第九章 无穷级数练习题
无穷级数习题课含解答

无穷级数习题课1.判别级数的敛散性:(1)(2)(3)(4)(5)()211ln1nn n¥=+å()41tan1nn p¥=+å363663666-+-++×××+-++×××++×××21sinlnnnnp¥=æö+ç÷èøå()211lnnnn n¥=--å解:(1)为正项级数,当时, ,根据比较审敛准则,与有相同敛散性,根据积分审敛准则,与反常积分有相同敛散性, 而发散,故发散.()211ln 1n n n ¥=+ån ®¥()2111~2ln ln 1n u n n n n =+()211ln 1n n n ¥=+å21ln n n n ¥=å21ln n n n¥=å21ln dx x x +¥ò21ln dx x x +¥ò()211ln 1n n n ¥=+å(2)为正项级数,当时,,而收敛,根据比较审敛准则,收敛.()41tan 1n n p¥=+ån ®¥()422421tan1tan~21n u n n n n npp p =+-=++211n n ¥=å()41tan1n n p¥=+å(3)为正项级数, 令,其中,易证单调递增且,故收敛;令,由,两边取极限得,,(舍去);,,根据达朗贝尔比值审敛法,该级数收敛.363663666-+-++×××+-++×××++×××3n n u a =-666n a =++×××+{}n a 3n a <{}n a lim n n a a ®¥=16n n a a -=+6a a =+Þ260a a --=3a =2a =-111113311333n n n n n n n a a u u a a a +++++-+=×=-++1111lim lim 136n n n nn u u a +®¥®¥+==<+(4)看成交错级数,单调递减趋于0,根据Leibniz 定理,该级数收敛; 其绝对值级数发散(这是因为当时,,而且),故级数条件收敛. ()2211sin 1sin ln ln n n n n n n p ¥¥==æö+=-ç÷èøåå1sin ln n ìüíýîþ21sin ln n n ¥=ån ®¥11sin ~ln ln n n 1lim ln n n n®¥×=+¥(5)为交错级数,其绝对值级数为,当时,, 所以,该级数绝对收敛.()211ln nn n n¥=--å211ln n n n ¥=-ån ®¥2211~ln n n n-2. 设,且,证明级数条件收敛. ()01,2,n u n ¹= lim 1n nn u ®¥=()111111n n n n u u ¥-=+æö-+ç÷èøå证明:设级数的部分和为,则 ,因为,所以,于是 ,即级数收敛;其绝对值级数为,因为, 所以级数发散,故原级数条件收敛.()111111n n n n u u ¥-=+æö-+ç÷èøån s ()()211223111111111111n n n n n n n s u u u u u u u u ---+æöæöæöæö=+-+++-++-+ç÷ç÷ç÷ç÷èøèøèøèø()111111n n u u -+=+-lim1n nn u ®¥=()()1111111lim 1lim 101n n n n n n n u u n --®¥®¥+++-=-×=+()1111111lim lim 1n n n n n s u u u -®¥®¥+éù=+-=êúëû()111111n n n n u u ¥-=+æö-+ç÷èøå1111n n n u u ¥=++å11111lim lim 21n n n n n n n n nn u u u u n ®¥®¥+++×+=+×=+1111n n n u u ¥=++å3. 填空(1) _____(2) 设幂级数在处收敛, 则级数__收敛__.(收敛还是发散)(3) 设幂级数在处条件收敛,则幂级数在处( 绝对收敛 ),在处( 发散 ); (4)设,, ,则________;________.11(1)2n n n -¥=-=å130(1)nn n a x ¥=-å12x =-0(1)n n n a ¥=-å1()nn x a n ¥=-å2x =-1()2nn n x a ¥=+åln 2x =-x p =11,02()1,12x f x x x ì£<ïï=íï ££ïî1()sin nn s x bn xp ¥==å102()sin n b f x n xdx p =ò3()2s =34-5()2s =344. 求幂级数的收敛域2112sin 22nn x n x ¥=+æöæöç÷ç÷-èøèøå 解:令,原级数变为变量t的幂级数.因为,所以收敛半径.又时级数发散,时级数收敛, 故收敛域为;再由,解得, 原函数项级数的收敛域为.122xt x +=-21sin 2n n t n ¥=æöç÷èøå ()11sin21limlim 11sin2n n n nn a a n+®¥®¥+==1R =1t=21sin 2n n ¥=å1t=-()211sin 2nn n ¥=-å21sin 2n n t n ¥=æöç÷èøå [)1,1-12112x x +-££-133x -£<2112sin 22nn x n x ¥=+æöæöç÷ç÷-èøèøå 13,3éö-÷êëø5.求下列级数的和函数(1) (2)221212n n n n x ¥-=-å()()()201123!nn n n x n ¥=-++å解:(1).令,,所以收敛半径. 当时,级数发散,所以幂级数的收敛域为.设级数的和函数为,对幂级数逐项积分得,, 对上式两边求导得, .221212n n n n x ¥-=-å212n n n a -=11lim 2n n n a a +®¥=1212R ==2x =±()2,2D =-()s x ()212200112122n xx n n n n n n x s x dx x dx -¥¥-==-==ååòò222212xx x x ==--()2,2x Î-()()2222222x x s x x x ¢+æö==ç÷-èø-()2,2x Î-(2). 易求该幂级数的收敛域为;设级数的和函数为,,, 两边取积分,逐项求积分得, ()()()201123!nnn n x n ¥=-++å(),-¥+¥()s x ()()()()201123!nn n n s x xn ¥=-+=+å()()()()2101123!nn n n xs x x n ¥+=-+=+å()()()()()()21220000111123!223!nnxx n n n n n xs x dx x dx x n n ¥¥++==-+-==++ååòò当时,,求导得 , 当时,由所给级数知.因此. 0x ¹()()()()230111sin 223!2nxn n xs x dx x x x x n x¥+=-==-+åò()2sin 1sin cos 22x x x x xxs x x x ¢--æö==ç÷èø()3sin cos 2x x x s x x -=0x =()106s =()3sin cos ,021,06x x xx xs x x -ì¹ïï=íï=ïî6.求级数的和.()22112n n n ¥=-å解:考虑幂级数,收敛区间,设和函数为, 则当且时,,. ()2211nn x n ¥=-å()1,1-()s x 11x -<<0x ¹()()222211121211nnnn n n x x s x x n n n ¥¥¥=====--+-ååå112212121n n n n x x x n x n -+¥¥===--+åå11220121212n n n n x x x x x n x n -+¥¥==æö=---ç÷-+èøåå()11ln 12224x x x x æö=--++ç÷èø()2211311153ln ln 2242288412nn s n ¥=æö==++=-ç÷-èøå()()211ln 1ln 1222x x x x x x éù=-------êúëû7.设,试将展开成的幂级数.()111ln arctan 412x f x x x x +=+--()f x x 解:,取0到x 的定积分,幂级数逐项求积分, .()241111111114141211f x x x x x¢=++-=-+-+-44011n n n n x x ¥¥===-=åå()11x -<<()()()4410111041xx nn n n f x f f x dx x dx x n ¥¥+==¢=+==+ååòò1x <8.设在上收敛,试证:当时,级数必定收敛. ()0nn n f x a x ¥==å[]0,1010a a ==11n f n ¥=æöç÷èøå证明: 由已知在上收敛,所以,从而有界. 即存在,使得 ,所以,;级数收敛,根据比较审敛准则,级数绝对收敛.()0n n n f x a x ¥==å[]0,1lim 0n n a ®¥={}n a 0M>n a M£()1,2,n = 0123232323111111f a a a a a a n n n n n n æö=++++=++ç÷èø()2231111111n M M M n n n n næö£++==ç÷-èø- ()2n ³()211n n n ¥=-å11n f n ¥=æöç÷èøå9.已知为周期是的周期函数,(1)展开为傅立叶级数; (2)证明;(3)求积分的值.[)2(),0,2f x x x p =Î2p ()f x ()1221112n n np -¥=-=å()10ln 1x dx x +ò解:(1)在处间断,其它点处都连续.所以由Dirichlet 收敛定理,时,级数收敛于,所以当时,有,亦即:.()f x ()20,1,2,x k k p ==±± ()()22220011183a f x dx f x dx x dx pppp pp pp-====òòò222022014cos ,14sin ,1,2,n n a x nxdx n b x nxdx n npp p p p ====-=òò ()()221414cos sin 20,1,2,3n f x nx nx x k k nn p p p ¥=æö=+-¹=±±ç÷èøå ()22214114cos sin ,0,23n x nx nx x nn p p p ¥=æö=+-Îç÷èøå()20,1,2,x k k p ==±± ()()2002022f f p p ++-=()20,1,2,x k k p ==±± 222141423n np p ¥=+=å22116n n p ¥==å(2)是连续点,所以即:;x p =()f x 2221414cos ,3n n np p p ¥==+å()221112nn n p¥=-=-å()1221112n n n p-¥=-Þ=å(3)积分是正常积分,不是瑕点, 对,令,.()10ln 1x dx x +ò0x=()1,1t "Î-()()()()111112000111ln 1111n n n tt tn n nn n n x dx x dx x dx tx n nn---¥¥¥--===+---===åååòòò1t -®()10ln 1x dx x +ò()01ln 1lim t t x dx x -®+=ò()12111lim n n t n t n --¥®=-=å()12111lim n n t n t n --¥®=-=å()1221112n n np -¥=-==å10.证明下列展开式在上成立:(1);(2).并证明. []0,p ()221cos 26n nxx x n pp ¥=-=-å()()()31sin 21821n n xx x n p p¥=--=-å()()133113221n n n p -¥=-=-å证明:将函数展开为余弦级数和正弦级数.(1) 对作偶延拓,再作周期延拓,得到的周期函数处处连续,根据Dirichlet 定理,时,的余弦级数处处收敛于.,()()f x x x p =-[]0,x p Î()f x []0,x p Î()f x ()f x ()()0022a f x dx x x dx ppp p p==-òò23202233x x pp p p æö=-=ç÷èø, ,所以在上,.()()022cos cos n a f x nxdx x x nxdx ppp p p==-òò()()()()200022sin 2sin 2cos x x nx x nxdx x d nx n n pppp p p ppéù=---=-êúëûòò()2211nn éù=--+ëû()()202112cos 11cos 26n n n n a f x a nx nx n p ¥¥==éù=+=--+ëûåå221cos 26n nxnp ¥==-å[]0,x p Î[]0,p ()221cos 26n nxx x n p p ¥=-=-å(2)对作奇延拓,再作周期延拓,得到的周期函数处处连续,根据Dirichlet 定理,时,的正弦级数处处收敛于. , ()f x []0,x p Î()f x ()f x ()()0022sin sin n b f x nxdx x x nxdx p pp p p ==-òò()()()()200022cos 2cos 2sin x x nx x nxdx x d nx n n p p p p p p p p éù=----=-êúëûòò()3411n n p éù=--ëû, 所以在上,. 令,有. ()()3114sin 11sin n n n n f x b nx nx n p ¥¥==éù==--ëûåå()()31sin 21821n n x n p ¥=-=-å[]0,x p Î[]0,p ()()()31sin 21821n n xx x n p p ¥=--=-å2x p =()()23181sin 214221n n n p p p ¥==--åÞ()()133113221n n n p -¥=-=-å。
无穷级数练习题

