2018年高三一模考试理科数学试卷及答案

合集下载

【全国通用-2018高考推荐】高三数学(理科)考前一模检测试题及答案解析

【全国通用-2018高考推荐】高三数学(理科)考前一模检测试题及答案解析

2018年高考数学一模试卷(理科)一、选择题(本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合A={﹣1,1},B={x|ax+2=0},若B⊆A,则实数a的所有可能取值的集合为()A.{﹣2} B.{2} C.{﹣2,2} D.{﹣2,0,2}2.已知z是纯虚数,是实数,那么z等于()A.2i B.i C.﹣i D.﹣2i3.已知命题p:函数y=2﹣a x+1的图象恒过定点(1,2);命题q:若函数y=f(x﹣1)为偶函数,则函数y=f(x)的图象关于直线x=1对称,则下列命题为真命题的是()A.p∨q B.p∧q C.¬p∧q D.p∨¬q4.在航天员进行的一项太空实验中,要先后实施6个程序,其中程序A只能出现在第一步或最后一步,程序B和C实施时必须相邻,请问实验顺序的编排方法共有()A.24种B.48种C.96种D.144种5.执行如图所示的程序框图,输出s的值为()A.﹣B.C.﹣D.6.已知实数x,y满足,则目标函数z=x﹣y的最小值为()A.﹣2 B.5 C.6 D.77.某三棱锥的三视图如图所示,该三棱锥的表面积是()A.28+6 B.30+6C.56+12D.60+128.已知向量=(x﹣1,2),=(4,y),若⊥,则9x+3y的最小值为()A.2 B. C.6 D.99.在△ABC中,角A,B,C所对的边分别为a,b,c,已知a=2,c=2,1+=.则∠C=()A.30°B.135° C.45°或135°D.45°10.函数y=的图象大致为()A.B.C.D.11.设抛物线y2=2x的焦点为F,过点M(3,0)的直线与抛物线相交于A,B两点,与抛物线的准线相交于点C,|BF|=,则△BCF与△ACF的面积之比=()A.B.C.D.12.对于任意实数a,b,定义min{a,b}=,定义在R上的偶函数f (x)满足f (x+4)=f(x),且当0≤x≤2时,f (x)=min{2x﹣1,2﹣x},若方程f (x)﹣mx=0恰有两个根,则m的取值范围是()A.{﹣1,1}∪(﹣ln2,)∪(,ln2)B.[﹣1,)∪C.{﹣1,1}∪(﹣ln2,)∪(,ln2)D.(,)∪(,)二、填空题(本大题共4小题,每小题5分,共20分,将答案填在答题卡相应的位置上.)13.若tan(π﹣α)=2,则sin2α= .14.展开式中不含x4项的系数的和为.15.如图,矩形OABC内的阴影部分由曲线f(x)=sinx及直线x=a(a∈(0,2π)与x轴围成.向矩形OABC内随机掷一点,该点落在阴影部分的概率为,则a= .16.以下四个命题:①从匀速传递的产品生产流水线上,质检员每20分钟从中抽取一件产品进行某项指标检测,这样的抽样是分层抽样.②两个随机变量相关性越强,则相关系数的绝对值越接近于1.③在回归直线=0.2x+12中,当解释变量x每增加一个单位时,预报变量平均增加0.2单位.④对分类变量X与Y,它们的随机变量K2的观测值k来说,k越小,“X与Y有关系”的把握程度越大.其中正确的命题是.三、解答题:本大题共5小题,满分60分.解答须写出文字说明,证明过程和演算步骤.17.设数列{a n}的前n项积为T n,且T n=2﹣2a n(n∈N*).(Ⅰ)求证数列是等差数列;(Ⅱ)设b n=(1﹣a n)(1﹣a n+1),求数列{b n}的前n项和S n.18.“你低碳了吗?”这是某市为倡导建设资源节约型社会而发布的公益广告里的一句话.活动组织者为了解这则广告的宣传效果,随机抽取了100名年龄段在[10,20),[20,30),…,[50,60)的市民进行问卷调查,由此得到样本的频率分布直方图如图所示.(Ⅰ)求随机抽取的市民中年龄段在[30,40)的人数;(Ⅱ)从不小于40岁的人中按年龄段分层抽样的方法随机抽取8人,求[50,60)年龄段抽取的人数;(Ⅲ)从按(Ⅱ)中方式得到的8人中再抽取3人作为本次活动的获奖者,记X为年龄在[50,60)年龄段的人数,求X的分布列及数学期望.19.如图,在三棱锥P﹣ABC中,PA=PB=AB=2,BC=3,∠ABC=90°,平面PAB⊥平面ABC,D、E分别为AB、AC中点.(1)求证:DE∥平面PBC;(2)求证:AB⊥PE;(3)求二面角A﹣PB﹣E的大小.20.已知椭圆C:=1(a>b>0)的离心率为,以原点为圆心,椭圆的短半轴长为半径的圆与直线x﹣y+=0相切.A、B是椭圆C的右顶点与上顶点,直线y=kx(k>0)与椭圆相交于E、F两点.(1)求椭圆C的方程;(2)当四边形AEBF面积取最大值时,求k的值.21.已知函数,当时,函数f(x)有极大值.(Ⅰ)求实数b、c的值;(Ⅱ)若存在x0∈[﹣1,2],使得f(x0)≥3a﹣7成立,求实数a的取值范围.请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.答时用2B铅笔在答题卡上把所选题目的题号涂黑.[选修4-1:几何证明选讲]22.如图,⊙O是△ABC的外接圆,D是的中点,BD交AC于E.(Ⅰ)求证:DC2=DE•DB;(Ⅱ)若CD=2,O到AC的距离为1,求⊙O的半径r.[选修4-4:坐标系与参数方程]23.平面直角坐标系中,直线l的参数方程是(t为参数),以坐标原点为极点,x轴的正半轴为极轴,建立极坐标系,已知曲线C的极坐标方程为ρ2cos2θ+ρ2sin2θ﹣2ρsinθ﹣3=0.(1)求直线l的极坐标方程;(2)若直线l与曲线C相交于A、B两点,求|AB|.[选修4-5:不等式选讲]24.已知函数f(x)=|x﹣2|﹣|x+1|.(1)求证:﹣3≤f(x)≤3;(2)解不等式f(x)≥x2﹣2x.参考答案与试题解析一、选择题(本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合A={﹣1,1},B={x|ax+2=0},若B⊆A,则实数a的所有可能取值的集合为()A.{﹣2} B.{2} C.{﹣2,2} D.{﹣2,0,2}【考点】集合的包含关系判断及应用.【专题】计算题.【分析】根据B⊆A,利用分类讨论思想求解即可.【解答】解:当a=0时,B=∅,B⊆A;当a≠0时,B={}⊆A,=1或=﹣1⇒a=﹣2或2,综上实数a的所有可能取值的集合为{﹣2,0,2}.故选D.【点评】本题考查集合的包含关系及应用.注意空集的讨论,是易错点.2.已知z是纯虚数,是实数,那么z等于()A.2i B.i C.﹣i D.﹣2i【考点】复数的基本概念;复数代数形式的乘除运算.【专题】计算题.【分析】设出复数z,代入,它的分子、分母同乘分母的共轭复数,化简为a+bi(a,b∈R)的形式.【解答】解:由题意得z=ai.(a∈R且a≠0).∴==,则a+2=0,∴a=﹣2.有z=﹣2i,故选D【点评】本题考查复数的基本概念,复数代数形式的乘除运算,考查计算能力,是基础题.3.已知命题p:函数y=2﹣a x+1的图象恒过定点(1,2);命题q:若函数y=f(x﹣1)为偶函数,则函数y=f(x)的图象关于直线x=1对称,则下列命题为真命题的是()A.p∨q B.p∧q C.¬p∧q D.p∨¬q【考点】复合命题的真假.【专题】计算题;转化思想;综合法;简易逻辑.【分析】由函数的翻折和平移,得到命题p假,则¬p真;由函数的奇偶性,对轴称和平移得到命题q假,则命题¬q真,由此能求出结果.【解答】解:函数y=2﹣a x+1的图象可看作把y=a x的图象先沿轴反折,再左移1各单位,最后向上平移2各单位得到,而y=a x的图象恒过(0,1),所以函数y=2﹣a x+1恒过(﹣1,1)点,所以命题p假,则¬p真.函数f(x﹣1)为偶函数,则其对称轴为x=0,而函数f(x)的图象是把y=f(x﹣1)向左平移了1各单位,所以f(x)的图象关于直线x=﹣1对称,所以命题q假,则命题¬q真.综上可知,命题p∧¬q为真命题.故选:D.【点评】本题考查命题的真假判断,是中档题,解题时要认真审题,注意得复合命题的性质的合理运用.4.在航天员进行的一项太空实验中,要先后实施6个程序,其中程序A只能出现在第一步或最后一步,程序B和C实施时必须相邻,请问实验顺序的编排方法共有()A.24种B.48种C.96种D.144种【考点】计数原理的应用.【专题】计算题.【分析】本题是一个分步计数问题,A只能出现在第一步或最后一步,从第一个位置和最后一个位置选一个位置把A排列,程序B和C实施时必须相邻,把B和C看做一个元素,同除A外的3个元素排列,注意B和C之间还有一个排列.【解答】解:本题是一个分步计数问题,∵由题意知程序A只能出现在第一步或最后一步,∴从第一个位置和最后一个位置选一个位置把A排列,有A21=2种结果∵程序B和C实施时必须相邻,∴把B和C看做一个元素,同除A外的3个元素排列,注意B和C之间还有一个排列,共有A44A22=48种结果根据分步计数原理知共有2×48=96种结果,故选C.【点评】本题考查分步计数原理,考查两个元素相邻的问题,是一个基础题,注意排列过程中的相邻问题,利用捆绑法来解,不要忽略被捆绑的元素之间还有一个排列.5.执行如图所示的程序框图,输出s 的值为( )A .﹣B .C .﹣D .【考点】程序框图.【专题】图表型;算法和程序框图.【分析】模拟执行程序框图,依次写出每次循环得到的k 的值,当k=5时满足条件k >4,计算并输出S 的值为.【解答】解:模拟执行程序框图,可得k=1k=2不满足条件k >4,k=3不满足条件k >4,k=4不满足条件k >4,k=5满足条件k >4,S=sin =,输出S 的值为.故选:D .【点评】本题主要考查了循环结构的程序框图,属于基础题.6.已知实数x,y满足,则目标函数z=x﹣y的最小值为()A.﹣2 B.5 C.6 D.7【考点】简单线性规划.【专题】不等式的解法及应用.【分析】先画出约束条件的可行域,再将可行域中各个角点的值依次代入目标函数z=x ﹣y,不难求出目标函数z=x﹣y的最小值.【解答】解:如图作出阴影部分即为满足约束条件的可行域,由得A(3,5),当直线z=x﹣y平移到点A时,直线z=x﹣y在y轴上的截距最大,即z取最小值,即当x=3,y=5时,z=x﹣y取最小值为﹣2.故选A.【点评】本题主要考查线性规划的基本知识,用图解法解决线性规划问题时,利用线性规划求函数的最值时,关键是将目标函数赋予几何意义.7.某三棱锥的三视图如图所示,该三棱锥的表面积是()A.28+6 B.30+6C.56+12D.60+12【考点】由三视图求面积、体积.【专题】立体几何.【分析】通过三视图复原的几何体的形状,利用三视图的数据求出几何体的表面积即可.【解答】解:三视图复原的几何体是底面为直角边长为4和5的三角形,一个侧面垂直底面的等腰三角形,高为4,底边长为5,如图,所以S底==10,S后=,S右==10,S左==6.几何体的表面积为:S=S底+S后+S右+S左=30+6.故选:B.【点评】本题考查三视图与几何体的关系,注意表面积的求法,考查空间想象能力计算能力.8.已知向量=(x﹣1,2),=(4,y),若⊥,则9x+3y的最小值为()A.2 B. C.6 D.9【考点】基本不等式;数量积判断两个平面向量的垂直关系.【专题】平面向量及应用.【分析】由于⊥⇔=0,即可得出x,y的关系,再利用基本不等式即可得出9x+3y的最小值.【解答】解:∵⊥,∴(x﹣1,2)•(4,y)=0,化为4(x﹣1)+2y=0,即2x+y=2.∴9x+3y≥===6,当且仅当2x=y=1时取等号.故选C.【点评】本题考查了⊥⇔=0、基本不等式的性质,属于基础题.9.在△ABC中,角A,B,C所对的边分别为a,b,c,已知a=2,c=2,1+=.则∠C=()A.30°B.135° C.45°或135°D.45°【考点】正弦定理;余弦定理.【专题】解三角形.【分析】利用正弦定理以及两角和差的正弦公式进行化简即可.【解答】解:由1+=.得1+=.即cosAsinB+sinAcosB=2sinCcosA,即sin(A+B)=2sinCcosA,即sinC=2sinCcosA,∴cosA=,即A=,∵a=2,c=2,∴a>c,即A>C,由正弦定理得,即,∴sinC=,即C=45°,故选:D【点评】本题主要考查解三角形的应用,根据正弦定理以及两角和差的正弦公式进行化简是解决本题的关键.10.函数y=的图象大致为()A.B.C.D.【考点】函数的图象.【专题】函数的性质及应用.【分析】根据函数的定义域,特殊点的函数值符号,以及函数的单调性和极值进行判断即可.【解答】解:由lnx≠0得,x>0且x≠1,当0<x<1时,lnx<0,此时y<0,排除B,C,函数的导数f′(x)=,由f′(x)>0得lnx>1,即x>e此时函数单调递增,由f′(x)<0得lnx<1且x≠1,即0<x<1或1<x<e,此时函数单调递减,故选:D.【点评】本题主要考查函数图象的识别和判断,根据函数的性质,利用定义域,单调性极值等函数特点是解决本题的关键.11.设抛物线y2=2x的焦点为F,过点M(3,0)的直线与抛物线相交于A,B两点,与抛物线的准线相交于点C,|BF|=,则△BCF与△ACF的面积之比=()A.B.C.D.【考点】抛物线的简单性质.【专题】圆锥曲线的定义、性质与方程.【分析】利用三角形面积公式,可把△BCF与△ACF的面积之比转化为BC长与AC长的比,再根据抛物线的焦半径公式转化为A,B到准线的距离之比,借助|BF|=求出B点坐标,得到AB方程,代入抛物线方程,解出A点坐标,就可求出BN与AE的长度之比,得到所需问题的解.【解答】解:∵抛物线方程为y2=2x,∴焦点F的坐标为(,0),准线方程为x=﹣,如图,设A(x1,y1),B(x2,y2),过A,B分别向抛物线的准线作垂线,垂足分别为E,N,则|BF|=x2+=2,∴x2=2,把x2=2代入抛物线y2=2x,得,y2=﹣2,∴直线AB过点M(3,0)与(2,﹣2)方程为2x﹣y﹣6=0,代入抛物线方程,解得,x1=,∴|AE|=+=5,∵在△AEC中,BN∥AE,∴===,故选:A【点评】本题主要考查了抛物线的焦半径公式,侧重了学生的转化能力,以及计算能力.12.对于任意实数a,b,定义min{a,b}=,定义在R上的偶函数f (x)满足f (x+4)=f(x),且当0≤x≤2时,f (x)=min{2x﹣1,2﹣x},若方程f (x)﹣mx=0恰有两个根,则m的取值范围是()A.{﹣1,1}∪(﹣ln2,)∪(,ln2)B.[﹣1,)∪C.{﹣1,1}∪(﹣ln2,)∪(,ln2)D.(,)∪(,)【考点】函数奇偶性的性质.【专题】函数的性质及应用.【分析】首先由题意求出f(x),然后令g(x)=mx,转化为图象交点的问题解决.【解答】解:由题意得,又因为f(x)是偶函数且周期是4,可得整个函数的图象,令g(x)=mx,本题转化为两个交点的问题,由图象可知有三部分组成,排除B,D易得当过(3,1),(﹣3,1)点时恰有三个交点,此时m=±,故选A.【点评】本题考查的是函数的性质的综合应用,利用数形结合快速得解.二、填空题(本大题共4小题,每小题5分,共20分,将答案填在答题卡相应的位置上.)13.若tan(π﹣α)=2,则sin2α= .【考点】二倍角的正弦;同角三角函数间的基本关系;诱导公式的作用.【专题】三角函数的求值.【分析】利用诱导公式化简已知等式的左边求出tanα的值,再利用同角三角函数间的基本关系得到sinα=2cosα,且sinα与cosα异号,两边平方并利用同角三角函数间的基本关系求出cos2α与sin2α的值,进而求出sinαcosα的值,最后利用二倍角的正弦函数公式即可求出sin2α的值.【解答】解:∵tan(π﹣α)=﹣tanα=﹣=2,即=﹣2<0,∴sinα=﹣2cosα,两边平方得:sin2α=4cos2α,∵sin2α+cos2α=1,∴cos2α=,sin2α=,∴sin2αcos2α=,即sinαcosα=﹣,则sin2α=2sinαcosα=﹣.故答案为:﹣【点评】此题考查了二倍角的正切函数公式,同角三角函数间的基本关系,以及诱导公式的作用,熟练掌握公式是解本题的关键.14.展开式中不含x4项的系数的和为0 .【考点】二项式系数的性质.【专题】计算题.【分析】给二项式中的x赋值1,得到展开式的所有项的系数和;利用二项展开式的通项公式求出通项,令x的指数为4求出展开式中x4的系数,利用系数和减去x4的系数求出展开式中不含x4项的系数的和.【解答】解:令x=1求出展开式的所有的项的系数和为1展开式的通项为令得r=8所以展开式中x4的系数为1故展开式中不含x4项的系数的和为1﹣1=0故答案为:0【点评】本题考查解决展开式的系数和问题常用的方法是赋值法、考查利用二项展开式的通项公式解决二项展开式的特定项问题.15.如图,矩形OABC内的阴影部分由曲线f(x)=sinx及直线x=a(a∈(0,2π)与x轴围成.向矩形OABC内随机掷一点,该点落在阴影部分的概率为,则a= π.【考点】几何概型.【专题】概率与统计.【分析】根据几何概型的概率公式,以及利用积分求出阴影部分的面积即可得到结论.【解答】解:根据题意,阴影部分的面积为==1﹣cosa,矩形的面积为,则由几何概型的概率公式可得,即cosa=﹣1,又a∈(0,2π),∴a=π,故答案为:π【点评】本题主要考查几何概型的概率的计算,根据积分的几何意义求出阴影部分的面积是解决本题的关键.16.以下四个命题:①从匀速传递的产品生产流水线上,质检员每20分钟从中抽取一件产品进行某项指标检测,这样的抽样是分层抽样.②两个随机变量相关性越强,则相关系数的绝对值越接近于1.③在回归直线=0.2x+12中,当解释变量x每增加一个单位时,预报变量平均增加0.2单位.④对分类变量X与Y,它们的随机变量K2的观测值k来说,k越小,“X与Y有关系”的把握程度越大.其中正确的命题是②③.【考点】命题的真假判断与应用.【专题】概率与统计;推理和证明.【分析】根据抽样方法的定义,可判断①;根据相关系数与相关性的关系,可判断②;根据相关系数的几何意义,可判断③;根据独立性检验的方法和步骤,可判断④.【解答】解:从匀速传递的产品生产流水线上,质检员每20分钟从中抽取一件产品进行某项指标检测,这样的抽样是系统抽样,故①错误;两个随机变量相关性越强,则相关系数的绝对值越接近于1;两个随机变量相关性越弱,则相关系数的绝对值越接近于0,故②正确;在回归直线=0.2x+12中,当解释变量x每增加一个单位时,预报变量平均增加0.2单位,故③正确;对分类变量X与Y,它们的随机变量K2的观测值k来说,k越大,“X与Y有关系”的把握程度越大,故④错误;故正确的命题是:②③,故答案为:②③【点评】本题以命题的真假判断为载体,考查了抽样方法,相关系数,回归分析,独立性检验等知识点,难度不大,属于基础题.三、解答题:本大题共5小题,满分60分.解答须写出文字说明,证明过程和演算步骤.17.设数列{a n}的前n项积为T n,且T n=2﹣2a n(n∈N*).(Ⅰ)求证数列是等差数列;(Ⅱ)设b n=(1﹣a n)(1﹣a n+1),求数列{b n}的前n项和S n.【考点】数列的求和;等差关系的确定.【专题】综合题;等差数列与等比数列.【分析】(Ⅰ)由已知,令n=1可求T1,然后利用已知变形可得:T n•T n﹣1=2T n ﹣1﹣2T n(n≥2),变形即可证明(Ⅱ)由等差数列,可求,进而可求a n,代入即可求解b n,结合数列的特点考虑利用裂项求和【解答】解:(Ⅰ)∵T n=2﹣2a n∴T1=2﹣2T1∴∴由题意可得:T n•T n﹣1=2T n﹣1﹣2T n(n≥2),所以∴数列是以为公差,以为首项的等差数列(Ⅱ)∵数列为等差数列,∴,∴,∴,∴==【点评】本题主要考查了利用数列的递推公式构造等比数列求解数列的通项公式及数列的裂项求和方法的应用.18.“你低碳了吗?”这是某市为倡导建设资源节约型社会而发布的公益广告里的一句话.活动组织者为了解这则广告的宣传效果,随机抽取了100名年龄段在[10,20),[20,30),…,[50,60)的市民进行问卷调查,由此得到样本的频率分布直方图如图所示.(Ⅰ)求随机抽取的市民中年龄段在[30,40)的人数;(Ⅱ)从不小于40岁的人中按年龄段分层抽样的方法随机抽取8人,求[50,60)年龄段抽取的人数;(Ⅲ)从按(Ⅱ)中方式得到的8人中再抽取3人作为本次活动的获奖者,记X为年龄在[50,60)年龄段的人数,求X的分布列及数学期望.【考点】离散型随机变量的期望与方差;频率分布直方图.【专题】概率与统计.【分析】(Ⅰ)利用频率分布直方图能求出随机抽取的市民中年龄段在[30,40)的人数.(Ⅱ)由频率公布直方图知100×0.15=15,100×0.05=5,由此能求出抽取的8人中[50,60)年龄段抽取的人数.(Ⅲ)X的所有可能取值为0,1,2.分别求出相应的概率,由此能求出X的分布列和X的数学期望.【解答】解:(Ⅰ)1﹣10×(0.020+0.025+0.015+0.005)=0.35,100×0.35=35,即随机抽取的市民中年龄段在[30,40)的人数为35.…(Ⅱ)100×0.15=15,100×0.05=5,所以,即抽取的8人中[50,60)年龄段抽取的人数为2.…(Ⅲ)X的所有可能取值为0,1,2.;;.所以X的分布列为X 0 1 2PX的数学期望为.…【点评】本题考查离散型随机变量的分布列和数学期望的求法,解题时要认真审题,注意排列组合知识的合理运用.19.如图,在三棱锥P﹣ABC中,PA=PB=AB=2,BC=3,∠ABC=90°,平面PAB⊥平面ABC,D、E分别为AB、AC中点.(1)求证:DE∥平面PBC;(2)求证:AB⊥PE;(3)求二面角A﹣PB﹣E的大小.【考点】用空间向量求平面间的夹角;直线与平面平行的判定;直线与平面垂直的判定;二面角的平面角及求法.【专题】空间角;空间向量及应用.【分析】(Ⅰ)由三角形中位线定理可得DE∥BC,进而由线面平行的判定定理得到DE∥平面PBC (II)连接PD,由等腰三角形三线合一,可得PD⊥AB,由DE∥BC,BC⊥AB可得DE⊥AB,进而由线面垂直的判定定理得到AB⊥平面PDE,再由线面垂直的性质得到AB⊥PE;(Ⅲ)以D为原点建立空间直角坐标系,分别求出平面PBE的法向量和平面PAB的法向量,代入向量夹角公式,可得二面角A﹣PB﹣E的大小.【解答】解:(Ⅰ)∵D、E分别为AB、AC中点,∴DE∥BC.∵DE⊄平面PBC,BC⊂平面PBC,∴DE∥平面PBC.…(Ⅱ)连接PD,∵PA=PB,D为AB中点,∴PD⊥AB.….∵DE∥BC,BC⊥AB,∴DE⊥AB…又∵PD∩DE=D,PD,DE⊂平面PDE∴AB⊥平面PDE…∵PE⊂平面PDE,∴AB⊥PE…(Ⅲ)∵AB⊥平面PDE,DE⊥AB…如图,以D为原点建立空间直角坐标系,由PA=PB=AB=2,BC=3,则B(1,0,0),P(0,0,),E(0,,0),∴=(1,0,),=(0,,).设平面PBE的法向量,∴令得…∵DE⊥平面PAB,∴平面PAB的法向量为.…设二面角的A﹣PB﹣E大小为θ,由图知,,所以θ=60°,即二面角的A﹣PB﹣E大小为60°…【点评】本题考查的知识点是二面角的平面角及求法,直线与平面平行的判定,直线与平面垂直的判定,熟练掌握空间直线与平面位置关系的判定,性质是解答(I)和(II)的关键,而(III)的关键是建立空间坐标系,将空间角问题转化为向量夹角问题.20.已知椭圆C:=1(a>b>0)的离心率为,以原点为圆心,椭圆的短半轴长为半径的圆与直线x﹣y+=0相切.A、B是椭圆C的右顶点与上顶点,直线y=kx(k>0)与椭圆相交于E、F两点.(1)求椭圆C的方程;(2)当四边形AEBF面积取最大值时,求k的值.【考点】直线与圆锥曲线的关系.【专题】圆锥曲线的定义、性质与方程.【分析】(1)通过椭圆的离心率,直线与圆相切,求出a,b即可求出椭圆的方程.(2)设E(x1,kx1),F(x2,kx2),其中x1<x2,将y=kx代入椭圆的方程,利用韦达定理,结合点E,F到直线AB的距离分别,表示出四边形AEBF的面积,利用基本不等式求出四边形AEBF面积的最大值时的k值即可.【解答】解:(1)由题意知:=∴=,∴a2=4b2.…又∵圆x2+y2=b2与直线相切,∴b=1,∴a2=4,…故所求椭圆C的方程为…(2)设E(x1,kx1),F(x2,kx2),其中x1<x2,将y=kx代入椭圆的方程整理得:(k2+4)x2=4,故.①…又点E,F到直线AB的距离分别为,.…所以四边形AEBF的面积为==…===,…当k2=4(k>0),即当k=2时,上式取等号.所以当四边形AEBF面积的最大值时,k=2.…【点评】本题考查直线与椭圆的位置关系,圆锥曲线的综合应用,考查分析问题解决问题的能力,转化思想以及计算能力.21.已知函数,当时,函数f(x)有极大值.(Ⅰ)求实数b、c的值;(Ⅱ)若存在x0∈[﹣1,2],使得f(x0)≥3a﹣7成立,求实数a的取值范围.【考点】利用导数求闭区间上函数的最值;函数在某点取得极值的条件.【专题】综合题;导数的综合应用.【分析】(Ⅰ)x<1时,f′(x)=﹣3x2+2x+b,利用当时,函数f(x)有极大值,建立方程,即可求得实数b、c的值;(Ⅱ)存在x0∈[﹣1,2],使得f(x0)≥3a﹣7成立,等价于x∈[﹣1,2],使得f(x)max≥3a﹣7成立,分类讨论,求出函数的最大值,即可求实数a的取值范围.【解答】解:(Ⅰ)x<1时,f′(x)=﹣3x2+2x+b∵当时,函数f(x)有极大值,∴f′()=﹣++b=0,f()=﹣++c=,∴b=0,c=0;(Ⅱ)存在x0∈[﹣1,2],使得f(x0)≥3a﹣7成立,等价于x∈[﹣1,2],使得f(x)max≥3a﹣7成立由(Ⅰ)知,①﹣1≤x<1时,f′(x)=﹣3x(x﹣),函数在(﹣1,0)上单调递减,在(0,)上单调递增,在(,1)上单调递减∵f(﹣1)=2,f()=,∴﹣1≤x<1时,f(x)max=2,;②2≥x≥1时,f′(x)=,1°、a>0,函数在[1,2]上单调递增,f(x)max=f(2)=aln2,∴或,∴<a≤或0<a≤;2°、a≤0,函数在[1,2]上单调递减,f(x)max=f(1)=aln1=0,∴2≥3a﹣7,∴a≤3,∴a≤0综上,实数a的取值范围是a≤.【点评】本题考查导数知识的运用,考查函数的绝对值,考查函数的最值,考查分类讨论的数学思想,属于中档题.请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.答时用2B铅笔在答题卡上把所选题目的题号涂黑.[选修4-1:几何证明选讲]22.如图,⊙O是△ABC的外接圆,D是的中点,BD交AC于E.(Ⅰ)求证:DC2=DE•DB;(Ⅱ)若CD=2,O到AC的距离为1,求⊙O的半径r.【考点】与圆有关的比例线段;相似三角形的判定;相似三角形的性质.【专题】选作题.【分析】(I)先证明△BCD∽△CED,可得,从而问题得证;(II)OD⊥AC,设垂足为F,求出CF=,利用DC2=CF2+DF2,建立方程,即可求得⊙O 的半径.【解答】(I)证明:连接OD,OC,由已知D是弧AC的中点,可得∠ABD=∠CBD∵∠ABD=∠ECD∴∠CBD=∠ECD∵∠BDC=∠EDC∴△BCD∽△CED∴∴CD2=DE•DB.(II)解:设⊙O的半径为R∵D是弧AC的中点∴OD⊥AC,设垂足为F在直角△CFO中,OF=1,OC=R,CF=在直角△CFD中,DC2=CF2+DF2∴∴R2﹣R﹣6=0∴(R﹣3)(R+2)=0∴R=3【点评】本题是选考题,考查几何证明选讲,考查三角形的相似与圆的性质,属于基础题.[选修4-4:坐标系与参数方程]23.平面直角坐标系中,直线l的参数方程是(t为参数),以坐标原点为极点,x轴的正半轴为极轴,建立极坐标系,已知曲线C的极坐标方程为ρ2cos2θ+ρ2sin2θ﹣2ρsinθ﹣3=0.(1)求直线l的极坐标方程;(2)若直线l与曲线C相交于A、B两点,求|AB|.【考点】点的极坐标和直角坐标的互化;两点间的距离公式.【专题】计算题.【分析】(1)将直线化成普通方程,可得它是经过原点且倾斜角为的直线,由此不难得到直线l 的极坐标方程;(2)将直线l的极坐标方程代入曲线C极坐标方程,可得关于ρ的一元二次方程,然后可以用根与系数的关系结合配方法,可以得到AB的长度.【解答】解:(1)直线l的参数方程是(t为参数),化为普通方程得:y=x∴在平面直角坐标系中,直线l经过坐标原点,倾斜角是,因此,直线l的极坐标方程是θ=,(ρ∈R);…(2)把θ=代入曲线C的极坐标方程ρ2cos2θ+ρ2sin2θ﹣2ρsinθ﹣3=0,得ρ2﹣ρ﹣3=0 ∴由一元二次方程根与系数的关系,得ρ1+ρ2=,ρ1ρ2=﹣3,∴|AB|=|ρ1﹣ρ2|==.…【点评】本题以参数方程和极坐标方程为例,考查了两种方程的互化和直线与圆锥曲线的位置关系等知识点,属于基础题.[选修4-5:不等式选讲]24.已知函数f(x)=|x﹣2|﹣|x+1|.(1)求证:﹣3≤f(x)≤3;(2)解不等式f(x)≥x2﹣2x.【考点】绝对值不等式的解法.【专题】转化思想;综合法;不等式的解法及应用.【分析】(1)通过讨论x的范围得到相对应的f(x)的表达式,从而证明出结论;(2)利用分段函数解析式,分别解不等式,即可确定不等式的解集.【解答】解:(1)当x≤﹣1时,f(x)=3,成立;当﹣1<x<2时,f(x)=﹣2x+1,﹣4<﹣2x<2,∴﹣3<﹣2x+1<3,成立;当x≥2时,f(x)=﹣3,成立;故﹣3≤f(x)≤3;﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(2)当x≤﹣1时,x2﹣2x≤3,∴﹣1≤x≤2,∴x=1;当﹣1<x<2时,x2﹣2x≤﹣2x+1,∴﹣1≤x≤1,∴﹣1<x≤1;当x≥2时,x2﹣2x≤﹣3,无解;﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣综合上述,不等式的解集为:[﹣1,1].﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣【点评】本题考查绝对值函数,考查分类讨论的数学思想,确定函数的解析式是关键.。

