x的增大而增大时,确定点P横坐标的取值范围(不必写出过程).
返回子目录
解:(1)∵点B,C的横坐标相等,∴BC⊥x轴.
∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC.





∵当x=4时,y= =1,∴点N在反比例函数y= 的图象上.
(3)4≤m≤8.
考点梳理
考点 1
反比例函数的概念
考点 2
反比例函数的图象及性质
考点 3
反比例函数解析式的确定
返回子目录
2
考点1
考点梳理
反比例函数的概念
1. 定义:一般地,形如①

y=

(k是常数,k≠0)的函数,叫反比例函数,其中x
是自变量,y是函数.自变量x的取值范围是x≠0.


2. 三种表达式(k为常数,k≠0):y= ;y=kx-1;xy=k.
返回子目录
考点2
反比例函数的图象及性质
1. 反比例函数图象与性质

中考数学专题复习 第十三讲二次函数的应用(共69张PPT)

中考数学专题复习 第十三讲二次函数的应用(共69张PPT)

t01 2 3 4 5 6 7…
h08
1 4
1 8
2 0
2 0
1 8
1 4

下列结论:①足球距离地面的最大高度为20m;②足球
飞行路线的对称轴是直线t= 9 ;③足球被踢出9s时落
2
地;④足球被踢出1.5s时,距离地面的高度是11m.其中
正确结论的个数是 ( )
A.1
B.2
C.3
D.4
【解析】选B.由表格可知抛物线过点(0,0),(1,8), (2,14),设该抛物线的解析式为h=at2+bt,将点(1,8), (2,14)分别代入,得:a+b=8,4a+2b=14, 即 a4ab2b8解,1得4. :a=-1,b=9.
3
3
(2)由(1)知抛物线解析式为y=- 2 (x-1)2+ 8
3
3
(0≤x≤3).
当x=1时,y=8 .
3
所以抛物线水柱的最大高度为 8 米.
3
【答题关键指导】 利用二次函数解决实际问题的步骤 (1)根据题意,列出抛物线表达式,或建立恰当的坐标 系,设出抛物线的表达式,将实际问题转化为数学模型. (2)列出函数表达式后,要标明自变量的取值范围.
5
考点二 利用二次函数解决最优化问题 【示范题2】(2017·济宁中考)某商店经销一种学生 用双肩包,已知这种双肩包的成本价为每个30元.市场 调查发现,这种双肩包每天的销售量y(个)与销售单价 x(元)有如下关系:y=-x+60(30≤x≤60).设这种双肩 包每天的销售利润为w元.
(1)求w与x之间的函数关系式. (2)这种双肩包销售单价定为多少元时,每天的销售利 润最大?最大利润是多少元? (3)如பைடு நூலகம்物价部门规定这种双肩包的销售单价不高于 42元,该商店销售这种双肩包每天要获得200元的销售 利润,销售单价应定为多少元?

2015年河北省地区中考数学总复习课件 第13讲 二次函数及其图象

2015年河北省地区中考数学总复习课件 第13讲 二次函数及其图象

第十三讲 二次函数及其图象
1.定义 形如函数__y=ax2+ bx+c (其中 a, b,c 是常数, 且 a≠ 0)__叫做二次函数.
2 b 2 4ac -b 2.利用配方 ,可以把二次函数 y= ax + bx+c 表示成__y=a(x+ ) + __. 2a 4a 2
3.图象与性质 b 二次函数的图象是抛物线 ,当__a>0__时抛物线的开口__向上__,这时当 __x≤- __时,y 2a 的值随 x 的增大而__减小__;当__x≥-
2 b 4ac -b 顶点是__(- , )__. 2a 4a 2
4.图象的平移
温馨提示 二次函数的三种解析式 (1)一般式y=ax2+bx+c(a,b,c是常数,a≠0); (2)交点式y=a(x-x1)(x-x2)(a,x1,x2是常数,a≠0); (3)顶点式y=a(x+h)2+k(a,h,k是常数,a≠0). 抛物线的顶点常见的三种变动方式 (1)两抛物线关于x轴对称,此时顶点关于x轴对称,a的符 号相反; (2)两抛物线关于y轴对称,此时顶点关于y轴对称,a的符 号不变; (3)开口反向(或旋转180°),此时顶点坐标不变,只是a的 符号相反.
12+b+c=0, b=-3, 点 A(1,0)和 B(2,0) 在抛物线上,∴ 2 解得 ∴ y=x2-3x 2 +2b+c=0. c=2. +2.当 x=0 时,y=2≠1.∴点 F(0,2)在该抛物线上,而点 H(0,1)不在这条抛物 线上 (3)所有满足条件的抛物线共有 8 条.当 n 为奇数时,由(1)中的抛物线平移 又得到 3 条抛物线,如图①;当 n 为偶数时,由(2)中的抛物线平移又得 3 条抛物 线,如图② ,共 8 条
1.(1)(2014· 杭州)设抛物线 y= ax2+bx+ c(a≠0)过 A(0,2) ,B(4, 3),C 三点,其中点 C 在直线 x= 2 上,且点 C 到抛物线的对称轴的 1 1 1 距离等于 1,则抛物线的函数解析式为__y= x2- x+2 或 y=- x2 8 4 8 3 + x+2__. 4