无穷级数习题一、填空题1、设幂级数的收敛半径为3,则幂级数的收敛区间为nn n a x∞=∑11(1)n nn na x ∞+=-∑。
2、幂级数的收敛域为 。
0(21)nn n x∞=+∑3、幂级数的收敛半径 。
211(3)2n n nn n ∞-=-+∑R =4、幂级数的收敛域是 。
n ∞=5、级数的收敛域为 。
21(2)4nnn x n ∞=-∑6、级数的和为 。
(ln 3)2nnn ∞=∑7、。
111()2n n n ∞-==∑8、设函数 的傅里叶级数展开式为2()f x x x π=+()x ππ-<<,则其系数的值为。
1(cos sin )2n n n a a nx b nx ∞=++∑3b 9、设函数 则其以为周期的傅里叶级数在点处的21,()1,f x x -⎧=⎨+⎩0,0,x x ππ-<≤<≤2πx π=敛于。
10、级数的和 。
11(1)(2)n n n n ∞=++∑11、级数的收敛域为 。
21(2)4nnn x n ∞=-⋅∑参考答案:1、 2、 3、 4、 5、(2,4)-(1,1)-R =[1,1)-(0,4)6、7、8、9、10、11、22ln 3-423π212π14(0,4)二、选择题1、设常数,而级数收敛,则级数是( )。
0λ>21n n a ∞=∑1(1)nn ∞=-∑(A )发散 (B )条件收敛(C )绝对收敛(D )收敛与有关λ2、设,,,则下列命题中正确的是()。
2n n n a a p +=2n nn a a q -= 1.2n = (A )若条件收敛,则与都收敛。
1nn a∞=∑1nn p∞=∑1nn q∞=∑(B )若绝对收敛,则与都收敛。
1nn a∞=∑1nn p∞=∑1nn q∞=∑(C )若条件收敛,则与的敛散性都不一定。
1nn a ∞=∑1nn p ∞=∑1nn q∞=∑(D )若绝对收敛,则与的敛散性都不定。
无穷级数必考经典习题(附答案).pdf