【全国通用-2018高考推荐】高三数学(理科)高考一模测试题及答案解析

【全国通用-2018高考推荐】高三数学(理科)高考一模测试题及答案解析

2018年高考数学一模试卷(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若复数a﹣(a∈R,i是虚数单位)是纯虚数,则实数a的值为()A.﹣4 B.﹣1 C.1 D.42.以下四个命题,正确的是()①从匀速传递的产品生产流水线上,质检员每10分钟从中抽取一件产品进行某项指标检测,这样的抽样是分层抽样;②两个随机变量相关性越强,则相关系数的绝对值越接近于1;③在回归直线方程=0.2x+12中,当变量x每增加一个单位时,变量y一定增加0.2单位;④对于两分类变量X与Y,求出其统计量K2,K2越小,我们认为“X与Y有关系”的把握程度越小.A.①④ B.②③ C.①③ D.②④3.在如图所示的程序框图中,若输出i的值是3,则输入x的取值范围是()A.(4,10] B.(2,+∞)C.(2,4] D.(4,+∞)4.某几何体的主视图和左视图如图(1),它的俯视图的直观图是矩形O1A1B1C1如图(2),其中O1A1=6,O1C1=2,则该几何体的侧面积为()A.48 B.64 C.96 D.1285.将函数f(x)的图象向左平移φ(0<φ<)个单位后得到函数g(x)=sin2x的图象,若对满足|f(x1)﹣g(x2)|=2的x1,x2,有|x1﹣x2|min=,则φ=()A.B.C.D.6.长郡中学早上8点开始上课,若学生小典与小方匀在早上7:40至8:00之间到校,且两人在该时间段的任何时刻到校都是等可能的,则小典比小方至少早5分钟到校的概率为()A.B.C.D.7.已知函数f(x)=klnx+1(k∈R),函数g(x)=f(x2﹣4x+5),若存在实数k使得关于x的方程g(x)+sin x=0有且只有6个实数根,则这6个根的和为()A.3πB.6 C.12 D.12π8.在菱形ABCD中,A=60°,AB=,将△ABD折起到△PBD的位置,若三棱锥P﹣BCD的外接球的体积为,则二面角P﹣BD﹣C的正弦值为()A.B.C.D.9.已知双曲线﹣=1的左、右焦点分别为F1,F2,过F1作圆x2+y2=a2的切线分别交双曲线的左、右两支于点B、C,且|BC|=|CF2|,则双曲线的离心率为()A.B.C. D.10.已知点A(1,﹣1),B(4,0),C(2,2),平面区域D由所有满足(1<λ≤a,1<μ≤b)的点P(x,y)组成.若区域D的面积为8,则a+b的最小值为()A.B.2 C.4 D.811.已知数列{a n}满足a n+a n﹣1=n(﹣1),S n是其前n项和,若S2017=﹣1007﹣b,且a1b>0,则+的最小值为()A.3﹣2B.3 C.2 D.312.设函数f(x)=x3+bx+c,η,ξ是方程f(x)=0的根,且f′(ξ)=0,当0<ξ﹣η<1时,关于函数g(x)=x3﹣x2+(b+2)x+(c﹣b+η)lnx+d在区间(η+1,ξ+1)内的零点个数的说法中,正确的是()A.至少有一个零点B.至多有一个零点C.可能存在2个零点D.可能存在3个零点二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知集合A={x∈R|x2﹣2x﹣3<0},B={x∈R|﹣1<x<m},若x∈A是x∈B的充分不必要条件,则实数m的取值范围为.14.在等差数列{a n}中,S n为数列{a n}的前n项和,d为数列{a n}的公差,若对任意n∈N*,都有S n>0,且a2a4=9,则d的取值范围为.15.设椭圆C:+=1与函数y=tan的图象相交于A1,A2两点,若点P在椭圆C上,且直线PA2的斜率的取值范围[﹣2,﹣1],那么直线PA1斜率的取值范围是.16.已知kC n k=nC n﹣1k﹣1(1≤k≤n,且k,n∈N*)可以得到几种重要的变式,如:C n k,将n+1赋给n,就得到kC n+1k=(n+1)C n k﹣1,…,进一步能得到:1C n1+2C n2•21+…+nC n n•2n﹣1=nC n﹣10+nC n﹣11•21+nC n﹣12•22+…+nC n﹣1n﹣1•2n﹣1=n(1+2)n ﹣1=n•3n﹣1.请根据以上材料所蕴含的数学思想方法与结论,计算:C n0×+C n1×()2+C n2×()3+…+C n n×()n+1= .三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知函数.(Ⅰ)求函数f(x)的单调递增区间;(Ⅱ)在△ABC中,内角A、B、C的对边分别为a、b、c.已知,a=2,,求△ABC的面积.18.《环境空气质量指标(AQI)技术规定(试行)》如表1:表1:空气质量指标AQI分组表AQI 0~5051~100101~150151~200201~300>300级别Ⅰ级Ⅱ级Ⅲ级Ⅳ级Ⅴ级Ⅵ级类别优良轻度污染中度污染重度污染严重污染表2是长沙市某气象观测点在某连续4天里的记录,AQI指数M与当天的空气水平可见度y(km)的情况.表2:AQI指数900 700 300 100空气可见度(千米)0.5 3.5 6.5 9.5表3是某气象观测点记录的长沙市2016年1月1日至1月30日AQI指数频数统计表.表3:AQI指数[0,200](201,400](401,600](601,800](801,1000]频数 3 6 12 6 3(1)设x=,根据表2的数据,求出y关于x的回归方程;(2)小李在长沙市开了一家小洗车店,经小李统计:AQI指数不高于200时,洗车店平均每天亏损约200元;AQI指数在200至400时,洗车店平均每天收入约400元;AQI指数大于400时,洗车店平均每天收入约700元.(ⅰ)计算小李的洗车店在当年1月份每天收入的数学期望.(ⅱ)若将频率看成概率,求小李在连续三天里洗车店的总收入不低于1200元的概率.(用最小二乘法求线性回归方程系数公式=,=﹣x)19.如图所示,异面直线AB,CD互相垂直,AB=,BC=,CD=1,BD=2,AC=3,截面EFGH分别与BD,AD,AC,BC相交于点E,F,G,H,且AB∥平面EFGH,CD ∥平面EFGH.(1)求证:BC⊥平面EFGH;(2)求二面角B﹣AD﹣C的正弦值.20.如图,抛物线C:x2=2py(p>0)的焦点为F(0,1),取垂直于y轴的直线与抛物线交于不同的两点P1,P2,过P1,P2作圆心为Q的圆,使抛物线上其余点均在圆外,且P1Q⊥P2Q.(1)求抛物线C和圆Q的方程;(2)过点F作倾斜角为θ(≤θ≤)的直线l,且直线l与抛物线C和圆Q依次交于M,A,B,N,求|MN||AB|的最小值.21.已知函数f(x)=(1+x)e﹣2x,g(x)=ax++1+2xcosx,当x∈[0,1]时,(I)求证:;(II)若f(x)≥g(x)恒成立,求实数a的取值范围.四、请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.选修4-1:几何证明选讲22.如图,AB是圆O的直径,弦CE交AB于D,CD=4,DE=2,BD=2.(I)求圆O的半径R;(Ⅱ)求线段BE的长.选修4-4:坐标系与参数方程23.已知曲线C的极坐标方程是ρ=4cosθ.以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,直l的参数方程是(t是参数)(1)将曲线C的极坐标方程化为直角坐标方程;(2)若直线l与曲线C相交于A、B两点,且|AB|=,求直线的倾斜角α的值.选修4-5:不等式选讲24.关于x的不等式lg(|x+3|﹣|x﹣7|)<m.(Ⅰ)当m=1时,解此不等式;(Ⅱ)设函数f(x)=lg(|x+3|﹣|x﹣7|),当m为何值时,f(x)<m恒成立?参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若复数a﹣(a∈R,i是虚数单位)是纯虚数,则实数a的值为()A.﹣4 B.﹣1 C.1 D.4【考点】复数代数形式的乘除运算.【分析】利用复数的运算法则、纯虚数的定义即可得出.【解答】解:复数a﹣=a﹣=a﹣(4+i)=(a﹣4)﹣i是纯虚数,∴a﹣4=0,解得a=4.故选:D.2.以下四个命题,正确的是()①从匀速传递的产品生产流水线上,质检员每10分钟从中抽取一件产品进行某项指标检测,这样的抽样是分层抽样;②两个随机变量相关性越强,则相关系数的绝对值越接近于1;③在回归直线方程=0.2x+12中,当变量x每增加一个单位时,变量y一定增加0.2单位;④对于两分类变量X与Y,求出其统计量K2,K2越小,我们认为“X与Y有关系”的把握程度越小.A.①④ B.②③ C.①③ D.②④【考点】两个变量的线性相关;线性回归方程.【分析】①抽样是间隔相同,故①应是系统抽样;②根据相关系数的公式可判断;③由回归方程的定义可判断;④k越小,“X与Y有关系”的把握程度越小.【解答】解:根据抽样是间隔相同,且样本间无明显差异,故①应是系统抽样,即①为假命题;两个随机变量相关性越强,则相关系数的绝对值越接近于1;两个随机变量相关性越弱,则相关系数的绝对值越接近于0;故②为真命题;在回归直线方程=0.2x+12中,当变量x每增加一个单位时,预报变量平均增加0.2个单位,故③为假命题相,若分类变量X与Y的随机变量K2的观测值k越小,则两个分类变量有关系的把握性越小,故④为真命题.∴正确的是②④,故选:D.3.在如图所示的程序框图中,若输出i的值是3,则输入x的取值范围是()A.(4,10] B.(2,+∞)C.(2,4] D.(4,+∞)【考点】程序框图.【分析】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量i的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【解答】解:设输入x=a,第一次执行循环体后,x=3a﹣2,i=1,不满足退出循环的条件;第二次执行循环体后,x=9a﹣8,i=2,不满足退出循环的条件;第三次执行循环体后,x=27a﹣26,i=3,满足退出循环的条件;故9a﹣8≤82,且27a﹣26>82,解得:a∈(4,10],故选:A4.某几何体的主视图和左视图如图(1),它的俯视图的直观图是矩形O1A1B1C1如图(2),其中O1A1=6,O1C1=2,则该几何体的侧面积为()A.48 B.64 C.96 D.128【考点】由三视图求面积、体积.【分析】由已知中的三视图可得该几何体是一个四棱柱,计算出底面的周长和高,进而可得几何体的侧面积.【解答】解:由已知中的三视图可得该几何体是一个四棱柱,∵它的俯视图的直观图是矩形O1A1B1C1,O1A1=6,O1C1=2,∴它的俯视图的直观图面积为12,∴它的俯视图的面积为:24,∴它的俯视图的俯视图是边长为:6的菱形,棱柱的高为4故该几何体的侧面积为:4×6×4=96,故选:C.5.将函数f(x)的图象向左平移φ(0<φ<)个单位后得到函数g(x)=sin2x的图象,若对满足|f(x1)﹣g(x2)|=2的x1,x2,有|x1﹣x2|min=,则φ=()A.B.C.D.【考点】函数y=Asin(ωx+φ)的图象变换.【分析】利用三角函数的最值,求出自变量x1,x2的值,然后判断选项即可.【解答】解:因为将函数g(x)=sin2x的周期为π,函数的图象向右平移φ(0<φ<)个单位后得到函数f(x)=sin(2x﹣2φ)的图象.若对满足|f(x1)﹣g(x2)|=2的可知,两个函数的最大值与最小值的差为2,有|x1﹣x2|min=,不妨设:x2=,x1=,即f(x)在x1=,取得最小值,sin(2×﹣2φ)=﹣1,此时φ=+kπ,k∈Z,由于0<φ<,不合题意,不妨设:x2=,x1=﹣,即f(x)在x1=﹣,取得最小值,sin[2×(﹣)﹣2φ]=﹣1,此时φ=﹣kπ,k∈Z,当k=0时,φ=满足题意.故选:D.6.长郡中学早上8点开始上课,若学生小典与小方匀在早上7:40至8:00之间到校,且两人在该时间段的任何时刻到校都是等可能的,则小典比小方至少早5分钟到校的概率为()A.B.C.D.【考点】几何概型.【分析】设小张到校的时间为x,小王到校的时间为y.(x,y)可以看成平面中的点试验的全部结果所构成的区域为Ω={(x,y|40≤x≤60,40≤y≤60}是一个矩形区域,则小张比小王至少早5分钟到校事件A={(x,y)|y﹣x≥5}作出符合题意的图象,由图根据几何概率模型的规则求解即可.【解答】解:设小张到校的时间为x,小王到校的时间为y.(x,y)可以看成平面中的点试验的全部结果所构成的区域为Ω={(x,y|40≤x≤60,40≤y≤60}是一个矩形区域,对应的面积S=20×20=400,则小张比小王至少早5分钟到校事件A={x|y﹣x≥5}作出符合题意的图象,则符合题意的区域为△ABC,联立得C(55,60),由得B(40,45),则S△ABC=×15×15,由几何概率模型可知小张比小王至少早5分钟到校的概率为=,故选:A.7.已知函数f(x)=klnx+1(k∈R),函数g(x)=f(x2﹣4x+5),若存在实数k使得关于x的方程g(x)+sin x=0有且只有6个实数根,则这6个根的和为()A.3πB.6 C.12 D.12π【考点】根的存在性及根的个数判断.【分析】根据条件,先判断g(x)关于x=2对称,然后利用函数与方程之间的关系转化为两个函数的交点问题进行求解即可.【解答】解:∵y=x2﹣4x+5的对称轴为x=2,∴由g(x)=f(x2﹣4x+5),得g(x)关于x=2对称,由g(x)+sin x=0得g(x)=﹣sin x,作出函数y=﹣sin x的图象,若程g(x)+sin x=0只有6个根,则六个根两两关于x=2对称,则关于对称的根分别为x1和x2,x3和x4,x5和x6,则=2,=2,=2则x1+x2=4,x3+x4=4,x5+x6=4则这6个根之和为4+4+4=12,故选:C.8.在菱形ABCD中,A=60°,AB=,将△ABD折起到△PBD的位置,若三棱锥P﹣BCD的外接球的体积为,则二面角P﹣BD﹣C的正弦值为()A.B.C.D.【考点】二面角的平面角及求法.【分析】取BD中点E,连接AE,CE,则∠PEC是二面角P﹣BD﹣C的平面角,由此能求出二面角P﹣BD﹣C的正弦值.【解答】解:取BD中点E,连接AE,CE,则∠PEC是二面角P﹣BD﹣C的平面角,PE=CE=,三棱锥P﹣BCD的外接球的半径为R,则,解得R=,设△BCD的外接圆的圆心F与球心O的距离为OF=h,则CF==1,则R2=1+h2,即,解得h=,过P作PG⊥平面BCD,交CE延长线于G,过O作OH∥CG,交PG于H,则四边形HGFO是矩形,且HG=OF=h=,PO=R=,∴,解得GE=,PH=,∴PG=,CG=,∴PC==,∴cos∠PEC==﹣,∴sin∠PEC==.∴二面角P﹣BD﹣C的正弦值为.故选:C.9.已知双曲线﹣=1的左、右焦点分别为F1,F2,过F1作圆x2+y2=a2的切线分别交双曲线的左、右两支于点B、C,且|BC|=|CF2|,则双曲线的离心率为()A.B.C. D.【考点】双曲线的简单性质.【分析】过F1作圆x2+y2=a2的切线分别交双曲线的左、右两支于点B、C,且|BC|=|CF2|,可得|BF1|=2a,求出B的坐标,代入双曲线方程,可得a,b的关系,再由a,b,c的关系可得a,c的关系.由离心率公式计算即可得到.【解答】解:∵过F 1作圆x 2+y 2=a 2的切线分别交双曲线的左、右两支于点B 、C ,且|BC|=|CF 2|, ∴|BF 1|=2a ,设切点为T ,B (x ,y ),则利用三角形的相似可得==∴x=,y=,∴B (,)代入双曲线方程,整理可得b=(+1)a ,则c==a ,即有e==.故选C .10.已知点A (1,﹣1),B (4,0),C (2,2),平面区域D 由所有满足(1<λ≤a ,1<μ≤b )的点P (x ,y )组成.若区域D 的面积为8,则a+b 的最小值为( )A .B .2C .4D .8【考点】简单线性规划.【分析】如图所示,以AB ,AC 为邻边作平行四边形ABCD .分别作=,=,则由所有满足(1<λ≤a ,1<μ≤b )表示的平面区域D 为平行四边形DEQF.=,=,由于=(3,1),=(1,3),=6.可得==.=.由于S 平行四边形DEQF ==8(λ﹣1)(μ﹣1)=8,化为λμ=λ+μ,利用基本不等式的性质可得λ+μ≥4.由(1<λ≤a ,1<μ≤b ),可得,于是x+y=4(λ+μ)≤4(a+b ).即可得出.【解答】解:如图所示,以AB ,AC 为邻边作平行四边形ABCD .分别作=, =, 则由所有满足(1<λ≤a ,1<μ≤b )表示的平面区域D 为平行四边形DEQF .=,=,=(3,1),=(1,3),=6.∴=,∴==.∴==.∴S平行四边形DEQF==(λ﹣1)(μ﹣1)×=8(λ﹣1)(μ﹣1)=8,化为(λ﹣1)(μ﹣1)=1,∴λμ=λ+μ≥,可得λμ≥4,∴λ+μ≥4,当且仅当λ=μ=2时取等号.∵(1<λ≤a,1<μ≤b),∴==(1,﹣1)+λ(3,1)+μ(1,3),∴,∵1<λ≤a,1<μ≤b,∴x+y=4(λ+μ)≤4(a+b).∴a+b≥λ+μ≥4,∴a+b的最小值为4.故选:C.11.已知数列{a n}满足a n+a n﹣1=n(﹣1),S n是其前n项和,若S2017=﹣1007﹣b,且a1b>0,则+的最小值为()A.3﹣2B.3 C.2 D.3【考点】基本不等式.【分析】由已知递推式得到:a3+a2=3,a5+a4=﹣5,…a2017+a2016=﹣2017,累加可求S2017﹣a1,结合S2017=﹣1007﹣b,求得a1+b=1,代入+,展开后利用基本不等式求最值.【解答】解:由已知得:a3+a2=3,a5+a4=﹣5,…a2017+a2016=﹣2017,把以上各式相加得:S2017﹣a1=﹣1008,即:a1﹣1008=﹣1007﹣b,∴a1+b=1,∴+=+=3++2≥3+2,故选:D.12.设函数f(x)=x3+bx+c,η,ξ是方程f(x)=0的根,且f′(ξ)=0,当0<ξ﹣η<1时,关于函数g(x)=x3﹣x2+(b+2)x+(c﹣b+η)lnx+d在区间(η+1,ξ+1)内的零点个数的说法中,正确的是()A.至少有一个零点B.至多有一个零点C.可能存在2个零点D.可能存在3个零点【考点】函数零点的判定定理.【分析】由题意可得f(x)=x3+bx+c=(x﹣η)(x﹣ξ)2,进一步得到η+2ξ=0,2ηξ+ξ2=b,﹣ηξ2=c,且x∈(﹣2ξ,ξ),把函数g(x)求导,用η,ξ表示b,c,二次求导可得在区间(η+1,ξ+1)内h′(x)<0,则答案可求.【解答】解:∵η,ξ是方程f(x)=0的根,且f′(ξ)=0,∴f(x)=x3+bx+c=(x﹣η)(x﹣ξ)2,即得η+2ξ=0,2ηξ+ξ2=b,﹣ηξ2=c,且x∈(﹣2ξ,ξ),由0<ξ﹣η<1,得0<ξ,η<0,则g′(x)=x2﹣3x+(b+2)+=,令h(x)=x3﹣3x2+(b+2)x+c﹣b+η=x3﹣3x2+(2﹣3ξ2)x+2ξ3+3ξ2﹣2ξ=(x﹣1)3﹣(1+3ξ2)(x﹣1)+2ξ2﹣2ξ,则h′(x)=3(x﹣1)2﹣(3ξ2+1),当x∈(﹣2ξ+1,ξ+1)时,h′(x)<h′(﹣2ξ+1)=(3ξ+1)(3ξ﹣1)<0.∴h(x)在(η+1,ξ+1)上为减函数,而h(﹣2ξ+1)=﹣8ξ3+2ξ(3ξ2+1)+(2ξ3﹣2ξ)=0,当x∈(﹣2ξ+1,ξ+1)时,h′(x)<h′(﹣2ξ+1)=0,即当x∈(﹣2ξ+1,ξ+1)时,h′(x)<0,∴g(x)在(η+1,ξ+1)上为减函数,至多有一个零点.故选:B.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知集合A={x∈R|x2﹣2x﹣3<0},B={x∈R|﹣1<x<m},若x∈A是x∈B的充分不必要条件,则实数m的取值范围为(3,+∞).【考点】必要条件、充分条件与充要条件的判断.【分析】根据充分条件和必要条件的定义建立条件关系即可求出m的取值范围.【解答】解:A={x∈R|x2﹣2x﹣3<0}={x|﹣1<x<3},若“x∈A”是“x∈B”的充分不必要条件,则A⊊B,则m>3,故答案为:(3,+∞)14.在等差数列{a n}中,S n为数列{a n}的前n项和,d为数列{a n}的公差,若对任意n∈N*,都有S n>0,且a2a4=9,则d的取值范围为.【考点】等差数列的通项公式.【分析】对任意n∈N*,都有S n>0,可得:a1>0,d≥0.由于a2a4=9,化为3d2+4a1d+﹣9=0,△>0,而且两根之和=﹣4d<0,而必须至少有一个正实数根.可得3d2﹣9≤0,d≥0,解出即可得出.【解答】解:对任意n∈N*,都有S n>0,∴a1>0,d≥0.∵a2a4=9,∴(a1+d)(a1+3d)=9,化为+4a1d+3d2﹣9=0,△=16d2﹣4(3d2﹣9)=4d2+36>0,∴方程有两个不相等的实数根,并且两根之和为﹣4d<0,而必须至少有一个正实数根.d=时,a1=0,舍去.则d的取值范围为.故答案为:.15.设椭圆C:+=1与函数y=tan的图象相交于A1,A2两点,若点P在椭圆C 上,且直线PA2的斜率的取值范围[﹣2,﹣1],那么直线PA1斜率的取值范围是.【考点】椭圆的简单性质.【分析】椭圆C:+=1与函数y=tan的图象相交于A1,A2两点,可知:A1,A2两点关于原点对称,设A1(x1,y1),A2(﹣x1,﹣y1),P(x0,y0),分别代入椭圆方程可得:=.由于直线PA2的斜率k1的取值范围[﹣2,﹣1],可得﹣2≤≤﹣1,==k2,可得k1k2=.即可得出.【解答】解:∵椭圆C:+=1与函数y=tan的图象相交于A1,A2两点,∴A1,A2两点关于原点对称,设A1(x1,y1),A2(﹣x1,﹣y1),=1,=.设P(x0,y0),则=1,可得:=.∴=.∵直线PA2的斜率k1的取值范围[﹣2,﹣1],∴﹣2≤≤﹣1,==k2,∴k1k2===.∴,∴﹣1,解得.那么直线PA1斜率的取值范围是.故答案为:.16.已知kC n k=nC n﹣1k﹣1(1≤k≤n,且k,n∈N*)可以得到几种重要的变式,如:C n k,将n+1赋给n,就得到kC n+1k=(n+1)C n k﹣1,…,进一步能得到:1C n1+2C n2•21+…+nC n n•2n﹣1=nC n﹣10+nC n﹣11•21+nC n﹣12•22+…+nC n﹣1n﹣1•2n﹣1=n(1+2)n ﹣1=n•3n﹣1.请根据以上材料所蕴含的数学思想方法与结论,计算:C n0×+C n1×()2+C n2×()3+…+C n n×()n+1= .【考点】组合及组合数公式;类比推理.【分析】由,可得,即,再利用二项式定理即可得出.【解答】解:由,得,,∴==.故案为:.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知函数.(Ⅰ)求函数f(x)的单调递增区间;(Ⅱ)在△ABC中,内角A、B、C的对边分别为a、b、c.已知,a=2,,求△ABC的面积.【考点】两角和与差的正弦函数;正弦函数的单调性;正弦定理.【分析】(Ⅰ)利用两角和差的正弦公化简函数的解析式为sin(2x+),令2kπ﹣≤2x+≤2kπ+,k∈z,求得x的范围,即可求得f(x)的单调递增区间.(Ⅱ)由已知,可得sin(2A+)=,求得A=,再利用正弦定理求得b的值,由三角形内角和公式求得C的值,再由S=ab•sinC,运算求得结果.【解答】解:(Ⅰ)=sin2xcos+cos2xsin+cos2x=sin2x+cos2x=(sin2x+cos2x)=sin(2x+).令2kπ﹣≤2x+≤2kπ+,k∈z,求得kπ﹣≤x≤kπ+,函数f(x)的单调递增区间为[kπ﹣,kπ+],k∈z.(Ⅱ)由已知,可得sin(2A+)=,因为A为△ABC内角,由题意知0<A<π,所以<2A+<,因此,2A+=,解得A=.由正弦定理,得b=,…由A=,由B=,可得sinC=,…∴S=ab•sinC==.18.《环境空气质量指标(AQI)技术规定(试行)》如表1:表1:空气质量指标AQI分组表AQI 0~5051~100101~150151~200201~300>300级别Ⅰ级Ⅱ级Ⅲ级Ⅳ级Ⅴ级Ⅵ级类别优良轻度污染中度污染重度污染严重污染表2是长沙市某气象观测点在某连续4天里的记录,AQI指数M与当天的空气水平可见度y(km)的情况.表2:AQI指数900 700 300 100空气可见度(千米)0.5 3.5 6.5 9.5表3是某气象观测点记录的长沙市2016年1月1日至1月30日AQI指数频数统计表.表3:AQI指数[0,200](201,400](401,600](601,800](801,1000]频数 3 6 12 6 3(1)设x=,根据表2的数据,求出y关于x的回归方程;(2)小李在长沙市开了一家小洗车店,经小李统计:AQI指数不高于200时,洗车店平均每天亏损约200元;AQI指数在200至400时,洗车店平均每天收入约400元;AQI指数大于400时,洗车店平均每天收入约700元.(ⅰ)计算小李的洗车店在当年1月份每天收入的数学期望.(ⅱ)若将频率看成概率,求小李在连续三天里洗车店的总收入不低于1200元的概率.(用最小二乘法求线性回归方程系数公式=,=﹣x)【考点】线性回归方程;列举法计算基本事件数及事件发生的概率.【分析】(1)利用公式计算线性回归方程系数,即可得到y关于x的线性回归方程;(2)(ⅰ)由表2知AQI指数不高于200的频率为0.1,AQI指数在200至400的频率为0.2,AQI指数大于400的频率为0.7,确定饭馆每天的收入的取值及概率,从而可求分布列及数学期望;(ⅱ)由(ⅰ),“连续三天洗车店收入不低于1200元包含1A2C,3B,2B1C,1B2C,3C 五种情况”,即可求出小李在连续三天里洗车店的总收入不低于1200元的概率.【解答】解:(1),,,,所以,,所以y关于x的回归方程是.(2)由表3知AQI不高于200的频率为0.1,AQI指数在200至400的频率为0.2,AQI 指数大于400的频率为0.7.设“洗车店每天亏损约200元”为事件A,“洗车店每天收入约400元”为事件B,“洗车店每天收入约700元”为事件C,则P(A)=0.1,P(B)=0.2,P(C)=0.7,(ⅰ)设洗车店每天收入为X元,则X的分布列为X ﹣200 400 700P 0.1 0.2 0.7则X的数学期望为EX=﹣200×0.1+400×0.2+700×0.7=550(元).(ⅱ)由(ⅰ),“连续三天洗车店收入不低于1200元包含1A2C,3B,2B1C,1B2C,3C 五种情况”,则“连续三天洗车店收入不低于1200元”的概率:.19.如图所示,异面直线AB,CD互相垂直,AB=,BC=,CD=1,BD=2,AC=3,截面EFGH分别与BD,AD,AC,BC相交于点E,F,G,H,且AB∥平面EFGH,CD ∥平面EFGH.(1)求证:BC⊥平面EFGH;(2)求二面角B﹣AD﹣C的正弦值.【考点】二面角的平面角及求法;直线与平面垂直的判定.【分析】(1)推导出AB∥EF,CD∥HE,AB⊥BC,BC⊥DC,BC⊥EF,BC⊥EH,由此能证明BC⊥平面EFGH.(2)作,以C为原点,CD为x轴,CB为y轴,Cz为z轴,建立空间直角坐标系C﹣xyz,利用向量法能求出二面角B﹣AD﹣C的正弦值.【解答】证明:(1)∵AB∥平面EFGH,又∵AB⊂平面ABD,平面ABD∩平面EFGH=EF,∴AB∥EF,同理CD∥HE,∵,∴AB2+BC2=AC2,∴AB⊥BC,同理BC⊥DC,∴BC⊥EF,同理BC⊥EH,又∵EF,EH是平面EFGH内的两相交直线,∴BC⊥平面EFGH.(2)由(1)及异面直线AB,CD互相垂直知,直线AB,BC,CD两两垂直,作,以C 为原点,CD 为x 轴,CB 为y 轴,Cz 为z 轴,建立空间直角坐标系C ﹣xyz ,如图所示,则,∵x 轴⊂平面ACD ,∴平面ACD 的一个法向量可设为,∵,∴,得:,即,又∵z 轴∥平面ABD ,∴平面ABD 的一个法向量可设为,∴,得,即,设二面角B ﹣AD ﹣C 的大小为θ,那么,∴,∴二面角B ﹣AD ﹣C 的正弦值为.20.如图,抛物线C :x 2=2py (p >0)的焦点为F (0,1),取垂直于y 轴的直线与抛物线交于不同的两点P 1,P 2,过P 1,P 2作圆心为Q 的圆,使抛物线上其余点均在圆外,且P 1Q ⊥P 2Q .(1)求抛物线C 和圆Q 的方程;(2)过点F 作倾斜角为θ(≤θ≤)的直线l ,且直线l 与抛物线C 和圆Q 依次交于M ,A ,B ,N ,求|MN||AB|的最小值.【考点】抛物线的简单性质.【分析】(1)由抛物线的焦点坐标求出p值,可得抛物线方程,再由,代入抛物线方程有,抛物线在点P2处切线的斜率为.由,知,求出r,b,可得圆Q的方程;(2)设出直线方程y=kx+1且,和抛物线方程联立,利用抛物线的焦点弦长公式求得|MN|,再由圆心距、圆的半径和弦长的关系求得|AB|,从而求得|MN|•|AB|的最小值.【解答】解:(1)因为抛物线C:x2=2py(p>0)的焦点为F(0,1),所以,解得p=2,所以抛物线C的方程为x2=4y.由抛物线和圆的对称性,可设圆Q:x2+(y﹣b)2=r2,∵P1Q⊥P2Q,∴△P1QP2是等腰直角三角形,则,∴,代入抛物线方程有.由题可知在P1,P2处圆和抛物线相切,对抛物线x2=4y求导得,所以抛物线在点P2处切线的斜率为.由,知,所以,代入,解得b=3.所以圆Q的方程为x2+(y﹣3)2=8.(2)设直线l的方程为y=kx+1,且,圆心Q(0,3)到直线l的距离为,∴,由,得y2﹣(2+4k2)y+1=0,设M(x1,y1),N(x2,y2),则,由抛物线定义知,,所以,设t=1+k2,因为,所以,所以,所以当时,即时,|MN||AB|有最小值.21.已知函数f(x)=(1+x)e﹣2x,g(x)=ax++1+2xcosx,当x∈[0,1]时,(I)求证:;(II)若f(x)≥g(x)恒成立,求实数a的取值范围.【考点】利用导数研究函数的单调性;函数恒成立问题;利用导数研究函数的极值.【分析】(I)①当x∈[0,1)时,(1+x)e﹣2x≥1﹣x⇔(1+x)e﹣x≥(1﹣x)e x,令h (x)=(1+x)e﹣x﹣(1﹣x)e x,利用导数得到h(x)的单调性即可证明;②当x∈[0,1)时,⇔e x≥1+x,令u(x)=e x﹣1﹣x,利用导数得出h(x)的单调性即可证明.(II)利用(I)的结论得到f(x)≥1﹣x,于是G(x)=f(x)﹣g(x)≥=.再令H(x)=,通过多次求导得出其单调性即可求出a的取值范围.【解答】(I)证明:①当x∈[0,1)时,(1+x)e﹣2x≥1﹣x⇔(1+x)e﹣x≥(1﹣x)e x,令h(x)=(1+x)e﹣x﹣(1﹣x)e x,则h′(x)=x(e x﹣e﹣x).当x∈[0,1)时,h′(x)≥0,∴h(x)在[0,1)上是增函数,∴h(x)≥h(0)=0,即f(x)≥1﹣x.②当x∈[0,1)时,⇔e x≥1+x,令u(x)=e x﹣1﹣x,则u′(x)=e x﹣1.当x∈[0,1)时,u′(x)≥0,∴u(x)在[0,1)单调递增,∴u(x)≥u(0)=0,∴f(x).综上可知:.(II)解:设G(x)=f(x)﹣g(x)=≥=.令H(x)=,则H′(x)=x﹣2sinx,令K(x)=x﹣2sinx,则K′(x)=1﹣2cosx.当x∈[0,1)时,K′(x)<0,可得H′(x)是[0,1)上的减函数,∴H′(x)≤H′(0)=0,故H(x)在[0,1)单调递减,∴H(x)≤H(0)=2.∴a+1+H(x)≤a+3.∴当a≤﹣3时,f(x)≥g(x)在[0,1)上恒成立.下面证明当a>﹣3时,f(x)≥g(x)在[0,1)上不恒成立.f(x)﹣g(x)≤==﹣x.令v(x)==,则v′(x)=.当x∈[0,1)时,v′(x)≤0,故v(x)在[0,1)上是减函数,∴v(x)∈(a+1+2cos1,a+3].当a>﹣3时,a+3>0.∴存在x0∈(0,1),使得v(x0)>0,此时,f(x0)<g(x0).即f(x)≥g(x)在[0,1)不恒成立.综上实数a的取值范围是(﹣∞,﹣3].四、请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.选修4-1:几何证明选讲22.如图,AB是圆O的直径,弦CE交AB于D,CD=4,DE=2,BD=2.(I)求圆O的半径R;(Ⅱ)求线段BE的长.【考点】与圆有关的比例线段.【分析】(I)由相交弦定理可得CD•DE=AD•DB,求出AD,即可求圆O的半径R;(Ⅱ)求出cos∠DOE,即可求线段BE的长.【解答】解:(I)由相交弦定理可得CD•DE=AD•DB,∵CD=4,DE=2,BD=2,∴4×2=2AD,∴AD=8∴AB=10,∴圆O的半径R=5;(Ⅱ)△ODE中,DE=2,OD=3,OE=5,∴cos∠DOE==,∴BE==.选修4-4:坐标系与参数方程23.已知曲线C的极坐标方程是ρ=4cosθ.以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,直l的参数方程是(t是参数)(1)将曲线C的极坐标方程化为直角坐标方程;(2)若直线l与曲线C相交于A、B两点,且|AB|=,求直线的倾斜角α的值.【考点】参数方程化成普通方程.【分析】本题(1)可以利用极坐标与直角坐标互化的化式,求出曲线C的直角坐标方程;(2)先将直l的参数方程是(t是参数)化成普通方程,再求出弦心距,利用勾股定理求出弦长,也可以直接利用直线的参数方程和圆的普通方程联解,求出对应的参数t1,t2的关系式,利用|AB|=|t1﹣t2|,得到α的三角方程,解方程得到α的值,要注意角α范围.【解答】解:(1)∵ρcosθ=x,ρsinθ=y,ρ2=x2+y2,∴曲线C的极坐标方程是ρ=4cosθ可化为:ρ2=4ρcosθ,∴x2+y2=4x,∴(x﹣2)2+y2=4.(2)将代入圆的方程(x﹣2)2+y2=4得:(tcosα﹣1)2+(tsinα)2=4,化简得t2﹣2tcosα﹣3=0.设A、B两点对应的参数分别为t1、t2,则,∴|AB|=|t1﹣t2|==,∵|AB|=,∴=.∴cos.∵α∈[0,π),∴或.∴直线的倾斜角或.选修4-5:不等式选讲24.关于x的不等式lg(|x+3|﹣|x﹣7|)<m.(Ⅰ)当m=1时,解此不等式;(Ⅱ)设函数f(x)=lg(|x+3|﹣|x﹣7|),当m为何值时,f(x)<m恒成立?【考点】绝对值不等式的解法;函数恒成立问题.【分析】(Ⅰ)当m=1时,原不等式可变为0<|x+3|﹣|x﹣7|<10,通过两边平方和绝对值不等式的性质,即可得到解集;(Ⅱ)设t=|x+3|﹣|x﹣7|,则0<t≤10,f(x)<m恒成立,只需m>f(x)max,求得最大值即可.【解答】解:(Ⅰ)当m=1时,原不等式可变为0<|x+3|﹣|x﹣7|<10,由|x+3|>|x﹣7|,两边平方,解得,x>2,由于||x+3|﹣|x﹣7||≤|(x+3)﹣(x﹣7)|=10,即有﹣10≤|x+3|﹣|x﹣7|≤10,且x≥7时,|x+3|﹣|x﹣7|=x+3﹣(x﹣7)=10.则有2<x<7.故可得其解集为{x|2<x<7};(Ⅱ)设t=|x+3|﹣|x﹣7|,则由对数定义及绝对值的几何意义知,0<t≤10,因y=lgx在(0,+∞)上为增函数,则lgt≤1,当t=10,即x=7时,lgt=1为最大值,故只需m>1即可,即m>1时,f(x)<m恒成立.2016年9月3日。

