人工神经网络,具有自学习功能

合集下载

人工智能三大流派

人工智能三大流派

三大流派三大流派(Artificial Intelligence,简称)是一门研究和开发用于模拟、延伸和扩展人智能的理论、方法、技术及应用系统的科学。

随着科技的不断发展,逐渐分化出了三大主要流派,即符号主义流派、连接主义流派和进化主义流派。

1、符号主义流派符号主义流派是领域最早兴起的一种方法论,也被称为经典(Classical )。

该流派主要关注运用符号逻辑推理和知识表示方法来解决问题。

其核心思想是借助推理、规则和知识表示,将问题的符号表示与相应的问题解决方法进行匹配。

符号主义方法在机器学习、专家系统和自然语言理解等领域取得了一些重要的突破。

1.1 专家系统专家系统是符号主义流派的核心研究领域之一。

它通过建立一套用于模拟专家知识和推理的规则和方法,来解决特定领域中的问题。

专家系统可以将领域专家的经验和知识进行模拟,并通过推理机制提供相应的解决方案。

1.2 逻辑推理逻辑推理是符号主义流派的基础,它利用谓词逻辑和形式化推理来进行问题求解。

逻辑推理可以将问题的符号表示转换为逻辑表达式,然后利用逻辑推理规则进行推导和演绎,最终得到问题的解答。

2、连接主义流派连接主义流派(Connectionism)是对传统符号主义的一种批判和补充,也被称为神经网络。

该流派的核心思想是模拟神经元之间的连接、传递和处理信息的方式,来构建人工神经网络,并通过学习和调整网络参数来实现智能行为。

2.1 人工神经网络人工神经网络模拟了生物神经网络的结构和工作原理,通过模拟大量的人工神经元之间的连接和信息传递来实现智能行为。

人工神经网络具有较强的自学习和自适应能力,在图像识别、语音识别和自然语言处理等领域取得了很多重要的应用。

2.2 深度学习深度学习是连接主义流派的重要发展方向之一。

深度学习借鉴了人脑神经元之间的层次结构,通过构建深层神经网络来实现对大规模数据的学习与预测。

深度学习在图像处理、语音识别和自然语言处理等领域具有很强的表现力和泛化能力。

人工智能8--神经网络1

人工智能8--神经网络1

阈值函数
S型函数
双曲正切函数
4. 人工神经网络的互联结构
ANN可分为两种 – 相互连接网络 – 分层网络 • 单层 • 两层网络结构 • 多层网络结构
典型的网络结构
相互连接网络
的多层网络
多层神经网络
3层及3层以上的神经网络,称多层 神经网络
可塑性 – 突触传递信息的强度是可变的,即具 有学习功能
学习、遗忘或疲劳(饱和)效应 – 对应突触传递作用增强、减弱和饱和
生物神经网络基本模型
电脉冲
输 入
树 突
细胞体 形成 轴突




信息处理
传输
图 12.2 生物神经元功能模型
3. 人工神经元
人工神经网络 – 神经网络是一个并行和分布式的信 息处理网络结构 – 它一般由大量神经元组成 • 每个神经元只有一个输出,可以 连接到很多其他的神经元 • 每个神经元的输入有多个连接通 道,每个连接通道对应于一个连 接权系数
神经网络研究的发展
(1)第一次热潮(40-60年代未) 1943年,美国心理学家W.McCulloch和数学家
W.Pitts在提出了一个简单的神经元模型,即MP模 型。 1958年,F.Rosenblatt等研制出了感知机 (Perceptron)。 (2)低潮(70-80年代初)
(3)第二次热潮
神经网络的优点
一般而言, ANN与经典计算方法相比并 非优越, 只有当常规方法解决不了或效果 不佳时ANN方法才能显示出其优越性。 – 对问题的机理不甚了解或不能用数学 模型表示的系统,如故障诊断、特征提 取和预测等问题,ANN往往是最有利 的工具。 – 对处理大量原始数据而不能用规则或 公式描述的问题, 表现出极大的灵活性 和自适应性。