无穷级数同步测试一、单项选择题1.下列结论中,错误的是( )()A 若lim 0→∞≠n n u ,则级数21∞=∑n n u 发散.()B 若级数1∞=∑n n u 绝对收敛,则21∞=∑n n u 收敛.()C 若级数1∞=∑n n u 收敛,则21∞=∑n n u 收敛.()D 若级数21∞=∑n n u 收敛,则lim 0→∞=n n u 收敛.2.已知幂级数1(1)∞=−∑nn n a x 在0=x 处收敛,在2=x 处发散,则该级数的收敛域( )()[0,2)()(0,2]()(0,2)()[0,2]A B C D3.已知幂级数1∞=∑nn n a x 的收敛半径1=R ,则幂级数0!∞=∑n n n a x n 的收敛域为( )()(1,1)()[1,1)()(1,1]()(,)−−−−∞+∞A B C D4. 设常数0>x ,则级数11(1)sin ∞−=−∑n n x n ( ). ()A 发散 ()B 条件收敛 ()C 绝对收敛 ()D 收敛性与x 有关二、填空题5. 级数11()2∞=∑nn n 的和为 .6.2!lim(!)→∞=n n n .7.已知级数22116π∞==∑n n ,则级数211(1)∞=−=∑n n n .8.幂级数2101!∞+=∑n n x n 的和函数()=S x . 三、解答题9.判断下列运算过程是否正确,若不正确,指出错误所在,并给出正确解法.级数∞=n n .又由于0=n,但=n u 不是单调递减的,由此得出该级数不满足莱布尼茨定理的第二个条件,故级数发散.10.讨论级数21(0)(1)(1)(1)∞=≥+++∑nn n x x x x x 的敛散性.11.求级数11(21)2∞=+∑nn n n 的和. 12.将2()ln(3)=−f x x x 展开为1−x 的幂级数. 13.求极限2313521lim()2222→∞−++++nn n . 14.验证函数3693()1()3!6!9!(3)!=++++++−∞<<+∞n x x x x y x x n 满足微分方程()()()'''++=xy x y x y x e ,并求幂级数30(3)!∞=∑nn x n 的和函数.第九章 多元函数微分法及其应用同步测试B 答案及解析一、单项选择题答案详细解析1. 解 利用级数的性质.若lim 0→∞≠n n u ,则2lim 0→∞≠nn u ,因此级数21∞=∑n n u 发散, ()A 正确;若1∞=∑n n u 绝对收敛,即1∞=∑n n u 收敛,则lim 0→∞=n n u ,2lim lim 01→∞→∞==<nn n n nu u u根据正项级数的比较审敛法知21∞=∑n n u 收敛,()B 正确;若级数21∞=∑n n u 收敛,则2lim 0lim 0→∞→∞=⇒=nn n n u u ,()D 正确; 故选()C .事实上,令(1)=−nn u ,则1∞=∑n n u 收敛,但2111∞∞===∑∑n n n u n发散. 『方法技巧』 本题考查级数收敛的必要条件及正项级数的比较审敛法. 『特别提醒』 比较审敛法只限于正项级数使用.2.解 由于幂级数1(1)∞=−∑n n n a x 在0=x 处收敛,则该级数在以1为中心,以0和1之间的距离1为半径的开区间11−<x ,即02<<x 内,级数绝对收敛.又级数在2=x 处发散,则在以1为中心,以1和2之间的距离1为半径的区间外11−>x ,即0<x 或2>x 内,级数发散.因此级数的收敛区间(不含端点)为(0,2),则收敛域为[0,2),故选()A .『方法技巧』 本题考查幂级数的阿贝尔定理.『特别提醒』 阿贝尔定理经常出现在各类考试的选择题或填空题中,要求大家熟练掌握它.3. 解 由于1∞=∑n n n a x 的收敛半径1=R ,则有1lim1→∞+=nn n a a . 幂级数0!∞=∑nn n a x n 的收敛半径为 11!lim lim (1)(1)!→∞→∞++'==+=+∞+nn n n n n a an R n a a n ,因此收敛域为(,)−∞+∞,故选()D .『方法技巧』 本题考查幂级数的收敛半径和收敛域. 由于级数是标准的幂级数,直接代入公式即可求出收敛半径=+∞R .4. 解 由于存在充分大的n ,有,sin 02π<>x xn n,所以从某时刻开始,级数1(1)sin ∞−=−∑k k nxk 是交错级数,且满足 sin sin ,limsin 01→∞≤=+k x x x k k k ,即满足莱布尼茨定理的条件,所以此交错级数收敛,而前有限项(1−n 项)不影响级数的敛散性,因此原级数11(1)sin ∞−=−∑n n xn 收敛.又由于sinlim 01→∞=>n xn x n,因此级数111(1)sin sin ∞∞−==−=∑∑n n n x x n n 发散,所以原级数11(1)sin ∞−=−∑n n xn 条件收敛,故选()B .『方法技巧』 本题考查正项项级数的比较审敛法及绝对收敛、条件收敛的概念和级数的性质.『特别提醒』 解题中需要说明,此级数可能不是从第一项就是交错级数,从某项以后为交错级数,而前有限项不影响级数的敛散性. 二、填空题 5. 2 6. 0 7. 212π− 8. 2x xe答案详细解析5. 解 考查幂级数1∞=∑n n nx ,其收敛域为(1,1)−.由111∞∞−===∑∑nn n n nx x nx,令11()∞−==∑n n f x nx ,则111()1∞∞−=====−∑∑⎰⎰xxn n n n x f x dx nx dx x x因此21()()1(1)'==−−x f x x x ,故21()(1)∞===−∑nn x nx xf x x ,所以 2111112()()21222(1)2∞====−∑n n n f 『方法技巧』 本题考查幂级数的收敛域及和函数.求常数项级数的和经常转化为讨论幂级数的和函数在确定点的值.『特别提醒』 在幂级数求和时,经常使用逐项积分和逐项求导的方法,将其转化为熟悉的幂级数(如等比级数),注意级数的第一项(0=n 或1=n ).6. 解 考虑级数21!(!)∞=∑n n n ,由比值审敛法 212(1)!(!)1lim lim lim 01![(1)!]1+→∞→∞→∞+===<++n n n n nu n n u n n n 因此级数21!(!)∞=∑n n n 收敛,由收敛级数的必要条件得2!lim 0(!)→∞=n n n . 『方法技巧』 本题考查利用收敛级数的必要条件求极限.这是求数列极限的一种方法,有些数列变形十分复杂,可考虑将其作为级数的一般项讨论.7. 解 由题设 222211111236π∞==+++=∑n n,则2222222111111111(2)42464624ππ∞∞====++=⨯=∑∑n n n n 22222222111111111(21)35(2)6248πππ∞∞∞====+++=−=−=−∑∑∑n n n n n n 故 222222222111111111(1)122234(21)6812πππ∞∞∞===−=−+−+−=−=−⨯=−−∑∑∑nn n n n n n 『方法技巧』 本题考查收敛级数的性质——收敛级数的代数和仍收敛(此性质只适用于收敛级数).『特别提醒』 一些同学不熟悉符号∑,可以将其写成普通和的形式,看起来会方便一些.8. 解 由于函数xe 的幂级数展开式为 01()!∞==−∞<<+∞∑xnn e x x n ,而 2122000111()!!!∞∞∞+=====∑∑∑n n n n n n x x x x x n n n 因此 22120011()()!!∞∞+=====∑∑n n x n n S x x x x xe n n .『方法技巧』 本题考查指数函数()=x f x e 的幂级数展开式01()!∞==−∞<<+∞∑xnn e x x n 一般而言,若幂级数的系数为1!n 时,求和时可能与指数函数x e 有关;若幂级数的系数为1(21)!−n 或1(2)!n 时,求和时可能与三角函数sin x 或cos x 有关.三、解答题9. 解 判断条件收敛的运算过程是错误的.由于lim11→∞→∞===n n n n u ,因此由比较审敛法知,级数∞=n2∞=n n 不是绝对收敛的.错误在于:莱布尼茨定理是判断交错级数收敛的一个充分条件,不是必要的,因此并不能说明不满足莱布尼茨定理的第二个条件,级数就一定不收敛.本题的正确解法要用级数收敛的充分必要条件,即研究lim →∞n n S 是否存在.正确解法:212⎛=+++ ⎝n S n由于每个括号均为负数,因此2n S 单调递减,且有212⎛=+++⎝n S n12⎛>+++⎝n=> 因此2lim →∞n n S 存在,不妨设2lim →∞=n n S S ,而21221221lim lim()lim lim 0+++→∞→∞→∞→∞=+=+=+=+=n n n n n n n n n n S S u S u S S S从而得到lim →∞=n n S S ,即级数∞=n n .『方法技巧』 本题考查绝对收敛和条件收敛的概念、莱布尼茨定理的应用及级数收敛的充分必要条件.1∞=∑nn u收敛⇔部分和n S 的极限存在,即lim →∞=n n S S『特别提醒』 莱布尼茨定理是判断交错级数收敛的充分非必要条件,即使不满足莱布尼茨定理,级数也可能收敛.10. 解 由于级数的一般项中含有连乘的形式,所以用比值审敛法1111lim 0 111limlim0111 12→∞+++→∞→∞⎧⎪=>⎪⎪+⎪⎪==≤<⎨+⎪⎪=⎪⎪⎪⎩n n n n n n n nx x x u xx x u x x 故对任意的0≥x ,原级数均收敛.『方法技巧』 本题考查正项级数的比值审敛法.若正项级数的一般项中含有连乘(包括阶乘!n )时,一般考虑用比值审敛法判断级数的敛散性.『特别提醒』 由于x 的范围不同,1lim+→∞n n nu u 不同,故需要分别进行讨论,但不论什么情况,极限值均小于1,因此级数收敛.11. 解 考虑幂级数21(21)∞=+∑nn x n n由于2211(1)(23)limlim 1(21)+→∞→∞++==+n n n nu n n x x u n n ,故其收敛半径为1=R ,而当1=±x 时,级数11(21)∞=+∑n n n 均收敛,因此幂级数的收敛域为[1,1]−.令 22111()(1)(21)(21)+∞∞====<++∑∑n n n n x x S x x x n n n n则 2212112(),()21∞∞−=='''===−∑∑n n n n x xS x S x x n x 因此 22002()(0)()ln(1)1''''−===−−−⎰⎰xxxS x S S x dx dx x x又 (0)0'=S ,则 2()ln(1)'=−−S x x ,同理2201()(0)()ln(1)ln(1)2ln1+'−==−−=−−+−−⎰⎰xxxS x S S x dx x dx x x x x而 (0)0=S ,则 21()ln(1)2ln1+=−−+−−xS x x x x x,故1111)](21)22∞====+−+∑nn n n2ln 21)=++『方法技巧』 本题考查利用幂级数求常数项级数的和,这是一种常用方法,关键要做出合适的幂级数.本题由于级数一般项的分母中含有因式21+n ,故所做级数为21(21)∞=+∑n n x n n,此时只要令=x ,即为所求的常数项级数.『特别提醒』 在求幂级数的和时,不要忽略了收敛域的讨论,要保证常数项级数是幂级数取收敛域内的点.12. 解 2()ln(3)ln ln(3)=−=+−f x x x x x1ln[1(1)]ln[2(1)]ln[1(1)]ln 2ln[1()]2−=+−++−=+−+++xx x x 由于 234111ln(1)(1)(1)(11)234∞−−=+=−+−++−+=−−<≤∑nnn n n x x x x x x x x nn则 11111()(1)2()ln 2(1)(1)∞∞−−==−−=+−+−∑∑n nn n n n x x f x n n12111(1)(1)ln 2(1)(1)2∞∞−−==−−=+−+−∑∑n nn n nn n x x n n 111(1)ln 2[(1)]2∞−=−=+−−∑nn n n x n且满足1111112−<−≤⎧⎪⎨−−<≤⎪⎩x x,即 02<≤x . 『方法技巧』 本题考查形如()ln(1)=+f x x 的函数展开式及收敛域11−<≤x .首先将2()ln(3)=−f x x x 化为1()ln[1(1)]ln 2ln[1()]2−=+−+++xf x x ,将第一项中的1−x 看成标准形中的x ,第二项中的12−x看成标准形中的x ,再展开. 『特别提醒』 ()ln(1)=+f x x 的展开式可以用如下方法记忆:由于 231111111(1)(1)1∞−−−−==−+−++−+=−+∑n n n n n x x x xx x两边积分得11234011111(1)(1)ln(1)1234−−∞=−−+==−+−+++=+∑⎰n n xnnn x dx x x x x x x x n n13. 解 所求极限实际上是级数1212∞=−∑nn n 的和,因此可考虑幂级数 221(21)∞−=−∑n n n x令 22221222111()(21)()()1(1)∞∞−−==+''=−===−−∑∑n n n n x x S x n xxx x故2321113521112lim()31222222(1)2→∞+−++++===−n n n S 『方法技巧』 本题考查利用级数的和求其部分和的极限.关键是找到一个适当的幂级数,利用它求出常数项级数的和,再利用级数收敛的充要条件求极限.『特别提醒』 1212∞=−∑nn n 不刚好等于S ,而是相差12倍. 14. 解 当(,)∈−∞+∞x 时,3693()13!6!9!(3)!=++++++n x x x x y x n ,(0)1=y则 25831()2!5!8!(31)!−'=+++++−n x x x x y x n ,(0)0'=y4732()4!7!(32)!−''=+++++−n x x x y x x n ,故4732258314!7!(32)!2!5!8!(31)!−−'''++=+++++++++++−−n n x x x x x x x y y y x n n369313!6!9!(3)!+++++++n x x x x n2345612!3!4!5!6!!=++++++++++=n x x x x x x x x e n所以()y x 满足方程'''++=x y y y e .由于幂级数30(3)!∞=∑nn x n 的和函数为()y x ,因此所要求的是二阶常系数非齐次线性微分方程 '''++=x y y y e 的满足条件(0)1,(0)0'==y y 的特解()y x .其特征方程为210++=r r ,特征根为1,2122=−±r i ,对应的齐次方程的通解为212(cossin )22−=+x Y e C x C x ,又因1λ=不是特征根,则其特解形式为*=x y Ae ,代入原方程,解得13=A ,故微分方程的通解为11 2121(cos sin )223−=++x x y e C x C x e ,将(0)1,(0)0'==y y 代入得122,03==C C ,所求微分方程的特解为221cos 323−=+x x y e x e 因此32021cos (3)!323∞−==+∑x n x n x e x e n 『方法技巧』 本题考查幂级数逐项求导及二阶常系数非齐次线性微分方程的求通解和特解.。
无穷级数练习题

