地球物理反演理论综述
地球物理反演方法的综述

地球物理反演方法的综述地球物理反演是一种利用地球物理方法来推断地下构造和物质分布的技术。
通过观测和测量地球物理场,如重力、地磁、电磁、地震等,结合数理统计和计算机模拟方法,可以对地下的地质构造、岩石性质和地下水资源等进行精确的推断。
本文将综述地球物理反演方法的原理、分类及应用。
一、地球物理反演方法的原理地球物理反演方法的原理在于根据地球物理场的观测数据,通过数学模型和计算方法,将地球物理场与地下介质属性之间的关系联系起来。
根据电磁波传播、物质密度、电阻率、磁化率等反演参数的变化规律,推断地下介质的结构和成分。
其中常用的地球物理反演方法包括重力法、磁法、电磁法、地电法和地震法等。
不同的反演方法适用于不同的地质介质和研究目标,各有其优势和限制。
二、地球物理反演方法的分类1. 重力反演法:利用重力场观测数据,通过计算物质的密度分布,来推断地下构造的方法。
重力反演法在石油勘探、地质灾害分析、水资源评价等领域具有广泛应用。
2. 磁法反演法:通过磁场观测数据,推断地下磁化率和磁性物质的空间分布。
磁法反演在矿产勘探、地震预测等方面发挥重要作用。
3. 电磁法反演法:通过电磁场观测数据,推断地下电阻率分布,来研究地下水资源、矿产和工程勘探。
电磁法反演在地下水资源评价、油气勘探、环境地球物理和岩土工程等方面有广泛应用。
4. 地电法反演法:通过电场和电位观测数据,推断地下电阻率分布,用于研究地下水位、地下水性质、污染监测和地下工程等。
地电法反演在工程地球物理勘探和水文地球物理领域具有广泛应用。
5. 地震法反演法:通过地震波在地下的传播与变化,推断地下介质的速度和密度分布,用于研究地质构造、地震预测和石油勘探等。
地震法反演是地球物理反演方法中应用最广泛的方法之一。
三、地球物理反演方法的应用地球物理反演方法广泛应用于地质探测、资源勘探、环境监测和工程勘察等领域。
以下是几个常见的应用领域:1. 石油勘探:地震反演方法可用于确定油气藏的位置、大小和分布,辅助油田开发和管理。
地球物理反演技术的原理与应用

地球物理反演技术的原理与应用地球物理反演技术是一种利用地球物理学原理和数据来研究地球结构和物理性质的方法。
它通过观测不同物理现象的数据,并将这些观测数据与理论模型进行比对,从而推断地下地质结构和属性的技术。
本文将介绍地球物理反演技术的原理和常见的应用领域。
一、地球物理反演技术的原理地球物理反演技术的原理主要基于物理学原理,包括电磁学、重力学、磁学、地震学和地热学等。
具体原理如下:1. 电磁学原理:电磁法反演技术利用地下不同电性介质对电磁场的响应特性来识别地下结构。
该方法可以通过测量地下电磁场的参数(如电阻率、电导率和介电常数)来推断地下岩石类型、孔隙度和流体性质。
2. 重力学原理:重力法反演技术基于地球重力场的变化来推测地下物质的密度分布。
地球上不同密度的岩石体会造成地球重力场的微小变化,通过测量这种变化,可以揭示地下岩石体的类型和分布。
3. 磁学原理:磁法反演技术是利用地下岩石的磁性来推测地下结构。
地球上的磁场会受到地下岩石的磁性影响,通过测量地球磁场的变化,可以了解地下岩石类型和分布。
4. 地震学原理:地震法反演技术是利用地震波在地下传播的特性来推测地下结构。
地震波在地下不同介质中传播时,会发生折射、折射、散射等现象,通过记录地震波的传播速度和幅度变化,可以计算出地下岩石的速度和密度分布。
5. 地热学原理:地热法反演技术是利用地球内部热流传递的特性来推测地下热流分布和地下岩石的导热性质。
地下不同介质的导热性质不同,通过测量地球表面的地温和热流分布,可以推断地下岩石的导热性质、岩石类型和介质性质。
二、地球物理反演技术的应用地球物理反演技术广泛应用于地质勘探、环境监测、灾害预警和能源开发等领域。
以下是一些常见的应用领域:1. 矿产勘探:地球物理反演技术在矿产勘探中具有重要作用。
根据地球物理反演技术可以获得的电阻率、重力梯度、磁场强度等信息,可以推测地下的矿体分布和性质,指导矿产资源的开发和勘探。
综合地球物理联合反演综述

综合地球物理联合反演综述地球物理联合反演是一种通过集成多种地球物理方法,以实现对地质结构、矿产资源等进行高精度探测和反演的技术。
随着科技的不断进步,地球物理联合反演在理论、方法和应用方面取得了重要进展。
本文将对地球物理联合反演的相关文献进行综述,旨在梳理该领域的发展历程,明确其现状和未来发展方向。
地球物理联合反演的理论基础主要涉及地球物理学、统计学、计算机科学等多个学科。
众多学者从不同角度对联合反演的理论进行了探讨。
其中,地球物理学主要研究地质体的物理性质和分布特征,为联合反演提供基础数据和解释;统计学则通过对地球物理数据进行建模和推断,以实现对地质目标的精确反演;计算机科学则为地球物理联合反演提供了强大的计算工具和方法支持。
在方法方面,地球物理联合反演主要涉及数据采集、预处理、反演算法等环节。
其中,数据采集是获取地球物理信息的关键步骤,包括地震、重力、电磁等多种数据类型;预处理则是对采集到的数据进行清洗、去噪等处理,以提高数据质量;反演算法则是实现从地球物理数据到地质目标推断的核心环节,包括线性反演、非线性反演、多尺度反演等。
地球物理联合反演广泛应用于地质结构探测、油气藏寻找等领域。
在地质结构探测方面,通过多种地球物理方法的联合反演,可以实现对地质体的高精度探测和三维成像,为地质调查和工程设计提供重要依据。
在油气藏寻找方面,地球物理联合反演可以通过对地层岩性、物性、含油气性等进行综合反演,有效提高油气勘探的成功率。
地球物理联合反演在环境地质、水文地质、地壳探测等多个领域也有广泛应用。
例如,通过联合反演可以对地下水分布、污染物扩散等进行精确模拟,为环境治理和灾害防控提供科学依据。
近年来,地球物理联合反演在国内外取得了显著的研究成果。
在数据采集方面,研究者们不断探索新型地球物理方法和技术,以提高数据质量和探测精度。
在反演算法方面,研究者们提出了多种有效的算法,如基于神经网络的非线性反演、多尺度广义反演等,以提高反演结果的准确性和可靠性。
综合地球物理联合反演综述_杨辉