2018届高三第一次模拟考试数学(理)试题+Word版含答案

2018届高三第一次模拟考试数学(理)试题+Word版含答案

2018年济宁市高三模拟考试数学(理工类)试题本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分.考试时间120分钟.考试结束后,将本试卷和答题卡一并收回.注意事项:1.答第I 卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试卷上.第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}11M x x =-≤≤,{}2log 1N x x =<,则M N = A.{10}x x -≤<B.{01}x x <≤C.{12}x x ≤<D.{12}x x -≤<2.若复数20182(1i)i z =-(i 为虚数单位),则z 的共轭复数z =A.1i+B.iC.12i -D.12i 3.设变量x ,y 满足约束条件02390210x x y x y ≥⎧⎪+-≥⎨⎪--≤⎩,则目标函数2z x y =+的取值范围是A.[6,)+∞B.[5,)+∞C.[0,6]D.[0,5]4.已知命题p :存在实数α,β,sin()sin sin αβαβ+=+;命题q :2log 2log 2a a +≥(2a >且1a ≠).则下列命题为真命题的是A.p q ∨B.p q ∧C.()p q⌝∧D.()p q⌝∨5.执行下列程序框图,若输入的n 等于7,则输出的结果是A.2B.13C.12-D.3-6.将函数()2sin()13f x x π=--的图象向右平移3π个单位,再把所有的点的横坐标缩短到原来的12倍(纵坐标不变),得到函数()y g x =的图象,则g()y x =的图象的一个对称中心为A.(,0)3πB.(,0)12π C.(,1)3π-D.(,1)12π-7.如图所示,圆柱形玻璃杯中的水液面呈椭圆形状,则该椭圆的离心率为A.33B.12C.22D.328.已知函数()f x 是(,)-∞+∞上的奇函数,且()f x 的图象关于1x =对称,当[0,1]x ∈时,()21x f x =-,则(2017)(2018)f f +的值为A.2-B.1- C.0D.19.已知O 是ABC ∆的外心,4AB = ,2AC =,则()AO AB AC ⋅+=A.10B.9C.8D.610.圆周率是圆的周长与直径的比值,一般用希腊字母π表示.我们可以通过设计下面的实验来估计π的值:从区间[0,1]随机抽取200个实数对(,)x y ,其中两数能与1构成钝角三角形三边的数对(,)x y 共有56个.则用随机模拟的方法估计π的近似值为A.227B.257C.7225D.782511.如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的外接球的表面积为A.8πB.16πC.32πD.64π12.在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c ,且2cos cos 3a Bb Ac -=,则tan()A B -的最大值为A.5B.5C.3D.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.双曲线2212x y -=的渐近线方程为.14.观察下列各式:3211=332113+=33321236++=⋅⋅⋅⋅⋅⋅照此规律,第n 个等式可为.15.在24(23)x x --的展开式中,含有2x 项的系数为.(用数字作答)16.如图所示,已知Rt ABC ∆中,AB BC ⊥,D 是线段AB 上的一点,满足2AD CD ==,则ABC ∆面积的最大值为.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(本小题满分12分)已知{}n a 是等比数列,满足12a =,且2a ,32a +,4a 成等差数列,数列{}n b 满足123111223n b b b b n n+++⋅⋅⋅+=*()n N ∈(1)求{}n a 和{}n b 的通项公式;(2)设(1)()nn n n c a b =--,求数列{}n c 的前2n 项和2n S .18.(本小题满分12分)如图,在以A ,B ,C ,D ,E 为顶点的多面体中,90ACB ︒∠=,面ACDE 为直角梯形,//DE AC ,90ACD ︒∠=,23AC DE ==,2BC =,1DC =,二面角B AC E --的大小为60︒.(1)求证:BD ⊥平面ACDE ;(2)求平面ABE 与平面BCD 所成二面角(锐角)的大小;19.(本小题满分12分)为缓解某地区的用电问题,计划在该地区水库建一座至多安装4台发电机的水电站.为此搜集并整理了过去50年的水文数据,得如下表:年入流量X 4080X <<80120X ≤<120160X ≤<160X ≥年数103082将年入流量X (年入流量:一年内上游来水与库区降水之和,单位:亿立方米)在以上四段的频率作为相应段的概率,并假设各年得年入流量相互独立.(1)求在未来3年中,至多1年的年入流量不低于120的概率;(2)水电站希望安装的发电机尽可能运行,但每年发电机最多可运行台数受年入流量X 的限制,并有如下关系:年入流量X 4080X <<80120X ≤<120160X ≤<160X ≥发电机最多可运行台数1234已知某台发电机运行,则该台发电机年利润为5000万元;某台发电机未运行,则该台发电机年亏损1500万元,若水电站计划在该水库安装2台或3台发电机,你认为应安装2台还是3台发电机?请说明理由.20.(本小题满分12分)已知抛物线E :22x py =的(2)p >焦点为F ,点M 是直线y x =与抛物线E 在第一象限内的交点,且5MF =.(1)求抛物线E 的方程;(2)不过原点的直线l 与抛物线E 相交于两点A ,B ,与y 轴相交于点Q ,过点A ,B 分别作抛物线E 的切线,与x 轴分别相交于两点C ,D .判断直线QC 与直线BD 是否平行?直线QC 与直线QD 是否垂直?并说明理由.21.(本小题满分12分)已知函数()ln 2af x x x x=++()a R ∈.(1)求函数()f x 的单调区间;(2)若函数2g()()(2)2ax xf x x x =-+-在其定义域内有两个不同的极值点,记作1x ,2x ,且12x x <,证明:2312x x e ⋅>(e 为自然对数的底数).(二)选考题:共10分。

2018年合肥一模数学试卷(理)(含答案)

2018年合肥一模数学试卷(理)(含答案)

2018年合肥一模数学试卷(理)(含答案)合肥市2018年高三第一次教学质量检测数学试题(理科)参考答案及评分标准一、选择题:本大题共12小题,每小题5分,共60分。

1.A2.C3.B4.C5.C6.D7.D8.A9.C10.B11.B12.D二、填空题:本大题共4小题,每小题5分,共20分。

21.13.14.3.(4,4)三、解答题:17.Ⅰ)根据正弦定理,由已知得:sinA/sinC=sin(A+C)/sinB 即sinAcosC=sinBcosAcosCsin(A+C)=2sinBcosCcosA,……1分sinCcosA=2sinBcosC。

sin(A+C)/sinB=2cosC。

cosC=(XXX)/2cosA,……5分A+C=180°-B。

sinB=sin(180°-A-C)=sin(A+C),……6分sinB=2cosC。

C(0,a),A(a,0),B(b,0)。

sin(ACB)=sinB。

2cosC=sin(ACB)=b/a。

cosC=b/(2a),∴C(0,b/(2a)),……7分B(b,0),∴XXX√(a²+b²),……8分sinA=2cosCsinB=2b/(a²+b²)。

sinC=2sinBcosC=b/√(a²+b²),……9分Ⅱ)由(Ⅰ)和余弦定理得cosC=[a²+b²-(2ab)/(2ab)]/2ab=1/2。

即a²+b²=2ab,即(a-b)²=0,∴a=b。

sin(ACB)=sinB=b/√(2a²)=1/√2,……11分sin(ACB)的最大值为1/√2,所以cos(ACB)的最小值为1/√2,即cos(ACB)≥1/√2,……12分故选D。

18.Ⅰ)记“某位考生选考的三个科目中至少有一个科目是自然科学科目”为事件M,则P(M)=1-C(3,2)/C(6,3)=5/9, (5)分Ⅱ)随机变量X的所有可能取值有0,1,2,3,……6分因为P(X=0)=C(3,0)C(3,3)/C(6,3)=1/20,P(X=1)=C(3,1)C(3,2)/C(6,3)=3/8,P(X=2)=C(3,2)C(3,1)/C(6,3)=3/8,P(X=3)=C(3,3)C(3,0)/C(6,3)=1/20,……10分所以X的分布列为X 0 1 2 3P 1/20 3/8 3/8 1/20故E(X)=0×1/20+1×3/8+2×3/8+3×1/20=33/20,……12分故选C。