无穷级数练习题无穷级数题一、填空题1、设幂级数 $\sum\limits_{n=1}^{\infty}ax^n$ 的收敛半径为3,则幂级数 $\sum\limits_{n=1}^{\infty}na(x-1)^n(n+1)$ 的收敛区间为 $(-2,4)$。
2、幂级数 $\sum\limits_{n=0}^{\infty}(2n+1)x^n$ 的收敛域为 $(-1,1)$。
3、幂级数 $\sum\limits_{n=1}^{\infty}\dfrac{( -3)^n}{n+2}(2n-1)x^n$ 的收敛半径 $R= \dfrac{1}{3}$。
4、幂级数$\sum\limits_{n=1}^{\infty}\dfrac{x^n}{(n+1)(x-2)^{2n}}$ 的收敛域是 $(-\infty。
2) \cup (2.\infty)$。
5、级数 $\sum\limits_{n=1}^{\infty}\dfrac{n}{n^4(\ln3)^n}$ 的收敛域为 $(0,4)$。
6、级数 $\sum\limits_{n=1}^{\infty}\dfrac{1}{n^2}$ 的和为 $\dfrac{\pi^2}{6}$。
7、级数 $\sum\limits_{n=2}^{\infty}\dfrac{1}{n(n-1)}$ 的和为 $1$。
8、设函数 $f(x)=\pi x+x(-\pi<x<\pi)$ 的___级数展开式为$a_0+\sum\limits_{n=1}^{\infty}(a_n\cos nx+b_n\sin nx)$,则其系数 $b_3$ 的值为 $0$。
9、设函数 $f(x)=\begin{cases} -1.& -\pi<x\leq 0 \\ 1+x。
& 0<x\leq \pi \end{cases}$,则其以 $2\pi$ 为周期的___级数在点$x=\pi$ 处的收敛于 $1$。
无穷级数习题及解答