第17卷 第2期 地 球 物 理 学 进 展 V ol.17 N o.2 2002年6月(262~271) PROG RESS I N GE OPHY SICS June 2002综合地球物理联合反演综述杨 辉1 戴世坤1 宋海斌2 黄临平1(1.石油大学,北京102200;2.中国科学院地质与地球物理研究所,北京100101)[摘 要] 阐述了综合地球物理研究的必要性、方法学及研究思路,指出联合反演是综合地球物理重要的定量解释工具,通过回顾联合反演的研究现状与进展,指出联合反演的发展方向.[关键词] 综合地球物理;联合反演;综述[中图分类号] P631 [文献标识码] A [文章编号] 100422903(2002)022*******0 引 言“没有盆地,就没有石油”.以盆地为主要研究对象的油气勘探正向着新地区、新领域、新类型和新深度进军.虽然石油地球物理勘探方法已随着计算机科学技术的迅猛发展有了长足的进展,但是我们现在所面对的勘探目标要比以前复杂的多,难度大的多.主要表现在以下四个方面:(1)复杂地表条件.如黄土塬、沙漠、戈壁、冻土、沼泽、山地、碳酸盐岩裸露区、火山岩覆盖区等,这些地表地质条件使得难以得到高讯噪比的资料,甚至得不到有效反射信号或其能量很弱;(2)复杂地下构造.如断块、岩性、风化壳、盐下构造、火成岩等特殊油气储集体等;(3)上述两种情况的复合.即不仅地表地质条件复杂,而且地下构造也复杂,如山前高陡构造等;(4)大深度基底结构研究.如大深度基底埋深、起伏、断裂、岩性及基底内幕的研究.面对这样复杂的勘探目标,单凭一种方法就表现出了某种局限性,必须以其他方法作必要的补充.非地震方法虽然精度和分辨率不如地震方法,但它们有各自的特点,由于任一种地球物理方法所利用和反映的只是其一个侧面,实难以偏概全.综合各种地球物理方法,从不同角度来研究同一对象就较全面地接近于实际,将其综合解释不仅有可能解决上述问题,而且还可对地下构造有更全面的认识.另外,市场经济要求“最小的投入,最大的回报”因此,近年来十分重视综合地球物理方法的研究.1 综合地球物理的方法学每一种地球物理勘探方法都有它的特长和局限性,如重磁方法横向分辨率较高,而电磁勘探是介于地震和重、磁勘探方法之间的一种勘探方法.它比重、磁方法有较好的垂向分辨和分层能力,但是,由于电磁场强度随深度呈指数规律衰减的特点,其分辨能力也随着深度按指数规律减小,所以它与地震方法相比,其垂向分辩率与分层能力要低.但是,其频谱范围丰富的大地电磁场其穿透能力可达地下几十千米甚至上百千米,并且该方法具有不受高阻屏蔽且对低阻层反映灵敏等特点,使得它在研究深部构造、基底结构、火成岩分布等方面具有独特的优势,成为地震勘探方法的一种重要补充.[收稿日期] 2001212226; [修回日期] 2002202221.[基金来源] 石油大学(北京)物探重点实验室资助项目.[作者简介] 杨辉,男,1961年生,2000年获同济大学理学博士学位,高级工程师,现为石油大学(北京)博士后.研究方向:综合地球物理方法.(Email:yanghui2phd@)石油地球物理勘探发展的一个重要方向,就是开展综合地球物理研究.地球物理反演问题的多解性、单一地球物理方法解决地质问题的局限性,以及地质、地球物理条件的复杂多样性,都决定了油气物探必须在先进的地质理论指导下走综合物探之路[1].只有这样,才能充分发挥各种地球物理方法的优势和特长,高效率、高效益地评价含油气沉积盆地,加快石油勘探步伐.刘光鼎根据长期的综合地球物理勘探工作,在20世纪70年代末,总结出了“一、二、三、多”的综合地球物理解释原则[2—6],即:1.一种指导:以活动论构造历史观为指导,对具体盆地作具体分析,努力认识其演化,求得盆地形成时空分布规律性.2.二个环节:地球物理场是地球内部物理性质的综合反映,具有丰富的地球内部的信息.但要充分认识这些信息,首先必须紧紧抓住岩石物性这一重要环节,因为它是联系地质与地球物理之间的纽带;其次一个重要环节是物理模型,因为它是地球物理资料由定性解释向定量解释过渡的关键.3.三项结合:为了深化地质认识,在解决任何问题的全过程中都必须努力使各种地球物理资料与地质资料相结合,使定性解释与定量解释相结合,使正演问题与反演问题相结合,因为这是一个特定系统工程的不同层次.4.多次反馈:在地球物理这个系统工程中,必须依靠各种反馈信息进行修正和完善,减小多解性,取得比较全面的认识.该原则是我们进行综合地球物理研究的方法学,对进行综合地球物理研究有十分重要的指导意义.2 综合地球物理重要的定量解释工具—联合反演地球物理响应是由地下介质的物理特性差异激发的,虽然各种地球物理响应互不相同,但由这些响应推断的地下介质是相同的.因此,由同一地下介质激发的地球物理数据推断该图1 地质—地球物理综合解释研究思路Fig.1 Research flowing chart of integrated geologic and geophysical interpretation地下介质的特性,如埋深、厚度、速度、密度、电性等,都应相互一致.所谓联合反演就是在地球物理反演时联合应用多种地球物理观测数据,通过地质体的岩石物性和几何参数之间的・362・2期 杨辉,等:综合地球物理联合反演综述 相互关系求得同一个地下地质、地球物理模型.由于我们要推测的地球模型只有一个,它必须和地表观测到所有物理现象保持一致.因此,联合反演是地球物理数据分析的理想工具[6].联合反演的基本条件是参加反演的方法一定有公共的物性界面或地质体.联合反演分为[7]:同步反演、顺序反演、剥离法反演、伸展法反演.其总体研究思路如图1.3 联合反演的研究历程与现状联合反演包括两层意义:第一,基于相同物性地球物理观测数据之间的联合反演,如反射地震的旅行时和振幅联合反演,地面地震和垂直地震剖面(VSP )资料的联合反演,纵波和横波资料的联合反演;不同电法或电磁法所取得的观测数据的联合反演,大地电磁测深(MT )和瞬变电磁法(TE M )联合反演,MT 和垂向电测深法(DC )资料联合反演,MT 和可控源音频大地电磁测深(CS AMT )资料联合反演等.这种联合反演有天然的合理性,因为它们均基于相同的岩石物性差异,物理基础相同,观测场之间必然存在着相关性,这种联合反演已有大量的成功实例.第二,基于不同岩石物性的地球物理观测数据之间的联合反演,如地震和重力,地震和MT ,重力和MT 等.这种联合的基础是不同物性之间存在着相关的内在联系,在沉积岩地区,这种假定是合理的,因为岩石的沉积环境相同,它们的物性参数之间必然存在一定的内在联系.如纵波速度和密度之间存在明确、稳定的定量关系,可以用G ardner 公式或其它经验公式进行换算.在一定地质条件下,电阻率和速度之间可以用Faust 公式换算.由相关的物性参数必然会诱发相关的物理异常,这是利用多种地球物理信息进行联合反演的地球物理基础.这种联合反演法,是地球物理资料反演的必然趋势和最佳选择,因此引起了众多地球物理学家的高度重视[8].3.1 联合反演方法的发展历程20世纪70年代中期,澳大利亚的V ozoff 和Jupp 和[9]开创了联合反演的先河,用迭代二阶马奎特阻尼最小二乘法实现了一维直流电测深(DC )和大地电磁测深(MT )资料的联合反演.解决了层状介质中的各向异性问题.他们详尽地描述了修改的广义逆算法,还叙述了如何利用阻尼因子特征参数以及误差范围来分析反演结果的可靠程度.由于MT 和DC 均基于岩石的电性差异,物理基础相同,其共同参数为电阻率和层厚度.两种方法的互补性使反演不仅改进了电性参数的分辩率,而且减小了单一资料反演方法的多解性.进入80年代,联合反演得到了迅速发展;S ovino 等[10]利用地震P 波走时和重力资料联合反演,研究华盛顿东部地区地壳上地幔密度、速度结构.由于速度和密度这两种物性间存在着相关的内在联系,故文中以此作为其约束条件,取得了一定的效果.G olizdra [11]在对模型参数化的基础上将反演的参数化分为S (Separate ),U (Unified )和M (Mixed )三类模型,在S (独立)类模型中,没有假设密度和速度差界面的匹配关系.而且,密度差和速度界面是独立的.在U (综合)类模型中,假设密度和速度的匹配关系以及共同的密度、速度界面,Savino 等使用了这类模型.M (混合)类模型为S 和U 的混合,并且在密度和速度模型之间,假定存在着某种关系.为了减小重、磁异常反演的多解性问题,在重、磁异常由同一场源引起的情况下,Menichetti 等[12]研究了使用广义反演方法来实现二点五维重、磁联合反演,反演参数为异常体多边形的角点坐标及每一矿体的密度差及磁化率,结果说明这种类型的反演使用广义反・462・ 地 球 物 理 学 进 展 17卷演算法是合理的,并且说明了方法的实用性.G omez 2T revino 等[13]利用电磁(E M )和直流电阻率法来联合反演一维模型情况下的电阻率和地层厚度,效果明显.王一新等[14]利用地震构造图和层速度资料构成重力模型,计算其重力效应并与实测重力值对比,以检验地震构造图的准确性或配合层速度资料研究地下岩性变化.M ottl 等[15]使用非线性规化方法实现了二维重、磁联合反演,取得了一定的效果.杨文采等[16]在地层近似水平的假设条件下,利用阻尼最小二乘法对均方根速度和反射波走时联合反演速度分析道上地层的层速度和反射面的深度.通过数值计算的例子说明联合反演算法的稳定性,实际例子效果良好.Chavez 等[17]在假设重、磁观测数据的响应为同一场源所引起的前提下,通过一个参数比值建立了密度差和磁化强度的关系,使用线性规划方法实现了二维重磁联合反演.通过这个比值参数可推断异常体的岩石类型.Lines 等[18,19]使用地面地震数据、声波测井,地面重力及井中重力等资料研究了地震、重力同步反演及顺序反演方法,在反演过程中,充分利用了已有的地面地震、井下声波测井、VSP 数据、地面及井下重力数据等资料,从而大大缩小了模型的选择范围,减小了反问题的多解性,强化了解释过程.通过研究得出了如下结论:完全自动联合反演是非常困难的,也是不需要的,由于顺序反演不要求给出地震、重力贡献明显的先验权系数,因此,顺序反演更容易控制,由于这种原因,同时反演所有数据时,优先选用顺序反演.Sasaki [20]研究了二维大地电磁测深(MT )和偶极—偶极电阻率数据的联合反演,二维正演程序均使用了有限元法,将地下划分为大量的矩形网格,且每个网格内电阻率相同,使用约束圆滑最小二乘法与G ram 2Schmidt 方法联合运用,从而使解稳定,并且避免了不合逻辑的电阻率特征,理论和实际资料表明联合反演优于单种数据的反演.胡建德[21]研究了瞬变电磁测深和直流电磁测深资料的联合反演,众所周知,直流电测深对良导层和高导层都反映灵敏,但对薄层出现的多解性又使问题变的复杂化,瞬变电磁测深对良导层反映灵敏,对高阻层却不灵感.这两种方法的联合反演能扬长避短,消除单一方法中存在的某些缺陷,增加重要参数的个数.到上世纪90年代,随着计算机技术的发展,联合反演得到了广泛的应用;D obroka 等[22]对垂直地震剖面(VSP )走时数据、电法数据,采用基于最大频率值(MFV )的加权最小二乘算法进行联合反演,与阻尼最小二乘算法相比,该算法具有估计误差小以及初始模型选择对结果影响较小两个特点.用联合反演方法求取煤层的厚度、电阻率及速度等物性参数.研究结果认为,与单独一种资料的反演相比,基于MFV 算法的联合反演算法稳定、结果可靠.Ras 2mussen 等[23]用瞬变电磁测深和重力数据联合反演确定盆地的深度,取得了一定的效果.王西文等[24]利用相对准确的地震勘探结果作为分离重力场的先验信息,然后用分离后的剩余场来反演地震反射不详段界面(剥离法反演),得出了这种重力、地震联合反演的方法有可能比任何一种单一方法的效果都好的结论.Sun 等[25]提出了一个在层析成像反演中多个目标函数的极小化过程,该过程在层析成像反演中是十分有用的,特别是同时做几种类型数据模拟,该过程将分级的优化问题转成为等效约束优化的问题,从而使问题简单化.Z eyen 和P ous [26]在具有先验信息的基础上,如密度、磁化率、剩余磁化强度等,对重、磁场的联合反演问题进行了研究,而张贵宾等人[27]以BG 理论为基础,在重磁异常线性反演中将该理论与吉洪诺夫正则化方法相结合求解地下密度源(或磁源)分布及质心(或磁质心)位置;在重、磁非线性反演中结合应用正则化方法和马奎特思想给出一种确定地下密度(或磁性)界面的稳定迭代算法—正则马奎特法.在此基础上,研究了一种综合重、磁异常联合反演既是磁界面也・562・2期 杨辉,等:综合地球物理联合反演综述 是密度界面的方法,并由此建立了重、磁广义线性综合反演系统.Alekseev 等[28]定量描述了联合反演问题的解及其一般特征.指出,通过原始数据把各个单独反演问题结合成一个联合反演问题,可降低联合反演在描述参数几何形态、特别是各单独反演问题之间的自由度数,从本质上提高了地球物理调查研究的功效,从理论上给出了联合反演问题比单独一种地球物理资料反演更优越的结论.在重、震联合反演方面,汪宏年等[29]提出了一种利用重力、地震资料联合反演层状介质的层速度、层密度及界面深度的迭代算法,并首次提出层状介质中的双摄动处理方法,以及在双摄动情况下理论波场和重力异常变化的一阶线性解.对理论模型进行重力、地震联合反演的结果表明,该方法不仅可减少未知参数的个数,提高反演的收敛速度,而且可减少反演的不适定性.冯锐等[30]按照地震测深的常用方法,采用二维四边形非块状模型,通过网格节点的密度值来刻划连续性或间断性的物性分布.以此来解决地震、重力联合反演中关于建立一致性模型的问题.张树林等[31]研究井间地震和逆VSP 联合层析成像,联合反演的效果优于单一的井间地震层析成像,理论模型和实际资料的联合反演获得了令人满意的效果.关小平等[32]研究了传统的重、震联合反演中存在的问题,建议充分利用地震资料作为形体参数进行分场,对分离出的目的层位的重力效应再利用Parker 公式进行反演,以求出那较深的或没有可靠地震资料的界面.在此基础上,利用速度、密度参数之间的关系,进行地震、重力资料联合反演,并给出了两个实例,取得了较好的效果.周辉等[33,34]利用广义线性反演方法及非线性反演的预条件最速下降法开展了一维地震—大地电磁测深资料反演方法研究.得出了顺序反演的效果优于地震、电磁单独反演的效果,而同时反演的效果最优,以及非线性联合反演方法比广义线性联合反演方法更优越的结论.范兴才等[7]叙述了二维重力、地震资料的联合反演方法,并讨论了反问题解的不唯一性和约束条件的使用.对联合反演进行理论模型和实际资料运算,说明该方法在同时求取深度、速度和密度参数问题上是有效的.Zhao (1995)在红河活动断裂研究中,将重力观测数据和全球定位系统(G PS )观测数据进行联合反演,取得了一定的效果.陈冰等[7]叙述了剥离法进行联合反演的应用条件及关键问题,理论模型及实例说明了其效果.Hering 等[35]提出了一维直流电测深(DC )和地震面波数据的联合反演公式.运用线性规划反演法和最小二乘法得到浅地表(几十米以内)两种数据反演结果,电阻率和面波慢度数据的联合反演得到了更好的参数估计并且减小了平均估计误差.关小平等[36]对重力、地震资料进行了联合反演,取得了一定效果.B.T ezkan [37]利用音频大地电磁法(AMT )和瞬变电测深法(TE M )的联合反演,解决了德国C ologne 地区某一矿体的底界及边界问题.Max well [38]对一维瞬变电磁测深(TE M )和畸变的大地电磁测深数据进行联合反演,由于MT 受浅部三维效应的影响较大,而瞬变电磁受浅部三维效应的影响较小.因此,二者的联合反演可以不用对MT 数据做静校正.该法的实质是回避了受浅部不均匀体影响较大的MT 视电阻率数据,而用受浅部影响较小的MT 阻抗相位与TE M 数据做反演.由于磁异常的反演具有固有的非唯一性,而地面和井中三分量数据包含有场源信息的互补信息.因此,Li [39]研究了二者的联合反演,理论和实际资料的试算说明了该方法的效果.Vasco 等[40]研究了地震波旅行时和振幅的联合反演方法,用该法推测了Ray 2m ond 附近花岗岩裂缝的速度和Q 值,预测结果与独立的测井和地球物理资料相吻合.为了更详细地划分层序边界及层序体,改进地震剖面的分辨率,Du 提出了测井和地震数据的联合反演方法,该法分三步进行:(1)声波测井统计处理;(2)井旁声波和地震数据的相互迭代・662・ 地 球 物 理 学 进 展 17卷拟合;(3)地震剖面的宽带约束反演,试验处理表明了该法是最有效的改进地震数据垂向分辩率的方法之一.Misiek 等继Hering 理论模型研究之后,给出了野外电法(DC )和面波实际数据的联合反演结果.同样,证实联合反演要优于任一种单独资料反演的结论.G rechka 等[41]实现了P 波和PS 波旅行时的联合反演,利用该方法可以找到垂直对称平面的方向和所有九个介质的弹性参数,取得了好的效果.王西文[42]采用剥离法对重力、地震资料联合反演目的层密度值,进而预测油气藏.该方法利用深度偏移地震剖面解释的地质构造信息为地质模型,利用重力正演公式消除非目的层的密度界面对目的层的影响;然后,将目的层压缩成为一个等效密度界面,再用消除非目的层影响的剩余重力异常反演该界面的视界面密度差,最后,根据目的层反演出的视界面密度差值的相对低值区来预测油气藏的位置.Fu [43]利用多层反馈神经网络实现声阻抗的联合反演,利用地震和测井数据以井旁可利用的资料训练学习,然后再进行反演,实际例子说明了方法的效果.Aric 等[44]利用地震和大地电磁联合成像,调查最上部(小于1K M 深度)的结晶地壳,以了解传统地质制图方法未能解决的区域构造和构造关系,实例说明该方法可以用来结晶基岩范围内的构造成像.R ossi 等[45]对反射波和折射波的旅行时进行联合反演来产生一个更可信和稳定的3D 速度变化及层结构,由联合反演得到的改进速度场进行叠前深度偏移,不仅对浅层而且对深层提供了更好的成像效果.R oth 等[46]利用遗传算法联合反演高分辨率地震数据中的瑞雷波和导波,通过瑞雷波和导波两者频散特性,而利用它们之中所包含的互补信息.该方法的有效性已用来自实际地震模型的合成数据作了试验和证实.杨振武等[47]采用广义逆方法实现了一维大地电磁和地震数据联合反演,通过岩性或矿体的物性和几何参数之间的相互关系,建立待求的地球物理模型.杨辉[48]以地震资料解释的三维构造图作为先验信息,用重力三维正演剥离基底及基底以上界面所产生的重力效应,然后对分离后的基底岩性异常用稳建的S VD 算法来线性反演基底密度差.最后,利用重、磁、电、震、地面地质、钻井等资料综合解释了盆地的基底时代及岩性,取得了令人满意的地质效果.Anders on 等[49]用顺序法对地震和重力资料联合反演速度和密度资料,为深度偏移成像提供准确的速度模型,减少了深度偏移成像的迭代次数,改进了深度偏移成像的效果,预示了该方法的前景.过仲阳等[50]改进了遗传算法,并用于联合反演地震资料和大地电磁资料,认为在一维情况下采用同步反演较顺序反演合理,在二维情况下采用顺序反演较同步反演合理和有效,实际资料的反演说明了方法的有效性.Vladimir 等[51]实现了P 和PS 旅行时的联合反演,对于正交模型,P 波和PS 波的反射旅行时的结合,使得纯剪切模型的重建成为可能,并且能够得到由P 波数据不能单独确定的各向异性参数,实验室物理模型数据的联合反演展示了其效果.Y ang 等[52]用直流电测深(DC )及瞬变电磁测深(TE M )数据进行联合反演以确定淡水和盐水的界面的纵、横向分布,得出DC 和TE M 在不同深度上资料的结合可以给出比使用单一种方法更好的界面图像的结论.王斌贝等[53]采用遗传算法解决重、磁、电资料的联合反演,得出了随机联合反演同单独反演相比有优势的结论.Sharma 等[54]用最优化和VFS A 联合反演评价1D 电磁和直流电阻率法中的等效性的抑制问题,研究表明全局最优化的单独数据的反应不能解决内在等效性,而联合反应非常好的克服了等校性.Wang [55]应用反射地震的旅行时和振幅同时反演模型几何形状和弹性参数,使用该方法可能改善传统的振幅随炮检距变化(AVO )分析中对地下弹性参数的估计,通过北海实际数据应用证明这种反演方法.刘崇兵等应用广义线性反演方法研究了地震面波和重・762・2期 杨辉,等:综合地球物理联合反演综述 。
地球物理反演成像方法综述