基于遗传算法的BP神经网络算法

基于遗传算法的BP神经网络算法

基于遗传算法的BP神经网络算法基于遗传算法的BP神经网络算法是一种将遗传算法与BP神经网络相结合的机器学习算法。

BP神经网络是一种具有自适应学习功能的人工神经网络,它通过反向传播算法来不断调整网络的权重和阈值,从而实现对样本数据的学习和预测。

遗传算法是一种模拟生物进化过程的优化算法,它通过选择、交叉和变异等操作来产生下一代的优秀个体,从而逐步寻找到最优解。

在基于遗传算法的BP神经网络算法中,遗传算法用于优化BP神经网络的初始权重和阈值,以提高网络的学习和泛化能力。

1.初始化个体群体:随机生成一组个体,每个个体代表BP神经网络的初始权重和阈值。

2.适应度评估:使用生成的个体来构建BP神经网络,并使用训练数据进行训练和验证,评估网络的适应度,即网络的性能指标。

3.选择操作:根据个体的适应度值确定选择概率,选择一些适应度较高的个体作为父代。

4.交叉操作:从父代中选择两个个体,通过交叉操作生成两个新的子代个体。

5.变异操作:对新生成的子代个体进行变异操作,引入一定的随机扰动,增加种群的多样性。

6.替换操作:根据一定的替换策略,用新生成的子代个体替代原来的父代个体。

7.终止条件判断:根据预先设定的终止条件(如达到最大迭代次数或达到一些适应度值阈值)判断是否终止算法。

8.返回结果:返回适应度最高的个体,即最优的BP神经网络参数。

然而,基于遗传算法的BP神经网络算法也存在一些缺点。

首先,算法的收敛速度较慢,需要较长的时间进行优化。

其次,算法需要设置一些参数,如种群大小、交叉概率和变异概率等,不同的参数组合可能对算法的性能产生较大影响,需要经过一定的试错过程。

综上所述,基于遗传算法的BP神经网络算法是一种结合了两种优化方法的机器学习算法,能够有效提高BP神经网络的学习和泛化能力。

同时,也需要在实际应用中根据具体情况选择合适的参数设置和终止条件,以获得更好的算法性能。

基础知识续人工神经网络常用学习规则

基础知识续人工神经网络常用学习规则
02 工作原理
基于误差函数的梯度信息,沿着梯度的负方向更 新权重和偏置,以逐渐减小误差。
03 应用场景
适用于训练多层前馈神经网络,尤其是深度神经 网络。
反向传播算法
定义
反向传播算法是一种监督学习算 法,通过计算输出层与目标值之 间的误差,逐层反向传播误差, 并更新神经网络的权重和偏置。
工作原理
基于链式法则,将误差信号从输 出层向输入层逐层传递,并根据 误差梯度调整权重和偏置。
自组织映射
概念
01
自组织映射是一种无监督学习规则,通过训练神经网络来学习
输入数据的低维表示。
工作原理
02
通过迭代地更新神经元的权重,使得相似的输入数据映射到同
一神经元上,从而形成低维表示。
应用场景
03
自组织映射常用于数据压缩、可视化、聚类和特征提取等任务。
贪婪逐层预训练
概念
贪婪逐层预训练是一种无监督学习规则,通过逐层贪婪地训练神经网络来预训练模型。
梯度下降法简单易行,适用于大多数 情况,但可能会陷入局部最小值,影 响学习效果。
反向传播算法
反向传播算法是另一种常用的学习规则,通过计 算输出层与目标值之间的误差来反向传播误差, 并更新权重。
反向传播算法能够自动调整权重,适用于多层神 经网络,但计算量较大,训练时间较长。
随机梯度下降法
随机梯度下降法是一种基于梯度下降 法的变种,每次迭代只使用一个样本 来计算梯度,提高了训练速度。
在实际应用中的挑战与机遇
挑战
如何克服数据噪声和过拟合问题,提高网络的泛化能力; 如何设计更有效的网络结构,满足复杂任务需求。
机遇
随着技术的发展,人工神经网络在各个领域的应用越来 越广泛,如自然语言处理、计算机视觉、语音识别等; 同时,随着计算能力的提升,更大规模的网络训练成为 可能,为解决复杂问题提供了更多可能性。

人工神经网络,具有自学习功能

人工神经网络,具有自学习功能

人工神经网络,具有自学习功能人工神经网络,具有自学习功能学习类型学习是神经网络研究的一个重要内容,它的适应性是通过学习实现的。

根据环境的变化,对权值进行调整,改善系统的行为。

由Hebb提出的Hebb学习规则为神经网络的学习算法奠定了基础。

Hebb规则认为学习过程最终发生在神经元之间的突触部位,突触的联系强度随着突触前后神经元的活动而变化。

在此基础上,人们提出了各种学习规则和算法,以适应不同网络模型的需要。

有效的学习算法,使得神人工神经网络经网络能够通过连接权值的调整,构造客观世界的内在表示,形成具有特色的信息处理方法,信息存储和处理体现在网络的连接中。

根据学习环境不同,神经网络的学习方式可分为监督学习和非监督学习。

在监督学习中,将训练样本的数据加到网络输入端,同时将相应的期望输出与网络输出相比较,得到误差信号,以此控制权值连接强度的调整,经多次训练后收敛到一个确定的权值。

当样本情况发生变化时,经学习可以修改权值以适应新的环境。

使用监督学习的神经网络模型有反传网络、感知器等。

非监督学习时,事先不给定标准样本,直接将网络置于环境之中,学习阶段与工作阶段成为一体。

此时,学习规律的变化服从连接权值的演变方程。

非监督学习最简单的例子是Hebb学习规则。

竞争学习规则是一个更复杂的非监督学习的例子,它是根据已建立的聚类进行权值调整。

自组织映射、适应谐振理论网络等都是与竞争学习有关的典型模型。

编辑本段分析方法研究神经网络的非线性动力学性质,主要采用动力学系统理论、非线性规划理论和统计理论,来分析神经网络的演化过程和吸引子的性质,探索神经网络的协同行为和集体计算功能,了解神经信息处理机制。

为了探讨神经网络在整体性和模糊性方面处理信息的可能,混沌理论的概念和方法将会发挥作用。

混沌是一个相当难以精确定义的数学概念。

一般而言,"混沌"是指由确定性方程描述的动力学系统中表现出的非确定性行为,或称之为确定的随机性。

人工神经网络简介

人工神经网络简介

人工神经网络简介1 人工神经网络概念、特点及其原理 (1)1.1人工神经网络的概念 (1)1.2人工神经网络的特点及用途 (2)1.3人工神经网络的基本原理 (3)2 人工神经网络的分类及其运作过程 (5)2.1 人工神经网络模式的分类 (5)2.2 人工神经网络的运作过程 (6)3 人工神经网络基本模型介绍 (6)3.1感知器 (7)3.2线性神经网络 (7)3.3BP(Back Propagation)网络 (7)3.4径向基函数网络 (8)3.5反馈性神经网络 (8)3.6竞争型神经网络 (8)1 人工神经网络概念、特点及其原理人工神经网络(Artificial Neural Networks,简记作ANN),是对人类大脑系统的一阶特征的一种描述。