无穷级数例题选解1.判别下列级数的敛散性:2.判别下列级数是绝对收敛,条件收敛,还是发散?(1);(2);(3)。
3.求幂级数的收敛区间。
4.证明级数当时绝对收敛,当时发散。
5.在区间内求幂级数的和函数6.求级数的和。
7.把展开成的幂级数,并求级数的和8.设()证明1)存在; 2)级数收敛。
9.设,1)求的值;2)试证:对任意的常数,级数收敛。
10.设正项数列单调减少,且发散,试问是否收敛?并说明理由。
11.已知,计算。
12.计算。
参考答案:1.解:(1),而收敛,由比较审敛法知收敛。
(2),而发散,由比较审敛法的极限形式知发散。
(3),,由比值审敛法知收敛。
(4),,由根值审敛法知收敛。
2.解:(1)对于级数,由,知级数绝对收敛,易知条件收敛,故条件收敛。
(2),由,知级数收敛,故绝对收敛。
(3)记,,而发散,故发散,令,,当时,,故在区间内单调增加,由此可知,又,故收敛,但非绝对收敛,即为条件收敛。
3.解:收敛半径为,当时,得级数,发散;当时,得交错级数,收敛。
所求收敛区间为。
4.证:收敛半径,当时幂级数绝对收敛,当时幂级数发散,当时,得级数,,,因单调增加,且,故,于是得,由此,故级数发散。
5.解:设(),,,,()。
6.解:设(),则,其中,()。
设,则,于是,从而()。
因此。
7.解:(),(),因在点处连续,而在点处收敛,从而()。
于是。
8.证:1)因,,故是单调减少有下界的数列,所以存在。
2)由(1)知,记,因存在,故存在,所以收敛,由比较审敛法知收敛。
9.证:1)因为,,所以。
2)因为,所以,由知收敛,从而收敛。
10.解:级数收敛。
理由:由于正项数列单调减少有下界,故存在,记,则。
若,则由莱布尼兹定理知收敛,与题设矛盾,故。
因为,由根值审敛法知级数收敛。
11.解:由(),得。
12.解:由,得,于是,从而。
无穷级数题(含答案)