第13讲 函数的单调性

第13讲 函数的单调性

第13讲函数的单调性【知识点梳理】1.函数单调性的定义:如果函数()x f 对区间D 内的任意21,x x ,当21x x <时都有()()21x f x f <,则()x f 在D 内是增函数;当21x x <时都有()()21x f x f >,则()x f 在D 内时减函数。

2.单调性的定义的等价形式:设[]b a x x ,,21∈,那么()()()x f x x x f x f ⇔>--02121在[],a b 是增函数;()()()x f x x x f x f ⇔<--02121在[],a b 是减函数;()()()12120x x f x f x --<⎡⎤⎣⎦()f x ⇔在[],a b 是减函数。

()()()12120x x f x f x -->⎡⎤⎣⎦()f x ⇔在[],a b 是增函数。

3.复合函数单调性的判断。

(同增异减)4.函数单调性的应用.利用定义都是充要性命题.即若()f x 在区间D 上递增(递减)且1212()()f x f x x x <⇔<(1x 2,x D ∈);若()f x 在区间D 上递递减且1212()()f x f x x x <⇔>.(1x 2,x D ∈).5.在公共定义域内,增函数+)(x f 增函数)(x g 是增函数;减函数+)(x f 减函数)(x g 是减函数;增函数-)(x f 减函数)(x g 是增函数;减函数-(x f 增函数)(x g 是减函数。

6.函数)0,0(>>+=b a x b ax y 在,⎛⎫-∞+∞ ⎪ ⎪⎝⎭或上单调递增;在0⎡⎫⎛⎪ ⎢⎪ ⎣⎭⎝或上是单调递减。

7.复合函数单调性的判断讨论复合函数[()]y f g x =的单调性时要注意:既要把握复合过程,又要掌握基本函数的单调性.一般需要先求定义域,再把复杂的函数正确地分解为两个简单的初等函数的复合,然后分别判断它们的单调性,再用复合法则,复合法则如下:1.若()u g x =,()y f u =在所讨论的区间上都是增函数或都是减函数,则[()]y f g x =为增函数;2.若()u g x =,()y f u =在所讨论的区间上一个是增函数,另一个是减函数,则[()]y f g x =为减函数.列表下:()u g x =()y f u =[()]y f g x =增增增增减减减增减减减增复合函数单调性可简记为“同增异减”,即内外函数的单性相同时递增;单性相异时递减.因此判断复合函数的单调性可按下列步骤操作:1.将复合函数分解成基本初等函数:()y f u =,()u g x =;2.分别确定各个函数的定义域;3.分别确定分解成的两个基本初等函数的单调区间.注若两个基本初等函数在对应的区间上的单调性是同增或同减,则[()]y f g x =为增函数;若为一增一减或一减一增,则[()]y f g x =为减函数.题型目录:题型一:用定义法证明函数单调性题型二:抽象函数单调性的判断证明题型三:函数单调性定义的理解题型四:基本初等函数的单调性题型五:函绝对值函数的单调性判断题型六:已知函数的单调性求参数范围题型七:分段函数的单调性求参数范围题型八:复合函数单调性(同增异减)题型九:抽象函数单调性解不等式【典型例题】题型一:用定义法证明函数单调性证明函数单调性的步骤:(1)取值:设1x ,2x 是()f x 定义域内一个区间上的任意两个量,且12x x <;(2)变形:作差变形(变形方法:因式分解、配方、有理化等)或作商变形;(3)定号:判断差的正负或商与1的大小关系;(4)得出结论.【例1】证明函数1()f x x x=+在(0,1)上是减函数。