地球物理反演概述地球物理反演是近年来发展很快的地球物理学中利用地球表面及钻孔中观测到的物理数据推测地球内部介质物理参数分布和变化的方法。
其目的就是根据观测数据等已知信息求取地球物理模型。
众所周知,地球物理学中有地震学、电磁学、重力学、地磁学、地热学、放射性学和井中地球物理等学科。
尽管地球物理学家研究地球所依据的物性参数不同,方法各异,但就工作程序而言,一般都可分为数据采集,资料处理和反演解释等三个阶段。
数据采集就是按照一定的观测系统、一定的测线、测网布置,在现场获得第一手、真实可靠的原始资料。
所以数据采集是地球物理工作的基础,是获得高质量地质成果的前提和条件;资料处理的目的是通过各种手段,去粗取精,去伪存真,压制干扰,提高信噪比,使解释人员能从经过处理的资料(异常或响应)中,较准确的提取出测区的地质、地球物理信息。
所以,资料处理是从原始观测数据到地球物理模型之间的必不可少的手段和过渡阶段;反演解释的目的,用地球物理的术语来说,就是实现从地球物理异常(或响应)到地球物理模型的映射,使解释人员能从经过处理的地球物理资料(异常或响应)中提取出获得最接近真实情况的地质、地球物理模型,圆满的完成提出的地质任务。
虽然各种地球物理方法的原理、使用的仪器设备和资料采集方式有很大的不同,但是它们资料处理和反演解释的基础确有许多共同之处。
前者的基础是时间(空间)序列分析,后者的基础是反演理论。
在本文中只涉及地球物理资料的反演解释,地球物理反演是地球物理资料定量解释的理论和算法基础,也是地球物理资料处理技术的基础之一。
1 地球物理反演概述地球物理反演理论是近二三十年来才发展起来的地球物理学的一门重要分支,它是研究从地球物理观测数据向量,到地球物理模型参数向量映射理论和方法的一门学科。
虽然地球物理问题千差万别,但把地球物理观测数据和地球物理模型参数联系起来的数学表达式,却只有线性和非线性两大类。
如以d 表示观测数据向量,m 表示模型参数向量,f 是表示联系d 和m 的函数或泛函表达式,则凡满足(1)d m f m f m m f =+=+)()()(2121(2))amf=af(m()两个条件时,称f为线性函数或线性泛函,故这类问题叫线性问题,其中a为常数。
地球物理反演的理论基础与方法研究