⎛ ⎜⎝
∞ n=0
xn
⎞′′ ⎟⎠
=
1 2
(1 +
∞
x)n=2n(n− 1) x n −2
∑ ∑ = 1 ∞ n(n −1)xn−2 + 1 ∞ n(n −1)xn−1
2 n=2
2 n=2
∑ ∑ ∑ = 1
∞ (n + 2)(n +1)xn + 1
∞
(n +1)nxn =
∞
(n +1)2 xn ,
x <1
n=1
(2n)!n
∑ 27, 令 S(x) = ∞ 2n + 3 x2n , x ∈ (−∞, +∞).,则 n=0 n!
∑ ∑ ∑ S(x) =
∞
2nx2n + 3 ∞
(x2 )n
∞
=2
x2n + 3ex2
n=0 n!
n=0 n!
n=1 (n −1)!
∑∞
=2
x2 (x2 )n + 3ex2 = 2x2ex2 + 3ex2 = (2x2 + 3)ex2 .
=1 e
≠ 0 ,级数发散。
n
(6) lim un+1 = 0 , 级数收敛。 u n→∞
n
(7)因为 lim n→∞
un 1
∑ = lim n +1 = 1 , 原级数与级数 ∞
1
敛散
n→∞ n
n=1 (n +1) ln(n +1)
(n +1) ln(n +1)
性相同,故原级数发散。 18, (1)条件收敛(用莱布尼兹判别法即可);(2)条件收敛;
无穷级数习题课

∞ 2 ∞a 收敛, (4)若 ∑an 收敛,则 ∑ n ) 绝对收敛) (绝对收敛) n n= 1 n= 1 ∞ ∞ ∞ 收敛, n发散, (5)若 ∑an 收敛, ∑b 发散,则 ∑(an ±b ) (发散) ) 发散) n n= 1 n= 1 n= 1
an 收敛且a ≠1时 若正项级数 ∑an收敛且an≠1时,则级数 ∑ 收敛) 1−an (收敛) n= 1 n= 1
n=1 n=1
判别下列级数的敛散性: 例2 .判别下列级数的敛散性 判别下列级数的敛散性
讨论下列级数的绝对收敛性与条件收敛性: 例3.讨论下列级数的绝对收敛性与条件收敛性 讨论下列级数的绝对收敛性与条件收敛性 π ∞ sin n+1 (2) ∑ −1 n+1 n+1 ; ( )
n= 1
π
n+1 (3) ∑ −1 ln ( ) ; n n= 1
(− )n+ 1 1 1 n + ∞ (− ) 1 1 + ] , un+1 = lim n+1 n+1 ∑[ lim 又如 n n n→ un n→ ∞ ∞ (− )n 1 1 n= 1 + n n − n (− )n n 1 + 同 (− )n n 乘 1 n+1 = − ,但该级数发散。 lim n+1 1 但该级数发散。 n n→ ∞ (− ) 1 1+ n
n= 1 ∞
n= 1+an 1
∞
(6)若 ∑an、∑b 都发散,则 ∑(an ±b ) ) n n都发散, n= 1 n= n= (可能发散也可能收敛) 1 可能发散也可能收敛) 1
∞ 1 1n 可能收敛也可能发散) (7)若 0 ≤ an < ,则 ∑(− ) an (可能收敛也可能发散) ) n n= 1 1 ∞ an = , ∑(−1 nan 收敛, ) 收敛, 例如 2n n= 1
第九章 无穷级数

第九章 无穷级数练习题9.1判断下列级数的敛散性 1. 1111156789+++++ 发散2.2342342222233333n n++++++ 收敛3. 12312345++++ 发散4 0.002+ 发散5 223311111111()()()()23232323nn+++++++++练习题9.2 1.+⋅++⋅+⋅+⋅nn n 232332232133322发散2.∑∞=+1)]1[ln(1n nn 收敛3.∑∞=13sin2n nn π收敛4.∑∞=122n nn 收敛5. +++++++++++22211313121211nn 发散6.11(0)1nn a a∞=>+∑ 讨论1a > 收敛 01a <≤发散 713579246810+++++ 发散练习题9.3判别下列级数是否收敛?如果是收敛的,是绝对收敛还是条件收敛?1、∑∞=---1113)1(n n n n ; 绝对收敛2、+-+-5ln 14ln 13ln 12ln 1;条件收敛3、21sin (1)n na n ∞=+∑; 绝对收敛4、∑∞=++-11)!1()1(n n nnn 绝对收敛5. 1(1)21nn n n ∞=-+∑ 发散练习题9.4一.求级数的收敛区间: 1、222424(2)nx xxn ++++⋅⋅⋅⋅ ; (,)-∞+∞2、222222251nnx x x n +++++ ;11[,]22-3、∑∞=--122212n n nxn ; ()4、∑∞=+1)12(n nnx [1,0)-5.357111357x x x x -+-+ 11,arctan x x -≤≤ 6.21357122468n n nx x x x x ∞-==++++∑ 22211,(1)x x x -<<-7.1(1)n n n n x ∞=+∑ 3211,(1)x x x -<<-练习题9.5将下列函数展成x 的幂级数: 1、3)(x ex f -=; 2321(1)332!3!x nnnx xxen -=-+++-+⨯收敛区间为),(+∞-∞2.()xf x a = 0(ln ),!nn x a x n ∞=-∞<<∞∑3. 1()3f x x=- 1,333nn n x x ∞+=-<<∑4.()cos f x x = 242cos 1(1)2!4!(2)!nnxxxx n =-++-+ 收敛区间为),(+∞-∞复习题九一判断题:1.√2.×3.√4.×5.×6.√7.√8.×9.√二、填空题:1. 若 12pn n∞=∑收敛,则p 应满足( );(1p >)2. 若级数 1n n u ∞=∑ 收敛,则级数 1100n n u ∞=+∑( );(收敛)3. 幂级数 1nn xn ∞=∑的收敛半径是( ); (1) 4. 级数 14(1)!nn n ∞=+∑(是,否)( )收敛;(是)5. 级数 1cos32nn n n π∞=∑(是,否)( )收敛;(是)6. 级数 24813927-+-+收敛于( );(35) 7. 当 1x < 时,级数 1nn x∞==∑( );(1xx-)9、正项级数∑∞=1n n u 部分和数列{}n s 有界是∑∞=1n n u 收敛的必要条件。
(完整版)无穷级数练习题