第13讲 必修4第一章三角函数的图像与性质(教师版)

第13讲 必修4第一章三角函数的图像与性质(教师版)

11.α是第一象限角,tan α=34,则sin α=()A.45 B.35C.-45D.-35解析:选B tan α=sin αcos α=34,sin2α+cos2α=1,且α是第一象限角,所以sin α=35.2.(2013·安徽名校模拟)已知tan x=2,则sin2x+1=()A.0 B.95 C.43 D.53解析:选B sin2x+1=2sin2x+cos2xsin2x+cos2x=2tan2x+1tan2x+1=95.3.(2013·西安模拟)已知2tan α·sin α=3,-π2<α<0,则sin α=()A.32B.-32 C.12D.-12解析:选B由2tan α·sin α=3得,2sin2αcos α=3,即2cos2α+3cos α-2=0,又-π2<α<0,解得cos α=12(cos α=-2舍去),故sin α=-3 2.4.若cos α+2sin α=-5,则tan α=()A.12B.2 C.-12D.-2解析:选B∵cos α+2sin α=-5,结合sin2α+cos2α=1得(5sin α+2)2=0,∵sin α=-255,cos α=-55,∵tan α=2.5.化简sin ⎝ ⎛⎭⎪⎫π2+α·cos ⎝ ⎛⎭⎪⎫π2-αcos π+α+sin π-α·cos ⎝ ⎛⎭⎪⎫π2+αsin π+α=________.解析:原式=cos α·sin α-cos α+sin α-sin α-sin α=-sin α+sin α=0.答案:01.(教材改编)函数y =12sin x ,x ∵[-π,π]的单调性是( )A .在[-π,0]上是增函数,在[0,π]上是减函数B .在⎣⎡⎦⎤-π2,π2上是增函数,在⎣⎡⎦⎤-π,-π2和⎣⎡⎦⎤π2,π上都是减函数 C .在[0,π]上是增函数,在[-π,0]上是减函数D .在⎣⎡⎦⎤π2,π和⎣⎡⎦⎤-π,-π2上是增函数,在⎣⎡⎦⎤-π2,π2上是减函数 答案 B2.函数y =tan 2x 的定义域是( )A.⎩⎨⎧⎭⎬⎫x ⎪⎪ x ≠k π+π4,k ∵Z B.⎩⎨⎧⎭⎬⎫x ⎪⎪x ≠k π2+π8,k ∵Z C.⎩⎨⎧⎭⎬⎫x ⎪⎪ x ≠k π+π8,k ∵Z D.⎩⎨⎧⎭⎬⎫x ⎪⎪ x ≠k π2+π4,k ∵Z 答案 D解析 由2x ≠k π+π2,k ∵Z ,得x ≠k π2+π4,k ∵Z ,∵y =tan 2x 的定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪x ≠k π2+π4,k ∵Z . 3.若函数f (x )=sin ωx (ω>0)在区间[0,π3]上单调递增,在区间[π3,π2]上单调递减,则ω等于( )A.23B.32 C .2 D .3 答案 B解析 ∵f (x )=sin ωx (ω>0)过原点,∵当0≤ωx ≤π2,即0≤x ≤π2ω时,y =sin ωx 是增函数; 当π2≤ωx ≤3π2,即π2ω≤x ≤3π2ω时, y =sin ωx 是减函数.由f (x )=sin ωx (ω>0)在⎣⎡⎦⎤0,π3上单调递增,在⎣⎡⎦⎤π3,π2上单调递减知,π2ω=π3,∵ω=32. 4.(2015·安徽)已知函数f (x )=A sin(ωx +φ)(A ,ω,φ均为正的常数)的最小正周期为π,当x =2π3时,函数f (x )取得最小值,则下列结论正确的是( ) A .f (2)<f (-2)<f (0) B .f (0)<f (2)<f (-2)C .f (-2)<f (0)<f (2)D .f (2)<f (0)<f (-2) 答案 A解析 由于f (x )的最小正周期为π, ∵ω=2,即f (x )=A sin(2x +φ),又当x =2π3时,2x +φ=4π3+φ=2k π-π2(k ∵Z ),∵φ=2k π-11π6(k ∵Z ),又φ>0,∵φmin =π6,故f (x )=A sin(2x +π6).