地球物理反演的理论基础与方法研究地球物理反演是研究地球内部结构和性质的一种重要方法。
它通过利用地球表面或近地表的观测数据,推断地球内部的物理参数分布。
地球物理反演的理论基础与方法是支撑反演技术的关键,下面将重点介绍地球物理反演的理论基础和常用方法。
1. 理论基础地球物理反演的理论基础主要涉及地球内部物理参数与观测数据之间的关系。
常用的理论基础包括地球物理学原理、数学方法、统计学方法等。
(1)地球物理学原理:地球物理学原理是地球物理反演的基础。
它包括重力学、磁力学、地震学、电磁学等学科的原理,通过分析这些物理过程的规律,可以推断地下介质的性质和结构。
(2)数学方法:数学方法是地球物理反演中处理观测数据和求解反演问题的重要工具。
常用的数学方法包括线性与非线性最小二乘方法、正则化方法、优化算法等。
这些方法可以将观测数据与地下介质的参数之间建立数学模型,通过数值计算来求解最优解。
(3)统计学方法:统计学方法在地球物理反演中的应用越来越广泛。
它可以解决一些非唯一性问题,通过统计分析建立多个可能的模型,提供多个可能的解释。
统计学方法还可以对反演结果进行可靠性评估,提供不确定性估计。
2. 常用方法地球物理反演的方法多种多样,根据不同的物理量和观测方法可以分为地震反演、重磁反演、电磁反演等。
(1)地震反演:地震反演是利用地震波在地下传播的特性,通过分析地震波的传播速度、振幅等信息,推断地下介质的密度、泊松比、剪切模量等物理参数。
常用的地震反演方法有全波形反演、层析成像、声波全息等。
(2)重磁反演:重磁反演是利用地球重力场和地球磁场的观测数据,推断地下介质的密度、磁化率等物理参数。
常用的重磁反演方法有静态反演、动态反演、傅立叶反演等。
(3)电磁反演:电磁反演是利用电磁场的观测数据,推断地下介质的电导率、介电常数等物理参数。
常用的电磁反演方法有研究地电场、研究磁场、研究电磁场构造等。
此外,还有多物理场反演、岩石物理反演、非线性反演等方法,可以根据不同的需求和观测数据选择合适的方法进行反演。
地球物理反演的原理与方法

地球物理反演的原理与方法地球物理反演是一种通过地球物理观测数据来推断地下介质性质和结构的方法,它在地球科学研究、资源勘探和环境监测等领域具有重要的应用价值。
本文将介绍地球物理反演的原理和常用的反演方法。
一、地球物理反演的原理地球物理反演的原理基于地球物理学中的物理规律和数学原理,通过分析和处理地球物理观测数据来推断地下介质属性。
主要涉及的物理量包括地震波传播速度、电磁波传播速度、重力场和磁场等。
1. 地震波原理:地震波是在地震或人工激发下,传播到地下并在介质中传播的波动现象。
地震波的传播速度与地下介质的密度、速度、衰减等有关,通过地震波的观测数据可以反演地下介质的速度结构。
2. 电磁波原理:电磁波是由变化的电场和磁场相互作用产生的波动现象。
地下介质的电磁性质会对电磁波的传播速度和衰减造成影响。
通过电磁波在地下的传播特性,可以反演地下介质的电阻率、磁导率等物理属性。
3. 重力场原理:重力场是由地球引力场和地壳、岩石体积密度变化所引起的。
重力场的测量数据可以反演地下介质的密度分布和构造特征。
4. 磁场原理:地球磁场的强度和方向受到地下岩石体磁性和磁化程度的影响。
通过采集和处理地磁场观测数据,可以反演地下介质的磁性特征。
二、地球物理反演的方法地球物理反演的方法主要包括正问题和反问题。
正问题是在已知地下介质模型的情况下,计算预测地球物理观测数据。
反问题则是根据地球物理观测数据,反推出地下介质模型及其属性。
1. 正问题方法正问题方法是在已知地下介质模型的情况下,通过物理规律和数学计算,推导出对应的地球物理观测数据。
常用的正问题方法有有限差分法、有限元法和射线追迹法等。
这些方法可以模拟地震波、电磁波、重力场和磁场等在地下介质中的传播过程。
2. 反问题方法反问题方法是通过分析和处理地球物理观测数据,推断地下介质的属性。
反问题的核心是求解最优化问题,即通过最小化目标函数来获得最佳的地下介质模型。
常用的反问题方法包括反演算法和数据处理技术。
地球物理反演原理与方法的综述