简单地讲,它是一个数学模型,可以用电子线路来实现,也可以用计算机程序来模拟,是人工智能研究的一种方法。

1.1人工神经网络的概念利用机器模仿人类的智能是长期以来人们认识自然、改造自然的理想。

自从有了能够存储信息、进行数值运算和逻辑运算的电子计算机以来,其功能和性能得到了不断的发展,使机器智能的研究与开发日益受到人们的重视。

1956年J.McCart冲等人提出了人工智能的概念,从而形成了一个与神经生理科学、认知科学、数理科学、信息论与计算机科学等密切相关的交叉学科。

人工神经网络是人工智能的一部分,提出于50年代,兴起于80年代中期,近些年已经成为各领域科学家们竞相研究的热点。

人工神经网络是人脑及其活动的一个理论化的数学模型,它由大量的处理单元通过适当的方式互联构成,是一个大规模的非线性自适应系统,1998年Hecht-Nielsen曾经给人工神经网络下了如下定义:人工神经网络是一个并行、分层处理单元及称为联接的无向信号通道互连而成。

这些处理单元(PE-Processing Element)具有局部内存,并可以完成局部操作。

每个处理单元有一个单一的输出联接,这个输出可以根据需要被分支撑希望个数的许多并联联接,且这些并联联接都输出相同的信号,即相应处理单元的信号。

人工神经网络综述论文

人工神经网络综述论文

人工神经网络的最新发展综述摘要:人工神经网络是指模拟人脑神经系统的结构和功能,运用大量的处理部件,由人工方式建立起来的网络系统。

该文首先介绍了神经网络研究动向,然后介绍了近年来几种新型神经网络的基本模型及典型应用,包括模糊神经网络、神经网络与遗传算法的结合、进化神经网络、混沌神经网络和神经网络与小波分析的结合。

最后,根据这几种新型神经网络的特点,展望了它们今后的发展前景。

关键词:模糊神经网络;神经网络与遗传算法的结合;进化神经网络;混沌神经网络;神经网络与小波分析。

The review of the latest developments in artificial neuralnetworksAbstract:Artificial neural network is the system that simulates the human brain’s structure and function, and uses a large number of processing elements, and is manually established by the network system. This paper firstly introduces the research trends of the neural network, and then introduces several new basic models of neural networks and typical applications in recent years, including of fuzzy neural network, the combine of neural network and genetic algorithm, evolutionary neural networks, chaotic neural networks and the combine of neural networks and wavelet analysis. Finally, their future prospects are predicted based on the characteristics of these new neural networks in the paper.Key words: Fuzzy neural network; Neural network and genetic algorithm; Evolutionary neural networks; Chaotic neural networks; Neural networks and wavelet analysis1 引言人工神经网络的研究始于20世纪40年代初。

人工神经网络固有的优点和缺点

人工神经网络固有的优点和缺点

人工神经网络固有的优点和缺点一、概述人工神经网络,作为模拟人脑神经元组织方式的一种运算模型,自20世纪80年代以来,便成为人工智能领域的研究热点。

其通过大量的节点(或神经元)之间的相互连接和复杂的网络结构,实现对信息的分布式并行处理。

这种独特的处理方式使得人工神经网络在模式识别、智能控制、预测估计等领域展现出了强大的能力,为解决复杂的现实问题提供了新的途径。

人工神经网络并非完美无缺。

尽管其具备强大的学习和处理能力,但由于其内在的复杂性和工作机制,人工神经网络也存在一些固有的缺点。

这些缺点在一定程度上限制了其应用范围和性能提升。

在优点方面,人工神经网络具有强大的自学习和自适应性,能够通过训练自动提取数据的特征并进行分类或预测。

其并行分布性处理的特点使得其能够处理大规模的数据集,并在一定程度上实现容错和鲁棒性。

同时,人工神经网络还具备高度的泛化能力,能够在新的数据上展现出良好的性能。

在缺点方面,人工神经网络的解释性较差,其推理过程和依据往往难以被人类理解。

由于其需要大量的参数和计算资源,使得其训练成本较高,且容易出现过拟合等问题。

同时,人工神经网络对数据的依赖也较强,当数据不充分或质量不高时,其性能可能会受到严重影响。

人工神经网络在具有诸多优点的同时,也存在一些固有的缺点。

在实际应用中,我们需要根据具体问题和需求来选择合适的模型和方法,并采取相应的措施来克服其缺点,以充分发挥其优势。

1. 简述人工神经网络的发展背景和基本原理人工神经网络的发展背景与人类社会对智能的深入探索和对大脑工作机制的日益理解密不可分。

自20世纪40年代以来,随着计算机科学的迅速发展和对人工智能领域需求的不断增长,人们开始尝试模拟人脑神经网络的结构和功能,以实现更高级别的信息处理和智能决策。

在基本原理方面,人工神经网络是基于生物学中神经网络的基本原理,通过模拟人脑神经系统的结构和功能,构建一种能够处理复杂信息的数学模型。

它采用大量的神经元(即节点)相互连接,形成一个复杂的网络结构。

第六章-神经网络

第六章-神经网络

神经网络一、填空题1、神经元(即神经细胞)是由、、和四部分构成。

2、按网络结构分,人工神经元细胞可分为和,按照学习方式分可分为和。

3、人工神经网络常见的输出变换函数有和。

4、人工神经网络的学习规则有、和。

5、国内外学者提出了许多面向对象的神经网络控制结构和方法,从大类上看,较具代表性的有以下几种、和。

6、在一个神经网络中,常常根据处理单元的不同处理功能,将处理单元分成有以下三种、和。

7、在一个神经网络中,基本单元神经元的三个基本要素是、二、选择题1、一般认为,人工神经网络(ANN)适用于()A、线性系统B、多变量系统C、多输入多输出系统D、非线性系统2、最早提出人工神经网络思想的学者是()A、McCulloch-PittsB、HebbC、Widrow-HoffD、Rosenblatt3、神经元模型一般为()A、单输入多输出B、多输入单输出C、单输入单输出D、多输入多输出三、简答题1、简述神经网络的特点。