于是f (0)=A sin π6,f (2)=A sin ⎝⎛⎭⎫4+π6=A sin ⎣⎡⎦⎤π-⎝⎛⎭⎫4+π6=A sin ⎝⎛⎭⎫5π6-4, f (-2)=A sin ⎝⎛⎭⎫-4+π6=A sin ⎝⎛⎭⎫13π6-4=A sin ⎣⎡⎦⎤π-⎝⎛⎭⎫13π6-4=A sin ⎝⎛⎭⎫4-7π6. 又∵-π2<5π6-4<4-7π6<π6<π2,又f (x )在⎝⎛⎭⎫-π2,π2上单调递增, ∵f (2)<f (-2)<f (0),故选A.5.函数y =3-2cos ⎝⎛⎭⎫x +π4的最大值为________,此时x =________. 答案 5 3π4+2k π(k ∵Z )解析 函数y =3-2cos ⎝⎛⎭⎫x +π4的最大值为3+2=5, 此时x +π4=π+2k π(k ∵Z ),即x =3π4+2k π(k ∵Z ).1.用五点法作正弦函数和余弦函数的简图跟踪练习1 (1)函数y =lg(sin x )+cos x -12的定义域为__________________________.(2)函数y =sin x -cos x +sin x cos x 的值域为______________________________________.答案 (1)⎩⎨⎧⎭⎬⎫x |2k π<x ≤π3+2k π,k ∵Z(2)⎣⎡⎦⎤-12-2,1 解析 (1)要使函数有意义必须有⎩⎪⎨⎪⎧sin x >0,cos x -12≥0, 即⎩⎪⎨⎪⎧ sin x >0,cos x ≥12,解得⎩⎪⎨⎪⎧2k π<x <π+2k πk ∵Z ,-π3+2k π≤x ≤π3+2k πk ∵Z , ∵2k π<x ≤π3+2k π(k ∵Z ),∵函数的定义域为⎩⎨⎧⎭⎬⎫x |2k π<x ≤π3+2k π,k ∵Z .(2)设t =sin x -cos x ,则t 2=sin 2x +cos 2x -2sin x cos x ,sin x cos x =1-t 22,且-2≤t ≤ 2.∵y =-t 22+t +12=-12(t -1)2+1.当t =1时,y max =1;当t =-2时,y min =-12- 2.∵函数的值域为⎣⎡⎦⎤-12-2,1.题型二 三角函数的单调性例2 (1)函数f (x )=tan ⎝⎛⎭⎫2x -π3的单调递增区间是( ) A.⎣⎡⎦⎤k π2-π12,k π2+5π12(k ∵Z ) B.⎝⎛⎭⎫k π2-π12,k π2+5π12(k ∵Z ) C.⎝⎛⎭⎫k π+π6,k π+2π3(k ∵Z ) D.⎣⎡⎦⎤k π-π12,k π+5π12(k ∵Z ) (2)已知ω>0,函数f (x )=sin ⎝⎛⎭⎫ωx +π4在⎝⎛⎭⎫π2,π上单调递减,则ω的取值范围是________. 答案 (1)B (2)⎣⎡⎦⎤12,54解析 (1)由k π-π2<2x -π3<k π+π2(k ∵Z )得,踪练习3 (1)已知函数f (x )=2sin(ωx +φ),对于任意x 都有f ⎝⎛⎭⎫π6+x =f ⎝⎛⎭⎫π6-x ,则f ⎝⎛⎭⎫π6的值为________. (2)已知函数f (x )=sin x +a cos x 的图象关于直线x =5π3对称,则实数a 的值为( )A .- 3B .-33 C. 2 D.22答案 (1)2或-2 (2)B解析 (1)∵f ⎝⎛⎭⎫π6+x =f ⎝⎛⎭⎫π6-x ,∵x =π6是函数f (x )=2sin(ωx +φ)的一条对称轴.∵f ⎝⎛⎭⎫π6=±2.(2)由x =5π3是f (x )图象的对称轴,可得f (0)=f ⎝⎛⎭⎫10π3, 解得a =-33.1、 (2014陕西,2,5分,∵∵∵)函数f(x)=cos 的最小正周期是( )A. B.π C.2π D.4π 思路点拨 根据公式T=计算.[答案] B [解析] T===π.故选B.2、(2013江苏,1,5分,∵∵∵)函数y=3sin的最小正周期为________.