2018年安徽省合肥市高考数学一模试卷(理科)及参考答案

2018年安徽省合肥市高考数学一模试卷(理科)及参考答案

第1页(共24页)页)2018年安徽省合肥市高考数学一模试卷(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.(5分)已知i 为虚数单位,则=( )A .5B .5iC .D .2.(5分)已知等差数{a n },若a 2=10,a 5=1,则{a n }的前7项的和等于( ) A .112 B .51C .28D .183.(5分)已知集合M 是函数的定义域,集合N 是函数y =x 2﹣4的值域,则M ∩N =( ) A .B .C .且y ≥﹣4}D .∅4.(5分)若双曲线的一条渐近线方程为y =﹣2x ,该双曲线的离心率是( ) A .B .C .D .5.(5分)执行如图程序框图,若输入的n 等于10,则输出的结果是()A.2 B.﹣3 C. D.6.(5分)已知某公司生产的一种产品的质量X(单位:克)服从正态分布N(100,4).现从该产品的生产线上随机抽取10000件产品,其中质量在[98,104]内的产品估计有( )(附:若X服从N(μ,σ2),则P(μ﹣σ<X<μ+σ)=0.6826,P(μ﹣2σ<X<μ+2σ)=0.9544)A.3413件 B.4772件 C.6826件 D.8185件 7.(5分)将函数y=cos x﹣sin x的图象先向右平移φ(φ>0)个单位,再将所得的图象上每个点的横坐标变为原来的a倍,得到y=cos2x+sin2x的图象,则φ,a的可能取值为( )A. B. C. D. 8.(5分)已知数列{a n}的前n项和为S n,若3S n=2a n﹣3n,则a2018=( ) A.22018﹣1 B.32018﹣6C.()2018﹣ D.()2018﹣9.(5分)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,则该几何体的表面积为( )A.5π+18 B.6π+18 C.8π+6 D.10π+6 10.(5分)已知直线2x﹣y+1=0与曲线y=ae x+x相切(其中e为自然数的底数),则实数a的值是( )A. B.1 C.2 D.e11.(5分)某企业生产甲、乙两种产品,销售利润分别为2千元/件、1千元/件.甲、乙两种产品都需要在A 、B 两种设备上加工,生产一件甲产品需用A 设备2小时,B 设备6小时;生产一件乙产品需用A 设备3小时,B 设备1小时.A 、B 两种设备每月可使用时间数分别为480小时、960小时,若生产的产品都能及时售出,则该企业每月利润的最大值为( ) A .320千元B .360千元C .400千元D .440千元12.(5分)已知函数f (x )=2|x |﹣x 2,g (x )=(其中e 为自然对数的底数),若函数h (x )=f [g (x )]﹣k 有4个零点,则k 的取值范围为 ( ) A .(﹣1,0) B .(0,1) C .(﹣,1)D .(0,﹣)二、填空题(每题5分,满分20分,将答案填在答题纸上) 13.(5分)若平面向量满足,则= .14.(5分)已知m 是常数,(mx ﹣1)5=a 5x 5+a 4x 4+a 3x 3+a 2x 2+a 1x +a 0,且a 1+a 2+a 3+a 4+a 5=33,则m =. 15.(5分)抛物线E :y 2=4x 的焦点为F ,准线l 与x 轴交于点A ,过抛物线E 上一点P (第一象限内)作l 的垂线PQ ,垂足为Q .若四边形AFPQ 的周长为16,则点P 的坐标为 .16.(5分)在四面体ABCD 中,AB =AD =2,∠BAD =60°,∠BCD =90°,二面角A ﹣BD ﹣C 的大小为150°,则四面体ABCD 外接球的半径为 . 三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,(a ﹣2b )cos C +c cos A =0. (1)求角C ; (2)若,求△ABC 的周长的最大值.18.(12分)2014年9月,国务院发布了《关于深化考试招生制度改革的实施意见》.某地作为高考改革试点地区,从当年秋季新入学的高一学生开始实施,高考不再分文理科.每个考生,英语、语文、数学三科为必考科目 并从物理、化学、生物、政治、历史、地理六个科目中任选三个科目参加高考.物理、化学、生物为自然科 学科目,政治、历史、地理为社会科学科目.假设某位考生选考这六个科目的可能性相等.(1)求他所选考的三个科目中,至少有一个自然科学科目的概率;(2)已知该考生选考的三个科目中有一个科目属于社会科学科目,两个科目属于自然科学科目.若该考生所选的社会科学科目考试的成绩获A等的概率都是0.8,所选的自然科学科目考试的成绩获A等的概率都是0.75,且所选考的各个科目考试的成绩相互独立.用随机变量X表示他所选考的三个科目中考试成绩获A等的科目数,求X的分布列和数学期望.19.(12分)如图,在多面体ABCDEF中,ABCD是正方形,BF⊥平面ABCD,DE⊥平面ABCD,BF=DE,点M为棱AE的中点.(1)求证:平面BMD∥平面EFC;(2)若DE=2AB,求直线AE与平面BDM所成的角的正弦值.20.(12分)在平面直角坐标系中,圆O交x轴于点F1,F2,交y轴于点B1,B2.以B1,B2为顶点,F1,F2分别为左、右焦点的椭圆E,恰好经过点. (1)求椭圆E的标准方程;(2)设经过点(﹣2,0)的直线l与椭圆E交于M,N两点,求△F2MN面积的最大值.21.(12分)已知.(1)讨论f(x)的单调性;(2)若f(x)≤ax恒成立,求a的值.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]22.(10分)在直角坐标系xOy中,曲线(θ为参数),在以O为极点,x轴的正半轴为极轴的极坐标系中,曲线C2:ρ﹣2cosθ=0.(1)求曲线C2的普通方程;(2)若曲线C1上有一动点M,曲线C2上有一动点N,求|MN|的最小值.[选修4-5:不等式选讲]23.已知函数f(x)=|2x﹣1|.(1)解关于x的不等式f(x)﹣f(x+1)≤1;(2)若关于x的不等式f(x)<m﹣f(x+1)的解集不是空集,求m的取值范围.2018年安徽省合肥市高考数学一模试卷(理科)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的1.(5分)已知i为虚数单位,则=( )A.5 B.5i C. D.【解答】解:=.故选:A.2.(5分)已知等差数{a n},若a2=10,a5=1,则{a n}的前7项的和等于( ) A.112 B.51 C.28 D.18【解答】解:∵等差数列{a n},a2=10,a5=1,∴,解得a1=13,d=﹣3,∴{a n}的前7项的和为:S7=7a1+=7×13+21×(﹣3)=28.故选:C.3.(5分)已知集合M是函数的定义域,集合N是函数y=x2﹣4的值域,则M∩N=( )A. B.C.且y≥﹣4} D.∅【解答】解:解1﹣2x>0得,x<;∴;y=x2﹣4≥﹣4;∴N={y|y≥﹣4};∴.故选:B.4.(5分)若双曲线的一条渐近线方程为y=﹣2x,该双曲线的离心率是( )A. B. C. D.【解答】解:双曲线的渐近线方程为y=±x,∵双曲线的一条渐近线方程为y=﹣2x,即=2,则b=2a,则双曲线的离心率为e=====.故选:C.5.(5分)执行如图程序框图,若输入的n等于10,则输出的结果是( )A.2 B.﹣3 C. D.【解答】解:若输入的n等于10,则当i=1时,满足进行循环的条件,a=﹣3,i=2;当i=2时,满足进行循环的条件,a=﹣,i=3;当i=3时,满足进行循环的条件,a=,i=4;当i=4时,满足进行循环的条件,a=2,i=5;当i=5时,满足进行循环的条件,a=﹣3,i=6;当i=6时,满足进行循环的条件,a=﹣,i=7;当i=7时,满足进行循环的条件,a=,i=8;当i=8时,满足进行循环的条件,a=2,i=9;当i=9时,满足进行循环的条件,a=﹣3,i=10;当i=10时,满足进行循环的条件,a=﹣,i=11;当i=11时,不满足进行循环的条件,故输出的a=﹣,故选:C.6.(5分)已知某公司生产的一种产品的质量X(单位:克)服从正态分布N(100,4).现从该产品的生产线上随机抽取10000件产品,其中质量在[98,104]内的产品估计有( )(附:若X服从N(μ,σ2),则P(μ﹣σ<X<μ+σ)=0.6826,P(μ﹣2σ<X<μ+2σ)=0.9544)A.3413件 B.4772件 C.6826件 D.8185件【解答】解:∵X服从正态分布N(100,4),∴P(98≤X<100)=0.6826=0.3413,P(100≤X≤104)=0.9544=0.4772,∴P(98≤X≤104)=0.3413+0.4772=0.8185.∴质量在[98,104]内的产品估计有10000×0.8185=8185.故选:D.7.(5分)将函数y=cos x﹣sin x的图象先向右平移φ(φ>0)个单位,再将所得的图象上每个点的横坐标变为原来的a倍,得到y=cos2x+sin2x的图象,则φ,a的可能取值为( )A. B. C. D. 【解答】解:函数y=cos x﹣sin x=的图象先向右平移φ(φ>0)个单位,得到y=的图象,再将所得的图象上每个点的横坐标变为原来的a倍,得到y=cos2x+sin2x=的图象,所以:①a=②﹣φ+,解得:(k∈Z),故当k=0时,.故选:D.8.(5分)已知数列{a n}的前n项和为S n,若3S n=2a n﹣3n,则a2018=( ) A.22018﹣1 B.32018﹣6C.()2018﹣ D.()2018﹣【解答】解:∵数列{a n}的前n项和为S n,3S n=2a n﹣3n,∴a1=S1=(2a1﹣3),解得a1=﹣3,S n=(2a n﹣3n),①,当n≥2时,S n﹣1=(2a n﹣1﹣3n+3),②,①﹣②,得a n=﹣﹣1,∴a n=﹣2a n﹣1﹣3,∴=﹣2,∵a1+1=﹣2,∴{a n+1}是以﹣2为首项,以﹣2为公比的等比数列,∴,∴,∴a2018=(﹣2)2018﹣1=22018﹣1.故选:A.9.(5分)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,则该几何体的表面积为( )A.5π+18 B.6π+18 C.8π+6 D.10π+6【解答】解:由题意可知,几何体是两端是半球,中间是圆柱的一半,球的半径为:1,圆柱的高为3,半径为1,所以则该几何体的表面积为:4π×12+π×12+π×3+2×3=6+8π.故选:C.10.(5分)已知直线2x﹣y+1=0与曲线y=ae x+x相切(其中e为自然数的底数),则实数a的值是( )A. B.1 C.2 D.e【解答】解:设切点坐标为(m,n)y'|x=m=ae m+1=2,2m﹣n+1=0,n=ae m+m,解得,m=0,n=1,切点(0,1)而切点(0,1)又在曲线y=ae x+x上∴a=1,故选:B.11.(5分)某企业生产甲、乙两种产品,销售利润分别为2千元/件、1千元/件.甲、乙两种产品都需要在A、B两种设备上加工,生产一件甲产品需用A设备2小时,B设备6小时;生产一件乙产品需用A设备3小时,B设备1小时.A、B两种设备每月可使用时间数分别为480小时、960小时,若生产的产品都能及时售出,则该企业每月利润的最大值为( )A.320千元 B.360千元 C.400千元 D.440千元 【解答】解:设甲、乙两种产品月的产量分别为x,y件,约束条件是,目标函数是z=2x+y;由约束条件画出可行域,如图所示的阴影部分;由z=2x+y,结合图象可知,z=2x+y在A处取得最大值,由,可得A(150,60),此时z=2×150+1×60=360(千元).故选:B.12.(5分)已知函数f(x)=2|x|﹣x2,g(x)=(其中e为自然对数的底数),若函数h(x)=f[g(x)]﹣k有4个零点,则k的取值范围为 ( ) A.(﹣1,0) B.(0,1)C.(﹣,1) D.(0,﹣)【解答】解:函数f(x)=2|x|﹣x2为偶函数,且f(x)的最大值为1,作出f(x)的图象(如右黑线)由g(x)=的导数为g′(x)=,可得x>﹣1时,g(x)递增,x<﹣2或﹣2<x<﹣1时,g(x)递减,x=﹣1取得极小值,作出g(x)的图象(如右红线),函数h(x)=f[g(x)]﹣k有4个零点,即为f[g(x)]=k有四个解,可令t=g(x),k=f(t),若﹣1<k<0,则t1<﹣2,t2>2,则t=g(x)有3解,不符题意;若0<k<1,则k=f(t)有4解,两个负的,两个正的,则t=g(x)可能有4,6解,不符题意;若k∈(﹣,1),则k=f(t)有4解,两个负的,两个正的,(一个介于(,1),一个大于1),则t=g(x)有6解,不符题意;若k∈(0,﹣),则k=f(t)有4解,两个负的,两个正的(一个介于(0,),一个大于1),则t=g(x)有4解,符合题意.故选:D.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)若平面向量满足,则= ﹣1 .【解答】解:由,得,①由,得,②∴.故答案为:﹣1.14.(5分)已知m 是常数,(mx ﹣1)5=a 5x 5+a 4x 4+a 3x 3+a 2x 2+a 1x +a 0,且a 1+a 2+a 3+a 4+a 5=33,则m = 3 .【解答】解:在(mx ﹣1)5=a 5x 5+a 4x 4+a 3x 3+a 2x 2+a 1x +a 0中, 取x =0,得﹣1=a 0,取x =1,得(m ﹣1)5=a 5+a 4+a 3+a 2+a 1+a 0, ∴a 1+a 2+a 3+a 4+a 5=(m ﹣1)5+1=33, 则(m ﹣1)5=32, 即m =3, 故答案为:3.15.(5分)抛物线E :y 2=4x 的焦点为F ,准线l 与x 轴交于点A ,过抛物线E 上一点P (第一象限内)作l 的垂线PQ ,垂足为Q .若四边形AFPQ 的周长为16,则点P 的坐标为 (4,4) .【解答】解:如图,设P (),(t >0),则四边形AFPQ 的周长为AF +PF +PQ +AQ =16. ∴2+++t =16,解得t =4,∴点P 的坐标为(4,4), 故答案为:(4,4).16.(5分)在四面体ABCD 中,AB =AD =2,∠BAD =60°,∠BCD =90°,二面角A ﹣BD ﹣C 的大小为150°,则四面体ABCD 外接球的半径为.【解答】解:在四面体ABCD中,AB=AD=2,∠BAD=60°,∠BCD=90°,二面角A﹣BD﹣C的大小为150°,四面体ABCD外接球,如图:则△BCD在求出一个小圆上,BD的中点为圆心N,△ABD是正三角形,也在球的一个小圆上,圆心为M,作OM⊥平面ABD,ON⊥平面BCD,O为球心,二面角A﹣BD﹣C的大小为150°,作NP⊥BD,则∠ANP=150°,可得∠ONM=60°,MN=,则ON=,BN=1,外接球的半径为:=.故答案为:.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)已知△ABC的内角A,B,C的对边分别为a,b,c,(a﹣2b)cos C+c cos A =0.(1)求角C;(2)若,求△ABC的周长的最大值.【解答】解:(1)根据正弦定理,由已知得:(sin A﹣2sin B)cos C+sin C cos A=0, 即sin A cos C+sin C cos A=2sin B cos C,∴sin(A+C)=2sin B cos C,∵A+C=π﹣B,∴sin(A+C)=sin(π﹣B)=sin B>0,∴sin B=2sin B cos C,从而.∵C∈(0,π),∴.(2)由(1)和余弦定理得,即a2+b2﹣12=ab,∴,即(a+b)2≤48(当且仅当时等号成立).所以,△ABC周长的最大值为.18.(12分)2014年9月,国务院发布了《关于深化考试招生制度改革的实施意见》.某地作为高考改革试点地区,从当年秋季新入学的高一学生开始实施,高考不再分文理科.每个考生,英语、语文、数学三科为必考科目 并从物理、化学、生物、政治、历史、地理六个科目中任选三个科目参加高考.物理、化学、生物为自然科 学科目,政治、历史、地理为社会科学科目.假设某位考生选考这六个科目的可能性相等.(1)求他所选考的三个科目中,至少有一个自然科学科目的概率;(2)已知该考生选考的三个科目中有一个科目属于社会科学科目,两个科目属于自然科学科目.若该考生所选的社会科学科目考试的成绩获A等的概率都是0.8,所选的自然科学科目考试的成绩获A等的概率都是0.75,且所选考的各个科目考试的成绩相互独立.用随机变量X表示他所选考的三个科目中考试成绩获A等的科目数,求X的分布列和数学期望.【解答】解:(1)记“某位考生选考的三个科目中至少有一个科目是自然科学科目”为事件M,则,所以该位考生选考的三个科目中,至少有一个自然科学科目的概率为. (2)随机变量X的所有可能取值有0,1,2,3.因为,,,,所以X的分布列为:X 0 1 2 3P.19.(12分)如图,在多面体ABCDEF中,ABCD是正方形,BF⊥平面ABCD,DE⊥平面ABCD,BF=DE,点M为棱AE的中点.(1)求证:平面BMD∥平面EFC;(2)若DE=2AB,求直线AE与平面BDM所成的角的正弦值.【解答】证明:(1)连结AC,交BD于点N,∴N为AC的中点,∴MN∥EC.∵MN⊄平面EFC,EC⊂平面EFC,∴MN∥平面EFC.∵BF,DE都垂直底面ABCD,∴BF∥DE.∵BF=DE,∴BDEF为平行四边形,∴BD∥EF.∵BD⊄平面EFC,EF⊂平面EFC,∴BD∥平面EFC.又∵MN∩BD=N,∴平面BDM∥平面EFC.解:(2)由已知,DE⊥平面ABCD,ABCD是正方形.∴DA,DC,DE两两垂直,如图,建立空间直角坐标系D﹣xyz.设AB=2,则DE=4,从而B(2,2,0),M(1,0,2),A(2,0,0),E(0,0,4),∴,设平面BDM的一个法向量为,由得.令x=2,则y=﹣2,z=﹣1,从而.∵,设AE与平面BDM所成的角为θ,则,所以,直线AE与平面BDM所成角的正弦值为.20.(12分)在平面直角坐标系中,圆O交x轴于点F1,F2,交y轴于点B1,B2.以B1,B2为顶点,F1,F2分别为左、右焦点的椭圆E,恰好经过点. (1)求椭圆E的标准方程;(2)设经过点(﹣2,0)的直线l与椭圆E交于M,N两点,求△F2MN面积的最大值.【解答】解:(1)由已知可得,椭圆E的焦点在x轴上.设椭圆E的标准方程为,焦距为2c,则b=c,∴a2=b2+c2=2b2,∴椭圆E的标准方程为.又椭圆E过点,∴,解得b2=1.∴椭圆E的标准方程为.(2)由于点(﹣2,0)在椭圆E外,所以直线l的斜率存在.设直线l的斜率为k,则直线l:y=k(x+2),设M(x1,y1),N(x2,y2).由消去y得,(1+2k2)x2+8k2x+8k2﹣2=0.由△>0得,从而,∴.∵点F2(1,0)到直线l的距离,∴△F2MN的面积为.令1+2k2=t,则t∈[1,2),∴=,当即时,S有最大值,,此时.所以,当直线l的斜率为时,可使△F2MN的面积最大,其最大值.21.(12分)已知.(1)讨论f(x)的单调性;(2)若f(x)≤ax恒成立,求a的值.【解答】解:(1)f(x)的定义域为,. ∵2x﹣1>0,x2>0.令g(x)=2x2﹣2ax+a,则(1)若△≤0,即当0≤a≤2时,对任意,g(x)≥0恒成立, 即当时,f'(x)≥0恒成立(仅在孤立点处等号成立).∴f(x)在上单调递增.(2)若△>0,即当a>2或a<0时,g(x)的对称轴为.①当a<0时,,且.如图,任意,g(x)>0恒成立,即任意时,f'(x)>0恒成立,∴f(x)在上单调递增.②当a>2时,,且.如图,记g(x)=0的两根为∴当时,g(x)>0;当x∈(x1,x2)时,g(x)<0.∴当时,f'(x)>0,当x∈(x1,x2)时,f'(x)<0.∴f(x)在和(x2,+∞)上单调递增,在(x1,x2)上单调递减.综上,当a≤2时,f(x)在上单调递增;当a>2时,f(x)在和上单调递增, 在上单调递减.(Ⅱ)f(x)≤ax恒成立等价于,f(x)﹣ax≤0恒成立.令,则f(x)≤ax恒成立等价于,h(x)≤0=h(1)(*).要满足(*)式,即h(x)在x=1时取得最大值.∵.由h'(1)=0解得a=1.当a=1时,,∴当时,h'(x)>0;当x∈(1,+∞)时,h'(x)<0.∴当a=1时,h(x)在上单调递增,在(1,+∞)上单调递减,从而h (x)≤h(1)=0,符合题意.所以,a=1.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]22.(10分)在直角坐标系xOy中,曲线(θ为参数),在以O为极点,x轴的正半轴为极轴的极坐标系中,曲线C2:ρ﹣2cosθ=0. (1)求曲线C2的普通方程;(2)若曲线C1上有一动点M,曲线C2上有一动点N,求|MN|的最小值. 【解答】(1)由曲线C2:ρ﹣2cosθ=0,得:ρ2﹣2ρcosθ=0.因为ρ2=x2+y2,ρcosθ=x,所以x2+y2﹣2x=0,即:曲线C2的普通方程为(x﹣1)2+y2=1.(2)由(1)可知,圆C2的圆心为C2(1,0),半径为1.设曲线C1上的动点M(3cosθ,2sinθ),由动点N在圆C2上可得:|MN|min=|MC2|min﹣1.∵当时,,∴.[选修4-5:不等式选讲]23.已知函数f(x)=|2x﹣1|.(1)解关于x的不等式f(x)﹣f(x+1)≤1;(2)若关于x的不等式f(x)<m﹣f(x+1)的解集不是空集,求m的取值范围.【解答】解:(1)f(x)﹣f(x+1)≤1⇔|2x﹣1|﹣|2x+1|≤1或或或,所以,原不等式的解集为.(2)由条件知,不等式|2x﹣1|+|2x+1|<m有解,则m>(|2x﹣1|+|2x+1|)min即可.由于|2x﹣1|+|2x+1|=|1﹣2x|+|2x+1|≥|1﹣2x+2x+1|=2,当且仅当(1﹣2x)(2x+1)≥0,即当时等号成立,故m>2,所以,m的取值范围是(2,+∞).赠送—高中数学 必修1知识点 【1.1.1】集合的含义与表示)集合的概念(1)集合的概念.集合中的元素具有确定性、互异性和无序性.集合中的元素具有确定性、互异性和无序性)常用数集及其记法(2)常用数集及其记法N表示自然数集,N*或N表示正整数集,Z表示整数集,Q表示有理数集,R表+示实数集示实数集..(3)集合与元素间的关系)集合与元素间的关系对象a 与集合M 的关系是a M Î,或者a M Ï,两者必居其一,两者必居其一. . (4)集合的表示法)集合的表示法 ①自然语言法:用文字叙述的形式来描述集合①自然语言法:用文字叙述的形式来描述集合. .②列举法:把集合中的元素一一列举出来,写在大括号内表示集合②列举法:把集合中的元素一一列举出来,写在大括号内表示集合. . ③描述法:③描述法:{{x |x 具有的性质具有的性质}},其中x 为集合的代表元素为集合的代表元素. . ④图示法:用数轴或韦恩图来表示集合④图示法:用数轴或韦恩图来表示集合.. (5)集合的分类)集合的分类①含有有限个元素的集合叫做有限集①含有有限个元素的集合叫做有限集..②含有无限个元素的集合叫做无限集②含有无限个元素的集合叫做无限集..③不含有任何元素的集合叫做空集任何元素的集合叫做空集((Æ).【1.1.2】集合间的基本关系 (6)子集、真子集、集合相等名称名称记号记号意义意义性质性质示意图示意图子集子集B A Í(或)A B ÊA 中的任一元素都属于B(1)A ÍA(2)A ÆÍ(3)若B A Í且B C Í,则A C Í(4)若B A Í且B A Í,则A B =A(B)或B A真子集A ¹ÌB(或B ¹ÉA )B A Í,且B 中至少有一元素不属于A(1)A ¹ÆÌ(A 为非空子集)为非空子集)(2)若A B ¹Ì且B C ¹Ì,则A C ¹Ì B A集合集合相等相等A B =A 中的任一元素都属于B ,B 中的任一元素都属于A(1)A ÍB (2)B ÍAA(B)(7)已知集合A 有(1)n n ³个元素,则它有2n 个子集,它有21n -个真子集,它有21n -个非空子集,它有22n-非空真子集非空真子集. .【1.1.3】集合的基本运算(8)交集、并集、补集)交集、并集、补集 名称 记号意义意义性质性质 示意图示意图交集AB{|,x x A Î且}x B Î(1)AA A =(2)A Æ=Æ (3)AB A ÍA B B Í BA并集 A B{|,x x A Î或}x B Î(1)AA A =(2)A A Æ= (3)AB A ÊA B B Ê BA补集U A ð {|,}x x U x A ÎÏ且1()UA A =Æð2()U A A U=ð【补充知识】含绝对值的不等式与一元二次不等式的解法(1)含绝对值的不等式的解法)含绝对值的不等式的解法不等式不等式解集解集||(0)x a a <> {|}x a x a -<< ||(0)x a a >>|x x a <-或}x a >||,||(0)ax b c ax b c c +<+>>把ax b +看成一个整体,化成||x a <,||(0)x a a >>型不等式来求解型不等式来求解(2)一元二次不等式的解法)一元二次不等式的解法判别式判别式24b ac D =-0D > 0D = 0D <二次函数2(0)y ax bx c a =++>的图象的图象O一元二次方程20(0)ax bx c a ++=>的根的根21,242b b ac x a-±-=(其中12)x x <122bx x a ==-无实根无实根20(0)ax bx c a ++>>的解集的解集1{|x x x <或2}x x >{|x }2b x a¹-R()()()U U U A B A B =痧?()()()U U U A B A B=痧?20(0)ax bx c a ++<>的解集的解集12{|}x x x x << Æ Æ。

河南省六市2018届高三第一次联考(一模)数学(理)试题及答案解析

河南省六市2018届高三第一次联考(一模)数学(理)试题及答案解析

河南省六市2018届高三第一次联考(一模)数学(理)试题 第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合}1)2lg(|{<-=x x A ,集合}032|{2<--=x x x B ,则=B A ( ) A .)12,2( B .)3,1(- C .)12,1(- D .)3,2( 2.已知i 为虚数单位,若),(11R b a bi a ii∈+=-+,则=+b a ( ) A .0 B .1 C .1- D .23.现有5人参加抽奖活动,每人依次从装有5张奖票(其中3张为中奖票)的箱子中不放回地随机抽取一张,直到3张中奖票都被抽出时活动结束,则活动恰好在第4人抽完后结束的概率为( ) A .101 B .51 C .103 D .52 4.汽车以s m t v /)23(+=作变速运动时,在第1s 至2s 之间的1s 内经过的路程是( ) A .m 5 B .m 211 C .m 6 D .m 2135.为考察B A ,两种药物预防某疾病的效果,进行动物实验,分别得到如下等高条形图:根据图中信息,在下列各项中,说法最佳的一项是( )A .药物B 的预防效果优于药物A 的预防效果 B .药物A 的预防效果优于药物B 的预防效果C .药物A 、B 对该疾病均有显著的预防效果D .药物A 、B 对该疾病均没有预防效果6.一个几何体的三视图如图所示,该几何体的各个表面中,最大面的面积为( )A .152B .15C .2D .47.已知数列}{n a 满足:2)1(11=-+++n n n a a ,则其前100项和为( ) A .250 B .200 C .150 D .1008.已知锐角ABC ∆中,角C B A ,,所对的边分别为c b a ,,,若)(2c a a b +=,则)sin(sin 2A B A-的取值范围是( ) A. )22,0( B. )23,21( C. )22,21( D. )23,0( 9.设201721,,,a a a 是数列2017,,2,1 的一个排列,观察如图所示的程序框图,则输出的F 的值为( )A .2015B .2016C .2017D .201810.在三棱锥ABC S -中,BC SB ⊥,AC SA ⊥,BC SB =,AC SA =,SC AB 21=,且三棱锥ABC S -的体积为239,则该三棱锥的外接球半径是( ) A .1 B .2 C .3 D .411.椭圆12222=+by a x )0(>>b a 与函数x y =的图象交于点P ,若函数x y =的图象在P处的切线过椭圆的左焦点)0,1(-F ,则椭圆的离心率是( )A .213- B .215- C .223- D .225-12.若关于x 的方程0=+-+m e x e e x xxx 有3个不相等的实数解321,,x x x ,且3210x x x <<<,其中R m ∈,71828.2=e ,则)1)(1()1(3213221---x x x ex e x e x 的值为( ) A .1 B .m -1 C .m +1 D .e 二、填空题(每题4分,满分20分,将答案填在答题纸上)13.已知)2,3(-=,)2,0(=+,则=|| . 14.已知二项式nxx )1(2+的展开式的二项式系数之和为32,则展开式中含x 项的系数是 (用数字作答).15.已知P 是双曲线C :1222=-y x 右支上一点,直线l 是双曲线的一条渐近线,P 在l 上的射影为Q ,1F 是双曲线的左焦点,则||||1PQ PF +的最小值是 .16.已知动点),(y x P 满足⎪⎪⎩⎪⎪⎨⎧≤-+++≥≤+1)1)(1(14222y y x x x y x ,则x y x 622-+的最小值是 .三、解答题 (本大题共6题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知数列}{n a 中,11=a ,其前n 项的和为n S ,且满足)2(1222≥-=n S S a n nn .(1)求证:数列}1{nS 是等差数列; (2)证明:当2≥n 时,2313121321<++++n S n S S S . 18.我们国家正处于老龄化社会中,老有所依也是政府的民生工程.某市共有户籍人口400万,其中老人(年龄60岁及以上)人数约有66万,为了了解老人们的健康状况,政府从老人中随机抽取600人并委托医疗机构免费为他们进行健康评估,健康状况共分为不能自理、不健康尚能自理、基本健康、健康四个等级,并以80岁为界限分成两个群体进行统计,样本分布制作成如下图表:(1)若采用分层抽样的方法从样本中的不能自理的老人中抽取8人进一步了解他们的生活状况,则两个群体中各应抽取多少人?(2)估算该市80岁及以上长者占全市户籍人口的百分比;(3)据统计该市大约有五分之一的户籍老人无固定收入,政府计划为这部分老人每月发放生活补贴,标准如下:①80岁及以上长者每人每月发放生活补贴200元; ②80岁以下老人每人每月发放生活补贴120元; ③不能自理的老人每人每月额外发放生活补贴100元.利用样本估计总体,试估计政府执行此计划的年度预算.(单位:亿元,结果保留两位小数)19.如图,在四棱锥ABCD P -中,⊥PD 平面ABCD ,底面ABCD 是菱形,060=∠BAD ,O 为AC 与BD 的交点,E 为PB 上任意一点.(1)证明:平面⊥EAC 平面PBD ;(2)若//PD 平面EAC ,并且二面角C AE B --的大小为045,求AD PD :的值.20.已知抛物线C :)0(22>=p py x 的焦点为F ,过F 的直线l 交抛物线C 于点B A ,,当直线l 的倾斜角是045时,AB 的中垂线交y 轴于点)5,0(Q .(1)求p 的值;(2)以AB 为直径的圆交x 轴于点N M ,,记劣弧MN 的长度为S ,当直线l 绕F 点旋转时,求||AB S的最大值. 21.已知函数)(221ln )(2R k kx x x x f ∈-+=. (1)讨论)(x f 的单调性;(2)若)(x f 有两个极值点21,x x ,且21x x <,证明:23)(2-<x f . 请考生在22、23二题中任选一题作答,如果都做,则按所做的第一题记分. 22.选修4-4:坐标系与参数方程以平面直角坐标系xOy 的原点为极点,x 轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位,直线l 的参数方程为⎩⎨⎧+=+=t y tx 12(t 为参数),圆C 的极坐标方程为)4sin(24πθρ+=.(1)求直线l 的普通方程与圆C 的执直角坐标方程;(2)设曲线C 与直线L 交于B A ,两点,若P 点的直角坐标为)1,2(,求||||||PB PA -的值. 23.选修4-5:不等式选讲已知关于x 的不等式m x x ≤-+|12||2|有解. (1)求实数m 的取值范围;(2)已知m b a b a =+>>,0,0,证明:312222≥+++b a b b a a .理科数学答案一、选择题1-5:CBCDB 6-10:BDCDC 11-12:BA 二、填空题13.5 14.10 15.221+ 16.940- 三、解答题17.解:(1)当2≥n 时,12221-=--n nn n S S S S ,112--=-n n n n S S S S2111=--n n S S ,从而}1{nS 构成以1为首项,2为公差的等差数列. (2)由(1)可知,122)1(111-=⨯-+=n n S S n ,∴121-=n S n∴当2≥n 时,)111(21)22(1)12(11nn n n n n S n n --=-<-= 从而232123)1113121211(21113121321<-<--++-+-+<++++n n n S n S S S n . 18.解:(1)数据整理如下表:从图表中知采用分层抽样的方法从样本中的不能自理的老人中抽取8人进一步了解他们的生活状况,80岁及以上应抽取:32515158=+⨯人,80岁以下应抽取:52515258=+⨯人(2)在600人中80岁及以上长者在老人中占比为:6160020452015=+++ 用样本估计总体,80岁及以上长者为:116166=⨯万,80岁及以上长者占户籍人口的百分比为%75.2%10040011=⨯. (3)用样本估计总体,设任一户籍老人每月享受的生活补助为X 元,54)0(==X P ,6009560047551)120(=⨯==X P ,600176008551)200(=⨯==X P ,60056002551)220(=⨯==X P ,60036001551)300(=⨯==X P ,则随机变量X 的分布列为:286003300522017200951200=⨯+⨯+⨯+⨯+=EX全市老人的总预算为84102176.210661228⨯=⨯⨯⨯元 政府执行此计划的年度预算约为2.22亿元.19.解:(1)因为⊥PD 平面ABCD ,∴AC PD ⊥, 又ABCD 是菱形,∴AC BD ⊥,故⊥AC 平面PBD ∴平面⊥EAC 平面PBD .(2)解:连结OE ,因为//PD 平面EAC , 所以OE PD //,所以⊥OE 平面ABCD ,又O 是BD 的中点,故此时E 为PB 的中点,以O 为坐标原点,射线OE OB OA ,,分别为z y x ,,轴建立空间直角坐标系设h OE m OB ==,,则m OA 3=,),0,0(),0,,0(),0,0,3(h E m B m A向量)0,1,0(1=n 为平面AEC 的一个法向量 设平面ABE 的一个法向量为),,(2z y x n =, 则02=⋅AB n 且02=⋅BE n即03=+-my mx 且0=-hz my ,取1=x ,则3=y ,h mz 3=,则)3,3,1(2hm n = ∴2221212103313|,cos |45cos hm n n ⋅++==><=,解得26=m h 故2:6:2:2:===m h m h AD PD . 20.(1))2,0(pF ,当l 的倾斜角为045时,l 的方程为2p x y +=, 设),(),,(2211y x B y x A ,⎪⎩⎪⎨⎧=+=py x p x y 222得0222=--p px xp p x x y y p x x 3,2212121=++=+=+,得AB 的中点为)23,(p p D AB 中垂线为)(23p x p y --=-0=x 代入得525==p y∴2=p(2)设l 的方程为1+=kx y ,代入y x 42=得0442=--kx x444)(2||22121+=++=++=k x x k y y ABAB 中点为)12,2(2+k k D令α2=∠MDN (弧度),||||212AB AB S ⋅=⋅=αα ∴α=||AB S∴D 到x 轴的距离12||2+=k DE∴22112212||21||cos 222+-=++==k k k AB DE α当02=k 时,αcos 取最小值21,α的最大值为3π 故||AB S的最大值为3π.21.(1)kx x x x f 221ln )(2-+=,),0(+∞∈x 所以xkx x k x x x f 1221)('2+-=-+=(1)当0≤k 时,0)('>x f ,所以)(x f 在),0(+∞上单调递增(2)当0>k 时,令12)(2+-=kx x x t ,当0442≤-=∆k 即10≤<k 时,0)(≥x t 恒成立,即0)('≥x f 恒成立所以)(x f 在),0(+∞上单调递增当0442>-=∆k ,即1>k 时,0122=+-kx x ,两根122,1-±=k k x 所以)1,0(2--∈k k x ,0)('>x f)1,1(22-+--∈k k k k x ,0)('<x f),1(2+∞-+∈k k x ,0)('>x f故当)1,(-∞∈k 时,)(x f 在),0(+∞上单调递增当),1(+∞∈k 时,)(x f 在)1,0(2--k k 和),1(2+∞-+k k 上单调递增 )(x f 在)1,1(22-+--k k k k 上单调递减.(2))0(221ln )(2>-+=x kx x x x f k x xx f 21)('-+= 由(1)知1≤k 时,)(x f ),0(+∞上单调递增,此时)(x f 无极值当1>k 时,xkx x k x x x f 1221)('2+-=-+= 由0)('=x f 得0122=+-kx x 0442>-=∆k ,设两根21,x x ,则k x x 221=+,121=⋅x x 其中11102221-+=<<--=<k k x k k x)(x f 在),0(1x 上递增,在),(21x x 上递减,在),(2+∞x 上递增121ln )1(21ln )(21ln 221ln )(22222222222122222222--=+-+=+-+=-+=x x x x x x x x x x x x kx x x x f 令)1(121ln )(2>--=x x x x t 01)('<-=x x x t ,所以)(x t 在),1(+∞上单调递减,且23)1(-=t 故23)(2-<x f .22. 解:(1)直线l 的普通方程为1-=x y ,θθπθρcos 4sin 4)4sin(24+=+=, 所以θρθρρcos 4sin 42+=所以曲线C 的直角坐标方程为04422=--+y x y x .(2)点)1,2(P 在直线l 上,且在圆C 内,由已知直线l 的参数方程是⎪⎪⎩⎪⎪⎨⎧+=+=t y t x 221222(t 为参数)代入04422=--+y x y x , 得0722=--t t ,设两个实根为21,t t ,则07,22121<-==+t t t t ,即21,t t 异号 所以2||||||||||||||2121=+=-=-t t t t PB PA .23.解:(1)1|)12(2||12||2|=--≥-+x x x x ,故1≥m (2)由题知1≥+b a ,故222)()22)(22(b a b a b a ba b b a a +≥++++++, ∴31)(312222≥+≥+++b a b a b b a a .。

石家庄市2018届高三一模理科数学试卷含答案

石家庄市2018届高三一模理科数学试卷含答案
②答案一:
由以上的计算可知,虽然 E X甲 E X乙 ,但两者相差不大,且 S甲2 远小于 S乙2 ,即甲方案日工资收入波动相对较
小,所以小明应选择甲方案。--------12 分 答案二:
由以上的计算结果可以看出, E X甲 E X乙 ,即甲方案日工资期望小于乙方案日工资期望,所以小明应选择乙方
y
140, (n 55, n N) 12n 520, (n 55, n
N)
………………………4