2、试画出一个2-3-5-2 BP网络的结构图,说明节点函数。

3、简要说明多层感知器的结构和学习算法。

4、前馈型神经网络有什么特点?哪些结构的神经网络属于前馈神经网络?5、简要说明典型的人工神经元模型。

6、神经网络控制系统的结构形式有哪些?7、什么是感知器?8、神经网络的基本属性是什么?9、试画出BP网络的结构图,并说明其特点。

10、给出典型的神经元模型。

11、人工神经网络有哪些学习方法?简述之。

12、试画出5输入、3个输出、蕴含层有10个神经元的3层BP网络,并说明BP 网络的优点。

13、BP基本算法的优缺点。

14、人工神经元网络的拓扑结构主要有哪几种?15、BP基本算法的优缺点。

1617、试论述对BP181920212223并适合什么样的网29、反馈神经网络的拓扑结构有什么特点?哪些神经网络属于反馈神经网络?30、什么是神经网络控制?其基本思想是什么?31、神经网络控制系统可以分为哪几类?举例说明三种神经网络控制系统的结构。

神经网络的发展及应用现状分析

神经网络的发展及应用现状分析

神经网络的发展及应用现状分析神经网络是一种模拟人类神经系统结构和功能的计算模型,它具有自学习、自适应和自组织能力。

随着人工智能技术的快速发展,神经网络在各个领域的应用也得到了广泛关注和应用。

本文将对神经网络的发展历程以及在不同领域中的应用现状进行分析。

1. 神经网络的发展历程神经网络的概念最早可以追溯到20世纪40年代的传统人工神经元模型。

然而,直到二十世纪六十年代,学者们才开始关注神经网络的研究。

在此后的几十年里,神经网络不断发展壮大,主要包括以下几个阶段:(1)单层感知器:1958年,Rosenblatt提出了单层感知器模型,该模型是最简单的神经网络模型之一,用于模拟神经元的工作原理。

(2)多层感知器:1986年,Hinton和Rumelhart提出了反向传播算法,使得神经网络可以用于解决非线性问题。

多层感知器模型对于复杂模式的识别和分类具有很强的能力。

(3)深度学习:近年来,随着计算机计算能力的提高和大规模数据的积累,深度学习成为神经网络研究的新热点。

深度学习通过增加神经网络的层数,使得模型可以更好地处理复杂的任务,例如图像识别、自然语言处理等。

2. 神经网络在图像识别领域的应用现状图像识别是人工智能领域的重要应用之一,神经网络在此领域的应用取得了许多重要突破。

以深度卷积神经网络(CNN)为代表的模型,通过学习图像之间的特征表示,可以实现高效准确的图像分类和识别。

近年来,随着大型数据集的建立和模型结构的不断改进,图像识别的准确率得到了显著提升。

例如,ImageNet是一个包含超过一百万个图像的数据集,通过使用深度卷积神经网络,模型在ImageNet图像识别挑战赛中的错误率已经大幅下降。

此外,神经网络还可以用于目标检测、图像分割和图像生成等任务,为图像处理领域带来了许多创新和突破。

例如,生成对抗网络(GAN)可以生成逼真的图像,对艺术创作和虚拟现实等领域具有重要的应用价值。

3. 神经网络在自然语言处理领域的应用现状自然语言处理是指让计算机理解和处理人类语言的能力,神经网络在该领域的应用也取得了显著进展。

第七章 人工智能与教育(二)

第七章  人工智能与教育(二)

(四)人工神经网络的局限性 人工神经网络是一个新兴学科,还存在许多问题。 其主要表现有。 (1)受到脑科学研究的限制 由于生理实验的困难性,目前人类对思维和记忆机制 的认识还很肤浅,还有很多问题需要解决。例如,脑的层 次结构是怎样形成的?脑是怎样学习的?不同类型的知识 在脑中是如何组织的?脑神经元在思维记忆中起什么作用? 脑神经网络中神经元之间的突触联系强度是如何修正、保 持的?等等。这些问题如果能够得到解决,将极大地促进 人工神经网络的发展。 (2)还没有完整成熟的理论体系 虽然目前已有许多人工神经网络模型,但这些模型的 学习策略却各不相同,还无法统一到一个完整的理论框架 中,因而也无法形成一个成熟的理论体系。
(3)诊断型专家系统 诊断型专家系统的任务是根据观察到的情况来推断 出某个对象机能失常的原因。其主要特点有:第一,能 够了解被诊断对象和客体各组成部分的特性,以及它们 之间的联系;第二,能够区分一种现象及其所掩盖的另 一种现象;第三,能够向用户提出测量的数据,并从不 确切信息中得出尽可能正确的诊断。 诊断型专家系统的例子特别多,有医疗诊断、电子 或机械故障诊断以及材料失效诊断等。著名的血液病诊 断专家系统MYCIN、青光眼治疗专家系统CASNET等都属 于这类专家系统。
二、专家系统
(一)专家系统的基本概念 目前,对什么是专家系统还没有一个严格公认的形 式化定义。作为一种一般的解释,可以认为专家系统是一 种具有大量专门知识与经验的智能程序系统,它能运用领 域专家多年积累的经验和专门知识,模拟领域专家的思维 过程,解决该领域中需要专家才能解决的复杂问题。 从上述解释可以看出,专家系统包括以下三个方面 的含义: (1)专家系统是一种程序系统,但又具有智能,因 此它不同于一般的程序系统,而是一种能运用专家知识和 经验进行推理的启发式程序系统。

人工神经网络知识概述

人工神经网络知识概述

人工神经网络知识概述人工神经网络(Artificial Neural Networks,ANN)系统是20世纪40年代后出现的。

它是由众多的神经元可调的连接权值连接而成,具有大规模并行处理、分布式信息存储、良好的自组织自学习能力等特点。

BP(Back Propagation)算法又称为误差反向传播算法,是人工神经网络中的一种监督式的学习算法。

BP 神经网络算法在理论上可以逼近任意函数,基本的结构由非线性变化单元组成,具有很强的非线性映射能力。

而且网络的中间层数、各层的处理单元数及网络的学习系数等参数可根据具体情况设定,灵活性很大,在优化、信号处理与模式识别、智能控制、故障诊断等许多领域都有着广泛的应用前景。