[答案]π[解析]由题意知ω=2,所以T==π.3、(2015山东烟台模拟,∵∵∵)求下列函数的最小正周期:(1)y=sin;(2)y=|sin x|.思路点拨(1)利用公式求最小正周期;(2)可利用图象法求最小正周期.[答案]答案见解析[解析](1)y=sin,其中ω=2,∵T==π.(2)函数y=|sin x|的图象如下图所示,可知其最小正周期为π.4、(2015四川,5,5分,∵∵∵)下列函数中,最小正周期为π的奇函数是()A.y=sinB.y=cosC.y=sin 2x+cos 2xD.y=sin x+cos x思路点拨利用函数的奇偶性逐项验证.[答案]B[解析]A中,y=cos 2x,最小正周期为π,为偶函数,不符合题意;B中,y=-sin 2x,最小正周期为π,且为奇函数,符合.C,D为非奇非偶的函数.5、(2014陕西西安模拟,∵∵∵)下列函数中是奇函数的是()A.y=-|sin x|B.y=sin(-|x|)C.y=sin |x|D.y=x·sin |x|思路点拨利用f(-x)=-f(x)进行判断.[答案]D[解析]四个函数的定义域都是R,设f(x)=x·sin|x|,则f(-x)=(-x)·sin|-x|=-x·sin|x|=-f(x),∵y=x·sin|x|是奇函数,故选D.6、(2014广东,5,5分,∵∵∵)下列函数为奇函数的是()A.y=2x-B.y=x3sin xC.y=2cos x+1D.y=x2+2x思路点拨根据奇函数的定义判断.[答案]A[解析]由函数奇偶性的定义知,B、C中的函数为偶函数,D中的函数为非奇非偶函数,只有A中的函数为奇函数,故选A.7、(2012天津,6,5分,∵∵∵)下列函数中,既是偶函数,又在区间(1,2)内是增函数的为()A.y=cos 2x,x∵RB.y=log2|x|,x∵R且x≠0C.y=,x∵RD.y=x3+1,x∵R思路点拨根据选项中各个函数的性质判断,有一定的综合性.[答案]B[解析]函数y=cos 2x在区间上单调递减,在区间上单调递增,不合题意,排除A;函数y=是奇函数,排除C;y=x3+1是非奇非偶函数,排除D;y=log2|x|=是偶函数,且在(0,+∞)上是增函数,故选B.8、(2012大纲全国,3,5分,∵∵∵)若函数f(x)=sin (φ∵[0,2π])是偶函数,则φ=()A. B. C. D.思路点拨根据特例来求解.[答案]C[解析]∵f(x)是偶函数,∵=+kπ(k∵Z).∵φ=π+3kπ(k∵Z),又φ∵[0,2π],∵φ=π.9、(2014安徽,14,5分,∵∵∵)若函数f(x)(x∵R)是周期为4的奇函数,且在[0,2]上的解析式为f(x)=则f+f=________.思路点拨根据函数的周期性将待求函数值的自变量值转化到分段函数中的定义域范围内,结合奇函数性质求解.[答案][解析]∵f(x)是以4为周期的奇函数,∵f=f=f,f=f=f.∵当0≤x≤1时, f(x)=x(1-x),∵f=×=.∵当1<x≤2时, f(x)=sin(πx),∵f=sin=-.又∵f(x)是奇函数,∵f=-f=-,f=-f=.∵f+f=-+=.10、(2012课标全国,9,5分,∵∵∵)已知ω>0,函数f(x)=sin在单调递减,则ω的取值范围是()A. B. C. D.(0,2]思路点拨利用正弦函数的单调性及单调区间求解.[答案]A[解析]由<x<π得+<ωx+<ωπ+,又y=sin α在(k∵Z)上递减,∵解得由ω>0知+2k>0,∵k>-.若要不等式组有解,则+4k≤+2k,解得k≤,又k∵Z,∵k=0,∵≤ω≤,故选A.11、(2011安徽,9,5分,∵∵∵)已知函数f(x)=sin(2x+φ),其中φ为实数,若f(x)≤对x∵R恒成立,且f>f(π),则f(x)的单调递增区间是()A. (k∵Z)B. (k∵Z)C. (k∵Z)D. (k∵Z)思路点拨恒成立问题可转化为最值问题,然后根据单调区间等知识求解.[答案]C[解析]∵f(x)≤恒成立,∵=1.∵+φ=+kπ,k∵Z.∵φ=+kπ,k∵Z.又∵f>f(π),即sin(π+φ)>sin(2π+φ),∵-sin φ>sin φ,∵2sin φ<0,∵sin φ<0.