无穷级数习题一、填空题1、设幂级数0nn n a x ∞=∑的收敛半径为3,则幂级数11(1)n n n na x ∞+=-∑的收敛区间为 。
2、幂级数0(21)n n n x ∞=+∑的收敛域为 。
3、幂级数211(3)2n n nn nx ∞-=-+∑的收敛半径R = 。
4、幂级数0nn ∞=的收敛域是 。
5、级数21(2)4nnn x n ∞=-∑的收敛域为 。
6、级数0(ln 3)2nnn ∞=∑的和为 。
7、111()2n n n ∞-==∑ 。
8、设函数2()f x x x π=+ ()x ππ-<<的傅里叶级数展开式为01(cos sin )2n n n a a nx b nx ∞=++∑,则其系数3b 的值为 .9、设函数21,()1,f x x -⎧=⎨+⎩ 0,0,x x ππ-<≤<≤ 则其以2π为周期的傅里叶级数在点x π=处的敛于 。
10、级数11(1)(2)n n n n ∞=++∑的和 。
11、级数21(2)4nnn x n ∞=-⋅∑的收敛域为 。
参考答案:1、(2,4)- 2、(1,1)- 3、R =、[1,1)- 5、(0,4) 6、22ln 3- 7、4 8、23π 9、212π 10、1411、(0,4)二、选择题1、设常数0λ>,而级数21n n a ∞=∑收敛,则级数1(1)nn ∞=-∑是( ).(A )发散 (B )条件收敛 (C)绝对收敛 (D)收敛与λ有关 2、设2n n n a a p +=,2n nn a a q -=, 1.2n =,则下列命题中正确的是( )。
(A )若1n n a ∞=∑条件收敛,则1n n p ∞=∑与1n n q ∞=∑都收敛。
(B )若1n n a ∞=∑绝对收敛,则1n n p ∞=∑与1n n q ∞=∑都收敛。
(C )若1n n a ∞=∑条件收敛,则1n n p ∞=∑与1n n q ∞=∑的敛散性都不一定.(D )若1n n a ∞=∑绝对收敛,则1n n p ∞=∑与1n n q ∞=∑的敛散性都不定。
无穷级数练习及答案

第九章 无穷级数 测试题一、选择题(每小题4分,共24分) 1.级数∑∞=+111n na 敛散的情况是( ) A. 当0>a 时收敛 B. 当0>a 时发散C. 当10≤<a 时发散,当1>a 时收敛D.当10≤<a 时收敛,当1>a 时发散 2. 级数()∑∞=⎪⎭⎫ ⎝⎛--1cos 11n n n α (常数0>α) ( )(A )发散; (B )条件收敛;(C )绝对收敛; (D )敛散性与α有关. 3. 设0lim =∞→n n a ,则常数项级数∑∞=1n na( )(A )一定收敛且和为0 (B )一定收敛但和不一定为0(C )一定发散 (D )可能收敛也可能发散 4. 若∑∞=1n nu收敛,则下列级数中哪一个必收敛。
( )(A)∑∞=-1)1(n n nu (B)∑∞=12n nu(C)()∑∞=+-11n n nu u(D)∑∞=1n nu5、如果81lim 1=+∞→nn n a a ,则幂级数∑∞=03n n n x a ( )(A)当2<x 时收敛 (B) 当8<x 时收敛 (C) 当81>x 时发散 (D) 当21>x 时发散 6、级数 ∑∞=1!2n n n n n (1) 与级数∑∞=1!3n n n nn (2)( )(A )级数(1)(2)都收敛 (B )级数(1)(2)都发散(C )级数(1)收敛,级数(2)发散 (D )级数(1)发散,级数(2)收敛二、填空题(每小题4分,共28分) 1.已知级数∑∞=1n n u 的前n 项部分和13+=n ns n () 2, 1=n 则此级数的通项=n u .2.设幂级数∑∞=0n nnx a的收敛半径是4,则幂级数∑∞=+012n n n x a 的收敛半径是 .3. 幂级数()()()∑∞=---121311n n nn n x 的收敛域为 . 4. x ln 在10=x 处展开成的泰勒级数为x ln =_____________________ 5、如果幂级数()nn n x a 10-∑∞=的收敛半径是1,则级数在开区间 内收敛.6、幂级数nn nx n n ∑∞=12cos 的收敛域是 . 7、幂级数()∑∞=-15n n nx 的收敛半径是 ,收敛域是 .三、解答下列各题(每题12分,共48分)1. 判别级数21cos 32n n n n π∞=∑的敛散性。
第九章无穷级数第二节数项级数的敛散性

二、用 比较 审 敛 法或 极 限审 敛法 判别 下列 级 数的 收 敛
性:
1、1 1 2 1 3 1 n ;
1 22 1 32
1 n2
2、
1
n1 1 a n
(a 0) .
三、用比值审敛法判别下列级数的收敛性:
1、 3
32
33
n1
n1
n1
上定理的作用: 任意项级数
正项级数
定义:若 un 收敛, 则称 un 为绝对收敛;
n1
n1
若 un 发散,而 un 收敛, 则称 un 为条件收敛.
n1
n1
n1
例6
判别级数
n1
sin n n2
的收敛性.
解
sin n n2
1 n2
s2
是有界的
n
,
lim n
s2n
s
u1 .
lim n
u2n1
0,
lim n
s2n1
lim(
n
s2n
u2n1 )
s,
级数收敛于和 s, 且s u1. 余项 rn (un1 un2 ),
rn un1 un2 ,
满足收敛的两个条件, rn un1 .
例 1 讨论 P-级数
1
1 2p
1 3p
1 4p
1 np
的收敛性.(
p
0)
解
设 p 1,
高等数学习题详解-第9章 无穷级数

习题9-11. 判定下列级数的收敛性:(1) 1n ∞=∑; (2) 113n n ∞=+∑; (3)1ln 1n n n ∞=+∑; (4) 1(1)2nn ∞=-∑;(5) 11n n n ∞=+∑; (6) 0(1)21n n nn ∞=-⋅+∑. 解:(1)11n n k S ===∑,则lim lim(11)nnnS n ,级数发散。
(2)由于14113n n nn,因此原级数是调和级数去掉前面三项所得的级数,而在一个级数中增加或删去有限项不改变级数的敛散性,所以原级数发散。
(3)11ln[ln ln(1)]ln1ln(1)ln(1)1nnnk k n S n n n n n ,则lim lim[ln(1)]nnnS n ,级数发散。
(4) 2 , 21, 1,2,3,; 0 , 2nn k S k nk因而lim n nS 不存在,级数发散。
(5)级数通项为1nn u n ,由于1lim10nn n,不满足级数收敛的必要条件,原级数发散。
(6)级数通项为(1)21n nnu n ,而lim n n S 不存在,级数发散。
2. 判别下列级数的收敛性,若收敛则求其和: (1) 11123n nn ∞=⎛⎫+ ⎪⎝⎭∑; (2) 11(1)(2)n n n n ∞=++∑; (3) 1πsin 2n n n ∞=⋅∑; (4)πcos 2n n ∞=∑.解:(1)因为111111111131111(1).23232232223nn n nk kkk n n n nk k k S 所以该级数的和为31113lim lim(),22232nn nnnSS 即1113.232nnk(2)由于1111[](1)(2)2(1)(1)(2)n n nn n n n,则111111111[][](1)(2)2(1)(1)(2)22(1)(2)nnnk kS k k kk kk kn n所以该级数的和为 1111limlim [],22(1)(2)4nnn SS n n即111.(1)(2)4n n n n(3)级数的通项为sin2nu n n,由于sin2lim sinlim()02222nnnn nn,不满足级数收敛的必要条件,所以原级数发散。
无穷级数习题及详细解答