人工神经元的研究起源于脑神经元学说。

19世纪末,在生物、生理学领域,Waldeger等人创建了神经元学说。

人们认识到复杂的神经系统是由数目繁多的神经元组合而成。

大脑皮层包括有100亿个以上的神经元,每立方毫米约有数万个,它们互相联结形成神经网络,通过感觉器官和神经接受来自身体内外的各种信息,传递至中枢神经系统内,经过对信息的分析和综合,再通过运动神经发出控制信息,以此来实现机体与内外环境的联系,协调全身的各种机能活动。

神经元也和其他类型的细胞一样,包括有细胞膜、细胞质和细胞核。

但是神经细胞的形态比较特殊,具有许多突起,因此又分为细胞体、轴突和树突三部分。

细胞体内有细胞核,突起的作用是传递信息。

树突是作为引入输入信号的突起,而轴突是作为输出端的突起,它只有一个。

树突是细胞体的延伸部分,它由细胞体发出后逐渐变细,全长各部位都可与其他神经元的轴突末梢相互联系,形成所谓“突触”。

在突触处两神经元并未连通,它只是发生信息传递功能的结合部,联系界面之间间隙约为(15~50)×10米。

突触可分为兴奋性与抑制性两种类型,它相应于神经元之间耦合的极性。

每个神经元的突触数目正常,最高可达10个。

各神经元之间的连接强度和极性有所不同,并且都可调整、基于这一特性,人脑具有存储信息的功能。

人工神经网络理论及其应用

人工神经网络理论及其应用

3 具有高速寻找优化解的能力。建筑一个复杂问题的 ) 优化解 , 往往需要很大 的计算 量 , 利用一 个针 对某 问题 而设 计 的反馈型人工神 经 网络 , 发挥 计算 机 的高 速运 算 能力 , 可 能很快 找到优化解 。 人工神经网络是未来微电子技术应用的新领域。智能 计算机 的构成可 能就 是作为 主机的冯 ・ 诺依 曼计算机 与作为 智 能外 围机 的人工 神经网络的结合 。
1 具 有 自学习功 能。例 如实 现 图像 识 别时 , ) 只在 先把 许多不同的图像样板和对应的识别结果输入人工神经网络, 网络就会通 过 自 习功能 , 学 的意义。预期未来的人工神经
网络计 算机将为人类 提供经济预测 、 市场预测 、 益预测 , 效 其 前途是很远 大的。 2 具有联想存储功 能。人的 大脑是有联 想功能 的。如 )
果有人和你提起你幼年的同学张某某, 你就会联想起张某某
的许多事情 。用人工 神经 网络的反 馈 网络就 可 以实现 这种 联 想。
或者说, 人工神经网络技术是根据所掌握的生物神经网络机 理的基本知识, 按照控制工程的思路和数学描述方法, 建立 相应的数学模型, 并采用适当算法, 有针对性地确定数学模 型的参数( 如连接权值, 阈值等)以便获得某个特定问题的 ,
面:
处于低潮阶段。18 年,. ofl提出了H N模型, 92 JH pe id N 且易
用集成电路实现。8 O年代后 , 工神经 网络及其 应用 , 人 又得 到发展。 人工神经网络也简称为神经网络或称作连接模型 , 对 是 人脑或 自然神经网络若 干基本特 性 的抽 象和模 拟。人 工神 经网络以对大脑的生理研究成果为基础 , 目的在于模 拟大 其 脑的某些机理与机制 , 现某个 方面的功能。国际著名的神 实 经网络研究专家 , 第一家神经计算机公司 的创 立者 与领导人 Heh— e e c t l n给人工神经 网络下的定义就是 “ Nis 人工 神经网络 是 由人工建立的有以有向图为拓扑结构的动态系统 , 它通过 对连续或继续的输入作状态相应而进行信息处理” 。通 俗地 说, 人工神经 网络是对 生物 神经 网络进 行仿 真研究 的结果 。

神经网络及BP与RBF比较

神经网络及BP与RBF比较

机器学习第四章神经网络报告一、神经网络概述1.简介人工神经网络是模仿脑细胞结构和功能、脑神经结构以及思维处理问题等脑功能的信息处系统,它从模仿人脑智能的角度出发,探寻新的信息表示、存储和处理方式,这种神经网络依靠系统的复杂程度,通过调整内部大量节点之间相互连接的关系,从而达到处理信息的目的,它采用了与传统人工智能和信息处理技术完全不同的机理,克服了传统的基于逻辑符号的人工智能在处理直觉、非结有针对性化信息方面的缺陷,具有自适应、自组织和实时学习的特点,它通过预先提供的一批相互对应的输入和输出数据,分析掌握两者之间潜在的规律,最终根据这些规律,用新的输入数据来推算输出结果。

人工神经网络(ANN)学习对于训练数据中的错误健壮性很好,且已被成功地应用到很多领域,例如视觉场景分析、语音识别、机器人控制以及医学图像处理等。

人工神经网络2.人工神经网络的特点及功能2.1人工神经网络具有以下几个突出的优点:(1)能充分逼近复杂的非线性关系。

只有当神经元对所有输入信号的综合处理结果超过某一个限值后才能输出一个信号。

(2)所有定量或定性的信息都等势分布贮存于网络内的各神经元,每个神经元及其连线只能表示一部分信息,因此当有节点断裂时也不影响总体运行效果,具有很强的鲁棒性和容错能力。