∵当k=1时,φ=+π=,满足sin φ<0,∵f(x)=sin=-sin.∵要求f(x)的单调递增区间,只需2kπ+≤2x+≤2kπ+,k∵Z,即kπ+≤x≤kπ+,k∵Z.∵f(x)的单调递增区间是(k∵Z).12、(2015上海长宁区一模,∵∵∵)设ω>0,若函数f(x)=2sin ωx在上单调递增,则ω的取值范围是________.思路点拨∵ω>0,先求出f(x)=2sin ωx的单调递增区间,而是其中的一个子集,由集合关系,求出ω的取值范围.[答案][解析]三角函数f(x)=2sin ωx的图象如图.由图知f(x)在上是单调增函数,结合题意得解得0<ω≤.13、(2014福建,7,5分,∵∵∵)已知函数f(x)=则下列结论正确的是()A.f(x)是偶函数B.f(x)是增函数C.f(x)是周期函数D.f(x)的值域为[-1,+∞)思路点拨分段函数问题可以考察各段函数的性质,或结合图象判断.[答案]D[解析]作出f(x)的图象如图所示,可排除A,B,C,故D正确.14、(2014课标∵,6,5分,∵∵∵)如图,圆O的半径为1,A是圆上的定点,P是圆上的动点,角x的始边为射线OA,终边为射线OP,过点P作直线OA的垂线,垂足为M,将点M到直线OP的距离表示成x的函数f(x),则y=f(x)在[0,π]上的图象大致为()思路点拨列出函数y=f(x)的表达式后判断函数的图象,或取x的几个特殊值来验证.[答案]C[解析]由题图可知:当x=时,OP∵OA,此时f(x)=0,排除A、D;当x∵时,OM=cos x,设点M到直线OP 的距离为d,则=sin x,即d=OMsin x=sin xcos x,∵f(x)=sin xcos x=sin 2x≤,排除B,故选C.15、(2013江西改编,∵∵∵)设f(x)=2sin,若对任意实数x都有|f(x)|≤a,则实数a的取值范围是________.思路点拨对已知条件“对任意实数x都有|f(x)|≤a”的理解是解答关键,把此条件转化为函数f(x)的最大值问题.[答案] [2,+∞) [解析] ∵≤1,∵≤2,即对任意实数x,有|f(x)|≤2,要使|f(x)|≤a 恒成立,只要a 不小于|f(x)|的最大值即可,∵a≥2.[方法与技巧]1.讨论三角函数性质,应先把函数式化成y =A sin(ωx +φ)(ω>0)的形式.2.函数y =A sin(ωx +φ)和y =A cos(ωx +φ)的最小正周期为2π|ω|,y =tan(ωx +φ)的最小正周期为π|ω|.3.对于函数的性质(定义域、值域、单调性、对称性、最值等)可以通过换元的方法令t =ωx +φ,将其转化为研究y =sin t 的性质.4.对于已知函数的单调区间的某一部分确定参数ω的范围的问题:首先,明确已知的单调区间应为函数的单调区间的子集;其次,要确定已知函数的单调区间,从而利用它们之间的关系可求解. [失误与防范]1.闭区间上最值或值域问题,首先要在定义域基础上分析单调性,含参数的最值问题,要讨论参数对最值的影响.2.要注意求函数y =A sin(ωx +φ)的单调区间时ω的符号,若ω<0,那么一定先借助诱导公式将ω化为正数.3.三角函数的最值可能不在自变量区间的端点处取得,直接将两个端点处的函数值作为最值是错误的.A 组 专项基础训练 (时间:35分钟)1.对于函数f (x )=sin ⎝⎛⎭⎫πx +π2,下列说法正确的是( ) A .f (x )的周期为π,且在[0,1]上单调递增B .f (x )的周期为2,且在[0,1]上单调递减C .f (x )的周期为π,且在[-1,0]上单调递增D .f (x )的周期为2,且在[-1,0]上单调递减 答案 B解析 因为f (x )=sin ⎝⎛⎭⎫πx +π2=cos πx ,则周期T =2,在[0,1]上单调递减,故选B. 2.函数y =2sin ⎝⎛⎭⎫πx 6-π3(0≤x ≤9)的最大值与最小值之和为( ) A .2- 3B .0C .-1D .-1-3 答案 A解析 利用三角函数的性质先求出函数的最值.