地球物理反演原理与方法的综述地球物理反演是一种通过测量数据,利用物理定律和数学模型来推断地下物质结构的方法。
它在地球科学领域具有重要的应用价值,可以用于勘探矿产资源、地下水资源、地质构造和地壳运动等方面的研究。
地球物理反演的原理和方法多种多样,本文将对其中的一些主要方法进行综述。
地球物理反演的原理基于物理学和数学的基本原理,通过测量地下的物理场参数(如重力场、地磁场、地电场等)或地震波的反射、折射特征,利用物理定律建立数学模型,通过求解逆问题来得到地下物质的空间分布和性质。
常见的物理场参数反演方法包括重力反演、磁法反演、电法反演等,而地震反演是地球物理反演中最常用的方法之一。
地震反演是一种通过测量地震波在地下的传播路径和速度信息,推断地下介质的物理性质的技术。
它广泛应用于地球深部结构、地震震源机制、地震风险评估等领域。
地震反演的主要方法包括走时层析、波动方程反演、全波形反演等。
走时层析方法是一种常见的地震反演方法,它通过分析地震波到达的走时信息,来推断介质的速度分布。
波动方程反演和全波形反演则是基于波动方程和地震波记录数据来求解介质参数的反演方法,它们能够获得更为精细的地下介质结构和物理性质信息。
重力反演是利用地球的重力场变化来推断地下密度分布的方法。
通过测量地表上的重力场数据,并建立重力场与地下物质密度分布之间的数学关系,可以进行重力反演计算。
常见的重力反演方法包括正演模拟法、梯度反演法和全合成反演法等。
磁法反演是利用地球的磁场变化来推断地下矿产或地质构造的方法。
通过测量地表上的磁场数据,并建立磁场与地下物质磁化率或磁导率分布之间的关系,可以进行磁法反演计算。
常见的磁法反演方法包括正演模拟法、梯度反演法和全合成反演法等。
电法反演是利用地球的电场变化来推断地下电性分布的方法。
通过测量地表上的电场数据,并建立电场与地下物质电阻率分布之间的数学关系,可以进行电法反演计算。
常见的电法反演方法包括两极化法、多极化法和工程法等。
地球物理反演技术及其应用研究进展

地球物理反演技术及其应用研究进展地球物理反演技术是一种通过分析地球物理数据来推断地下介质性质的方法。
它在地球科学、环境科学、资源勘探等领域中具有广泛的应用。
本文将对地球物理反演技术及其应用领域的研究进展进行综述。
地球物理反演技术是通过收集地球物理数据(如地震、电磁、重力等数据)并运用数学模型和算法进行处理,从而推断地下介质的性质和结构。
地球物理反演技术的突出特点是非侵入性,可以在不需要直接观测地下介质的情况下获取相关信息。
目前常见的地球物理反演技术包括地震反演、重力反演、电磁反演等。
地震反演是利用地震波在地下传播时的速度变化来推断地下介质的性质和结构。
重力反演则是通过测量地球表面上的重力场变化来推断地下介质的密度分布。
电磁反演是利用地下介质对电磁波的响应来推断地下介质的电导率或磁导率性质。
地球物理反演技术在资源勘探领域具有重要应用价值。
在石油勘探中,地震反演技术可以解析地下构造,帮助找到潜在的油气藏。
重力反演技术则可以用于盆地结构分析、油气储层定量评价等。
电磁反演技术则可以用于寻找地下水资源、岩矿矿化带的勘探等。
此外,地球物理反演技术在环境科学中也有广泛的应用。
例如,地震反演技术可以用于研究地下水文系统、地下水污染等。
重力反演技术可以用于监测地壳垂直形变、海平面变化、冰川运动等。
电磁反演技术则可以用于监测地下水运动、海洋生态系统变化等。
近年来,地球物理反演技术得到了快速发展,取得了重要的研究进展。
一方面,随着计算机技术的快速发展,地球物理反演计算的效率得到了大幅提高。
采用高性能计算方法可以大大加快地球物理反演的速度,提高反演结果的精度和可靠性。
另一方面,地球物理反演技术的理论研究也取得了重要进展。
例如,通过引入正则化方法、先验约束等技术,可以有效解决反演问题中的不适定性和非线性问题。
未来,地球物理反演技术的发展在以下几个方面有望取得突破。
首先,多物理场耦合反演成为研究热点。
由于地球物理数据的局限性,单一物理场反演的结果常常不准确或不完整。
地球物理反演成像方法综述

地球物理反演成像方法综述重力法是通过测量地球重力场的变化来推断地下密度变化,从而揭示地球内部的结构。
重力法主要用于大尺度的地质结构研究,如大地构造、陆地和海洋中的地下体系以及矿区勘探。
通过重力测量数据,可以得到地下密度的变化分布,从而推测地下岩石的类型、厚度和形态。
磁法是通过测量地球磁场的变化来推断地下磁性物质的分布情况。
磁法主要用于研究地球内部的磁性物质,如矿床、岩体、熔岩流等。
磁法可提供地下物质的磁化程度、磁性异常的形态和大小等信息,从而推测地下物质的类型、厚度和分布。
电法是通过测量地球内部电阻率的变化来推断地下物质的电性质和分布情况。
电法主要用于矿产勘探、地下水资源调查和环境地质研究等领域。
通过电法测量数据,可以得到地下不同物质的电性质,从而推测地下物质的类型、厚度和分布。
电磁法是通过测量地球内部电磁场的变化来推断地下导电物质或绝缘物质的分布情况。
电磁法主要用于矿床勘察、地下水资源调查、环境地质研究和油气勘探等领域。
电磁法可以提供地下物质的导电度、磁化度等信息,从而推测地下物质的类型、厚度和分布。
地震法是通过测量地震波在地下传播的速度和衰减情况来推断地下介质的结构和性质。
地震法是目前地球物理反演成像方法中应用最广泛、分辨率最高的方法。
地震法主要用于油气勘探、地震灾害研究、地壳结构研究等领域。
通过地震波传播的速度和衰减信息,可以推断地下介质的层状结构、岩石类型、裂缝和断层等信息。
总的来说,地球物理反演成像方法可以通过测量地球表面的物理观测资料,如重力、磁场、电场和地震波,来推断地下物质的类型、厚度和分布。
不同的地球物理反演成像方法各有其适用范围和特点,可以相互补充和验证,从而提高对地下结构的理解和认识。
地球物理反演理论(1章)

:密度异常
r0-r
r
G
△ρ (r)
G :重力常数
z:
z轴方向(单位矢量)
图 重力异常观测示意图
第二节
基本概念
反演理论:就是从一个物理系统上的观测值 来恢复此系统的有用信息的一套数学和统计 技术(微积分、微分方程、矩阵代数、统计 估算和推断等)。 因而关系到:试验数据分析、数学模型、 实验数据拟合(模型未知参数估算)及最佳 实验设计等。
dV (t ) 已知,可以 dt
直接求得层速度。而且解是唯一的。公式(1.3) 的离散形式就是我们常说的Dix公式。
第二节
基本概念
公式(1.3 )给出了RMS 速度的解析解,有人也许 会说反演问题已经得到了解决。一般来说在实际 计算中V(t)不是精确已知的,那么公式(1.3)的结 果是否仍然是层速度呢? 当数据有限 v j v(t j ) j 1...N ,且不精确时,必 须对地球物理问题进行评估。在此假设我们有精 确数据,且已知任意时刻的V(t)及其导数,我们可 用公式(1.3)求取层速度。采用如图1-5所示方法 对数据进行插值。
第二节
基本概念
零化子并不神秘,它们 在实践中经常出现。例如 反射地震勘探中,考虑图 1-7所示的水平层状介质, 各层为均匀各向同性介质。 地层间的波阻抗差将引起 入射能量在界面上的反射。 图1-7 层状介质模型 用 r j表示第j层下边界的 r j 反射系数,反射系数函数 (各层内速度和密度为常数,为 第j层介质下边界的反射系数。) 方程为:
r (t ) r j (t j )
式中 j为地表到j层下界面的双程旅行时。若入射(平面) 地震脉冲w(t)垂直向下传播,则地震记录x(t)可由褶积模型 得到,即: x(t ) r (t ) w(t )
地球物理反演

