新高一数学衔接课专题一--因式分解教案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题一 因式分解(2课时)
教学目标:使学生掌握因式分解的几种典型方法(提公因式法,公式法,分组分解法,十字相乘法,配方法,求根法)
重点:十字相乘法分解因式
难点:灵活选择适当方法分解因式
教学方法:启发法,讨论法
学法指导:带领学生复习初中因式分解的相关知识,为高中知识的学习做好铺垫。讲练结合。 教具:多媒体
教学过程:
~
一、知识前测(通过做题回顾初中所学习的因式分解的方法)
1.完成下列因式分解,并思考所用的方法。
~
因式分解是代数式的一种重要的恒等变形,它与整式乘法是相反方向的变形.在分式运算、解方程及各种恒等变形中起着重要的作用.是一种重要的基本技能.
因式分解的方法较多,除了初中课本涉及到的提取公因式法和公式法(平方差公式和完全平方公式)外,还有公式法(立方和、立方差公式)、十字相乘法、分组分解法、配方法、拆(添)项法等等.
一、公式法
我们在初中已经学习过了下列一些乘法公式: (1)平方差公式 22()()a b a b a b +-=-; (2)完全平方公式 222()2a b a ab b ±=±+. 我们还可以通过证明得到下列一些乘法公式:
} (1)立方和公式 2233()()a b a ab b a b +-+=+;
(2)立方差公式 2233()()a b a ab b a b -++=-;
(3)三数和平方公式 2222()2()a b c a b c ab bc ac ++=+++++;
(4)两数和立方公式 33223()33a b a a b ab b +=+++;
(5)两数差立方公式 33223()33a b a a b ab b -=-+-
#
2(1)9x -2(2)69x x -+2(3)36xy xyz
-+2(5)32
x x -+y b x b y a x a 2222)4(+++
二、分组分解法
例2. 2222428x xy y z ++-
例3. 2222()()ab c d a b cd ---
三、十字相乘法
(1)2
()x p q x pq +++型:
] (2)型:212122112
()a a x a c a c x c c +++
!
例5因式分解
[
四、配方法 (
例6.221x x -- 五、拆添项法 例1因式分解: >
(
33(1) 8 (2) 12527x b +-34(3)381a b b -76
(4)a ab -22(2)6 +-x xy y 107ab b a 322+-)(222(4)812
+-++()()x x x x 例4因式分解:
2 (1)1336
++x x 22222
(1)273(2)3103(3)1252(4)568x x x x x x xy y ++-+--+-
例7.32
34x x -+
六、求根法若关于x 的方程20(0)ax bx c a ++=≠的两个实数根是1x 、2x ,则二次三项式2(0)ax bx c a ++≠就可分解为12()()a x x x x --.
例8.2
21x x --
;
小结:多项式分解因式的一般步骤:
1.如果多项式的各项有公因式,那么先提公因式;
2. 如果各项没有公因式,那么可以尝试运用公式来分解;
3.如果用上述方法不能分解,那么可以尝试用分组来分解;
4.分解因式,必须进行到每一个多项式都不能再分解为止.
作业:A 类:导学案习题3,5 5分
B 类:导学案习题4 6 分
C 类:导学案习题6 8分
板书设计
因式分解
1.提取公因式法 3十字相乘法
2.公式法 例
作业中主要错误;:对于含参数二次方程不会解方程,对于多项式不会合理分组,整体 意思不强。
课后反思:对于提公因式法及公式法,学生掌握的非常好,对提公因式法与分组分解法相结合的题,学生不能很快的观察出来,对于二项次系数为1的十字相乘法学生易掌握,系数不为1的甚至为字母a 的有一定困难。,应帮助学生建立整体代换思想,看清十字相乘法实质。