(3)采用并行分布处理方法,使得快速进行大量运算成为可能。

(4)可学习和自适应不知道或不确定的系统。

2.2人工神经网络的特点和优越性,使其具有以下三个显著的功能:(1)具有自学习功能:这种功能在图像识别和处理以及未来预测方面表现得尤为明显。

自学习功能在未来预测方面也意义重大,随着人工神经网络的发展,未来它将在更多的领域,比如经济预测、市场预测、效益预测等等,发挥更好的作用。

(2)具有联想存储功能:人的大脑能够对一些相关的知识进行归类划分,进而具有联想的功能,当我们遇到一个人或者一件事情的时候,跟此人或者此事相关的一些信息会浮现在你的脑海,而人工神经网络则通过它的反馈网络,实现一些相关事物的联想。

BP神经网络

BP神经网络

BP神经网络在函数逼近中的实现1.1 概述BP神经网络是目前人工神经网络模式中最具代表性,应用得最广泛的一种模型,具有自学习、自组织、自适应和很强的非线性映射能力,可以以任意精度逼近任意连续函数.近年来,为了解决BP网络收敛速度慢,训练时间长等不足,提出了许多改进算法.然而,在针对实际问题的BP网络建模过程中,选择多少层网络,每层多少个神经元节点,选择何种传递函数等,均无可行的理论指导,只能通过大量的实验计算获得.MATLAB中的神经网络工具箱(Neural NetworkToolbox,简称NNbox),为解决这一问题提供了便利的条件.神经网络工具箱功能十分完善,提供了各种MATLAB函数,包括神经网络的建立、训练和仿真等函数,以及各种改进训练算法函数,用户可以很方便地进行神经网络的设计和仿真,也可以在MATLAB源文件的基础上进行适当修改,形成自己的工具包以满足实际需要。

此项课题主要是针对MATLAB软件对BP神经网络的各种算法的编程,将神经网络算法应用于函数逼近和样本含量估计问题中,并分析比较相关参数对算法运行结果的影响。

人工神经网络(Artificial Neural Networks,NN)是由大量的、简单的处理单元(称为神经元)广泛地互相连接而形成的复杂网络系统,它反映了人脑功能的许多基本特征,是一个高度复杂的非线性动力学系统。

神经网络具有大规模并行、分布式存储和处理、自组织、自适应和自学习能力,特别适合处理需要同时考虑许多因素和条件的、不精确和模糊的信息处理问题。

神经网络的发展与神经科学、数理科学、认知科学、计算机科学、人工智能、信息科学、控制论、机器人学、微电子学、心理学、微电子学、心理学、光计算、分子生物学等有关,是一门新兴的边缘交叉学科。

神经网络具有非线性自适应的信息处理能力,克服了传统人工智能方法对于直觉的缺陷,因而在神经专家系统、模式识别、智能控制、组合优化、预测等领域得到成功应用。

人工神经网络基本原理

人工神经网络基本原理

人工神经网络人工神经网络(Artificial Neural Networks, ANN),一种模仿动物神经网络行为特征,进行分布式并行信息处理的算法数学模型。

这种网络依靠系统的复杂程度,通过调整内部大量节点之间相互连接的关系,从而达到处理信息的目的。

人工神经网络具有自学习和自适应的能力,可以通过预先提供的一批相互对应的输入-输出数据,分析掌握两者之间潜在的规律,最终根据这些规律,用新的输入数据来推算输出结果,这种学习分析的过程被称为“训练”。

(引自《环球科学》2007年第一期《神经语言:老鼠胡须下的秘密》)概念由大量处理单元互联组成的非线性、自适应信息处理系统。

它是在现代神经科学研究成果的基础上提出的,试图通过模拟大脑神经网络处理、记忆信息的方式进行信息处理。

人工神经网络具有四个基本特征:(1)非线性非线性关系是自然界的普遍特性。

大脑的智慧就是一种非线性现象。

人工神经元处于激活或抑制二种不同的状态,这种行为在数学上表现为一种非线性关系。

具有阈值的神经元构成的网络具有更好的性能,可以提高容错性和存储容量。

(2)非局限性一个神经网络通常由多个神经元广泛连接而成。

一个系统的整体行为不仅取决于单个神经元的特征,而且可能主要由单元之间的相互作用、相互连接所决定。

通过单元之间的大量连接模拟大脑的非局限性。

联想记忆是非局限性的典型例子。

(3)非常定性人工神经网络具有自适应、自组织、自学习能力。

神经网络不但处理的信息可以有各种变化,而且在处理信息的同时,非线性动力系统本身也在不断变化。

经常采用迭代过程描写动力系统的演化过程。

(4)非凸性一个系统的演化方向,在一定条件下将取决于某个特定的状态函数。

例如能量函数,它的极值相应于系统比较稳定的状态。

非凸性是指这种函数有多个极值,故系统具有多个较稳定的平衡态,这将导致系统演化的多样性。

人工神经网络中,神经元处理单元可表示不同的对象,例如特征、字母、概念,或者一些有意义的抽象模式。

RBF神经网络

RBF神经网络

RBFANN是一种典型的有导师学习前馈网络,可以根据具体问题确定相应的网络拓扑结构,具有自学习、自组织、自适应功能,它对非线性连续函数具有一致逼近性,学习速度快,可以进行大范围的数据融合,可以并行高速地处理数据。

RBFANN的优良特性使得其显示出比BP神经网络更好的生命力,正在越来越多的领域内替代BP神经网络。

对于某一RBFANN模型,如果给定了训练样本,那么该网络的学习算法应该解决以下问题:结构设计(即如何确定网络隐节点数h),确定各RBF的数据中心ci及扩展常数6i、输出权值。