(2)①由已知,在这 100 天中,该公司派送员日平均派送单数满足如下表格:
单数
52
54
56
58
60
频率
0.2
0.3
0.2
0.2
0.1
所以 X甲 的分布列为:
X甲
152
154
156
158
160
P
0.2
石家庄市 2017-2018 学年高中毕业班第一次模拟考试试题
理科数学答案
一、选择题 (A 卷答案) 1-5AABDC 6-10CCDBD (B 卷答案) 1-5BBADC 6-10CCDAD 二、填空题
11-12 BA 11-12 AB
13. p : x 1, x2 2x 3 0 14. 乙
15. 2 3
16.
e2
2
e
,
0
三、解答题(解答题仅提供一种或两种解答,其他解答请参照此评分标准酌情给分)
17 解:(1)
法一:
由 2Sn 2n1 m(m R) 得 2Sn1 2n m(m R) ………………2 分
当当 n 2 时, 2an 2Sn 2Sn1 2n ,即 an 2n1(n 2) ………………4 分

【高三数学试题精选】2018年高考理科数学一模考试试题(带答案)

【高三数学试题精选】2018年高考理科数学一模考试试题(带答案)
在中,为中点,故--------------------------3分
∵平面,平面,平面;---4分
(其它证法,请参照给分)
(2)依题意知且
∴平面
∵平面,∴,------------------5分
∵为中点,∴
结合,知四边形是平行四边形
∴,----------------------------------------------------7分
∵,
∴--------------------------------11分
2018年高考理科数学一模考试试题(带答案)
5绝密★启用前
揭阳市--2分
从而,,-----------------------------------------------4分
∵,∴;--------------------------------------------------------------6分
把代入并去绝对值整理,
或者
前式显然不恒成立;而要使得后式对任意的恒成立
则,解得;----------------------------------------------------------------------12分
②当直线斜率不存在时,其方程为和,---------------------------13分
而,∴∴,即-----8分
又∴平面,
∵平面,∴------------------------------------------------9分
(3)解法一如图,分别以所在的直线为轴建立空间直角坐标系
设,则
易知平面的一个法向量为,-----------10分
设平面的一个法向量为,则

2018届高三数学一模试题理科有答案河南濮阳市

2018届高三数学一模试题理科有答案河南濮阳市

2018届高三数学一模试题(理科有答案河南濮阳市)濮阳市2018届高三毕业班第一次模拟考试数学(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,则()A.B.C.D.2.若复数满足,其中为虚数单位,表示复数的共轭复数,则()A.B.C.D.3.如图所示的长方形的长为2,宽为1,在长方形内撒一把豆子(豆子大小忽略不计),然后统计知豆子的总数为粒,其中落在飞鸟图案中的豆子有粒,据此请你估计图中飞鸟图案的面积约为()A.B.C.D.4.函数的图象大致为()ABCD5.设,若,则()A.B.C.D.6.设点是,表示的区域内任一点,点是区域关于直线的对称区域内的任一点,则的最大值为()A.B.C.D.7.已知三棱锥中,与是边长为2的等边三角形且二面角为直二面角,则三棱锥的外接球的表面积为()A.B.C.D.8.执行如图所示的程序框图(其中表示等于除以10的余数),则输出的为()A.2B.4C.6D.89.某几何体是由一个三棱柱和一个三棱锥构成的,其三视图如图所示,则该几何体的体积为()A.B.C.D.10.已知双曲线,是左焦点,,是右支上两个动点,则的最小值是()A.4B.6C.8D.1611.已知中,,,成等比数列,则的取值范围是()A.B.C.D.12.已知且,若当时,不等式恒成立,则的最小值是()A.B.C.D.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.正三角形的边长为1,是其重心,则.14.的展开式中,的系数为.15.已知椭圆,和是椭圆的左、右焦点,过的直线交椭圆于,两点,若的内切圆半径为1,,,则椭圆离心率为.16.先将函数的图象上的各点向左平移个单位,再将各点的横坐标变为原来的倍(其中),得到函数的图象,若在区间上单调递增,则的最大值为.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知数列是等差数列,,,.(1)求数列的通项公式;(2)若数列为递增数列,数列满足,求数列的前项和. 18.为创建国家级文明城市,某城市号召出租车司机在高考期间至少参加一次“爱心送考”,该城市某出租车公司共200名司机,他们参加“爱心送考”的次数统计如图所示.(1)求该出租车公司的司机参加“爱心送考”的人均次数;(2)从这200名司机中任选两人,设这两人参加送考次数之差的绝对值为随机变量,求的分布列及数学期望.19.如图,正方形中,,与交于点,现将沿折起得到三棱锥,,分别是,的中点.(1)求证:;(2)若三棱锥的最大体积为,当三棱锥的体积为,且二面角为锐角时,求二面角的正弦值.20.已知点在抛物线上,是抛物线上异于的两点,以为直径的圆过点.(1)证明:直线过定点;(2)过点作直线的垂线,求垂足的轨迹方程.21.已知函数.(1)若函数在上是减函数,求实数的取值范围;(2)若函数在上存在两个极值点,且,证明:.22.在直角坐标系中,曲线的参数方程为(为参数),以平面直角坐标系的原点为极点,轴的正半轴为极轴建立极坐标系.(1)求曲线的极坐标方程;(2)过原点的直线分别与曲线交于除原点外的两点,若,求的面积的最大值.23.已知函数.(1)求不等式的解集;(2)若函数在上有最大值,求实数的取值范围.濮阳市2018届高三毕业班第一次模拟考试数学(理科)参考答案一、选择题1-5:CABCB6-10:DDDAC11、12:BA二、填空题13.14.5615.16.9三、解答题17.解:(1)由题意得,所以,时,,公差,所以,时,,公差,所以.(2)若数列为递增数列,则,所以,,,所以,,所以,所以.18.解:由图可知,参加送考次数为1次,2次,3次的司机人数分别为20,100,80.(1)该出租车公司司机参加送考的人均次数为:.(2)从该公司任选两名司机,记“这两人中一人参加1次,另一个参加2次送考”为事件,“这两人中一人参加2次,另一人参加3次送考”为事件,“这两人中一人参加1次,另一人参加3次送考”为事件,“这两人参加次数相同”为事件.则,,.的分布列:012的数学期望.19.解:(1)依题意易知,,,∴平面,又∵平面,∴.(2)当体积最大时三棱锥的高为,当体积为时,高为,中,,作于,∴,∴,∴为等边三角形,∴与重合,即平面.以为原点,所在直线为轴,过且平行于的直线为轴,为轴,建立如图所示的空间直角坐标系.∴,,,.设为平面的法向量,∵,,∴,取,设是平面的法向量,,,∴,取,∴,设二面角大小为,∴.20.解:(1)点在抛物线上,代入得,所以抛物线的方程为,由题意知,直线的斜率存在,设直线的方程为,设,,联立得,得,,由于,所以,即,即.(*)又因为,,代入(*)式得,即,所以或,即或.当时,直线方程为,恒过定点,经验证,此时,符合题意;当时,直线方程为,恒过定点,不合题意,所以直线恒过定点.(2)由(1),设直线恒过定点,则点的轨迹是以为直径的圆且去掉,方程为.21.解:(1)由函数在上是减函数,知恒成立,.由恒成立可知恒成立,则,设,则,由,知,函数在上递增,在上递减,∴,∴.(2)由(1)知.由函数在上存在两个极值点,且,知,则且,联立得,即,设,则,要证,只需证,只需证,只需证.构造函数,则.故在上递增,,即,所以.22.解:(1)曲线的普通方程为,即,所以,曲线的极坐标方程为,即. (2)不妨设,,.则,,的面积.所以,当时,的面积取最大值为. 23.解:(1)设,根据图象,由解得或.所以,不等式的解集为.(2)由题意得,由函数在上有最大值可得解得.。

2018年河南省高考数学一模试卷理科含解析

2018年河南省高考数学一模试卷理科含解析

2018年河南省高考数学一模试卷(理科)一、选择题1.已知集合A={x|x2−2x−3>0},B=N,则集合(∁R A)∩B中元素的个数为()A. 2B. 3C. 4D. 52.若复数a+3i1+2i(a∈R,i为虚数单位)是纯虚数,则实数a的值为()A. −6B. 13C. 32D. √133.已知f(x)=sinx−tanx,命题p:∃x0∈(0,π2),f(x0)<0,则()A. p是假命题,¬p:∀x∈(0,π2),f(x)≥0B. p是假命题,¬p:∃x0∈(0,π2),f(x0)≥0C. p是真命题,¬p:∀x∈(0,π2),f(x)≥0D. p是真命题,¬p:∃x0∈(0,π2),f(x0)≥04.已知程序框图如图,则输出i的值为()A. 7B. 9C. 11D. 135.2018年元旦假期,高三的8名同学准备拼车去旅游,其中(1)班、(2)班,(3)班、(4)班每班各两名,分乘甲乙两辆汽车,每车限坐4名同学(乘同一辆车的4名同学不考虑位置),其中(1)班两位同学是孪生姐妹,需乘同一辆车,则乘坐甲车的4名同学中恰有2名同学是来自同一个班的乘坐方式共有()A. 18种B. 24种C. 48种D. 36种1/ 166. 《九章算术》是我国古代数学名著,在《九章算术》中将底面为矩形且有一侧棱垂直于底面的四棱锥称为“阳马”,若某阳马”的三视图如图所示,其中正视图和侧视图是腰长为1的两个全等的等腰直角三角形,则该“阳马”的表面积为( ) A. 1+√2 B. 1+2√2 C. 2+√2 D. 2+2√27. 设不等式组{x +y ≤4y −x ≥0x −1≥0表示的平面区域为D ,若圆C :(x +1)2+y 2=r 2(r >0)不经过区域D 上的点,则r 的取值范围为( ) A. (0,√5)∪(√13,+∞) B. (√13,+∞) C. (0,√5) D. [√5,√13]8. 若等边三角形ABC 的边长为3,平面内一点M 满足6CM ⃗⃗⃗⃗⃗⃗ −3CA ⃗⃗⃗⃗⃗ =2CB ⃗⃗⃗⃗⃗ ,则AM ⃗⃗⃗⃗⃗⃗ ⋅BM⃗⃗⃗⃗⃗⃗ 的值为( )A. −152B. −2C. 2D. 1529. 关于函数f(x)=3sin(2x −π3)+1(x ∈R),下列命题正确的是( )A. 由f(x 1)=f(x 2)=1可得x 1−x 2是π的整数倍B. y =f(x)的表达式可改写成f(x)=3cos(2x +π6)+1 C. y =f(x)的图象关于点(3π4,1)对称 D. y =f(x)的图象关于直线x =−π12对称10. 设函数f(x)=mx 2−mx −1,若对于x ∈[1,3],f(x)<−m +4恒成立,则实数m的取值范围为( )A. (−∞,0]B. [0,57)C. (−∞,0)∪(0,57)D. (−∞,57)11. 设双曲线的方程为x 2a2−y 2b 2=1(a >0,b >0),若双曲线的渐近线被圆M :x 2+y 2−10x =0所截得的两条弦长之和为12,已知△ABP 的顶点A ,B 分别为双曲线的左、右焦点,顶点P 在双曲线上,则|sinP||sinA−sinB|的值等于( )A. 35B. √73C. 53D. √712. 已知定义在R 上的函数f(x)和g(x)分别满足f(x)=f′(1)2,e 2x−2+x 2−2f(0)⋅x ,g′(x)+2g(x)<0,则下列不等式恒成立的是( ) A. g(2016)<f(2)⋅g(2018) B. f(2)⋅g(2016)<g(2018) C. g(2016)>f(2)⋅g(2018) D. f(2)⋅g(2016)>g(2018) 二、填空题13.设a=∫(π0cosx−sinx)dx,则二项式(a√x−√x)6的展开式中含x2项的系数为______.14.若函数f(x)={ax(x+2),x<0x(x−b),x≥0(a,b∈R)为奇函数,则f(a+b)的值为______.15.已知三棱柱ABC−A1B1C1的底面是正三角形,侧棱AA1⊥底面ABC,若有一半径为2的球与三棱柱的各条棱均相切,则AA1的长度为______.16.如图,OA,OB为扇形湖面OAB的湖岸,现欲利用渔网和湖岸在湖中隔出两个养殖区−区域I和区域Ⅱ,点C在AB⌢上,∠COA=θ,CD//OA,其中AC⌢,半径OC及线段CD需要用渔网制成.若∠AOB=π3,OA=1,则所需渔网的最大长度为______.三、解答题17.已知S n为数列{a n}的前n项和,且a1<2,a n>0,6S n=a n2+3a n+2,n∈N∗.(1)求数列{a n}的通项公式;(2)若对∀n∈N∗,b n=(−1)n a n2,求数列{b n}的前2n项的和T2n.18.如图所示,在四棱锥P−ABCD中,底面ABCD为直角梯形,AB//CD,∠BAD=90∘,DC=DA=2AB=2√5,点E为AD的中点,BD∩CE=H,PH⊥平面ABCD,且PH=4.(1)求证:PC⊥BD;(2)线段PC上是否存在一点F,使二面角B−DF−C的余弦值是√1515?若存在,请找出点F的位置;若不存在,请说明理由.3/ 1619.某地区为了解学生学业水平考试的状况,从参加学业水平考试的学生中抽出160名,其数学组成绩(均为整数)的频率分布直方图如图所示.(1)估计这次考试数学成绩的平均分和众数;(2)假设在(90,100]段的学生中有3人得满分100分,有2人得99分,其余学生的数学成绩都不相同.现从90分以上的学生中任取4人,不同分数的个数为ξ,求ξ的分布列及数学期望E(ξ).20.已知椭圆C1:x2a2+y2b2=1(a>b>0)的离心率为√22,右焦点F是抛物线C2:y2=2px(p>0)的焦点,点(2,4)在抛物线C2上.(1)求椭圆C1的方程;(2)已知斜率为k的直线l交椭圆C1于A,B两点,M(0,2),直线AM与BM的斜率乘积为−12,若在椭圆上存在点N,使|AN|=|BN,求△ABN的面积的最小值.21.已知函数f(x)=ae x+x2−bx(a,b∈R),其导函数为y=f′(x).(1)当b=2时,若函数y=f′(x)在R上有且只有一个零点,求实数a的取值范围;(2)设a≠0,点P(m,n)(m,n∈R)是曲线y=f(x)上的一个定点,是否存在实数x0(x0≠m)使得f(x0)−n=f′(x0+m2)(x0−m)成立?并证明你的结论.5 / 1622. 在直角坐标系xOy 中,已知直线l 1:{y =tsinαx=tcosα(t 为参数),l 2:{x =tcos(α+π4)y =tsin(α+π4)(t为参数),其中α∈(0,3π4),以原点O 为极点,x 轴非负半轴为极轴,取相同长度单位建立极坐标系,曲线C 的极坐标方程为ρ−4cosθ=0. (1)写出l 1,l 2的极坐标方程和曲线C 的直角坐标方程;(2)设l 1,l 2分别与曲线C 交于点A ,B(非坐标原点),求|AB|的值.23. 设函数f(x)=|x −a|(a >0).(1)当a =2时,解不等式f(x)≥1−2x ; (2)已知f(x)+|x −1的最小值为3,且m 2n =a(m >0,n >0),求m +n 的最小值.答案和解析【答案】 1. C 2. A 3. C 4. D 5. B 6. C7. A8. B 9. D 10. D 11. C 12. C13. 192 14. −1 15. 2√316. π+6+2√3617. 解:(1)6S n =a n2+3a n +2,n ∈N ∗. n ≥2时,6a n =6S n −6S n−1=a n 2+3a n +2−(a n−12+3a n−1+2),化为:(a n +a n−1)(a n −a n−1−3)=0, ∵a n >0,∴a n −a n−1=3,n =1时,6a 1=a 12+3a 1+2,且a 1<2,解得a 1=1.∴数列{a n }是等差数列,首项为1,公差为3. ∴a n =1+3(n −1)=3n −2.(2)b n =(−1)n a n 2=(−1)n (3n −2)2.∴b 2n−1+b 2n =−(6n −5)2+(6n −2)2=3(12n −7)=36n −21.∴数列{b n }的前2n 项的和T 2n =36(1+2+⋯…+n)−21n =36×n(n+1)2−21n =18n 2−3n .18. 证明:(1)∵AB//CD ,∠BAD =90∘,∴∠EDC =∠BAD =90∘,∵DC =DA =2AB ,E 为AD 的中点,∴AB =ED , ∴△BAD≌△EDC ,∴∠DBA =∠DEH ,∵∠DBA +∠ADB =90∘,∴∠DEH +∠ADB =90∘,∴BD ⊥EC ,又∵PH ⊥平面ABCD ,BD ⊂平面ABCD ,∴BD ⊥PH , 又∵PH ∩EC =H ,且PH ,EC ⊄平面PEC ,∴BD ⊥平面PEC ,又∵PC ⊂平面PEC ,∴PC ⊥BD . 解:(2)由(1)可知△DHE∽△DAB ,由题意得BD =EC =5,AB =DE =√5, ∴DH DA=EH BA=DE DB,∴EH =1,HC =4,DH =2,HB =3, ∵PH 、EC 、BD 两两垂直,建立以H 为坐标原点,HB 、HC 、HP 所在直线分别为x ,y ,z 轴的坐标系, H(0,0,0),B(3,0,0),C(0,4,0),D(−2,0,0),P(0,0,4), 假设线段PC 上存在一点F 满足题意, ∵CF ⃗⃗⃗⃗⃗ 与CP ⃗⃗⃗⃗⃗ 共线,∴存在唯一实数λ,(0≤λ≤1),满足CF ⃗⃗⃗⃗⃗ =λCP ⃗⃗⃗⃗⃗ , 解得F(0,4−4λ,4λ),设向量n ⃗ =(x,y ,z)为平面CPD 的一个法向量,且CP ⃗⃗⃗⃗⃗ =(0,−4,4),CD ⃗⃗⃗⃗⃗ =(−2,−4,0),∴{n ⃗ ⋅CP ⃗⃗⃗⃗⃗ =−4y +4z =0n⃗ ⋅CD ⃗⃗⃗⃗⃗ =−x −2y =0,取x =2,得n⃗ =(2,−1,−1), 同理得平面CPD 的一个法向量m⃗⃗⃗ =(0,λ,λ−1),7 / 16∵二面角B −DF −C 的余弦值是√1515,∴|cos <n ⃗ ,m ⃗⃗⃗ >|=|n ⃗⃗ ⋅m ⃗⃗⃗ ||n ⃗⃗ |⋅|m ⃗⃗⃗ |=√6⋅√2λ2−2λ+1=√1515, 由0≤λ≤1,解得λ=34, ∴CF ⃗⃗⃗⃗⃗ =34CP⃗⃗⃗⃗⃗ , ∵CP =4√2,∴线段PC 上存在一点F ,当点F 满足CF =3√2时,二面角B −DF −C 的余弦值是√1515.19. 解:(1)x =45×0.005×10+55×0.015×10+65×0.02×10+75×0.03×10+85×0.025×10+95×0.005×10=72(分), 众数为75分.(2)90分以上的人数为160×0.005×10=8人. ∴ξ的可能取值为2,3,4, P(ξ=2)=C 33⋅C 51+C 32⋅C 22C 84=435,P(ξ=3)=C 32⋅C 21⋅C 31+C 31⋅C 22⋅C 31+C 32⋅C 32+C 22⋅C 32C 84=3970,P(ξ=4)=C 32⋅C 31⋅C 21+C 33⋅C 51C 84=2370.∴ξ的数学期望是E(ξ)=2×435+3×3970+4×2370=4514.20. 解:(1)∵点(2,4)在抛物线y 2=2px 上,∴16=4p ,解得p =4,∴椭圆的右焦点为F(2,0), ∴c =2, ∵椭圆C 1:x 2a2+y 2b 2=1(a >b >0)的离心率为√22,∴ca =√22, ∴a =2√2,∴b 2=a 2−c 2=8−4=4, ∴椭圆C 1的方程为x 28+y 24=1,(2)设直线l 的方程为y =kx +m ,设A(x 1,y 1),B(x 2,y 2), 由{x 2+2y 2=8y=kx+m,消y 可得(1+2k 2)x 2+4kmx +2m 2−8=0, ∴x 1+x 2=−4km1+2k 2,x 1x 2=2m 2−81+2k 2,∴y 1+y 2=k(x 1+x 2)+2m =2m1+2k 2,y 1y 2=k 2x 1x 2+km(x 1+x 2)+m 2=m 2−8k 21+2k 2∵M(0,2),直线AM与BM的斜率乘积为−12,∴k1⋅k2=y1−2x1⋅y2−2x2=y1y2−2(y1+y2)+4x1x2=m−22(m+2)=−12,解得m=0,∴直线l的方程为y=kx,线段AB的中点为坐标原点,由弦长公式可得|AB|=√1+k2√(x1+x2)2−4x1x2=√32(k2+1)1+2k2,∵|AN|=|BN|,∴ON垂直平分线段AB,当k≠0时,设直线ON的方程为y=−1kx,同理可得|ON|=12√32(1k2+1)2×1k2+1=12√32(k2+1)k2+2,∴S△ABN=12|ON|⋅|AB|=8√(k2+1)2(k2+2)(2k2+1),当k=0时,△ABN的面积也适合上式,令t=k2+1,t≥1,0<1t≤1,则S△ABN=8√t2(t+1)(2t−1)=8√1−1t2+1t+2=8√1−(1t−12)2+94,∴当1t =2时,即k=±1时,S△ABN的最小值为163.21. 解:(1)当b=2时,f(x)=ae x+x2−2x,(a∈R),f′(x)=ae x+2x−2,(a∈R),由题意得ae x+2x−2=0,即a=2−2xe x,令ℎ(x)=2−2xe x ,则ℎ′(x)=2x−4e x=0,解得x=2,当x<2时,ℎ′(x)<0,ℎ(x)单调弟增,当x>2时,ℎ′(x)>0,ℎ(x)单调递减,∴ℎ(x)min=ℎ(2)=−2e2,∵当x=−1时,ℎ(−1)=4e>0,当x>2时,ℎ(x)=2−2xe x<0,由题意得当a=−2e2或a∈[0,+∞)时,f′(x)在R上有且只有一个零点.(2)由f(x)=ae x+x2−bx,得f′(x)=ae x+2x−b,假设存在x0,则有f(x0)=f′(x0+m2)(x0−m)+n=f′(x0+m2)(x0−m)+f(m),即f(x0)−f(m)x0−m =f′(x0+m2),(x0≠m),∵f′(x0+m2)=ae x0+m2+2⋅x0+m2−b,f(x0)−f(m)x0−m =a(e x0−e m)+(x02−m2)−b(x0−m)x0−m=a(e x0−e m)x0−m+(x0+m)−b,∴ae x0+m2+2⋅x0+m2−b=a(e x0−e m)x0−m+(x0+m)−b,即ae x0+m2=a(e x0−e m)x0−m,∵a≠0,∴ex0+m2=e x0−e mx0−m,令t=x0−m>0,则e t2−m=e t+m−e mt,两边同时除以e m,得e t2=e t−1t,即te t2=e t−1,令g(t)=e t−te t2−1,∴g′(t)=e t−(e t2+t2e t2)=e t2(e t2−t2−1),令ℎ(t)=e t2−t2−1在(0,+∞)上单调递增,且ℎ(0)=0,∴ℎ(t)>0对于t∈(0,+∞)恒成立,即g′(t)>0对于t∈(0,+∞)恒成立,∴g(e)在(0,+∞)上单调递增,g(0)=0,∴g(t)>0对于t∈(0,+∞)恒成立,∴ae x0+m2=a(e x0−e m)x0−m不成立,同理,t=x0−m<0时,bngidnuu,∴不存在实数x0(x0≠m)使得f(x0)−n=f′(x0+m2)(x0−m)成立.22. 解:(1)l1,l2的极坐标方程为θ1=α(ρ∈R),θ2=α+π4(ρ∈R).曲线C的极坐标方程方程为ρ−4cosθ=0.即得ρ2−4ρcosθ=0,利用ρ2=x2+y2,x=ρcosθ得曲线C的直角坐标方程为(x−2)2+y2=4.(2)因为ρ1=4cosα,ρ2=4cos(α+π4),所以|AB|2=ρ12+ρ22−2ρ1.ρ2cosπ4=16[cos2α+cos2(α+π4)−√2cosαcos(α+π4)]=16[cos2α+12(cosα−sinα)2−cosα(cosα−sinα)]=8,所以|AB|的值为2√2.23. 解:(1)当x≥2时,x−2≥1−2x,得x≥1,故x≥2,当x<2时,2−x≥1−2x,得x≥−1,故−1≤x<2,综上,不等式的解集是{x|x≥−1};(2)∵f(x)+|x−1|的最小值是3,∴f(x)+|x−1|≥|x−a−(x−1)|=|a−1|=3,故a=4,∵m+n=m2+m2+n≥33m2⋅m2⋅n=3,当且仅当m2=n即m=2,n=1时取“=”.【解析】1. 解:A={x|x<−1,或x>3};∴∁R A={x|−1≤x≤3};∴(∁R A)∩B={0,1,2,3}.故选:C.9/ 16可先求出集合A ={x|x <−1,或x >3},然后进行交集、补集的运算即可. 考查一元二次不等式的解法,以及描述法、列举法表示集合的概念,交集和补集的运算.2. 解:由复数a+3i 1+2i =(a+3i)(1−2i)(1+2i)(1−2i)=(a+6)+(3−2a)i5=a+65+3−2a 5i 是纯虚数,则{a+65=03−2a5≠0,解得a =−6.故选:A .利用复数的除法运算化简为a +bi(a,b ∈R)的形式,由实部等于0且虚部不等于求解a 的值.本题考查了复数代数形式的乘除运算,考查了复数的基本概念,是基础的计算题.3. 解:f(x)=sinx −tanx ,x ∈(0,π2),当x =π4时,∴f(x)=√22−1<0,命题p :∃x 0∈(0,π2),f(x 0)<0,是真命题,命题p :∃x 0∈(0,π2),f(x 0)<0,则¬p :∀x ∈(0,π2),f(x)≥0.故选:C .利用特称值,判断特称命题的真假,利用命题的否定关系,特称命题的否定是全称命题写出结果.本题考查命题的否定,特称命题与全称命题的否定关系,基本知识的考查. 4. 解:当S =1时,不满足退出循环的条件,故S =1,i =3; 当S =1时,不满足退出循环的条件,故S =3,i =5; 当S =3时,不满足退出循环的条件,故S =15,i =7; 当S =15时,不满足退出循环的条件,故S =105,i =9; 当S =105时,不满足退出循环的条件,故S =945,i =11; 当S =945时,不满足退出循环的条件,故S =10395,i =13; 当S =10395时,满足退出循环的条件, 故输出的i =13, 故选:D .由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量i 的值,模拟程序的运行过程,可得答案.本题考查的知识点是程序框图,当循环的次数不多,或有规律时,常采用模拟循环的方法解答.5. 解:由题意,第一类,一班的2名同学在甲车上,甲车上剩下两个要来自不同的班级,从三个班级中选两个为C 32=3,然后分别从选择的班级中再选择一个学生为C 21C 21=4,故有3×4=12种.第二类,一班的2名同学不在甲车上,则从剩下的3个班级中选择一个班级的两名同学在甲车上,为C 31=3,然后再从剩下的两个班级中分别选择一人为C 21C 21=4,这时共有3×4=12种,根据分类计数原理得,共有12+12=24种不同的乘车方式, 故选:B .分类讨论,第一类,一班的2名同学在甲车上;第二类,一班的2名同学不在甲车上,再利用组合知识,问题得以解决.本题考查计数原理的应用,考查组合知识,考查学生的计算能力,属于中档题.11 / 166. 解:由三视图知该几何体是侧棱垂直于底面的四棱锥,如图所示;正视图和侧视图是腰长为1的两个全等的等腰直角三角形, ∴四棱锥的底面是正方形,且边长为1,其中一条侧棱PD ⊥底面ABCD ,且侧棱AD =1,∴四棱锥的四个侧面都为直角三角形,且PA =PC =√2, ∴四棱锥的表面积为S =S 底面ABCD +2S △SAD +2S △SAB =1+2×12×1×1+2×12×1×√2=2+√2. 故选:C .由三视图知该几何体是侧棱垂直于底面的四棱锥, 画出图形结合图形求出它的表面积.本题考查了利用空间几何体的三视图求几何体表面积的应用问题,是基础题. 7. 解:作出不等式组{x +y ≤4y −x ≥0x −1≥0表示的平面区域, 得到如图的△MNP 及其内部,其中M(1,1),N(2,2),P(1,3)∵圆C :(x +1)2+(y +1)2=r 2(r >0)表示以C(−1,−1)为圆心,半径为r 的圆,∴由图可得,当半径满足r <CM 或r >CP 时,圆C 不经过区域D 上的点,∵CM =√(1+1)2+(1+1)2=2√2,CP =√(1+1)2+(3+1)2=2√5∴当0<r <2√2或r >2√5时,圆C 不经过区域D 上的点, 故选:A .作出题中不等式组表示的平面区域,得到如图的△MNP 及其内部,而圆C 表示以(−1,−1)为圆心且半径为r 的圆.观察图形,可得半径r <CM 或r >CP 时,圆C 不经过区域D 上的点,由此结合平面内两点之间的距离公式,即可得到r 的取值范围. 本题给出动圆不经过已知不等式组表示的平面区域,求半径r 的取值范围.着重考查了圆的标准方程、平面内两点间的距离公式、二元一次不等式组表示的平面区域等知识,属于中档题.8. 解:等边三角形ABC 的边长为3; ∴CA⃗⃗⃗⃗⃗ ⋅CB ⃗⃗⃗⃗⃗ =|CA ⃗⃗⃗⃗⃗ ||CB ⃗⃗⃗⃗⃗ |cos60∘=92; 6CM ⃗⃗⃗⃗⃗⃗ −3CA ⃗⃗⃗⃗⃗ =2CB ⃗⃗⃗⃗⃗ ; ∴CM ⃗⃗⃗⃗⃗⃗ =12CA ⃗⃗⃗⃗⃗ +13CB⃗⃗⃗⃗⃗ ; ∴AM ⃗⃗⃗⃗⃗⃗ =AC ⃗⃗⃗⃗⃗ +CM ⃗⃗⃗⃗⃗⃗ =−CA ⃗⃗⃗⃗⃗ +12CA ⃗⃗⃗⃗⃗ +13CB⃗⃗⃗⃗⃗=−12CA ⃗⃗⃗⃗⃗ +13CB ⃗⃗⃗⃗⃗ ,BM ⃗⃗⃗⃗⃗⃗ =BC ⃗⃗⃗⃗⃗ +CM ⃗⃗⃗⃗⃗⃗ =−CB ⃗⃗⃗⃗⃗ +12CA ⃗⃗⃗⃗⃗ +13CB ⃗⃗⃗⃗⃗ =12CA ⃗⃗⃗⃗⃗ −23CB ⃗⃗⃗⃗⃗ ; ∴AM ⃗⃗⃗⃗⃗⃗ ⋅BM ⃗⃗⃗⃗⃗⃗ =(−12CA ⃗⃗⃗⃗⃗ +13CB ⃗⃗⃗⃗⃗ )⋅(12CA ⃗⃗⃗⃗⃗ −23CB ⃗⃗⃗⃗⃗ ) =−14CA ⃗⃗⃗⃗⃗ 2+12CA ⃗⃗⃗⃗⃗ ⋅CB ⃗⃗⃗⃗⃗ −29CB ⃗⃗⃗⃗⃗ 2=−94+94−2=−2. 故选:B .根据条件可先求出CA ⃗⃗⃗⃗⃗ ⋅CB ⃗⃗⃗⃗⃗ =92,而由6CM ⃗⃗⃗⃗⃗⃗ −3CA ⃗⃗⃗⃗⃗ =2CB ⃗⃗⃗⃗⃗ 即可得出CM ⃗⃗⃗⃗⃗⃗ =12CA ⃗⃗⃗⃗⃗ +13CB ⃗⃗⃗⃗⃗ ,这样即可用CA ⃗⃗⃗⃗⃗ ,CB ⃗⃗⃗⃗⃗ 分别表示出AM ⃗⃗⃗⃗⃗⃗ ,BM⃗⃗⃗⃗⃗⃗ ,然后进行数量积的运算即可. 考查向量数量积的运算及计算公式,以及向量的数乘运算,向量加法的几何意义.9. 解:函数f(x)=3sin(2x −π3)+1(x ∈R),周期T =2π2=π,对于A :由f(x 1)=f(x 2)=1,可能x 1与x 2关于其中一条对称轴是对称的,此时x 1−x 2不是π的整数倍;∴A 不对. 对于B :由诱导公式,3sin(2x −π3)+1=3cos[π2−(2x −π3)]+1=3cos(2x −5π6)+1.∴B 不对. 对于C :令x =3π4,可得f(3π4)=3sin(2×3π4−π3)+1=3×(−12)−1=−52,∴C 不对, 对于D :当x =−π12时,可得f(−π12)=3sin(−π6−π3)+1=−1×3+1=−2, f(x)的图象关于直线x =−π12对称. 故选:D .根据函数f(x)=3sin(2x −π3)+1(x ∈R),结合三角函数的性质即可判断各选项. 本题主要考查利用y =Asin(ωx +φ)的信息特征,判断各选项的正误,属于中档题.10. 解:由题意,f(x)<−m +4,可得m(x 2−x +1)<5. ∵当x ∈[1,3]时,x 2−x +1∈[1,7], ∴不等式f(x)<0等价于m <5x 2−x+1. ∵当x =3时,5x 2−x+1的最小值为57, ∴若要不等式m <5x 2−x+1恒成立, 则必须m <57,因此,实数m 的取值范围为(−∞,57),故选:D .利用分离参数法,再求出对应函数在x ∈[1,3]上的最大值,即可求m 的取值范围.本题考查恒成立问题,考查分离参数法的运用,解题的关键是分离参数,正确求最值,属于中档题.11. 解:双曲线的一条渐近线方程为y=bax,双曲线的渐近线被圆M:x2+y2−10x=0,即(x−5)2+y2=25所截得的两条弦长之和为12,设圆心到直线的距离为d,则d=√25−9=4,∴√a2+b2=4,即5b=4c,即b=45c∵a2=c2−b2=925c2,∴a=35c,∴|AP−BP|=2a,由正弦定理可得APsinB =PBsinA=ABsinP=2R,∴sinB=AP2R ,sinA=BP2R,sinP=2c2R,∴|sinP||sinA−sinB|=2c2R|BP2R−AP2R|=2c2a=53,故选:C.根据垂径定理求出圆心到直线的距离为d=4,再根据点到直线的距离公式可得5b√a2+b2=4,得到5b=4c,即可求出a=35c,根据正弦定理可得|sinP||sinA−sinB|=2c2R|BP2R−AP2R|=2c2a=53本题考查了双曲线的简单性质以及圆的有关性质和正弦定理,属于中档题12. 解:f(x)=f′(1)2e2x−2+x2−2f(0)⋅x,令x=0,则f(0)=f′(1)2e2.∵f′(x)=f′(1)⋅e2x−2+2x−2f(0),令x=1,则f′(1)=f′(1)+2−2f(0),解得f(0)=1.∴f′(1)=2e2.∴f(x)=e2x+x2−2x,∴f(2)=e4.令ℎ(x)=e2x g(x),∵g′(x)+2g(x)<0,∴ℎ′(x)=e2x g′(x)+2e2x g(x)=e2x[g′(x)+2g(x)]<0,∴函数ℎ(x)在R上单调递减,∴ℎ(2016)>ℎ(2018),∴e2016×2g(2016)>e2018×2g(2018),可得:g(2016)>e4g(2018).∴g(2016)>f(2)g(2018).故选:C.13/ 16f(x)=f′(1)2e 2x−2+x 2−2f(0)⋅x ,令x =0,则f(0)=f ′(1)2e 2.由f′(x)=f′(1)⋅e 2x−2+2x −2f(0),令x =1,可得f(0).进而得出f′(1),f(x),f(2).令ℎ(x)=e 2x g(x),及其已知g′(x)+2g(x)<0,可得ℎ′(x)=e 2x [g′(x)+2g(x)]<0,利用函数ℎ(x)在R 上单调递减,即可得出.本题考查了利用导数研究函数的单调性极值与最值、构造法、方程与不等式的解法,考查了推理能力与计算能力,属于难题.13. 解:由于a =∫(π0cosx −sinx)dx =(sinx +cosx)| 0π=−1−1=−2,∴(−2√x −1√x)6=(2√x +1√x)6的通项公式为T r+1=26−r C 6r⋅x 3−r ,令3−r =2,求得r =1,故含x 2项的系数为26−1C 61=192. 故答案为:192根据微积分基本定理首先求出a 的值,然后再根据二项式的通项公式求出r 的值,问题得以解决.本题主要考查定积分、二项式定理的应用,二项式展开式的通项公式,属于基础题.14. 解:∵函数f(x)={ax(x +2),x <0x(x−b),x≥0={ax 2+2ax,x <0x 2−bx,x≥0为奇函数,故f(−x)=−f(x)恒成立, 故{−b =2a a=−1.即{b =2a=−1, ∴f(x)={−x 2−2x,x <0x 2−2x,x≥0,∴f(a +b)=f(1)=1−2=−1, 故答案为:−1.由已知中函数f(x)为奇函数,f(−x)=−f(x)恒成立,可得a ,b 的值,进而可得f(a +b)的值.本题考查的知识点是分段函数的应用,函数的奇偶性,函数求值,难度中档. 15. 解:由题意,△ABC 的外接圆即为球的大圆,r =2, 设底面△ABC 外接圆圆心G ,即GA =GB =GC =2,从而正三角形ABC 边长2√3, 设球心O ,由题意,E 、F 在球面上,OE =OD =2, F 为DE 中点,则OF ⊥DE ,OF =GD =12GC =1,在Rt △OEF 中,OE =2,OF =1,∴EF =√3, ∴DE =2√3, ∴AA 1=2√3. 故答案为:2√3.由题意求出正三棱柱的高、底面边长,即可求出AA 1的长度.本题考查正三棱柱的内切球与正三棱柱的关系,通过二者的关系求出正三棱柱的体积,考查计算能力,逻辑推理能力.16. 解:由CD//OA ,∠AOB =π3,∠AOC =θ,得∠OCD =θ,∠ODC =2π3,∠COD =π3−θ; 在△OCD 中,由正弦定理,得CD =√3sin(π3−θ),θ∈(0,π3), 设渔网的长度为f(θ),可得f(θ)=θ+1+√3sin(π3−θ),15 / 16所以f′(θ)=1−√3cos(π3−θ),因为θ∈(0,π3), 所以π3−θ∈(0,π3),令f′(θ)=0,得cos(π3−θ)=3,所以π3−θ=π6,所以θ=π6.所以f(θ)∈(2,π+6+2√36]. 故所需渔网长度的最大值为π+6+2√36. 确定∠COD ,在△OCD 中利用正弦定理求得CD 的长度,根据所需渔网长度,即图中弧AC 、半径OC 和线段CD 长度之和,确定函数的解析式,利用导数确定函数的最值,求得所需渔网长度的最大值.本题考查了正弦定理的应用问题,也考查了函数模型的构建与最值应用问题,是难题.17. (1)6S n =a n2+3a n +2,n ∈N ∗.n ≥2时,6a n =6S n −6S n−1,化为(a n +a n−1)(a n −a n−1−3)=0,由a n >0,可得a n −a n−1=3,n =1时,6a 1=a 12+3a 1+2,且a 1<2,解得a 1.利用等差数列的通项公式可得a n .(2)b n =(−1)n a n 2=(−1)n (3n −2)2.b 2n−1+b 2n =−(6n −5)2+(6n −2)2=3(12n −7)=36n −21.利用分组求和即可得出.本题考查了数列递推关系、等差数列的定义通项公式与求和公式、分组求和方法,考查了推理能力与计算能力,属于中档题.18. (1)推导出△BAD≌△EDC ,∠DBA =∠DEH ,从而BD ⊥EC ,由PH ⊥平面ABCD ,得BD ⊥PH ,由此能证明BD ⊥平面PEC ,从而PC ⊥BD .(2)推导出PH 、EC 、BD 两两垂直,建立以H 为坐标原点,HB 、HC 、HP 所在直线分别为x ,y ,z 轴的坐标系,利用向量法能求出线段PC 上存在一点F ,当点F 满足CF =3√2时,二面角B −DF −C 的余弦值是√1515.本题考查线线垂直垂直的证明,考查二面角的余弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查函数与方程思想,是中档题. 19. (1)把组中值看作各小组的平均数,根据加权平均数公式计算; (2)根据组合数公式计算各种情况的概率,得出分布列.本题考查了频率分布直方图,离散型随机变量的分布列和数学期望,属于中档题.20. (1)先求出p 的值,即可求出c 的值,根据离心率求出a 的值,即可得到椭圆方程, (2)设直线l 的方程为y =kx +m ,设A(x 1,y 1),B(x 2,y 2),由{x 2+2y 2=8y=kx+m,根据直线AM 与BM 的斜率乘积为−12,求出m =0,再根据弦长公式求出|AB|和|ON|,表示出三角形的面积来,再利用二次函数的性质即可求出最小值.本题考查椭圆的标准方程,直线与椭圆的位置关系,考查椭圆与二次函数函数的应用,考查计算能力,属于难题.21. (1)当b =2时,f(x)=ae x +x 2−2x ,(a ∈R),f′(x)=ae x +2x −2,(a ∈R),由题意a =2−2x e x,令ℎ(x)=2−2x e x,则ℎ′(x)=2x−4e x=0,解得x =2,由此能求出当a =−2e 2或a∈[0,+∞)时,f′(x)在R上有且只有一个零点.= (2)由f(x)=ae x+x2−bx,得f′(x)=ae x+2x−b,假设存在x0,则f(x0)−f(m)x0−m ),(x0≠m),利用导数性质推导出不存在实数x0(x0≠m)使得f(x0)−n=f′(x0+m2f′(x0+m)(x0−m)成立.2本题考查利用导数研究函数的性质及实数的最值范围的求法、满足条件的实数是否存在的判断与证明,考查函数与方程思想、转化与化归思想,考查运算求解能力、推理论证能力,考查创新意识,是中档题.22. (1)考查直线l1,l2参数方程与极坐标方程的互化,曲线C的极坐标方程与直角坐标方程的互化.重点都是消去参数t.(2)利用l1,l2极坐标方程,结合余弦定理,计算出|AB|的长度.考查极坐标方程与参数方程,普通方程的互化.记准互化公式和原则是关键,属于中档题目.23. (1)通过讨论x的范围,求出不等式的解集即可;(2)根据绝对值不等式的性质求出a的值,结合基本不等式的性质求出m+n的最小值即可.本题考查了解绝对值不等式问题,考查绝对值的性质以及基本不等式的性质,是一道中档题.。

