有理数的加法(第一课时)教案
有理数加法第一课时教案
有理数加法(第一课时)作课人:翟慧慧教学目标:1.准确理解、归纳有理数加法法则。
2.灵活使用有理数的加法法则实行运算。
教学重难点教学难点:对有理数的加法法则的理解。
教学重点:熟练应用有理数的加法法则实行加法运算。
教学过程:1、课前育人:初中是人生的新起点,标志着自立的开始。
自立在学习上的表现为自主学习,独立思考。
今天老师与大家分享一下数学家高斯小时候的故事。
高斯,德国著名数学家,是近代数学奠基者之一,享有“数学王子”之称。
高斯10岁的时候,他的数学教师有一天在大家刚学习完数学加法时,布置了一道题1+2+3······这样从1一直加到100等于多少。
高斯很快就算出了答案,起初高斯的老师并不相信高斯算出了准确答案:“你一定是算错了,回去再算算。
”高斯说出答案就是5050,高斯是这样算的1+100=101,2+99=101······1加到100有50组这样的数,所以50X101=5050。
老师对他刮目相看,爱思考的高斯在老师的协助下与老师的助手巴特尔斯建立了真诚的友谊,他们一起学习,互相协助,高斯由此开始了真正的数学研究。
(利用多媒体展示)今天课前老师出一个学习拓展题,同学们开动脑筋想一想,如何来解决?(1)点A在数轴上从原点出发开始移动,第一次移动3米,第二次移动5米,请问两次移动后点A在数轴上的哪个位置?(规定向右为正方向)同学们思考1分钟,假如你有想法请举起你的手,让老师看一看谁是未来的高斯。
学生展示:(1)二次都向右移动:+3米 +5米 +8(2)二次都向左移动:-3米 -5米 -8(3)第一次向右移动,第二次向左移动:+3米 -5米 -2(4)第一次向左移动,第二次向右移动: -3米 +5米 +2同学们通过数轴解决该题,老师即时给予表扬。
2、新课导入:那么我们能否用算式将该题解决一下呢?因为涉及到负数,假如用算式又如何计算呢?今天我们一起来有理数运算中的加法,希望能够协助大家。
有理数的加法教学教案
有理数的加法一教学教案教学目标1.理解有理数加法的意义,掌握有理数加法法则中的符号法则和绝对值运算法则;2.能依据有理数加法法则熟练地进行有理数加法运算,弄清有理数加法与非负数加法的区别;3.三个或三个以上有理数相加时,能正确应用加法交换律和结合律简化运算过程;4.通过有理数加法法则及运算律在加法运算中的运用,培养学生的运算能力;5.本节课通过行程问题说明有理数的加法法则的合理性,然后又通过实例说明如何运用法则和运算律,让学生感知到数学知识来源于生活,并应用于生活。
教学建议(一)重点、难点分析本节教学的重点是依据有理数的加法法则熟练进行有理数的加法运算。
难点是有理数的加法法则的理解。
(1)加法法则本身是一种规定,教材通过行程问题让学生了解法则的合理性。
(2)具体运算时,应先判别题目属于运算法则中的哪个类型,是同号相加、异号相加、还是与O相加。
(3)如果是同号相加,取相同的符号,并把绝对值相加。
如果是异号两数相加,应先判别绝对值的大小关系,如果绝对值相等,则和为0;如果绝对值不相等,则和的符号取绝对值较大的加数的符号,和的绝对值就是较大的绝对值与较小的绝对值的差。
一个数与0相加,仍得这个数。
(二)知识结构(三)教法建议1.对于根底比较差的同学,在学习新课以前可以适当复习小学中算术运算以及正负数、相反数、绝对值等知识。
2.有理数的加法法则是规定的,而教材开始局部的行程问题是为了说明加法法则的合理性。
3.应强调加法交换律"a+b=b+a〃中字母a、b的任意性Q4.计算三个或三个以上的加法算式,应建议学生养成良好的运算习惯。
不要盲目动手,应该先认真观察式子的特点,深刻认识加数间的相互关系,找到合理的运算步骤,再适当运用加法交换律和结合律可以使加法运算更为简化。
5.可以给出一些类似“两数之和必大于任何一个加数〃的推断题,以明确由于负数参与加法运算,一些算术加法中的正确结论在有理数加法运算中未必也成立。