一般情况下,如果确定了网络的隐节点数、数据中心和扩展常数,RBFANN从输入到输出就成了一个线性方程组,此时可以采用最小二乘法求解。

聚类方法是最经典的RBFANN模型学习算法,由Moody和Darken 在1989年提出。

其思路是先用无导师学习方法(K-means算法)确定RBFANN中h个隐节点的数据中心,并根据数据中心之间的距离确定隐节点的扩展常数,然后用有导师学习方法训练各隐节点的输出权值。

具体步骤如下:1、确定预测样本资料。

假设预测周期为N,如果为第1个预测周期,那么以模型率定期资料作为样本;如果为第2到N个预测周期,需引入前一个周期的预测值作为样本资料,并剔除掉最早一个时段的样本资料。

2、算法初始化。

选择h个不同的初始聚类中心,并令迭代次数k=1。

选择初始聚类中心的方法很多,如从样本输入中随机选取,或者选择前h个样本输入,但这h个数据中心必须取不同值。

3、计算所有样本输人与聚类中心的距离,对样本输入按最小距离原则进行分类。

4、计算各类的聚类中心。

5、根据各聚类中心之间的距离确定各隐节点的扩展常数。

6、当各隐节点的数据中心和扩展常数确定后,输出权矢量就可以用有导师学习方法训练得到,但更简洁的方法是使用最小二乘法直接计算。

7、通过率定的模型参数进行预测。

8、判断模型学习停止条件,即是否到最后一个预测周期,是,则停止学习;否,则转到第一步。

人工神经网络基本特点

人工神经网络基本特点

⼈⼯神经⽹络基本特点①⼈⼯神经⽹络(ANN)为⼴泛连接的巨型系统。

神经科学研究表明,⼈类中枢神经的主要部分⼤脑⽪层由10[11]~10[12]个神经元组成,每个神经元共有10[1]~10[5]个突触,突触为神经元之间的结合部,决定神经元之间的连接强度与性质。

这表明⼤脑⽪层是⼀个⼴泛连接的巨型复杂系统,ANN的连接机制模仿了⼈脑的这⼀特性。

②⼈⼯神经⽹络(ANN)有其并⾏结构和并⾏处理机制。

ANN不但结构上是并⾏的,它的处理顺序也是并⾏的和同时的。

在同⼀层内处理单元都是同时操作的,即神经⽹络的计算功能分布在多个处理单元上。

③⼈⼯神经⽹络(ANN)的分布式结构使其具有和⼈脑⼀样的容错性和联想能⼒。

⼤脑具有很强的容错能⼒。

我们知道,每天都有⼤脑细胞死去,但并没有影响⼈们的记忆和思考能⼒。

这正是因为⼤脑对信息的存储是通过改变突触的功能实现的,信息存储于神经元连接强度的分布上,存储区和操作区合⼆为⼀,不同信息之间⾃然沟通,其处理也为⼤规模连续时间模式。

⽽存储知识的获得采⽤“联想”的办法。

这类似⼈类和动物的联想记忆,当⼀个神经⽹络输⼊⼀个激励时,它要在已存储的知识中寻找与输⼊匹配最好的存储知识为其解。

④⼈⼯神经⽹络(ANN)具有⾃学习、⾃组织、⾃适应能⼒。

⼤脑功能受先天因素的制约,但后天因素(如经历、学习和训练等)也起着重要作⽤。

ANN很好地模拟了⼈脑的这⼀特性。

如果最后的输出不正确,系统可以调整加到每个输⼊上去的权重以产⽣⼀个新的结果,这可以通过⼀定的训练算法来实现。

训练过程是复杂的,通过⽹络进⾏重复地输⼊数据,且每次都调整权重以改善结果,最终达到所希望的输出。

在训练过程中⽹络便得到了经验。

理论研究表明,选择合适的ANN能够实现任何连续映射,通过对样本的学习,ANN表现出分类、概括和联想的能⼒。

最新利用matlab仿真的BP-ANN分类器设计

最新利用matlab仿真的BP-ANN分类器设计

利用m a t l a b仿真的B P-A N N分类器设计BP-ANN分类器设计1.引言从深层意义上看,模式识别和人工智能本质都是在解决如何让用机器模拟人脑认知的过程。

一方面,从需要实现的功能出发,我们可以将目标分解为子功能,采用自定而下的的分解法实现我们需要的拟合算法。

而另一方面,无论人脑多么复杂,人类的认知过程都可以认为若干个神经元组成的神经网络在一定机制下经由复杂映射产生的结果。

从神经元的基本功能出发,采用自下而上的设计方法,从简单到复杂,也是实现拟合算法的一条高效途径。

1.1什么是人工神经网络人工神经网络(Artificial Neural Network,ANN)是一种应用类似于大脑神经突触联接的结构进行信息处理的数学模型。

在工程与学术界也常直接简称为神经网络或类神经网络。

神经网络是一种运算模型,由大量的节点(或称神经元)之间相互联接构成。

每个节点代表一种特定的输出函数,称为激励函数(activation function)。

每两个节点间的连接都代表一个对于通过该连接信号的加权值,称之为权重,这相当于人工神经网络的记忆。

网络的输出则依网络的连接方式,权重值和激励函数的不同而不同。

而网络自身通常都是对自然界某种算法或者函数的逼近,也可能是对一种逻辑策略的表达。

人工神经网络是由大量处理单元互联组成的非线性、自适应信息处理系统。

它是在现代神经科学研究成果的基础上提出的,试图通过模拟大脑神经网络处理、记忆信息的方式进行信息处理。

人工神经网络具有四个基本特征:(1)非线性非线性关系是自然界的普遍特性。

大脑的智慧就是一种非线性现象。

人工神经元处于激活或抑制二种不同的状态,这种行为在数学上表现为一种非线性关系。

具有阈值的神经元构成的网络具有更好的性能,可以提高容错性和存储容量。

(2)非局限性一个神经网络通常由多个神经元广泛连接而成。

一个系统的整体行为不仅取决于单个神经元的特征,而且可能主要由单元之间的相互作用、相互连接所决定。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人工神经网络,具有自学习功能
学习类型学习是神经网络研究的一个重要内容,它的适应性是通过学习实
现的。