∵0≤x ≤9,∵-π3≤π6x -π3≤7π6,∵sin ⎝⎛⎭⎫π6x -π3∵⎣⎡⎦⎤-32,1.由2k π-π2≤2x +π4≤2k π+π2,k ∵Z ,解得k π-3π8≤x ≤k π+π8,k ∵Z .当k =0时,-3π8≤x ≤π8,故选C.12.已知函数f (x )=2sin ωx (ω>0)在区间⎣⎡⎦⎤-π3,π4上的最小值是-2,则ω的最小值等于( ) A.23 B.32 C .2 D .3答案 B解析 ∵ω>0,-π3≤x ≤π4,∵-ωπ3≤ωx ≤ωπ4.由已知条件知-ωπ3≤-π2,∵ω≥32.13.(2014·北京)设函数f (x )=A sin(ωx +φ)(A ,ω,φ是常数,A >0,ω>0).若f (x )在区间⎣⎡⎦⎤π6,π2上具有单调性,且f ⎝⎛⎭⎫π2=f ⎝⎛⎭⎫2π3=-f ⎝⎛⎭⎫π6,则f (x )的最小正周期为________. 答案 π解析 ∵f (x )在⎣⎡⎦⎤π6,π2上具有单调性, ∵T 2≥π2-π6, ∵T ≥2π3.∵f ⎝⎛⎭⎫π2=f ⎝⎛⎭⎫2π3,∵f (x )的一条对称轴为x =π2+2π32=7π12.又∵f ⎝⎛⎭⎫π2=-f ⎝⎛⎭⎫π6, ∵f (x )的一个对称中心的横坐标为π2+π62=π3.∵14T =7π12-π3=π4,∵T =π. 14.已知函数f (x )=A tan(ωx +φ)(ω>0,|φ|<π2),y =f (x )的部分图象如图,则f (π24)=________. 答案 3解析 由题中图象可知,此正切函数的半周期等于3π8-π8=π4,即最小正周期为π2,所以ω=2.∵g (x )的单调减区间为⎝⎛⎭⎫k π+π6,k π+π3,k ∵Z .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 2
x
,
x 1, x ≥1.
【例 5】画出下列函数图象 (1) y x2 2x 1
(2) y x2 2 x 1
笔记与总结
第4页共9页
让学习更有效
函数图像变换
1. 平移变换 函数 y f (x) 的图像向右平移 a 个单位得到函数 y f (x a) 的图像;向上平移 b 个单位得到函数 y f (x) b 的图像;左平移 a 个单位得到函数 y f (x a) 的图像; 向下平移 b 个单位得到函数 y f (x) b 的图像 (a 0,b 0) .
b0
a0
b0
【例 1】画出下列函数图象 (3) y x 2 x
(4) y x 2 x
第3页共9页
让学习更有效
5. 分段函数 分段函数:对于自变量 x 的不同的取值范围,有着不同的对应法则,这样的
函数通常叫做分段函数. 它是一个函数,而不是几个函数.
【例
4】画出函数图象
f
(x)
x2 1 ,
log
图像关于 y 轴对称的翻折到左侧得到函数 y f ( x ) 的图像; ③函数 y f (x) 先用第②步的方法得到函数 y f ( x ) 的图像,再平移 a 个单
位得到函数 y f ( x a ) 图象.
【例 1】下列函数图象是如何通过函数 y f (x) 的图象变换得到的?
(1) y f (x 4)
(2) y f (x) 2
(3) y f (x)
【巩固】下列函数图象是如何通过函数 y f (x) 的图象变换得到的?
(1) y f (x)
(2) y f (x)
(3) y f (x 1) 3
【例 2】下列函数图象是如何通过函数 y f (x) 的图象变换得到的?
(1) y f (x)
( b ,4ac b2 ) 2a 4a
(2) y 2x2 3x 2
第2页共9页
让学习更有效
3. 绝对值函数图象
y
x
x
,
x0
x , x 0
【例 2】画出下列函数图象 (1) y x 2 x 3
(2) y 2 x 2 3 x 3
4. y ax b 型函数的图象 x a0
【题5】
已知函数
f
(x)
(1 )x 2
15 ,x 16
4
, 若方程
f
(x) k
0
有两个不等实根,则实
log2 x ,0 x 4.
数 的取值范围是