地球物理反演地球物理反演是指利用地球物理探测技术所采集到的数据,通过一系列计算方法,将地下物质的分布、性质等信息推断出来的过程。
地球物理反演在石油勘探、地质灾害预测、地下水资源评价等领域中具有重要的应用价值。
本文将系统介绍地球物理反演的基本理论和方法。
一、地球物理反演的基本理论地球物理反演的基本理论是反演理论和数值方法,其中反演理论指反演问题的数学模型和算法,数值方法是指计算机数值求解的算法和程序。
1. 反演理论地球物理反演的本质是通过观测数据来反推地下的物理参数,如密度、电阻率、速度等。
反演问题本质上是一个反常问题,即从一组有限的数据中,推断出无限的未知参数。
反演问题的本质在于需要设计一种数学模型,可以使得从有限的数据中推断出未知参数的过程成为可能。
反演理论的核心是反演算法的选择、计算步骤以及参数的确定。
反演算法是反演理论的核心,它从相当于观测数据的测量数据出发,将输入的数据转化为各个层面分布的模型,并由此推断出地下物体的分布特征和属性信息。
2. 数值方法反演理论通常采用一系列数值方法来求解关于物理模型参数的方程。
数值方法是一类基于计算机数字计算的算法,可应用于许多数学问题的解决。
数值方法的关键是计算过程中的精度保持和误差控制。
常见的数值方法包括有限元法、有限差分法、迭代法等。
这些数值方法在地球物理反演中,选择合适的方法解决反演问题,具有重要意义。
二、地球物理反演的基本方法地球物理反演的基本方法包括物理方法、统计方法和优化方法。
1. 物理方法物理方法主要是基于大量实验和理论分析,将地下物质的物理属性和地球物理反演中的响应关系联系起来,从而实现地下物质的表征和剖析。
物理方法主要包括电法、声波法、重力法和磁法等方法。
其中,电法以测量地下电场的强度、方向、相位和变化率等信息为基础,推算出地下电阻率的分布。
声波法则是基于弹性波在地层传播的特性,将地层中的物理参数映射到到波传播的速度和振幅等反射波信息中,从而推算地下物质的层位、厚度、速度等物理特征。
地球物理反演方法及应用领域综述

地球物理反演方法及应用领域综述地球物理反演方法是指通过对地球内部的物理性质进行探测,提取地下结构和性质的方法。
地球物理反演方法广泛应用于地质勘探、环境保护、自然灾害预测等领域。
本文将介绍地球物理反演的基本概念、常用方法和应用领域。
一、地球物理反演的基本概念地球物理反演指的是根据地球内部的物理性质,通过观测和分析,推断其结构和性质的过程。
地球物理反演的基本原理是从地球表面测量数据反推地下的物理性质,如密度、速度、电阻率等。
常用的地球物理反演方法包括重力反演、磁力反演、电磁法反演、地震反演等,它们各自具有不同的应用场景和优缺点。
二、地球物理反演的常用方法1. 重力反演:重力反演是利用地表重力场数据来推断地下物质密度分布的方法。
通过收集地球重力场的数据,并应用物理模型和数学算法解析这些数据,我们可以获得地下密度的三维分布。
重力反演在油气勘探、矿产资源评价和地下水研究等领域具有广泛的应用。
2. 磁力反演:磁力反演是基于地球磁场的测量数据来推断地下物质磁性分布的方法。
通过分析地磁数据,我们可以了解地下岩石的磁性特征和结构。
磁力反演在矿产勘探、地质调查和环境监测等方面有重要的应用。
3. 电磁法反演:电磁法反演是利用地球表面电磁场数据来推断地下物质电性分布的方法。
不同频率的电磁场对地下物质的响应不同,通过分析这些响应,我们可以推断地下的电性结构。
电磁法反演在矿产勘探、地下水资源调查和环境工程等方面有广泛的应用。
4. 地震反演:地震反演是通过地震波在地下的传播和反射特性,推断地下岩层的速度和结构的方法。
地震反演在油气勘探、地质灾害预测和地下水资源评价等领域被广泛应用。
三、地球物理反演方法的应用领域1. 资源勘探:地球物理反演方法在石油、天然气、矿产等资源勘探中起着至关重要的作用。
通过对地下结构和性质的研究,可以有效地指导勘探活动,寻找潜在的资源储量。
2. 环境保护:地球物理反演方法可以用于环境监测和污染治理。
通过对地下水、土壤和岩石等的特性进行反演,可以评估环境污染的范围和程度,为环境保护决策提供科学依据。
地球物理反演理论综述

目录摘要 (1)一、反演问题基本概念 (1)二、线性反演问题 (2)三、线性反演问题的求解 (4)3.1适定和超定问题 (4)3.2欠定问题 (4)3.3混定问题 (4)四、非线性反演方法 (5)4.1线性化迭代算法 (5)4.2最速下降法 (5)4.3 共轭梯度法 (6)4.4遗传算法 (7)4.5模拟退货法 (7)4.6人工神经网络法 (8)总结: (8)地球物理反演理论综述摘要在地球物理学中,其核心问题就是如何根据地面上的观测信号推测地球内部与信号有关部分的物理状态。
不同的地球物理问题,其数学物理是不同的;同一个物理问题,应为观测方式不同,也会有不同的物理模型。
在地球物理学中,大多数的观测数据核模型参数之间是不满足线性关系的。
但是在一定近似条件想均可简化或近似简化为线性关系。
因此线性反演是地球物理的关键问题。
关键词:反演;线性反演;非线性反演一、反演问题基本概念把数据模型中的一个点定义为m,把数据空间中的一个点定义为d,两者的关系可以成:d=Gm式中,G为模型空间M到数据空间D的一个映射,也称反函数算子,反应了模型m与数据d之间的物理规律从空间映射来看,如果存在一个映射A,使得m=Ad则A为有数据空间D到模型空间M的映射,即A为G的逆映射,称逆算子。
也可以写成=m1-dG我们把给定模型m求解数据d的过程称为正演;把给定数据d求解模型参数m的过程称为繁衍问题。
图1.1模型空间域数据空间之间的映射关系示意图反演问题的研究归纳为四个方面的问题:1) 解的存在性:给定数据d ,按照物理定律,能否找到满足要求的模型参数m ;2) 模型构制:若解存在,如何让构制问题的数学模型使得反演问题的解能迅速而准确地确定;3) 解的非唯一性:若解存在,其是否唯一;4) 解的评价:若解的非唯一性的,如何从非唯一解中获取真实解的信息。
关于上述四方面问题的研究就构成了地球物理反演的基本理论。
二、线性反演问题为了使问题简单明了而又不失一般性,我们在此讨论一维问题。
地球物理反演方法综述

地球物理反演方法综述地球物理反演是一种通过对地球内部物理性质的测量数据进行分析和计算,来推断地球内部结构和性质的方法。
在地球科学领域,地球物理反演是一项重要的科学研究工具,广泛应用于地震学、地热学、地电学和地磁学等领域。
本文将综述地球物理反演的方法和应用。
地球物理反演的目标是通过测量或观测到的地球物理场数据,如地震波、电磁场和重力场等,来确定地球内部的物理性质。
地球内部的物理性质包括密度、速度、电导率和磁性等。
地球物理反演方法主要分为两类:直接方法和间接方法。
直接方法是直接利用观测数据进行分析和计算,得到地球内部的物理性质。
其中,地震学是地球物理反演的主要方法之一。
地震学通过对地震波的观测和分析,推断地球内部的速度结构和介质的物理性质。
地震学反演方法包括层析成像、走时层析、全波形反演等。
此外,电磁学和地磁学也是直接反演方法的重要组成部分。
电磁学反演方法基于测量到的电磁场数据,推断地球内部的电导率分布。
地磁学反演方法主要用于推断地球内部磁场强度和方向的变化,以及地球磁性物质的分布。
间接方法是通过解决反问题,从观测数据中推断出地球内部的物理性质。
反问题是指通过已知的输出数据反推输入参数的过程。
间接方法的核心是建立数学模型和求解反演算法。
数学模型是通过物理规律和假设,将地球内部的物理性质与观测数据联系起来。
反演算法是指通过最小化误差函数或优化目标函数,来确定最优的模型参数。
常见的反演算法包括线性反演、非线性反演、贝叶斯反演等。
在地球物理反演的应用方面,地球物理反演方法被广泛应用于地质勘探、矿产资源勘查和自然灾害预警等领域。
在地质勘探中,地球物理反演方法可以帮助确定地下的油气田和矿产资源的分布情况,为勘探开发提供指导。
在矿产资源勘查中,地球物理反演方法可以推断地下的矿床结构和属性,为矿产资源评估和开发提供支持。
在自然灾害预警中,地球物理反演方法可以用于监测地壳运动和变形,预警地震、火山喷发和地质灾害等自然灾害。
地球物理学反演