2018届高三山东省菏泽市一模理科数学(word版,含答案)

2018届高三山东省菏泽市一模理科数学(word版,含答案)

菏泽市2018届高三年级第一次模拟考试数学(理)2018.3一、选择题: 1.已知集合{}{}2|430|15A x x x B x x =-+=-N ≥,≤≤∈,则A B =A.{}1345,,,B.{}0145,,,C.{}03145,,,,D.{}345,,2.已知复数z 满足()21i 2i z +=-(i 为虚数单位),则z 为D.1 3.已知m n ,是两条不同的直线,αβγ,,是三个不同的平面,则下列正确的是 A. 若m n αα, ,则m nB.若αγβγ⊥⊥,,则αβC. 若m n αβ,,则αβD.若m n αα⊥⊥,,则m n 4.若在区间[]02,上随机取两个数,则这两个数之和小于3的概率是A.78B.38C.58D.185.若双曲线()220011x y λλλ-=<<-的离心率()12e ,∈,则实数λ的取值范围为 A.112⎛⎫⎪⎝⎭, B.()12, C.()14,D.114⎛⎫⎪⎝⎭, 6.等比数列{}n a 中,216a a ,是方程2620x x ++=的两个实数根,则2169a a a 的值为 A.2B.D.7.执行如图所示的程序框图,输入1n =,若要求输出32mm+不超过500的最大奇数m ,则◇内应填A.2500?A ≥B.500?A ≤C.500?A ≥D.2500?A ≤8.若()*3nx n⎛ ⎝N ∈的展开式中含有常数项,且n 的最小值为a ,则ax -=⎰A.36πB.81π2 C.25π2D.25π 9.如图,网格纸上小正方形的边长为1,粗线画出的是某三棱锥的三视图,则该三棱锥的外接球的表面积是A.25πB.25π4C.29πD.29π410.已知πtan 102αα⎛⎫=<< ⎪⎝⎭,若将函数()()()sin 20f x x ωαω=->的图象向右平移π3个单位长度后所得图象关于y 轴对称,则ω的最小值为A.18 B.94C.38D.3411.已知椭圆()222210x y a b a b+=>>的左、右焦点分别为12F F ,,过1F 作垂直于x 轴的直线交椭圆于A ,B 两点,若2ABF △的内切圆半径为38a ,则椭圆的离心率e =A.12B.12 12.已知()f x 是定义域为()0+,∞的单调函数,若对任意()0x +,∈∞都有()13log 4f f x x ⎛⎫+= ⎪⎝⎭,且关于x 的方程()223694f x x x x a -=-+-+在区间(]03,上有两个不同实数根,则实数a 的取值范围是A. (]05, B.[]05, C.()05, D.[)5+,∞二、13.记[]x 表示不超过x 的最大整数,例如[][]2.92 4.15=-=-,,已知()[]211xx f x x x x ⎧<⎪=⎨-⎪⎩,,,≥,则52f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭__________. 14.若实数x y ,满足321x y -+-≤,则yz x=的最小值是_____. 15.已知平面向量,,a b c均为单位向量,若0a b ⋅= ,则23a b c +- 的取值范围为__.16.已知等差数列{}n a 前n 项和为n S ,且6894S S =-=,,若满足不等式n n S λ⋅≤的正整数n 有且仅有3个,则实数λ的取值范围为__________.三、解答题:17.在ABC △中,a b c ,,分别是角A B C ,,的对边,且)sin sin sin a A b B c C -=-,:2:3a b =.(1)求sin C 的值;(2)若6b =,求ABC △的面积.18.如图,在几何体ABCDEF 中,四边形ABCD 是边长为2的菱形,DE ⊥平面ABCD ,BF ⊥平面ABCD,DE =DE BF >120ABC ∠=︒.(1)当BF 长为多少时,平面AEF ⊥平面CEF ? (2)在(1)的条件下,求二面角E AC F --的余弦值. 19.在一次诗词知识竞赛调查中,发现参赛选手分为两个年龄(单位:岁)段:[)2030,,[]3040,,其中答对诗词名句与否的人数如图所示.(1)完成下面2×2列联表;(2)是否有90%的把握认为答对诗词名句与年龄有关,请说明你的理由;(3)现按年龄段分层抽样选取6名选手,若从这6名选手中选取3名选手,求3名选手中年龄在[)2030,岁范围人数的分布列和数学期望.注:()()()()()22n ad bc K a b c d a c b d -=++++,其中n a b c d =+++20.已知抛物线E 的顶点为平面直角坐标系xOy 的坐标原点O ,焦点为圆22:430F x y x +-+=的圆心F .经过点F 的直线l 交抛物线E 于A D ,两点,交圆F 于B C ,两点,A B ,在第一象限,C D ,在第四象限.(1)求抛物线E 的方程;(2)是否存在直线l 使2BC 是AB 与CD 的等差中项?若存在,求直线l 的方程;若不存在,请说明理由.21.已知函数()()ln e 1x f x x g x x x ==--,. (1)若关于x 的方程()273f x x x m =-+在区间[]13,上有解,求实数m 的取值范围; (2)若()()g x a f x -≥对()0x ∀+,∈∞恒成立,求实数a 的取值范围.22.在平面直角坐标系xOy 中,曲线12cos :sin x C y αα=⎧⎨=⎩,(α为参数),以坐标原点O 为极点,x 轴的正半轴为极轴且取相同的单位长度建立极坐标系,曲线2C 的极坐标方程为2sin ρθ=-.(1)求曲线1C 的普通方程和曲线2C 的普通方程;(2)若P Q ,分别为曲线12C C ,上的动点,求PQ 的最大值.菏泽市2018届高三年级第一次模拟考试·数学(理科)参考答案、提示及评分细则1.C 因为集合{}2|430{|13}A x x x x x x =-+≥=≤≥或,{}{|15}0,1,2,3,4,5B x N x =∈-≤≤=,所以{}0,1,3,4,5A B = ,故选C.2.C 由()212z i i +=-,得()()2222212221i i ii z i i i i ---====--+,∴2z ,故选C. 3.D 若,m n αα⊥⊥,则m n ,D 正确;分析知选项A ,B ,C 均不正确,故选D. 4.A 如图,在区间[0,2]上随机取两个数为x ,y ,则不等式组0202x y ≤≤⎧⎨≤≤⎩,表示的平面区域为边长是2的正方形OACE 区域.又3x y +<,所以所求概率1221172228S p S ⨯-⨯⨯===⨯阴正.故选A 5.D由题意易得e =,则12<<,即114λ<<.故选D. 6.B 216,a a 是方程2620x x ++=的根,2162162166,2,0,0a a a a a a ∴+=-=∴<<⨯,即10,0a q ><或1,00a q <>.21699a a a a ∴===故选B. 7.C 输入1n =,则111211,325m A ==+-==,不符合;2n =,则233231,3235m A ==+=-=,不符合;3n =,则377217,32500m A =-==+>,符合.又5532500+>,所以输出m 的值应为5,所以空白框内应填500?A ≥输出572=-.故选C8.C ()*3x nn N ∈展开式的通项为()52133,0,1,,rn r n rr n r r r nn T C x C x r n ---+=== ,因为展开式中含有常数项,所以502n r -=,即25r n =为整数,故n 的最小值为5.所以55252aaπ--==.故选C 9.D 由已知中的三视图可得:该几何体是一个以俯视图为底面的三棱锥,其外接球相当于以俯视图为底面侧棱长为1的直三棱柱的外接球,再由正弦定理易得底面三角形的外接圆半径1524r ==,球心到底面的距离12d =,故球半径R ==,故球的表面积244S R π==,故选D. 10.D由tan 1α=得tan 21α=,又02πα<<,则02απ<<,所以24πα=,所以()sin()4f x x πω=-.将()f x 向右平移π3个单位长度后得到 ()sin 34g x x ππω⎡⎤⎛⎫=-- ⎪⎢⎥⎝⎭⎣⎦,因为函数()g x 的图象关于y 轴对称,所以342k ωππππ--=+,即()934k k Z ω=--∈.又0ω>,所以当1k =-时,ω取得最小值34. 故选D. 11.B 如图,设2ABF ∆内切圆圆心为C ,半径为r , 则222ABF ABC ACF BCF S S S S ∆∆∆∆=++.即()222112222b c r AB AF BF a ⋅⋅⋅=⋅++,∴22142cb r a a =⋅⋅,∴2238b c r a a ==.整理得338e e -=,解得12e =或e =.故选B.12.A 由题意知必存在唯一的正实数m 满足()13log f x x m +=,()4f m =,∴()13log f m m m +=,∴13log 4m m =-,∴413m m -⎛⎫= ⎪⎝⎭,解得m=3.故()133log f x x =-.又关于x 的方程()323694f x x x x a --=-++在区间(0,3]上有两个不同实数根,即关于x 的方程3213log 694x x x x a -+=-+在区间(0,3]上有两个不同实数根.由()32694g x x x x a -+=-+,得()2'3129g x x x -=+.当13x <<时,()'0g x <,()g x 单调递减;与01x <<时,'()0g x >,()g x 单调递增,∴()g x 在1x =处取得最大值a.(0)4g a =-,() 34g a =-.分别作出函数13log y x =和函数32694y x x x -+=-的部分图象:两图象只有一个交点(l ,0),将32694y x x x -+=-的图象向上平移,且经过点(3,1),由()31g =,得5a =.综上05a <≤.故选A.512>,∴5551()[]2222f =-=. 又∵112<,∴1()2f =,即5(())2f =14.13不等式321x y -+-≤可表示为如图所示的平面区域.y z x =为该区域内的点与坐标原点连线的斜率,显然,当x=3,y=1时,yz x=取得最小值13.15.11]∵三个平面向量,,a b c 均为单位向量,0a b ⋅= ,∴设(1,0)a =,(0,1)b = ,(,)c x y = ,则23(2,3)a b c x y +-=--,1c == ,∴23a b c +-== 它表示单位圆上的点到定点P(2,3)的距离,其最大值是1PM r OP =+=1OP r -=.∴23a b c +-的取值范围是11].16.81[54,)2--不妨设2n S An Bn =+,由6894S S =-=,,得36696484A B A B +=-⎧⎨+=⎩, 则1152A B =⎧⎪⎨=-⎪⎩,所以32152nnS n n =-,令32(2)15f x x x -=, 则2'()3153(5)f x x x x x =-=-),易得数列{}n nS 在5n ≤时单调递减;在n >5时单调递增. 令n n nS b =,有3381562b b =-=-,,56125542b b =-=-,,7492b =-. 若满足题意的正整数n 只有3个,则n 只能为4,5,6,故实数λ的取值范围为81[54,)2--.17.解:(1)∵)sin sin sin a A b B c C -=-,由正弦定理得)22a b c c -=-.∴222a cb +-=,∴222cos 2a c b B ac +-===又()0B π∈,,∴6B π=. ∵:2:3a b =,∴23a b =,∴2sin sin 3A B =, 由3a=2b 知,a <b ,∴A为锐角,∴cos 3A =. ∴()()sin sin sin sin cos cos sin C A B A B A B A B π=-+=+=+=⎡⎤⎣⎦ (2)∵b=6,:2:3a b =,∴a=4.∴11sin 46226ABC S ab C ∆==⨯⨯⨯=18.证明:(1)连接BD 交AC 于点O ,则AC ⊥BD.取EF 的中点G ,连接OG ,则OG ∥DE. ∵DE ⊥平面ABCD ,∴OG ⊥平面ABCD. ∴OG ,AC ,BD 两两垂直.∴以AC ,BD ,OG 所在直线分别作为x 轴,y 轴,z 轴建立空间直角坐标系(如图),设(BF m m =<,由题意,易求00)(00)A C ,,,,(01(01)E F m -,,,,∴(1(1)AE AF m =-= ,,11)CE CF m =-= ,设平面AEF ,平面CEF 的法向量分别为1111()n x y z = ,,,2222()n x y z = ,,由1n AE ⊥ ,1n AF ⊥ ,得1100n AE n AF ⎧⋅=⎪⎨⋅=⎪⎩,∴11111100y y mz ⎧-+=⎪⎨++=⎪⎩解得1111z x y x ⎧=⎪⎪⎨⎪=⎪⎩.令1x m =+1(n m =+ .同理可求2(n m =+-- . 若平面AEF ⊥平面CEF ,则120n n ⋅= ,∴2()120m ++--=,解得m =或m =, 即BFAEF ⊥平面CEF.解:(2)当m =时,(1(00)AE AC =-=- ,,,(02(11EF AF CF === ,,,,∴0EF AF ⋅= ,0EF CF ⋅=,∴EF ⊥AF ,EF ⊥CF ,∴EF ⊥平面AFC , ∴平面AFC的一个法向量为(02EF =,,,设平面AEC 的一个法向量为()n x y z =,,,则 0n AE n AC ⎧⋅=⎪⎨⋅=⎪⎩,∴00y x ⎧-+=⎪⎨=⎪⎩,得0y x ⎧=⎪⎨=⎪⎩,令z =4y =,∴(04n = ,.从而cos 3n EF n EF n EF ⋅==⋅,<>=故所求的二面角E-AC-F的余弦值为3. 19.解:(1)2×2列联表:(2)()()()()()()222120701030103201004080n ad bc K a b c d a c b d -⨯-⨯===++++⨯⨯⨯. ∵3>2.706,∴有90%的把握认为答对诗词名句与年龄有关.(3)按年龄段分层抽取6人中,在范围[20,30)岁的人数是2(人),在[30,40]岁范围的人数是4(人).现从6名选手中选取3名选手,设3名选手中在范围[20,30)岁的人数为ξ,则ξ的可能取值为0,1,234361(0)5C P C ξ===,2142363(1)5C C P C ξ===, 1242361(2)5C C P C ξ===,∴ξ的分布列为故ξ的数学期望为()0121555E ξ=⨯+⨯+⨯=. 20.解:(1)∵圆F 的方程为22(2)1x y -+=,∴圆心F 的坐标为(2,0),半径r=1. 根据题意设抛物线E 的方程为22(0)y px p =>,∴22p=,解得p=4. ∴抛物线E 的方程为28y x =.(2)∵2BC 是AB 与CD 的等差中项,2BC r =∴4428AB CD BC r +==⨯=. ∴10AD AB BC CD ++==. 讨论:若l 垂直于x 轴,则l 的方程为x=2,代入28y x =,解得4y =±. 此时|AD|=8,不满足题意;若l 不垂直于x 轴,则设l 的斜率为k (k ≠0),此时l 的方程为()2y k x =-,由()228y xy k x ⎧⎪⎨==-⎪⎩,得()22224840k x k x k -++=. 设()()1122A x y B x y ,,,,则212248k x x k ++=. ∵拋物线E 的准线方程为x=-2, ∴()()1212224x A x x D AF DF x =+++=+=++ ∴2248410k k ++=,解得2k =±. 当2k =±时,()22224840k x k x k -++=化为2640x x -+=. ∵()264140--⨯⨯>,∴2640x x -+=有两个不相等实数根. ∴2k =±满足题意.∴存在满足要求的直线:240l x y --=或直线:240l x y +-=.21.解:(1)方程()273f x x x m =-+即为27ln 3x x x m -+=. 令()27()ln 03h x x x x x =-+>,则()()312317'()233x x h x x x x+-=-+=-. 令'()0h x =,则113x =-(舍),232x =. 当x ∈[1, 3]时,'()h x 随x 变化情况如表:∴当x ∈[1,3]时,()[ln 32ln ]24h x ∈-+,. ∴m 的取值范围是35[ln 32ln ]24-+,. (2)据题意,得()()0g x f x -≥对(0)x ∀∈+∞,恒成立.令()()()ln 1(0)xF x g x f x x e x x x =-=⋅--->,则1(1)'()(1)1(1)x x x F x x e x e x x+=+⋅--=⋅⋅-. 令()1x G x x e =⋅-,则当x >0时,'()(1)0x G x x e =+⋅>,∴函数()G x 在(0)+∞,上递增.∵(0)10(1)10G G e =-<=->,,∴()G x 存在唯一的零点c ∈(0,1),且当x ∈(0,c )时,()0G x <;当()x c ∈+∞,时, ()0G x >.∴当x ∈(0,c )时,'()0F x <;当()x c ∈+∞,时,'()0F x >.∴()F x 在(0,c )上递减,在()c +∞,上递增,从而()ln 1c F x c e c c ≥⋅---. 由()0G c =得10c c e ⋅-=,即1c c e ⋅=,两边取对数得ln 0c c +=,∴()0F c =.∴0a ≤,即所求实数a 的取值范围是(0]-∞,.22.解:(1)1C 的普通方程为2214x y +=. ∵曲线2C 的极坐标方程为2sin ρθ=-,∴曲线2C 的普通方程为222x y y +=-,即22(1)1x y ++=.(2)设(2cos ,sin )P αα为曲线1C 上一点,则点P 到曲线2C 的圆心(0,1)-的距离d ===∵sin [1,1]α∈-,∴当1sin 3α=时,d 有最大值3. 又∵P ,Q 分别为曲线1C ,曲线2C 上动点,∴||PQ 的最大值为13d r +=+. 23.解:(1)因为()2|1|3f x x =-+,所以2()210f x x -+>即为22|1|3210x x -+-+>,整理得2|1|2x x ->-. 讨论:①当10x -≥时,212x x ->-,即210x x --<,解得1122x <<.又1x ≥,所以112x +≤<.②当10x -<时,212x x ->-,即230x x +-<x <<又1x <1x <<.综上,所求不等式的解集为⎝⎭. (2)据题意,得2|1|32|3|4x x m -+≤++对任意x R ∈恒成立, 所以2|1|2|3|43x x m --+≤-恒成立.又因为2|1|2|3|2|(1)(3)|x x x x --+≤--+,所以2|1|2|3|8x x --+≤. 所以438m -≥,解得114m ≥. 所以所求实数m 的取值范围是114⎡⎫+∞⎪⎢⎣⎭,.。

合肥一模理数试题和答案

合肥一模理数试题和答案

设 JAJBJG 2 ,则 DE 4J,JJ从JG而 B(2,2,0) ,M (1,0,2) ,A(2,0,0) ,E(0,0,4) ,
∴ DB
设平面
B(D2,M 2的,一0)个,法D向M量为(1nG,0(,x,2)y,,z)

由 令
­°®°¯nGnGJDJDJJJMJBJGG JxJJG 2 ,则

a
!
2
时,f
(
x)

§ ¨©
1,1 22
(a

a2

2a
)
· ¸¹

§ ¨©
1 2
(a

a2

2a
) ,
f
· ¸¹
上单a

a2 2a ),1 (a 2
a2

2a
)
· ¸¹
上单调递减.
……6 分
(Ⅱ)
f
(x)
d
ax
恒成立等价于
x

§ ¨©
1 , 2
f
· ¸¹
∵ BF DE ,
∴ BDEF 为平行四边形,∴ BD // EF . ∵ BD 平面EFC,EF 平面EFC ,
∴ BD // 平面EFC .
又∵ MN BD N ,∴平面 BDM ∥平面 EFC . ……6 分
(Ⅱ)由已知, DE A 平面 ABCD , ABCD 是正方形 ∴ DA,DC,DE 两两垂直,如图,建立空间直角坐标系 D xyz .
0 0 y
­2x 2y 0

® ¯
x 2z
.
0
2,z 1,从而
G n
(2, 2, 1) .