(1,5]
n1
(4) 设函数 f (x) x 1 ( x ) 的傅里叶级数的和函数为 S(x),则S(5 ) 等于 1
(5) 设 函 数 f (x) x2 (0 x ) 的 正 弦 函 数 bn sin nx 的 和 函 数 n1
S(x),则当x( , 2 )时,S(x)
( 2 x 2)
0
(1)证明 an
an2
1 (n n 1
3, 4,) ,并求级数
n3
1 n
(an
an2 )
的和;
(2)证明级数
an 收敛.
n1 n
证:(1) an
4 tan2 x tann2 xdx
0
4 sec2 x tann2 xdx
0
4 0
tan n2
xdx
1 n 1
an2 ,
即有
an
1
x cos
x2dx
1 sin
x2
1
sin1.
2 6 2! 10 4! 14 6!
0
2
02
13.
将函数
f
x
x 2 x x2
展开成 x 的幂级数.
f
x
2
x x x2
1 3
2 2
x
1 1
x
1 1
3
1
x
1 1
x
2
而
1
1n xn
1 x n0
x 1,1
1
1 x
n0
x n 2
2
x 2, 2
(x)
1
x2
a0 2
n1
an
cos nx
1
无穷级数复习题

无穷级数复习题一、是非题: 1.∑∞=1n nu发散,不一定有0lim =∞→n n u 。
是 2.若0lim =∞→n n u ,则级数∑∞=1n nu收敛。
非3.收敛级数与发散级数的和是发散级数。
是4.若两个级数∑∞=1n n a ,∑∞=1n nb满足n n b a ≤( ,2,1=n ),且∑∞=1n nb收敛,则∑∞=1n na收敛。
非5.若级数∑∞=1n n u 收敛,则∑∞=1||n n u 收敛。
非6.级数∑∞=11n n 是发是7.若幂级数n n n x a ∑∞=1满足0lim ≠∞→n n a ,则n n nx a∑∞=1的收敛半径为零。
非8.若()x f 可以展成幂级数n n nx a∑∞=0,则对于()x f 的定义域内的任一点0x ,有()0x f n n n x a 00∑∞==。
非9.∑∞=-=111n n x x )11(<<-x 。
非 10.若幂级数nn nx a∑∞=0的系数满足1lim+∞→n n n a a 存在,则这个极限就是n n nx a∑∞=0的收敛半径。
是二、填空: 1.若级数∑∞=1n n a 收敛,则=∞→n n a lim ( 0 )。
2.常数项级数∑∞=131n n =( 21 )。
3.常数项级数)121(1∑∞=+n nn 是(发散 )级数。
4.级数∑∞=--111)1(n p n n 的收敛范围是( 0>p )。
5.若已知幂级数nn n y a∑∞=0的收敛域为(]9,9-,则幂级数nn nx a )3(0-∑∞=的收敛域为((]126,- ).6.()x +1ln 的麦克劳林级数为( ∑∞=-⋅-111n nn x n )( ),它的收敛域是( 11≤<-x )。
三、选择题:1.若常数项级数∑∞=1n n a 收敛,n S 是此级数的部分和,则必有( C )。
A.∑∞=1n n a B.0lim =∞→n n S C.n S 有极限 D.n S 是单调的2.若( D )成立,则级数∑∞=1n na发散。
第九章 无穷级数题

第九章 无穷级数例1 无穷级数+++++=∑∞=n n naq aq aq a aq20叫做等比级数(又称几何级数),其中q a ,0≠叫做级数的公比.试讨论该级数的收敛性.解 因为该级数的部分和为⎪⎩⎪⎨⎧=≠--=+++=-.1,,1,1)1(12q na q q q a aq aq aq a s n n n当1||<q 时,q a s n n -=∞→1lim ,故级数收敛,且和为qa-1; 当1||>q 时, n n s ∞→lim 不存在,故级数发散;当1=q 时, n n s ∞→lim 也不存在,故级数也发散;当1-=q 时,级数变成,)1(1 +-++-+--a a a a a n易知级数也发散.综上,当1||<q 时,等比级数收敛,且其和为qa-1;当1||≥q 时,等比级数发散. 例2 讨论级数++⋅++⋅+⋅)1(1321211n n 的收敛性. 解 由于111)1(1+-=+=n n n n u n , 因此.1111113121211)1(1321211+-=⎪⎭⎫ ⎝⎛+-++⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=+⋅++⋅+⋅=n n n n n s n从而1111lim lim =⎪⎭⎫ ⎝⎛+-=∞→∞→n s n n n , 所以这级数收敛,它的和是1. 9.1.2 收敛级数的基本性质 例3 证明调和级数 +++++n131211是发散的.证 将原级数的第一项和第二项括起来,然后将第12+m 项到第12+m (),2,1 =m 括起来,的以新级数.212211218171615141312111 +⎪⎭⎫ ⎝⎛+++++++⎪⎭⎫ ⎝⎛++++⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛++m m m注意这个级数的一般项121221121++++++m m m 中共有),2,1(2 =m m项,所以 121221121++++++m m m >.21212121111=++++++m m m 说明新级数的一般项不趋于零,故不收敛,从而原调和级数发散.9.2 正项级数及其敛散性的判别法例1 讨论-p 级数++++++pp p p n 14131211 (2)的收敛性,其中常数0>p .解 设1≤p ,这时级数的各项不小于调和级数的对应项:n np11≥,但调和级数发散,其部分和为无穷大,因而该级数的部分和数列无界,由基本定理,当1≤p 时级数(2)发散. 设1>p ,因为当k x k ≤≤-1时,有pp x k 11≤,所以),3,2(,11111 =≤=⎰⎰--k dx xdx k k k k p k k p p 从而级数(2)的部分和),3,2(,1111111111111111212 =-+<⎪⎭⎫ ⎝⎛--+=+=+≤+=-=-=⎰∑⎰∑n p n p dxx dx x k s p n p n k k k p nk p n这说明数列}{n s 有界,因此级数(2)收敛.综上所述,-p 级数(2)当1>p 时收敛,当1≤p 时发散.例2 研究级数∑∞=⎪⎭⎫⎝⎛+112n nn n 的敛散性。