反演的计算和实现。
数据空间
由一个连续模型m计算出来的数据可以有无穷多 个,在规定了内积之后,无限维数据集也可表示为 Hilbert空间中的一个元素d,称为理想数据,此与模 型空间相对应的一个系列数据d,组成一个函数空间
称为数据空间,它也是一个Hilbert空间,记为Hd。
关于数据空间,可抽象地表示为以下几点(5点) :
1. 模型空间和数据空间
模型空间 描述地球模型某种特征的各个观测值称为总体地球 数据(如地球的质量,转动惯量,自由振荡的固有频 率,Q值,P、S波走时等)。在数学上,地球模型可 以用有限个有序的函数集合表示,所有可能的地球 模型便构成一个无穷维抽象空间,称为模型空间, 记为M。
n维地球模型
m m (m m, m m)1 / 2
它们相对于原点的夹角定义
(1)
( m, m) cos 1 m m
(2)
一个无限维向量m在另一向量f上的投影可表为
( f , m) proj( m) f (f,f)
(3)
投影的概念对求反问题的解估计很重要,在许
多情况下无法求得连续地球模型m本身,这时可以考 虑求m在某个流形上的投影,因为投影是一种与m最 接近的解估计。因此,把模型空间放入希尔伯特空 间之后由内积带来的一系列性质,可用于地球物理
Backus-Gilbe
论,它有更高的分辨率。其基本思想
是:所有可能的地球模型构成了一个
无穷维的抽象空间(Hilbert,希尔伯
特空间),故描述它的函数是空间坐
标的连续函数,希尔伯特空间中满足
观测数据的那些模型是包含着所有可
能模型的一些点。
Hm中的元素,记约束为R,那么,(m, R)组成一个
地球物理反演综述

地球物理反演综述地球物理反演是通过分析和解释地球内部物质的特性、结构和分布来揭示地球内部的信息。
它是一种基于观测数据和数学模型的推断方法,广泛应用于地球科学领域,包括地球物理学、地质学、地球化学和地球生物学等学科。
本文将对地球物理反演的基本原理、常见方法和应用进行综述。
地球物理反演的基本原理是根据物理规律和观测数据之间的关系来推断地下物质的性质。
地球物理观测技术包括地震测深、重力测量、磁力测量、电磁测量和地热测量等多种方法,通过这些观测数据,可以获取到地下各种物理属性的信息。
反演过程就是利用这些观测数据和数学模型进行数据分析和解释。
常见的地球物理反演方法包括正问题求解、倒问题求解和正、倒问题联合求解。
正问题求解是根据给定的物理模型和边界条件,通过数值计算得到模拟观测数据。
倒问题求解是根据观测数据,利用逆问题算法来推断地下物质的性质。
正、倒问题联合求解是将正问题和倒问题结合起来,通过迭代计算,不断优化模型参数,使计算结果与观测数据逐渐接近。
地球物理反演方法的选择取决于所研究问题的特征和可观测数据的性质。
例如,地震反演常用于研究地球内部的速度和密度结构,通过分析地震波传播路径和到达时间,可以推断不同深度的地下结构。
重力和磁力反演常用于研究地球内部的密度和磁性物质分布,通过分析重力和磁力场的变化,可以推断地下的岩石类型和矿体分布。
电磁和地热反演常用于研究地下水位和热流分布,通过分析电磁场和地温场的变化,可以推断地下水和热流的分布。
地球物理反演的应用广泛涉及到地球科学的各个领域。
在油气勘探领域,地球物理反演可以用于识别油气储层的位置和性质,优化勘探井的布置,提高勘探效果。
在地震监测领域,地球物理反演可以用于预测地震活动和地下构造的变化,为地震预警和灾害评估提供依据。
在地质勘查领域,地球物理反演可以用于矿产资源的勘查和评价,预测矿体的含量、规模和分布。
然而,地球物理反演也面临一些挑战和限制。
首先是观测数据的质量和分辨率问题,观测数据的准确性和分辨率会直接影响反演结果的可靠性和精度。
地球物理反演理论课件