2018年数学一模试卷(理科)带答案精讲

2018年数学一模试卷(理科)带答案精讲

2018年数学一模试卷(理科)一、选择题(共10小题,每小题5分,满分50分)1.(5分)i为虚数单位,则复数在复平面内对应的点在()A.第一象限B.第二象限C.第三象限D.第四象限2.(5分)已知角α的正弦线是单位长度的有向线段,那么角α的终边在()A.x轴上B.y轴上C.直线y=x上D.直线y=﹣x3.(5分)已知函数f(x)=1+log a x(a>0且a≠1),f﹣1(x)是f(x)的反函数,若y=f﹣1(x)的图象过点(3,4),则a等于()A.B.C.D.24.(5分)在△ABC中,“cosA=2sinBsinC”是“△ABC为钝角三角形”的()A.必要不充分条件 B.充要条件C.充分不必要条件 D.既不充分也不必要条件5.(5分)已知实数a,b满足a<0<b.则下列不等式一定成立的是()A.a2<b2B.C.D.6.(5分)定义式子运算为=a1a4﹣a2a3将函数f(x)=的图象向左平移n(n>0)个单位,所得图象对应的函数为偶函数,则n的最小值为()A.B.C. D.7.(5分)已知等差数列{a n}的前n项的和为S n,且S2=10,S5=55,则过点P(n,a n)和Q(n+2,a n+2)(n∈N*)的直线的一个方向向量的坐标是()A. B.C.D.(﹣1,﹣1)8.(5分)在O点测量到远处有一物体在做匀速直线运动,开始时该物体位于点P,一分钟后,其位置在Q点,且∠POQ=90°,再过二分钟后,该物体位于R点,且∠QOR=60°,则tan2∠OPQ的值等于()A.B.C.D.以上均不正确9.(5分)定义在R上的函数的图象关于点(﹣,0)成中心对称且对任意的实数x都有f(x)=﹣f(x+)且f(﹣1)=1,f(0)=﹣2,则f(1)+f(2)+…+f (2010)=().A.0 B.﹣2 C.﹣1 D.﹣410.(5分)如果有穷数列a1,a2,…,a n(n∈N*),满足条件:a1=a n,a2=a n﹣1,…,a n=a1,即a i=a n﹣i+1(i=1,2,…,n),我们称其为“对称数列”.例如:数列1,2,3,4,3,2,1就是“对称数列”.已知数列b n是项数为不超过2m(m>1,m∈N*)的“对称数列”,并使得1,2,22,…,2m﹣1依次为该数列中前连续的m项,则数列b n的前2008项和S2008可以是:①22008﹣1;②2(22008﹣1);③3•2m﹣1﹣22m﹣2009﹣1;④2m+1﹣22m﹣2008﹣1.其中命题正确的个数为()A.1 B.2 C.3 D.4二、填空题(共5小题,每小题5分,满分25分)11.(5分)命题P:若x2<2,则.则P的否命题是,命题非P是..12.(5分)设随机变量ξ服从正态分布N(1,σ2)(σ>0),若P(0<ξ<1)=0.4,则P(ξ>2)=.13.(5分)定义映射f:n→f(n).(n∈N*)如表:若f(n)=4951,则n=.14.(5分)若函数上有最小值,则a的取值范围为.15.(5分)设A={(x,y)|y≤﹣|x﹣3|},B={(x,y)|y≥2|x|+b},b为常数,A∩B≠∅.(1)b的取值范围是;(2)设P(x,y)∈A∩B,点T的坐标为,若在方向上投影的最小值为,则b的值为.三、解答题(共6小题,满分75分)16.(12分)设锐角三角形ABC的内角A,B,C的对边分别为a,b,c,且bcosC=(2a﹣c)cosB.(Ⅰ)求B的大小;(Ⅱ)求sinA+sinC的取值范围.17.(12分)最近,李师傅一家三口就如何将手中的10万块钱投资理财,提出了三种方案:第一种方案:李师傅的儿子认为:根据股市收益大的特点,应该将10万块钱全部用来买股票.据分析预测:投资股市一年可能获利40%,也可能亏损20%.(只有这两种可能),且获利的概率为.第二种方案:李师傅认为:现在股市风险大,基金风险较小,应将10万块钱全部用来买基金.据分析预测:投资基金一年后可能获利20%,可能损失10%,也可能不赔不赚,且这三种情况发生的概率分别为.第三种方案:李师傅妻子认为:投入股市、基金均有风险,应该将10万块钱全部存入银行一年,现在存款年利率为4%,存款利息税率为5%.针对以上三种投资方案,请你为李师傅家选择一种合理的理财方法,并说明理由..18.(12分)将圆x2+y2+2x﹣2y=0按向量平移得到⊙O,直线l与⊙O 相交于A、B两点,若在⊙O上存在点C,使.求直线l的方程.19.(12分)已知数列a n的前n项和为S n,a1=1,S n=a n+1﹣3n﹣1,n∈N*.(Ⅰ)证明:数列a n+3是等比数列;(Ⅱ)对k∈N*,设求使不等式cos(mπ)[f(2m2)﹣f(m)]≤0成立的正整数m的取值范围..20.(13分)已知函数f(x)=x|x+m|+n,其中m,n∈R.(Ⅰ)判断函数f(x)的奇偶性,并说明理由;(Ⅱ)设n=﹣4,且f(x)<0对任意x∈[0,1]恒成立,求m的取值范围..21.(14分)已知=(cos x,1),=(f(x),2sin x),∥,数列{a n}满足:{a1=,a n+1=f(a n),n∈N*}.<1;(1)用数学归纳法证明:0<a n<a n+1(2)已知a n≥,证明a n﹣a n>;+1(3)设T n是数列{a n}的前n项和,试判断T n与n﹣3的大小,并说明理由.参考答案与试题解析一、选择题(共10小题,每小题5分,满分50分)1.(5分)i为虚数单位,则复数在复平面内对应的点在()A.第一象限B.第二象限C.第三象限D.第四象限【分析】利用两个复数代数形式的除法法则及虚数单位的幂运算性质,化简复数到最简形式,考查复数对用点所在的象限.【解答】解:∵复数===1﹣i,故此复数对应的点在第四象限,故选D.【点评】本题考查两个复数代数形式的乘除法,两个复数相除,分子和分母同时除以分母的共轭复数,以及复数与复平面内对应点之间的关系.2.(5分)已知角α的正弦线是单位长度的有向线段,那么角α的终边在()A.x轴上B.y轴上C.直线y=x上D.直线y=﹣x【分析】正弦线是平行y轴的线段,长度范围是[﹣1,1],由题意正弦线是单位长度的有向线段,可求角α的终边的位置.【解答】解:由正弦线的定义,角α的正弦线是单位长度的有向线段,知角α的终边在y轴上.故选B.【点评】本题考查同角三角函数的基本关系,三角函数线,考查学生基础知识的掌握情况.3.(5分)已知函数f(x)=1+log a x(a>0且a≠1),f﹣1(x)是f(x)的反函数,若y=f﹣1(x)的图象过点(3,4),则a等于()A.B.C.D.2【分析】利用y=f﹣1(x)的图象过点(3,4),则函数f(x)=1+log a x(a>0且a ≠1)的图象过点(4,3),点代入函数的解析式解方程求出a.【解答】解:∵f﹣1(x)是f(x)的反函数,若y=f﹣1(x)的图象过点(3,4),∴函数f(x)=1+log a x(a>0且a≠1)的图象过点(4,3),∴1+log a4=3,∴a=2,故答案选D.【点评】本题考查互为反函数的2个函数图象间的关系,y=f﹣1(x)的图象过点(3,4),则函数f(x)=1+log a x(a>0且a≠1)的图象过点(4,3).4.(5分)在△ABC中,“cosA=2sinBsinC”是“△ABC为钝角三角形”的()A.必要不充分条件 B.充要条件C.充分不必要条件 D.既不充分也不必要条件【分析】先判别充分性,根据三角函数相关知识和恒等变换容易得到cos(B﹣C)=0,从而得到即B或C为钝角,充分性成立,再判别必要性,显然由“△ABC为钝角三角形”推不出条件“cosA=2sinBsinC”,故必要性不成立.【解答】解:2sinBsinC=cosA=﹣cos(B+C)=sinBsinC﹣cosBcosC,即cos(B﹣C)=0,这说明B﹣C=90度或﹣90度,即B或C为钝角.但是,ABC为钝角三角形显然导不出cos(B﹣C)=0这么强的条件,所以,cosA=2sinBsinC是三角形ABC为钝角三角形的充分不必要条件.【点评】此题考查必要条件、充分条件与充要条件的判别,同时考查三角函数相关知识.5.(5分)已知实数a,b满足a<0<b.则下列不等式一定成立的是()A.a2<b2B.C.D.【分析】给实数a,b 在其取值范围内任取2个值a=﹣3,b=1,代入各个选项进行验证,A、B、D都不成立.【解答】解:∵实数a,b满足a<0<b,若a=﹣3,b=1,则A、B、D都不成立,只有C成立,故选C.【点评】通过给变量取特殊值,举反例来说明某个命题不正确,是一种简单有效的方法.6.(5分)定义式子运算为=a1a4﹣a2a3将函数f(x)=的图象向左平移n(n>0)个单位,所得图象对应的函数为偶函数,则n的最小值为()A.B.C. D.【分析】先根据题意确定函数f(x)的解析式,然后根据左加右减的原则得到平移后的解析式,再根据偶函数的性质可确定n的值.【解答】解:由题意可知f(x)=cosx﹣sinx=2cos(x+)将函数f(x)的图象向左平移n(n>0)个单位后得到y=2cos(x+n+)为偶函数∴2cos(﹣x+n+)=2cos(x+n+)∴cosxcos(n+)+sinxsin(n+)=cosxcos(n+)﹣sinxsin(n+)∴sinxsin(n+)=﹣sinxsin(n+)∴sinxsin(n+)=0∴sin(n+)=0∴n+=kπ∴n=﹣+kπn大于0的最小值等于故选C.【点评】本题主要考查两角和与差的余弦公式、三角函数的奇偶性和平移变换.平移时根据左加右减上加下减的原则进行平移.7.(5分)已知等差数列{a n}的前n项的和为S n,且S2=10,S5=55,则过点P(n,a n)和Q(n+2,a n+2)(n∈N*)的直线的一个方向向量的坐标是()A. B.C.D.(﹣1,﹣1)【分析】根据等差数列的前n项和公式,结合S2=10,S5=55,我们构造关于基本量(首项和公差)的方程,解方程即可求出公差d,进行得到向量的坐标,然后根据方向向量的定义逐一分析四个答案中的向量,即可得到结论.【解答】解:等差数列{a n}的前n项的和为S n=a1•n+由S2=10,S5=55得:10=2a1+d55=5a1+10d解得:a1=3,d=4﹣a n)=(2,8)则=(2,a n+2分析四个答案得:是直线PQ的一个方向向量,故选B【点评】本题考查的知识点是等差数列的前n项和公式,及方向向量,其中由已知条件,构造关于基本量(首项和公差)的方程,解方程即可求出公差d,是解答本题的关键.8.(5分)在O点测量到远处有一物体在做匀速直线运动,开始时该物体位于点P,一分钟后,其位置在Q点,且∠POQ=90°,再过二分钟后,该物体位于R点,且∠QOR=60°,则tan2∠OPQ的值等于()A.B.C.D.以上均不正确【分析】由题意可设PQ=x,则QR=2x,∠POQ=90°,∠QOR=60°∠OPQ+∠R=30°,即∠R=30°﹣∠OPQ在△ORQ中,△OPQ中分别利用正弦定理表示OQ==OQ==xsin∠OPQ从而∴,整理可求【解答】解:如下图所示,物体位于点P,一分钟后,其位置在Q点,再过二分钟后,该物体位于R点∴设PQ=x,则QR=2x,又∵∠POQ=90°,∠QOR=60°∠OPQ+∠R=30°,即∠R=30°﹣∠OPQ在△ORQ中,由正弦定理得OQ==在△OPQ中,由正弦定理得OQ==xsin∠OPQ∴整理可得,故选C【点评】本题主要考查了利用正弦定理解决实际问题,求解实际问题的关键是要把实际问题转化为数学问题,利用数学知识进行求解.9.(5分)定义在R上的函数的图象关于点(﹣,0)成中心对称且对任意的实数x都有f(x)=﹣f(x+)且f(﹣1)=1,f(0)=﹣2,则f(1)+f(2)+…+f (2010)=().A.0 B.﹣2 C.﹣1 D.﹣4【分析】先根据条件确定函数的周期,再由函数的图象关于点(﹣,0)成中心对称知为奇函数,从而求出f(1)、f(2)、f(3)的值,最终得到答案.【解答】解:由f(x)=﹣f(x+)得f(x)=f(x+3)即周期为3,由图象关于点(﹣,0)成中心对称得f(x)+f(﹣x﹣)=0,从而﹣f(x+)=﹣f(﹣x﹣),所以f(x)=f(﹣x).f(1)=f(4)=…=f(2008)=1,由f(﹣1)=1,可得出f(2)=f(5)=…=f(2009)=1,由f(0)=﹣2,可得出f(3)=f(6)=…=f(2010)=﹣2,故选A【点评】本题主要考查函数的性质﹣﹣周期性和对称性.函数的性质是研究一个函数的基本,是每年高考必考题.10.(5分)如果有穷数列a1,a2,…,a n(n∈N*),满足条件:a1=a n,a2=a n﹣1,…,a n=a1,即a i=a n﹣i+1(i=1,2,…,n),我们称其为“对称数列”.例如:数列1,2,3,4,3,2,1就是“对称数列”.已知数列b n是项数为不超过2m(m>1,m∈N*)的“对称数列”,并使得1,2,22,…,2m﹣1依次为该数列中前连续的m项,则数列b n的前2008项和S2008可以是:①22008﹣1;②2(22008﹣1);③3•2m﹣1﹣22m﹣2009﹣1;④2m+1﹣22m﹣2008﹣1.其中命题正确的个数为()A.1 B.2 C.3 D.4【分析】由题意由于新定义了对称数列,且已知数列b n是项数为不超过2m(m >1,m∈N*)的“对称数列”,并使得1,2,22,…,2m﹣1依次为该数列中前连续的m项,故数列b n的前2008项利用等比数列的前n项和定义直接可求①②的正确与否;对于③④,先从等比数列的求和公式求出任意2m项的和在利用减法的到需要的前2008项的和,即可判断.【解答】解:因为数列b n是项数为不超过2m(m>1,m∈N*)的“对称数列”,并使得1,2,22,…,2m﹣1依次为该数列中前连续的m项,故数列b n的前2008项可以是:①1,2,22,23…,21003,21003,…,22,1.所以前2008项和S2008=2×=2(21004﹣1),所以①②错;对于③1,2,22…2m﹣1,2m﹣1,2m﹣2,…,2,1,1,2,…2m﹣2,2m﹣1,2m﹣1,2m﹣2,…,2,1…m=2n.m=8,利用等比数列的求和公式可以得:s2008=3•2m﹣1﹣22m﹣2009﹣1,所以③正确;对于④1,2,22,…2m﹣2,2m﹣1,2m﹣2,…,2,1,1,2,…2m﹣2,2m﹣1,2m﹣2,…,2,1…m﹣1=2n+1,利用等比数列的求和公式可得:S2008=2m+1﹣22m﹣2008﹣1,故④正确.故选:B【点评】此题考查了学生对于新题意,新定义的理解,还考查了等比数列的求和公式及学生的计算能力.二、填空题(共5小题,每小题5分,满分25分)11.(5分)命题P:若x2<2,则.则P的否命题是若x2≥2,则或,命题非P是若x2<2,则或..【分析】据命题的否命题:条件、结论同时否定;命题的否定是将结论否定即可,写出命题P的否命题及命题的否定.【解答】解:∵命题P:若x2<2,则,∴P的否命题是若x2≥2,则,命题非P是若x2<2,则.【点评】本题考查命题的否命题与命题否定的区别:命题的否命题:条件、结论同时否定;命题的否定是将结论否定.12.(5分)设随机变量ξ服从正态分布N(1,σ2)(σ>0),若P(0<ξ<1)=0.4,则P(ξ>2)=0.1.【分析】根据随机变量ξ服从正态分布N(1,σ2),得到正态曲线关于x=1对称,根据所给的一个区间上的概率,得到对称区间上的概率,根据对称轴一侧的区间概率是0.5,得到要求的结果.【解答】解:∵随机变量ξ服从正态分布N(1,σ2),∴正态曲线关于x=1对称,∵P(0<ξ<1)=0.4,∴P(1<ξ<2)=0.4∴P(ξ>2)=1﹣0.4=0.1,故答案为:0.1【点评】本题考查正态分布曲线的特点及曲线所表示的意义,考查正态曲线的对称性,考查对称区间的概率相等,本题是一个基础题.13.(5分)定义映射f:n→f(n).(n∈N*)如表:若f(n)=4951,则n=99.【分析】观察所给的前四项,得到这几项之间的关系,后一项与前一项的差是一个常数,类似于数列的递推式,写出前后两项之差,利用叠加得到结果.【解答】解:∵f(1)=2,f(2)=4,f(3)=7,f(4)=11…∴f(n)﹣f(n﹣1)=n,f(n﹣1)﹣f(n﹣2)=n﹣1,…f(2)﹣f(1)=2,把上面的n﹣1个式子相加得到f(n)﹣f(1)=n+(n﹣1)+…+2=,∴f(n)=+2=4951,∴n=99,故答案为:99【点评】本题考查归纳推理,考查数列的递推式,考查叠加的方法,本题是一个综合题目,考查的内容比较多,注意项数不要出错.14.(5分)若函数上有最小值,则a的取值范围为[﹣2,1).【分析】先求出函数的导函数,求出函数的单调区间,再根据已知在区间(a,10﹣a2)有最小值确定出参数a的取值范围.【解答】解:由已知,f′(x)=x2﹣1,有x2﹣1≥0得x≥1或x≤﹣1,因此当x∈[1,+∞),(﹣∞,﹣1]时f(x)为增函数,在x∈[﹣1,1]时f(x)为减函数.又因为函数上有最小值,所以开区间(a,10﹣a2)须包含x=1,所以函数f(x)的最小值即为函数的极小值f(1)=﹣,又由f(x)=﹣可得x3﹣x=﹣,于是得(x﹣1)2(x+2)=0即有f(﹣2)=﹣,因此有以下不等式成立:,可解得﹣2≤a<1,答案为:[﹣2,1)【点评】本题考查函数的导数,利用导数求函数的极值和最值的问题,分类讨论的思想方法.本题需要注意:在开区间内函数的极小值(本题中也是最小值)在函数导数为零的点处取得,即若x0∈(a,b),且f′(x0)=0,则函数f(x)的极值是f(x0);再由题意可得这个极值也是函数的最值.15.(5分)设A={(x,y)|y≤﹣|x﹣3|},B={(x,y)|y≥2|x|+b},b为常数,A∩B≠∅.(1)b的取值范围是b≤﹣3;(2)设P(x,y)∈A∩B,点T的坐标为,若在方向上投影的最小值为,则b的值为﹣10.【分析】(1)根据A={(x,y)|y≤﹣|x﹣3|},利用函数图象的平移变换,由f (x)=|x|图象得到f(x)=|x﹣3|的图象,再利用函数图象的对称变换得到f(x)=﹣|x﹣3|的图象,因此可以求出集合A表示的平面区域,B={(x,y)|y≥2|x|+b},表示x轴上方的阴影区域沿y轴上下平移,根据A∩B≠ϕ可求得b的取值范围;(2)根据P(x,y)∈A∩B,得到x,y应满足的条件,根据向量数量积的几何意义即可表示出在方向上投影,再利用线性规划的知识求解即可.【解答】解:(1)先画出函数f(x)=|x|图象,再把该图象向右平移3个单位长度,得到f(x)=|x﹣3|的图象,然后再作关于x轴的对称图象得到f(x)=﹣|x﹣3|的图象,∴A={(x,y)|y≤﹣|x﹣3|},表示x轴下方阴影区域,B={(x,y)|y≥2|x|+b},表示x轴上方的阴影区域沿y轴上下平移,∵A∩B≠ϕ.∴b≤﹣3;(2)∵设P(x,y)∈A∩B,∴,而=x+,在方向上投影为,根据线性规划可求当x=0,y=b时,取最小值,代入解得b=﹣10.故答案为:b≤﹣3;﹣10.【点评】此题是个中档题.考查图象的平移变化、对称变换,以及向量的数量积的几何意义,线性规划求最值等基础知识,体现了数形结合和运动变化的思想,考查了同学们观察、推理以及创造性地分析问题、解决问题的能力.三、解答题(共6小题,满分75分)16.(12分)设锐角三角形ABC的内角A,B,C的对边分别为a,b,c,且bcosC=(2a﹣c)cosB.(Ⅰ)求B的大小;(Ⅱ)求sinA+sinC的取值范围.【分析】(I)由已知条件及正弦定理得sinBcosC=(2sinA﹣sinC)cosB=2sinAcosB ﹣sinCcosB,结合和角公式化简可求cosB,进一步可求B,(II)由(I)可得,由△ABC为锐角三角形,可得从而可得A的范围,而sinA+sinC=sinA+sin(﹣A),利用差角公式及辅助角公式化简可得,从而可求.【解答】解:(I)由条件及正弦定理得sinBcosC=(2sinA﹣sinC)cosB=2sinAcosB ﹣sinCcosB.则sinBcosC+sinCcosB=2sinAcosB.∴sin(B+C)=2sinAcosB,又sin(B+C)=sinA≠0,∴,又0<B<π,∴.(Ⅱ)由A+B+C=π及,得.又△ABC为锐角三角形,∴∴..又,∴.∴.【点评】(I)考查了正弦定理,两角和的正弦公式,及特殊角的三角函数值(II)本题的关键是由△ABC为锐角三角形,建立关于A的不等式,进而求出A 的范围,而辅助角公式的应用可以把不同名的三角函数化为一个角的三角函数,结合三角函数的性质进行求解.17.(12分)最近,李师傅一家三口就如何将手中的10万块钱投资理财,提出了三种方案:第一种方案:李师傅的儿子认为:根据股市收益大的特点,应该将10万块钱全部用来买股票.据分析预测:投资股市一年可能获利40%,也可能亏损20%.(只有这两种可能),且获利的概率为.第二种方案:李师傅认为:现在股市风险大,基金风险较小,应将10万块钱全部用来买基金.据分析预测:投资基金一年后可能获利20%,可能损失10%,也可能不赔不赚,且这三种情况发生的概率分别为.第三种方案:李师傅妻子认为:投入股市、基金均有风险,应该将10万块钱全部存入银行一年,现在存款年利率为4%,存款利息税率为5%.针对以上三种投资方案,请你为李师傅家选择一种合理的理财方法,并说明理由..【分析】由题意按照所述的三个方案,算出每一种情况下的期望,然后比较其期望的大小即可.【解答】解:若按方案一执行,设收益为ξ万元,则其分布列为∴(万元),若按方案二执行,设收益为η万元,则其分布列为:∴(万元);若按方案三执行,收益y=10×4%×(1﹣5%)=0.38万元,又Eξ=Eη>y...由上知Dξ>Dη.说明虽然方案一、二收益相等,但方案二更稳妥.∴建议李师傅家选择方案二投资较为合理.【点评】此题重点在于准确理解题意,还考查了学生对于离散型随机变量的定义及分布列,期望的公式的准确应用,还考查了期望与方差的几何含义.18.(12分)将圆x2+y2+2x﹣2y=0按向量平移得到⊙O,直线l与⊙O 相交于A、B两点,若在⊙O上存在点C,使.求直线l的方程.【分析】先求出平移后的圆的方程,设出直线的方程,并把它代入圆的方程利用一元二次方程根与系数的关系,求出点C的坐标的解析式,把点C的坐标代入圆的方程,可解得m值.【解答】解:将圆的方程x2+y2+2x﹣2y=0化为(x+1)2+(y﹣1)2=2,∴圆x2+y2+2x﹣2y=0按向量平移后得到圆x2+y2=2,∵﹣,又,∴AB⊥OC,,∴直线l的斜率k=1,设直线l的方程为y=x+m,由得2x2+2mx+m2﹣2=0,△=4m2﹣8(m2﹣2)>0,设A(x1,y1),B(x2,y2),则x1+x2=﹣m,y1+y2=m∴,∵点C(m,﹣m)在圆上,∴m2+(﹣m)2=2解得m=±1,满足△=4m2﹣8(m2﹣2)>0,当m=1时,l的方程为x﹣y+1=0,当m=﹣1时,l的方程为x﹣y﹣1=0.【点评】本题考查向量在几何中的应用,直线和圆相交的性质,一元二次方程根与系数的关系,体现了数形结合的数学思想,属中档题.19.(12分)已知数列a n的前n项和为S n,a1=1,S n=a n+1﹣3n﹣1,n∈N*.(Ⅰ)证明:数列a n+3是等比数列;(Ⅱ)对k∈N*,设求使不等式cos(mπ)[f(2m2)﹣f(m)]≤0成立的正整数m的取值范围..【分析】(I)把S n和S n+1相减整理求得a n+1=2a n+3,整理出3+a n+1=2(3+a n),判断出数列{3+a n}是首项为4,公比为2的等比数列即可.(II)把(I)中的a n代入f(n),求得其通项公式,进而对m进行奇偶数讨论:①当m为偶数时②当m为奇数时结合二项式定理进行放缩,即可得出:当m∈1,3时,不等式cos(mπ)[f(2m2)﹣f(m)]≤0成立.【解答】解:(I)由S n=a&amp;n+1﹣3n﹣1,则S n﹣1=a n﹣3(n﹣1)﹣1,n≥2.两式相减得a n+1=2a n+3,n≥2.即.(2分)又n=1时,.∴数列a n+3是首项为4,公比为2的等比数列.(4分)(Ⅱ)由(I)知a n+3=4•2n﹣1=2n+1,S n=a n+1﹣3n﹣1=2n+2﹣3n﹣4.∴(5分)①当m为偶数时,cos(mπ)=1,f(2m2)=2m2+1,f(m)=m+1,∴原不等式可化为(2m2+1)﹣(m+1)≤0,即2m2﹣m≤0.故不存在合条件的m.(7分)②当m为奇数时,cos(mπ)=﹣1,f(2m2)=2m2+1,f(m)=2m+1﹣1.原不等式可化为2m2+1≥2m+1﹣1.当m=1或3时,不等式成立.(9分)当m≥5时,2m+1﹣1=2(1+1)m﹣1=2(C m0+C m1+C m2++C m m﹣2+C m m﹣1+C m m)﹣1≥2m2+2m+3>2m2+1.∴m≥5时,原不等式无解.(11分)综合得:当m∈{1,3}时,不等式cos(mπ)[f(2m2)﹣f(m)]≤0成立.(12分)【点评】本题主要考查了数列的递推式的应用,数列的通项公式和等比关系的确定.应掌握一些常用的数列与不等式的综合的解法.20.(13分)已知函数f(x)=x|x+m|+n,其中m,n∈R.(Ⅰ)判断函数f(x)的奇偶性,并说明理由;(Ⅱ)设n=﹣4,且f(x)<0对任意x∈[0,1]恒成立,求m的取值范围..【分析】(Ⅰ)先对m、n的取值分m=n=0和m、n中至少有一个不为0两种情况讨论,再分别利用定义f(﹣x)和f(x)的关系判断奇偶性即可;(Ⅱ)当x∈(0,1]时,把不等式转化为恒成立,再利用函数的单调性分别求出不等式两端的函数值的范围即可求出m的取值范围.【解答】解:(I)若m2+n2=0,即m=n=0,则f(x)=x•|x|,∴f(﹣x)=﹣f(x).即f(x)为奇函数.(2分)若m2+n2≠0,则m、n中至少有一个不为0,当m≠0.则f(﹣m)=n,f(m)=n+2m|m|,故f(﹣m)≠±f(m).当n≠0时,f(0)=n≠0,∴f(x)不是奇函数,f(n)=n+|m+n|•n,f(﹣n)=n﹣|m﹣n|n,则f(n)≠f(﹣n),∴f(x)不是偶函数.故f(x)既不是奇函数也不是偶函数.综上知:当m2+n2=0时,f(x)为奇函数;当m2+n2≠0时,f(x)既不是奇函数也不是偶函数.(5分)(Ⅱ)若x=0时,m∈R,f(x)<0恒成立;(6分)若x∈(0,1]时,原不等式可变形为.即.∴只需对x∈(0,1],满足(8分)对①式,在(0,1]上单调递减,∴m<f1(1)=3.(10分)对②式,设,则.(因为0<x<1)∴f2(x)在(0,1]上单调递增,∴m>f2(1)=﹣5.(12分)综上所知:m的范围是(﹣5,3).(13分).【点评】本题主要考查函数奇偶性以及恒成立问题和利用单调性求函数值域,考查分类讨论思想,是对知识点的综合考查,属于中档题目.21.(14分)已知=(cos x,1),=(f(x),2sin x),∥,数列{a n}满足:{a1=,a n+1=f(a n),n∈N*}.<1;(1)用数学归纳法证明:0<a n<a n+1(2)已知a n≥,证明a n﹣a n>;+1(3)设T n是数列{a n}的前n项和,试判断T n与n﹣3的大小,并说明理由.【分析】(I)先根据得出下面用数学归纳法证明:0<a n<a n+1<1.(Ⅱ)要证,即证,其中.令..利用导数研究在上的最值问题,先求出函数的极值,往往求出的极大值就是最大值,即可证得即;(Ⅲ)由(Ⅱ)知从而∴.结合放缩法即可证明得T n>n﹣3.【解答】解:(I)∵,∴.∴.∴.(1分)下面用数学归纳法证明:0<a n<a n+1<1.①n=1时,,故结论成立.②假设n=k时结论成立,即.∴,即0<a k+1<a k+2<1.也就是说n=k+1时,结论也成立.由①②可知,对一切n∈N*均有0<a n<a n+1<1.(4分)(Ⅱ)要证,即证,其中.令..由,得.(6分)又g(1)=0,.∴当,g(x)>0.∴.∴.即.(9分)(Ⅲ)由(Ⅱ)知:.(11分)∴.∴.(13分)又,即.∴T n>n﹣3.(14分)【点评】本题考查数列与向量的综合,解题时要注意公式有灵活运用.本题还考查导函数的正负与原函数的单调性之间的关系,处理方法是当导函数大于0时原函数单调递增,当导函数小于0时原函数单调递减.。