第1页共9页
让学习更有效
函数图像
1. 一次函数 y kx b 图象 k 0
k 0
k 0
b0
b0
b0
2. 二次函数图象 函数解析式 y ax2 y ax2 k
附注: 下面是有关函数图象自身的对称性的一些结论,我们把它放在这里来对比一下: (1)若函数 f (x) 满足:对任意的实数 x ,都有 f (a x) f (a x) 成立,则函数 f (x) 的图像关于 x a 对称; (2)若函数 f (x) 满足:对任意的实数 x ,都有 f (bx) f (2a bx) 成立,则函数 f (x) 的图像关于 x a 对称; (b 0) (3)若函数 f (x) 满足:对任意的实数 x ,都有 f (a x) f (a x) 成立,则函 数 f (x) 的图像关于点 (a, 0) 对称; (4)若函数 f (x) 满足:对任意的实数 x ,都有 f (bx) f (2a bx) 成立,则函数 f (x) 的图像关于 (a, 0) 对称; (b 0) (5)若函数 f (x) 满足:对任意的实数 x ,都有 f (a x) 2b f (a x) 成立,则 函数 f (x) 的图像关于点 (a,b) 对称; 注意:函数 y f (a x) 和 y f (a x) 的图像关于 y 轴对称.
函数图像
课前检测
【题1】 函数 f (x) 2x 3x 的零点所在的一个区间是(
A. (2 , 1) B. (1,0)
C. (0 ,1)
) D. (1,2)
【题2】 已知函数 f (x) 2x b 的零点为 x0 ,且 x0 (1,1) ,那么 b 的取值范围是 ()
A. (2 ,2)
B. (1,1)
(2) y f ( x ) 2
(3) y f ( x )
第5页共9页
让学习更有效
【巩固】下列函数图象是如何通过函数 y f (x) 的图象变换得到的?
(1) y 3 f (x)
(2) y f ( x )
我们还可以得到下面的结论: (1)函数 y f (x) 与 y f (2a x) 图象关于直线 x a 对称; (2)函数 y f (x) 与 y 2b f (x) 图象关于直线 y b 对称; (3)函数 y f (x) 与 y 2b f (2a x) 图象关于点 (a,b) 对称;
y ax h2 y a x h2 k
y ax2 bx c
开口方向
当a 0时 开口向上 当a 0时 开口向下
【例 1】画出下列函数图象 (1) y x2 3x 4
对称轴 x 0 ( y 轴) x 0 ( y 轴) xh xh
x b 2a
顶点坐标 (0, 0) (0, k) (h, 0) (h, k)
(1)函数 y f (x) 的图象关于 y 轴对称的图像为 y f (x) ; 关于 x 轴对称的图像为 y f (x) ; 关于原点对称的图像为 y f (x) .
(2)绝对值问题 ①函数 y f (x) x 轴及其上方的图像保持不变,把下方图像关于 x 轴对称的
翻折到上方,再把下方的图像去掉得到函数 y f (x) 的图像; ②函数 y f (x) y 轴及其右侧的图像保持不变,把左侧图像去掉,再把右侧
C. ( 1 ,1) 22
D. (1,0)
【题3】 方程 a x x2 (0 a 1) 的解的个数为( )
A.0 个
B.1 个
C.0 个或 1 个
D.2 个
【题4】 若 函 数 f (x) x2 2x a 的 一 个 零 点 是 3 , 则 f (x) 的 另 一 个 零 点 是 _________.
2. 伸缩变换: (1)函数 y f (x) 的图像上的点保持横坐标不变纵坐标变为原来的 k 倍 ( 0 k 1 时,缩; k 1时,伸)得到函数 y kf (x) 的图像;
(2)函数 y f (x) 的图像上的点保持纵坐标不变横坐标变为原来的 1 倍 k
( 0 k 1 时,伸; k 1时,缩)得到函数 y f (kx) 的图像 ( k 0 ,且 k 1). 3. 对称变换
相关文档
最新文档