数据的质量和完备性对反演结果有重要影响,高质量和完备的数据可以提供更准 确的反演结果。
其他约束条件
先验信息
除了上述约束条件外,还可以利用先验信息对反演结果进行 约束,如已知的矿产资源分布、地下水水位等。
计算资源和时间限制
地球物理反演通常是一个计算密集型的过程,受到计算资源 和时间的限制,这也会对反演结果产生影响。
迭代反演方法需要更多的计 算资源和时间,且可能存在 局部最优解和全局最优解的
问题。
正则化反演原理
正则化反演原理
正则化反演方法是一种 通过引入额外的约束条 件来稳定反演过程的方 法。这些约束条件通常 与地下物理性质的一些 先验信息或物理定律相 关。
正则化项与惩罚 函数
在正则化反演中,通常 会定义一个正则化项或 惩罚函数,该项会考虑 到一些先验信息或物理 定律。这个正则化项会 与原问题一起优化,以 获得更加稳定和准确的 反演结果。
现代反演理论
随着计算机技术和优化算法的发展,现代反演理论逐渐形成。现代反演理论采用更复杂的数学模型和先进的优化算法 ,能够处理更复杂的情况和更高维度的数据,提高了反演精度和可靠性。
未来发展方向
随着地球物理学和相关领域的发展,地球物理反演理论将继续向更复杂、更精确的方向发展。未来反演 理论将更加注重多学科交叉融合,如与机器学习、深度学习等领域的结合,有望在反演理论和方法上取 得更大的突破和创新。
02
地球物理反演的基本原理
线性反演原理
线性反演原理
通过建立地球物理观测数据与地下物理性质之间的关系,利用线性方 程组求解地下物理性质的一种方法。
线性叠加原理
在地球物理观测数据中,不同地下物理性质的贡献可以线性叠加,通 过求解线性方程组可以得到地下物理性质。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目录摘要 (1)一、反演问题基本概念 (1)二、线性反演问题 (2)三、线性反演问题的求解 (4)3.1适定和超定问题 (4)3.2欠定问题 (4)3.3混定问题 (4)四、非线性反演方法 (5)4.1线性化迭代算法 (5)4.2最速下降法 (5)4.3 共轭梯度法 (6)4.4遗传算法 (7)4.5模拟退货法 (7)4.6人工神经网络法 (8)总结: (8)地球物理反演理论综述摘要在地球物理学中,其核心问题就是如何根据地面上的观测信号推测地球内部与信号有关部分的物理状态。
不同的地球物理问题,其数学物理是不同的;同一个物理问题,应为观测方式不同,也会有不同的物理模型。
在地球物理学中,大多数的观测数据核模型参数之间是不满足线性关系的。
但是在一定近似条件想均可简化或近似简化为线性关系。
因此线性反演是地球物理的关键问题。
关键词:反演;线性反演;非线性反演一、反演问题基本概念把数据模型中的一个点定义为m,把数据空间中的一个点定义为d,两者的关系可以成:d=Gm式中,G为模型空间M到数据空间D的一个映射,也称反函数算子,反应了模型m与数据d之间的物理规律从空间映射来看,如果存在一个映射A,使得m=Ad则A为有数据空间D到模型空间M的映射,即A为G的逆映射,称逆算子。
也可以写成=m1-dG我们把给定模型m求解数据d的过程称为正演;把给定数据d求解模型参数m的过程称为繁衍问题。
图1.1模型空间域数据空间之间的映射关系示意图反演问题的研究归纳为四个方面的问题:1) 解的存在性:给定数据d ,按照物理定律,能否找到满足要求的模型参数m ;2) 模型构制:若解存在,如何让构制问题的数学模型使得反演问题的解能迅速而准确地确定;3) 解的非唯一性:若解存在,其是否唯一;4) 解的评价:若解的非唯一性的,如何从非唯一解中获取真实解的信息。
关于上述四方面问题的研究就构成了地球物理反演的基本理论。
二、线性反演问题为了使问题简单明了而又不失一般性,我们在此讨论一维问题。
设有积分方程()()()⎰=bad m x G x d ξξξ,式中,()[]b a m ,∈ξ。
在观测数据数目有限的情况下,为便于书写,我们把各参量表示成如下形式()jj d x d =()()jj j G G x G ==ξξ, ()m m =ξ⎰=baj j md G d ξ()M j ,,2,1 =由于()ξm 与()ξ,x G 线性无关,则式(2-2)可以表示成内积形式()m G d j j ,= ()M j ,,2,1 =我们先用核函数jG 构造另一组正交函数,即∑==Mj jkj k G 1αψ ()M k ,,2,1 = 以kja 为系数对观测数据jd 作一个线性组合,并令其为kE ,则()()()m m G a m G a d a E k j Mj kj Mj j Mj kj j kj k ,,,111ψ====∑∑∑===由此可见,kE 是m 在正交基k ξ轴上的投影。
()∑∑∞=∞===11k kk k k k m ϕβξϕβ这里()ξϕk 是Hilbert 空间的任意坐标基,可以正交,也可以是不正交。
若将其分成两部分,并取k k ψϕ= ()M k ,,2,1 = k ϕ为其他任意坐标基 M k > 则式(2-8)可写成()∑∑∞+=∞=+=11M k kkk k k m ϕβξϕβ 可以证明k k E =β。
因为()⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+==∑∑∑∑∞+==∞+==1111,,M l l k l M l l k l M l l l M l l l k k k m E ϕψβψψβϕβψβψψ∑∞==1l klklβψψβ∑∞+==1M l l klϕψβ所以有kk E β=。
第二项∑∞+=1M l klϕβ是无限维空间中一个向量投影之和,且该向量在M 维正交基k ψ中的投影为零,则对于问题中的模型m ,它可视为零向量,即()∑∞+==1M k kkm ϕβξ故()∑∞=+=1k k k m E m ψξ即()()jjMl kj Mk kjl Ml kl Mk Mi jjkilMl kljd d a a d a G G a d a m G ===+=∑∑∑∑∑∑======12111110,,讨论:1) 对于给定的观测数据总是能找到与之对应的数据模型,即解是存在的; 2) 模型的构制本质上就是对线性无关的核函数实行正交变换,求得相应的新正交坐标基及模型在这个正交坐标基上投影的过程;3) 反演问题是在特征解上加以任何零化子向量所得的模型,都可拟合观测数据,所以姐是非唯一的。
三、线性反演问题的求解3.1适定和超定问题在线性反演问题中,如果观测数据的个数多于模型参数的个数,我们想得到一组与观测系统之间误差平方和最小的观测数据所对应的模型参数,也就是适用最小二乘法。
3.2欠定问题欠定问题中假设方程数比未知的模型参数少,则可以找到很多的最小方差解。
即,虽然数据能提供有关模型参数的信息,但是由于信息不足所以不能唯一确定模型参数。
为了唯一确定解,可以把某些为引入的信息附加到该问题上,这些附加信息称为先验信息。
它是不依赖实际数据使解以某种定量的形式出现。
3.3混定问题混定问题是一种混合模式,观测数据个数多于模型参数的个数,但特征值接近或等于零,具有欠定性质。
混定问题可以引入2ε求解,2ε取决于预测误差E 与模型长度L 在极小化过程中的相对重要性,称为阻尼因子或加权因子。
四、非线性反演方法4.1线性化迭代算法我们所遇到的问题中都是求解多远函数的最优化问题,即寻找目标函数极小点或极大点所对应的数学实现过程。
迭代算法在给定一个初始点b0 后按照一定的规则产生一个新的点b 1 ,如此迭代产生k 个点,形成一个序列{b k } ,并使得bk 不断逼近极值点b*,最终得到最优化问题的解。
对于迭代酸度最重要的是极小化序列的收敛性和收敛速度问题。
线性化迭代反应过程中包含有分辨率的快速、慢速提高,方差的急增和混沌的相态,数据误差的大小会影响相态的转变速度。
在解估计方差急增之前停止迭代就可以得到分辨率高而方差不大的反问题。
线性迭代算法的主要问题是可能陷入空间的局部极小区,因此建议把所有可能的模型都作为初始模型输入,然后再反演结果中找出拟合误差最小的解估计。
4.2最速下降法最速下降法是一种运用梯度与极值的性质,综合数值计算方法寻找局部极值。
基本思想:任一点的负梯度方向是函数值在该点下降最快的方向。
将维问题转化为一系列沿负梯度方向用一维搜索方法寻优的问题,利用负梯度作为搜索方向,故称最速下降法。
图4.1:最快下降法具体步骤:Step 1 给定初始点,允许误差,令。
Step 2 计算搜索方向。
n 0nx R ∈0ε≥1k =()k k d f x =-∇Step 3 若,则为所求的极值点,否则,求解最优步长,使得。
Step 4 令,最速下降方向是反映了目标函数的局部性质,它只是局部目标函数值下降最快的方向。
4.3 共轭梯度法基本思想:将共轭性与最速下降法相结合利用已知迭代点的梯度方向构造一组共轭方向,并沿此方向搜索,求出函数的极小值。
例如:其中,,是对称正定矩阵具体步骤:Step 1 取初始点,取第一次搜索方向为。
Step 2 设已求得,若,令,则下一个搜索方向由于与关于共轭,所以给(1)两边同时乘以,即:解得:Step 3 搜索步长的确定,已知迭代点,和搜索方向,确定步长,即:解得:共轭梯度法是对最速下降法的一种改进,减少了迭代次数从而提高了程序运行效率。
k d ε≤ k x k λ()min ()k k k k k f x d f x d λλλ+=+1k k kk x x d λ+=+1k k =+1min ()2T T f x x Ax b x=+0nx R ∈A (0)x (0)(0)()d f x =-∇(1)k x +(1)()0k f x+∇≠(1)()()k g x f x +=∇(1)()1k k k k d g d β++=-+(1)k d+()k dA ()Tk dA ()(1)()()()10TTTk k k k k k k dd dg dd β++A =-A +A =()1()()k T k k k T k d A g d Ad β+=()k x ()k d k λ()()min()k k f x d λλ+()()()Tk k k k T k g d d Ad λ=-4.4遗传算法遗传算法设计步骤如下: Step0 设置迭代参数Step1 确定进化代数,0←n 随机产生规模为N 且满足约束条件的群体A 0。
Step2 对群体A n 中的个体进行评价,如果个体A i 不满足约束条件,则随机生成一个满足约束条件的个体来替换,并保存当前最好的个体Step3 采用比例选择算子对当前群体进行选择操作,选择群体规模为N 的个体。
Step4 对群体中的个体进行两两随机配对。
以概率Pc 交换部分基因。
Step5 对群体中个体的每一个基因以概率Pm 进行变异,未变异的个体直接进入新群体。
Step6 变异后的新群体取代上一代群体,并对当前群体1+n A 中的个体进行评价。
倘若当前群体中最大适应值大于上一代群体中的最大适应值,则当前群体中的最好个体取代上一代保留下的最好个体,否则不取代。
Step7 条件判断,如满足条件,则停止迭代。
否则,1+←n n ,转回Step3。
遗传算法的核心是由“繁殖”,“杂交”,“变异”三步组成的转移过程。
同时计算繁殖杂交概率与变异概率用于控制迭代过程并使数据进一步拟合。
4.5模拟退货法模拟退火的原理:将热力学的理论套用到统计学上,将搜寻空间内每一点想像成空气内的分子;分子的能量,就是它本身的动能;而搜寻空间内的每一点,也像空气分子一样带有“能量”,以表示该点对命题的合适程度。
演算法先以搜寻空间内一个任意点作起始:每一步先选择一个“邻居”,然后再计算从现有位置到达“邻居”的概率。
模拟退火的基本思想:(1) 初始化:初始温度T(充分大),初始解状态S(是算法迭代的起点), 每个T 值的迭代次数L(2) 对k=1,……,L做第(3)至第(6)步:(3) 产生新解S′(4) 计算增量Δt′=C(S′)-C(S),其中C(S)为评价函数(5) 若Δt′<0则接受S′作为新的当前解,否则以概率exp(-Δt′/T)接受S′作为新的当前解.(6) 如果满足终止条件则输出当前解作为最优解,结束程序。
终止条件通常取为连续若干个新解都没有被接受时终止算法。
(7) T逐渐减少,且T->0,然后转第2步。
模拟退火法是用于求解非线性地球物理反问题的一种好方法,对于模型参数较小的情况下计算很方便,但实际应用上其反演结果还是依赖于初始参数选择和降温方式选择等问题。