2018年河南省六市高考一模数学试卷(理科)【解析版】

2018年河南省六市高考一模数学试卷(理科)【解析版】

2018年河南省六市高考数学一模试卷(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x|lg(x﹣2)<1},集合B={x|x2﹣2x﹣3<0},则A∪B 等于()A.(2,12)B.(﹣1,3)C.(﹣1,12)D.(2,3)2.(5分)已知i为虚数单位,若复数=a+bi(a,b∈R),则a+b=()A.﹣i B.i C.﹣1D.13.(5分)现有5人参加抽奖活动,每人依次从装有5张奖票(其中3张为中奖票)的箱子中不放回地随机抽取一张,直到3张中奖票都被抽出时活动结束,则活动恰好在第4人抽完结束的概率为()A.B.C.D.4.(5分)汽车以v=(3t+2)m/s作变速运动时,在第1s至2s之间的1s内经过的路程是()A.5m B.C.6m D.5.(5分)为考察A、B两种药物预防某疾病的效果,进行动物试验,分别得到如下等高条形图:根据图中信息,在下列各项中,说法最佳的一项是()A.药物B的预防效果优于药物A的预防效果B.药物A的预防效果优于药物B的预防效果C.药物A、B对该疾病均有显著的预防效果D.药物A、B对该疾病均没有预防效果6.(5分)一个几何体的三视图如图所示,该几何体的各个表面中,最大面的面积为()A.B.C.2D.47.(5分)已知数列{a n}满足=2,则其前100项和为()A.250B.200C.150D.1008.(5分)已知锐角三角形ABC,角A、B、C的对边分别为a、b、c,若b2=a(a+c),则的取值范围是()A.(0,1)B.C.D.9.(5分)设a1,a2,…,a2017是数列1,2,…,2017的一个排列,观察如图所示的程序框图,则输出的F的值为()A.2015B.2016C.2017D.201810.(5分)在三棱锥S﹣ABC中,SB⊥BC,SA⊥AC,SB=BC,SA=AC,AB =SC,且三棱锥S﹣ABC的体积为,则该三棱锥的外接球的半径为()A.1B.2C.3D.411.(5分)椭圆+=1(a>b>0)与函数y=的图象交于点P,若函数y=的图象在P处的切线过椭圆的左焦点F(﹣1,0),则椭圆的离心率是()A.B.C.D.12.(5分)若关于x的方程有3个不相等的实数解x1,x2,x3,且x1<0<x2<x3,其中m∈R,e=2.71828……,则的值为()A.1B.1﹣m C.1+m D.e二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)已知,,则=.14.(5分)已知二项式(x2+)n的展开式的二项式系数之和为32,则展开式中含x项的系数是15.(5分)已知P是双曲线C:右支上一点,直线l是双曲线的一条渐近线,P在l上的射影为Q,F1是双曲线的左焦点,则|PF1|+|PQ|的最小值是.16.(5分)已知动点P(x,y)满足,则x2+y2﹣6x的最小值是.三、解答题(本大题共6题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(10分)已知数列{a n}中,a1=1,其前n项的和为S n,且满足.(1)求证:数列是等差数列;(2)证明:当n≥2时,.18.(10分)我们国家正处于老龄化社会中,老有所依也是政府的民生工程.某市共有户籍人口400万,其中老人(年龄60岁及以上)人数约有66万,为了了解老人们的健康状况,政府从老人中随机抽取600人并委托医疗机构免费为他们进行健康评估,健康状况共分为不能自理、不健康尚能自理、基本健康、健康四个等级,并以80岁为界限分成两个群体进行统计,样本分布制作成如图:(1)若采用分层抽样的方法从样本中的不能自理的老人中抽取8人进一步了解他们的生活状况,则两个群体中各应抽取多少人?(2)估算该市80岁及以上长者占全市户籍人口的百分比;(3)据统计该市大约有五分之一的户籍老人无固定收入,政府计划为这部分老人每月发放生活补贴,标准如下:①80岁及以上长者每人每月发放生活补贴200元;②80岁以下老人每人每月发放生活补贴120元;③不能自理的老人每人每月额外发放生活补贴100元.利用样本估计总体,试估计政府执行此计划的年度预算.(单位:亿元,结果保留两位小数)19.(10分)如图,在四棱锥P﹣ABCD中,PD⊥平面ABCD,底面ABCD是菱形,∠BAD=60°,O为AC与BD的交点,E为PB上任意一点.(I)证明:平面EAC⊥平面PBD;(II)若PD∥平面EAC,并且二面角B﹣AE﹣C的大小为45°,求PD:AD的值.20.(10分)已知抛物线C:x2=2py(p>0)的焦点为F,过F的直线l交抛物线C于点A,B,当直线l的倾斜角是45°时,AB的中垂线交y轴于点Q(0,5).(1)求p的值;(2)以AB为直径的圆交x轴于点M,N,记劣弧的长度为S,当直线l绕F旋转时,求的最大值.21.(10分)已知函数.(1)讨论f(x)的单调性;(2)若f(x)有两个极值点x1,x2,且x1<x2,证明:.[选修4-4:坐标系与参数方程]22.(10分)以平面直角坐标系xOy的原点为极点,x轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位,直线l的参数方程为(t 为参数),圆C的极坐标方程为.(1)求直线l的普通方程与圆C的执直角坐标方程;(2)设曲线C与直线L交于A,B两点,若P点的直角坐标为(2,1),求||P A|﹣|PB||的值.[选修4-5:不等式选讲]23.(10分)已知关于x的不等式|2x|+|2x﹣1|≤m有解.(I)求实数m的取值范围;(II)已知a>0,b>0,a+b=m,证明:.2018年河南省六市高考数学一模试卷(理科)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x|lg(x﹣2)<1},集合B={x|x2﹣2x﹣3<0},则A∪B 等于()A.(2,12)B.(﹣1,3)C.(﹣1,12)D.(2,3)【解答】解:集合A={x|lg(x﹣2)<1}={x|0<x﹣2<10}={x|2<x<12},集合B={x|x2﹣2x﹣3<0}={x|﹣1<x<3},则A∪B={x|﹣1<x<12}=(﹣1,12).故选:C.2.(5分)已知i为虚数单位,若复数=a+bi(a,b∈R),则a+b=()A.﹣i B.i C.﹣1D.1【解答】解:∵a+bi====i,∴a=0,b=1.∴a+b=1.故选:D.3.(5分)现有5人参加抽奖活动,每人依次从装有5张奖票(其中3张为中奖票)的箱子中不放回地随机抽取一张,直到3张中奖票都被抽出时活动结束,则活动恰好在第4人抽完结束的概率为()A.B.C.D.【解答】解:将5张奖票不放回地依次取出共有A=120种不同的取法,若活动恰好在第四次抽奖结束,则前三次共抽到2张中奖票,第四次抽到最后一张中奖票.共有3A A=36种取法,∴P==.故选:C.4.(5分)汽车以v=(3t+2)m/s作变速运动时,在第1s至2s之间的1s内经过的路程是()A.5m B.C.6m D.【解答】解:根据题意,汽车以v=(3t+2)m/s作变速运动时,则汽车在第1s至2s之间的1s内经过的路程S=(3t+2)dt=(+2t)=;故选:D.5.(5分)为考察A、B两种药物预防某疾病的效果,进行动物试验,分别得到如下等高条形图:根据图中信息,在下列各项中,说法最佳的一项是()A.药物B的预防效果优于药物A的预防效果B.药物A的预防效果优于药物B的预防效果C.药物A、B对该疾病均有显著的预防效果D.药物A、B对该疾病均没有预防效果【解答】解:由A、B两种药物预防某疾病的效果,进行动物试验,分别得到的等高条形图,知:药物A的预防效果优于药物B的预防效果.故选:B.6.(5分)一个几何体的三视图如图所示,该几何体的各个表面中,最大面的面积为()A.B.C.2D.4【解答】解:由已知中的三视图可得:该几何体是一个三棱锥:AD=DC=BD =2,∠ADC=120°,BD⊥平面ADC,其直观图如图所示:AB=BC=2,AC=2,底面△BCD的面积为:×2×2=2,侧面△ABD的面积为:×2×2=2,侧面△ADC的面积为:×2×2×=,侧面△ACB是腰长为2,底长2的等腰三角形,故底边上的高为=,其面积为:×2 ×=,综上可知,最大的面的面积为,故选:B.7.(5分)已知数列{a n}满足=2,则其前100项和为()A.250B.200C.150D.100【解答】解;n=2k﹣1(k∈N*)时,a2k+a2k﹣1=2.∴其前100项和=(a1+a2)+(a3+a4)+…+(a99+a100)=2×50=100.故选:D.8.(5分)已知锐角三角形ABC,角A、B、C的对边分别为a、b、c,若b2=a(a+c),则的取值范围是()A.(0,1)B.C.D.【解答】解:由b2=a(a+c),利用余弦定理,可得:c﹣a=2a cos B,利用正弦定理边化角,得:sin C﹣sin A=2sin A cos B,∵A+B+C=π,∴sin(B+A)﹣sin A=2sin A cos B,∴sin(B﹣A)=sin A,∵ABC是锐角三角形,∴B﹣A=A,即B=2A.∵0<B<,<A+B<π,那么:<A<,则=sin A∈(,).故选:B.9.(5分)设a1,a2,…,a2017是数列1,2,…,2017的一个排列,观察如图所示的程序框图,则输出的F的值为()A.2015B.2016C.2017D.2018【解答】解:分析题中程序框图的功能是先求这2 017个数的最大值,然后进行计算F=b+sin;因为b=max{1,2,…,2 017}=2 017,所以F=2 017+sin=2 018.故选:D.10.(5分)在三棱锥S﹣ABC中,SB⊥BC,SA⊥AC,SB=BC,SA=AC,AB =SC,且三棱锥S﹣ABC的体积为,则该三棱锥的外接球的半径为()A.1B.2C.3D.4【解答】解:如图,取SC的中点O,连接OB,OA,∵SB⊥BC,SA⊥AC,SB=BC,SA=AC,∴OB⊥SC,OA⊥SC,OB=SC,OA=SC,∴SC⊥平面OAB,O为三棱锥的外接球的球心,SC为球O的直径,设球O得半径为R,则AB=SC=R,∴△AOB为正三角形,则∠BOA=60°,∴V S﹣ABC =V S﹣OAB+V C﹣OAB=,解得R=3.故选:C.11.(5分)椭圆+=1(a>b>0)与函数y=的图象交于点P,若函数y=的图象在P处的切线过椭圆的左焦点F(﹣1,0),则椭圆的离心率是()A.B.C.D.【解答】解:由题意,左焦点F为(﹣1,0),设P(t,),k PF=,由y=,求导y′=,则k PF=,即=,解得t=1,即P(1,1),设椭圆M的右焦点为F2(1,0),则2a=|PF1|+|PF2|=1+,∴椭圆M的离心率为e===,故选:B.12.(5分)若关于x的方程有3个不相等的实数解x1,x2,x3,且x1<0<x2<x3,其中m∈R,e=2.71828……,则的值为()A.1B.1﹣m C.1+m D.e【解答】解:由方程⇒,令,则有t++m=0.⇒t2+(m﹣1)t+1′﹣m=0,令函数g(x)=,,∴g(x)在(﹣∞,1)递增,在(1,+∞)递减,其图象如下,要使关于x的方程有3个不相等的实数解x1,x2,x3,且x1<0<x2<x3结合图象可得关于t的方程t2+(m﹣1)t+1′﹣m=0一定有两个实根t1,t2,(t1<0<t2)且,∴=[(t1﹣1)(t2﹣1)]2.(t1﹣1)(t2﹣1)=t1t2﹣(t1+t2)+1=(1﹣m)﹣(1﹣m)+1=1.∴=[(t1﹣1)(t2﹣1)]2=1.故选:A.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)已知,,则=5.【解答】解:∵,,∴==(﹣3,4),∴.故答案为:5.14.(5分)已知二项式(x2+)n的展开式的二项式系数之和为32,则展开式中含x项的系数是10【解答】解:由题意可得2n=32,n=5,展开式的通项公式为T r+1=•x10﹣2r•x ﹣r=•x10﹣3r.令10﹣3r=1,r=3,故展开式中含x项的系数是=10,故答案为10.15.(5分)已知P是双曲线C:右支上一点,直线l是双曲线的一条渐近线,P在l上的射影为Q,F1是双曲线的左焦点,则|PF1|+|PQ|的最小值是.【解答】解:设右焦点分别为F2,∵∴|PF1|﹣|PF2|=2,∴|PF1|=|PF2|+2,∴|PF1|+|PQ|=|PF2|+2+|PQ|,当且仅当Q、P、F2三点共线,且P在F2,Q之间时,|PF2|+|PQ|最小,且最小值为F2到l的距离,可得l的方程为y=±x,F2(,0),F2到l的距离d=1∴|PQ|+|PF1|的最小值为2+1.故答案为:1+2.16.(5分)已知动点P(x,y)满足,则x2+y2﹣6x的最小值是﹣.【解答】解:动点P(x,y)满足,x≥1时,x+≥1+;∴要使(x+)(﹣y)≤1,只要﹣y≤,﹣y≤﹣x(*),设f(x)=﹣x,x∈R,则f(x)是单调减函数,(*)可化为y≥x;∴动点P满足,该不等式组表示的平面区域如图所示:又x2+y2﹣6x=(x﹣3)2+y2﹣9,由两点间的距离公式可得,M(3,0)到区域中A的距离最小,由,解得A(,);∴x2+y2﹣6x=(x﹣3)2+y2﹣9≥|AM|2﹣9=+﹣9=﹣.故答案为:﹣.三、解答题(本大题共6题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(10分)已知数列{a n}中,a1=1,其前n项的和为S n,且满足.(1)求证:数列是等差数列;(2)证明:当n≥2时,.【解答】证明:(1)当n≥2时,,S n﹣1﹣S n=2S n S n﹣1,从而构成以1为首项,2为公差的等差数列.(2)由(1)可知,,∴,∴当n≥2时,,从而.18.(10分)我们国家正处于老龄化社会中,老有所依也是政府的民生工程.某市共有户籍人口400万,其中老人(年龄60岁及以上)人数约有66万,为了了解老人们的健康状况,政府从老人中随机抽取600人并委托医疗机构免费为他们进行健康评估,健康状况共分为不能自理、不健康尚能自理、基本健康、健康四个等级,并以80岁为界限分成两个群体进行统计,样本分布制作成如图:(1)若采用分层抽样的方法从样本中的不能自理的老人中抽取8人进一步了解他们的生活状况,则两个群体中各应抽取多少人?(2)估算该市80岁及以上长者占全市户籍人口的百分比;(3)据统计该市大约有五分之一的户籍老人无固定收入,政府计划为这部分老:人每月发放生活补贴,标准如下①80岁及以上长者每人每月发放生活补贴200元;②80岁以下老人每人每月发放生活补贴120元;③不能自理的老人每人每月额外发放生活补贴100元.利用样本估计总体,试估计政府执行此计划的年度预算.(单位:亿元,结果保留两位小数)【解答】解:(1)数据整理如下表:从图表中知采用分层抽样的方法从样本中的不能自理的老人中抽取8人进一步了解他们的生活状况,80岁及以上应抽取:人,80岁以下应抽取:人(2)在600人中80岁及以上长者在老人中占比为:用样本估计总体,80岁及以上长者为:万,80岁及以上长者占户籍人口的百分比为.(3)用样本估计总体,设任一户籍老人每月享受的生活补助为X元,X的可能取值为0,120,200,220,300,,,,,,则随机变量X的分布列为:,全市老人的总预算为28×12×66×104=2.2176×108元政府执行此计划的年度预算约为2.22亿元.19.(10分)如图,在四棱锥P﹣ABCD中,PD⊥平面ABCD,底面ABCD是菱形,∠BAD=60°,O为AC与BD的交点,E为PB上任意一点.(I)证明:平面EAC⊥平面PBD;(II)若PD∥平面EAC,并且二面角B﹣AE﹣C的大小为45°,求PD:AD的值.【解答】解:(I)∵PD⊥平面ABCD,AC⊂平面ABCD,∴AC⊥PD∵菱形ABCD中,AC⊥BD,PD∩BD=D∴AC⊥平面PBD又∵AC⊂平面EAC,平面EAC⊥平面PBD;(II)连接OE,∵PD∥平面EAC,平面EAC∩平面PBD=OE,PD⊂平面PBD∴PD∥OE,结合O为BD的中点,可得E为PB的中点∵PD⊥平面ABCD,∴OE⊥平面ABCD,又∵OE⊂平面EAC,∴平面EAC⊥平面ABCD,∵平面EAC∩平面ABCD=AC,BO⊂平面ABCD,BO⊥AC∴BO⊥平面EAC,可得BO⊥AE过点O作OF⊥AE于点F,连接OF,则∵AE⊥BO,BO、OF是平面BOF内的相交直线,∴AE⊥平面BOF,可得AE⊥BF因此,∠BFO为二面角B﹣AE﹣C的平面角,即∠BFO=45°设AD=BD=a,则OB=a,OA=a,在Rt△BOF中,tan∠BFO=,可得OF=Rt△AOE中利用等积关系,可得OA•OE=OF•AE即a•OE=a•,解之得OE=∴PD=2OE=,可得PD:AD=:2即PD:AD的值为.20.(10分)已知抛物线C:x2=2py(p>0)的焦点为F,过F的直线l交抛物线C于点A,B,当直线l的倾斜角是45°时,AB的中垂线交y轴于点Q(0,5).(1)求p的值;(2)以AB为直径的圆交x轴于点M,N,记劣弧的长度为S,当直线l绕F旋转时,求的最大值.【解答】解:(1)抛物线C:x2=2py(p>0)的焦点为F,,当l的倾斜角为45°时,l的方程为设A(x1,y1),B(x2,y2),由,得x2﹣2px﹣p2=0,x1+x2=2p,y1+y2=x1+x2+p=3p,得AB中点为…(3分)AB中垂线为,x=0代入得.∴p=2…(6分)(2)设l的方程为y=kx+1,代入x2=4y得x2﹣4kx﹣4=0,,AB中点为D(2k,2k2+1)令∠MDN=2α,,∴…(8分)D到x轴的距离|DE|=2k2+1,…(10分)当k2=0时cosα取最小值,α的最大值为.故的最大值为.…(12分)21.(10分)已知函数.(1)讨论f(x)的单调性;(2)若f(x)有两个极值点x1,x2,且x1<x2,证明:.【解答】解:(1),x∈(0,+∞)所以①当k≤0时,f'(x)>0,所以f(x)在(0,+∞)上单调递增②当k>0时,令t(x)=x2﹣2kx+1,当△=4k2﹣4≤0即0<k≤1时,t(x)≥0恒成立,即f'(x)≥0恒成立所以f(x)在(0,+∞)上单调递增当△=4k2﹣4>0,即k>1时,x2﹣2kx+1=0,两根所以,f'(x)>0,f'(x)<0,f'(x)>0故当k∈(﹣∞,1)时,f(x)在(0,+∞)上单调递增当k∈(1,+∞)时,f(x)在和上单调递增f (x)在上单调递减.(2)证明:,,由(1)知k≤1时,f(x)(0,+∞)上单调递增,此时f(x)无极值当k>1时,由f'(x)=0得x2﹣2kx+1=0,△=4k2﹣4>0,设两根x1,x2,则x1+x2=2k,x1•x2=1其中f(x)在(0,x1)上递增,在(x1,x2)上递减,在(x2,+∞)上递增,==.令,所以t(x)在(1,+∞)上单调递减,且故.[选修4-4:坐标系与参数方程]22.(10分)以平面直角坐标系xOy的原点为极点,x轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位,直线l的参数方程为(t 为参数),圆C的极坐标方程为.(1)求直线l的普通方程与圆C的执直角坐标方程;(2)设曲线C与直线L交于A,B两点,若P点的直角坐标为(2,1),求||P A|﹣|PB||的值.【解答】解:(1)∵直线l的参数方程为(t为参数),∴直线l的普通方程为y=x﹣1,∵圆C的极坐标方程为:,∴ρ2=4ρsinθ+4ρcosθ∴圆C的直角坐标方程为x2+y2﹣4x﹣4y=0.(2)点P(2,1)在直线l上,且在圆C内,由已知直线l的参数方程是(t为参数)代入x2+y2﹣4x﹣4y=0,得,设两个实根为t1,t2,则,即t 1,t2异号所以.[选修4-5:不等式选讲]23.(10分)已知关于x的不等式|2x|+|2x﹣1|≤m有解.(I)求实数m的取值范围;(II)已知a>0,b>0,a+b=m,证明:.【解答】(本小题满分10分)解:(Ⅰ)|2x|+|2x﹣1|≥|2x﹣(2x﹣1)|=1,故m≥1;…(5分)(Ⅱ)∵a>0,b>0,∴a+2b>0,2a+b>0故==a2+b2+2ab=(a+b)2,即由(Ⅰ)知a+b=m≥1,∴.…(10分)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

. 第 17~ 21 题为必考题,
每个试题考生都必须作答 . 第( 22)、( 23)题为选考题,考生根据要求作答 .
(一)必考题:共 60 分 .
17. 已知数列 { a n } 为单调递增数列,
S n 为其前
n 项和,
2S n
a2 n
n.
( 1)求 { a n } 的通项公式;
( 2)若 b n
PQ
的平行线交抛物线于点 M ,直线 Q M 交 y 轴于点 N ,则

NO
16. 在 A B C 中,角 A , B , C 的对边分别为 a , b , c , A B 边上的高为 h ,若 c 2 h ,
则a
b
的取值范围是.
ba
三、解答题:共 70 分 . 解答应写出文字说明、证明过程或演算步骤
6
D.向左平移 个单位长度
3
9. 某几何体的三视图如图所示,则该几何体的表面积是(

5
A. 5 4 2 B. 9 C. 6 5 2 D.
3
2
2
10. 已知 F 为双曲线 C : x 2
y
2
1 ( a 0 , b 0 ) 的右焦点, 过点 F 向 C 的一条渐近线引垂
ab
线,垂足为 A ,交另一条渐近线于点 B . 若 O F F B ,则 C 的离心率是(
12. 已知 P , A , B , C 是半径为 2 的球面上的点, P A P B P C 2 , A B C 9 0 ,点
B 在 A C 上的射影为 D ,则三棱锥 P A B D 体积的最大值是(

A. 3 3 B. 3 3
4
8
C. 1 D. 3
2
4
二、填空题:本题共 4 小题,每小题 5 分,共 20 分.
5. 用两个 1 ,一个 2 ,一个 0 ,可组成不同四位数的个数是(

A. 1 8
B
.1 6
C
. 12
D
.92Βιβλιοθήκη 46. 已知 a 3 3 , b 2 3 , c ln 3 ,则( )
A. a c b
B
.a b c C .b c a
D
.b a c
7. 如图是根据南宋数学家杨辉的 “垛积术” 设计的程序框图, 该程序所能实现的功能是 ( )
得到如图所示的频率分布直方图 .
13. 设 x , y 满足约束条件
xy 0
x 2 y 3 0 ,则 z 2 x 3 y 的最小值是.
x 2y 1 0
14. ( 2 x
6
1) 的展开式中,二项式系数最大的项的系数是.
(用数字作答)
15.
已知 P 为抛物线
2
y
x 上异于原点 O 的点, P Q
x 轴,垂足为 Q ,过 P Q 的中点作 x 轴
A.求 1 3 5 ... ( 2 n 1) B.求 1 3 5 ... ( 2 n 1)
C.求
2
1
2
2
2
3
D.求
2
1
2
2
2
3
2
n
2
( n 1)
5
8. 为了得到函数 y s in
x 的图象,可以将函数 y s in x 的图象( )
6
A.向左平移 个单位长度
6
B.向右平移 个单位长度
3
C.向右平移 个单位长度
2017-2018 学年度高三年级第一次模拟考试理科数学试卷
一、选择题:本大题共 12 个小题,每小题 5 分,共 60 分. 在每小题给出的四个选项中,只有 一项是符合题目要求的 .
2
(1 i )
1.
()
i
A. 2 2 i B. 2 2 i C. 2 2 i D . 2 2 i
2. 设集合 M
2
{ x | x x 0} , N

6
3
A. B.
C. 2 D. 2
2
3
11. 已知函数 f ( x )
2
x
2 x c o s x ,则下列关于 f ( x ) 的表述正确的是(

A. f ( x ) 的图象关于 y 轴对称
B
. x 0 R , f ( x ) 的最小值为 1
C. f ( x ) 有 4 个零点
D
. f ( x ) 有无数个极值点
1
x | 1 ,则( )
x
A. M ? N B. N ? M C. M N D. M N R
3. 已知 ta n
1
,且
2
4
4
3
A. B. C. D.
5
5
5
(0 ,
3 5
) ,则 sin 2
()
4. 两个单位向量 a , b 的夹角为 1 2 0 ,则 2 a b ( )
A. 2 B. 3 C . 2 D. 3
an 2
n1
,T n
为数列
{
b} n
的前
n
项和,证明:
Tn
1
.
2 aa
n
n1
2
18. 某水产品经销商销售某种鲜鱼,售价为每公斤
2 0 元,成本为每公斤 1 5 元 . 销售宗旨是当
天进货当天销售 . 如果当天卖不出去,未售出的全部降价处理完,平均每公斤损失
3 元 . 根据
以往的销售情况, 按 [5 0 ,1 5 0 ) ,[1 5 0, 2 5 0 ) ,[ 2 5 0 , 3 5 0 ) ,[3 5 0 , 4 5 0 ) , [ 4 5 0 , 5 5 0 ] 进行分组,
相关文档
最新文档