根据环境的变化,对权值进行调整,改善系统的行为。

由Hebb提出的Hebb学习规则为神经网络的学习算法奠定了基础。

Hebb规则认为学习过程最终发生在神经元之间的突触部位,突触的联系强度随着突触前后神经元的活动而
变化。

在此基础上,人们提出了各种学习规则和算法,以适应不同网络模型的
需要。

有效的学习算法,使得神
人工神经网络经网络能够通过连接权值的调整,构造客观世界的内在表示,形成具有特色的信息处理方法,信息存储和处理体现在网络的连接中。

根据学习环境不同,神经网络的学习方式可分为监督学习和非监督学习。

在监督学习中,将训练样本的数据加到网络输入端,同时将相应的期望输出与
网络输出相比较,得到误差信号,以此控制权值连接强度的调整,经多次训练
后收敛到一个确定的权值。

当样本情况发生变化时,经学习可以修改权值以适
应新的环境。

使用监督学习的神经网络模型有反传网络、感知器等。

非监督学
习时,事先不给定标准样本,直接将网络置于环境之中,学习阶段与工作阶段
成为一体。

此时,学习规律的变化服从连接权值的演变方程。

非监督学习最简
单的例子是Hebb学习规则。

竞争学习规则是一个更复杂的非监督学习的例子,它是根据已建立的聚类进行权值调整。

自组织映射、适应谐振理论网络等都是
与竞争学习有关的典型模型。

编辑本段分析方法
研究神经网络的非线性动力学性质,主要采用动力学系统理论、非线性规
划理论和统计理论,来分析神经网络的演化过程和吸引子的性质,探索神经网
络的协同行为和集体计算功能,了解神经信息处理机制。

为了探讨神经网络在
整体性和模糊性方面处理信息的可能,混沌理论的概念和方法将会发挥作用。

混沌是一个相当难以精确定义的数学概念。

一般而言,"混沌"是指由确定性方
程描述的动力学系统中表现出的非确定性行为,或称之为确定的随机性。

"确定
性"是因为它由内在的原因而不是外来的噪声或干扰所产生,而"随机性"是指其不规则的、不能预测的行为,只可能用统计的方法描述。

混沌动力学系统
人工神经网络的主要特征是其状态对初始条件的灵敏依赖性,混沌反映其
内在的随机性。

混沌理论是指描述具有混沌行为的非线性动力学系统的基本理论、概念、方法,它把动力学系统的复杂行为理解为其自身与其在同外界进行
物质、能量和信息交换过程中内在的有结构的行为,而不是外来的和偶然的行为,混沌状态是一种定态。

混沌动力学系统的定态包括:静止、平稳量、周期性、准同期性和混沌解。

混沌轨线是整体上稳定与局部不稳定相结合的结果,
称之为奇异吸引子。

一个奇异吸引子有如下一些特征:(1)奇异吸引子是一个吸引子,但它既不是不动点,也不是周期解;(2)奇异吸引子是不可分割的,即不能分为两个以及两个以上的吸引子;(3)它对初始值十分敏感,不同的初始值会导致极不相同的行为。

编辑本段优越性
人工神经网络的特点和优越性,主要表现在三个方面:第一,具有自学习
功能。

例如实现图像识别时,只在先把许多不同的图像样板和对应的应识别的
结果输入人工神经网络,网络就会通过自学习功能,慢慢学会识别类似的图像。

自学习功能对于预测有特别重要的意义。

预期未来的人工神经网络计算机将为
人类提供经济预测、市场预测、效益预测,其应用前途是很远大的。

第二,具有联想存储功能。

用人工神经网络的反馈网络就可以实现这种联想。

第三,具有高速寻找优化解的能力。

寻找一个复杂问题的优化解,往往需
要很大的计算量,利用一个针对某问题而设计的反馈型人工神经网络,发挥计
算机的高速运算能力,可能很快找到优化解。

编辑本段研究方向
神经网络的研究可以分为理论研究和应用研究两大方面。

理论研究可分为
以下两类:
1、利用神经生理与认知科学研究人类思维以及智能机理。

2、利用神经基础理论的研究成果,用数理方法探索功能更加完善、性能更加优
人工神经网络越的神经网络模型,深入研究网络算法和性能,如:稳定性、收敛性、容错性、鲁棒性等;开发新的网络数理理论,如:神经网络动力学、
非线性神经场等。

应用研究可分为以下两类:
1、神经网络的软件模拟和硬件实现的研究。

2、神经网络在各个领域中应用的研究。

这些领域主要包括
:模式识别、信号处理、知识工程、专家系统、优化组合、机器人控制等。

随着神经网络理论本身以及相关理论、相关技术的不断发展,神经网络的应用
定将更加深入。

编辑本段发展趋势
人工神经网络特有的非线性适应性信息处理能力,克服了传统人工智能方
法对于直觉,如模式、语音识别、非结构化信息处理方面的缺陷,使之在神经
专家系统、模式识别、智能控制、组合优化、预测等领域得到成功应用。

人工
神经网络与其它传统方法相结合,将推动人工智能和信息处理技术不断发展。

近年来,人工神经网络正向模拟人类认知的道路上更加深入发展,与模糊系统、遗传算法、进化机制等结合,形成计算智能,成为人工智能的一个重要方向,
将在实际应用中得到发展。

将信息几何应用于人工神经网络的研究,为人工神
经网络的理论研究开辟了新的途径。

神经计算机的研究发展很快,已有产品进
入市场。

光电结合的神经计算机为人工神经网络的发展提供了良好条件。

相关文档
最新文档