“有理数的加法”教案
1.3.1《有理数的加法》教案(第一课时)大赵峪初级中学吉红波一、学习目标:1、通过实际问题中“结余”的求法,引入有负数参与的加法运算;2、通过物体左右运动问题,结合学生已有知识探究有理数加法法则;3、通过观察,比较,归纳等得出有理数加法法则;4、熟练运用有理数加法法则进行运算;5、能运用有理数加法法则解决实际问题;6、在有理数加法法则的教学过程中,注意培养学生的运算能力;7、认识到通过师生合作交流,学生主动叁与探索获得数学知识,从而提高学生学习数学的积极性。
二、重难点:1、重点:用有理数加法法则进行运算;2、难点:掌握并熟练运用两数相加的法则。
三、教材分析:“有理数的加法”是人教版七年级数学上册第一章有理数的第三节内容,本节内容安排四个课时,本课时是本节内容的第一课时,本课设计在学生已有的数轴、正负数知识以及小学正数加法基础上,通过球赛中净胜球数的实例来明确有理数加法的意义,引入有理数加法的法则,为今后学习“有理数的减法”做铺垫。
四、学校与学生情况分析:大赵峪初级中学位于郊区,学生大都来自农村及郊区,学生的基础及学习习惯是比较差,家长督促力度不够,学生和老师对新的课堂教学方法不是很适应。
在新的教学理念的指导下,旧的教学方法和学习方法逐步淡化,而是培养学生的观察,比较,归纳及自主探索和合作交流能力。
在学生已有知识基础上让学生主动参与到学习中去,达到本节课的学习目标。
五、教学过程:(一)问题与情境我们已经熟悉正数及0的加法运算,然而实际问题中做加法运算的数有可能超出正数范围。
例如,本章引言中,把收入记作正数,支出记作负数,在求“结余”时,需要计算8.5+(-4.5),4+(-5.2)等。
(注意:这里负数符号与运算符号的区别,负数放在运算符号后面要加括号)这里用到正数与负数的加法,那么怎么运算呢?(二)、师生共同探究有理数加法法则(思考p16)引入负数后,除了已有正数和正数相加、正数和0相加,还有负数负数相加、负数和正数相加、负数与0相加。
《有理数加法》教案
《有理数加法》教案第一章:有理数加法概念引入1.1 教学目标(1)让学生了解有理数加法的概念;(2)让学生掌握有理数加法的基本法则;(3)培养学生运用有理数加法解决实际问题的能力。
1.2 教学内容1.2.1 有理数加法的定义引导学生通过数轴理解有理数加法的意义,即在数轴上,两个有理数相加,就是将它们的终点位置相连,得到一条新的射线。
1.2.2 有理数加法的基本法则讲解同号有理数相加、异号有理数相加、互为相反数的有理数相加、零的加法等基本法则。
1.3 教学活动1.3.1 课堂讲解通过数轴示例,讲解有理数加法的定义和基本法则。
1.3.2 学生练习布置练习题,让学生运用有理数加法的基本法则进行计算。
1.4 教学评价检查学生练习题的完成情况,评估学生对有理数加法的理解和掌握程度。
第二章:有理数加法计算2.1 教学目标(1)让学生掌握有理数加法的计算方法;(2)培养学生运用有理数加法解决实际问题的能力。
2.2 教学内容2.2.1 有理数加法的计算方法讲解加法运算中的括号去除、正负号转换等计算技巧。
2.2.2 实际问题解决通过实际问题,让学生运用有理数加法计算方法进行求解。
2.3 教学活动2.3.1 课堂讲解讲解有理数加法的计算方法和实际问题解决方法。
2.3.2 学生练习布置练习题,让学生运用有理数加法计算方法进行计算。
2.4 教学评价检查学生练习题的完成情况,评估学生对有理数加法计算方法的掌握程度。
第三章:有理数加法在实际问题中的应用3.1 教学目标(1)让学生学会将有理数加法应用于实际问题中;(2)培养学生运用有理数加法解决实际问题的能力。
3.2 教学内容3.2.1 实际问题引入通过生活实例,引入有理数加法在实际问题中的应用。
3.2.2 实际问题解决方法讲解将有理数加法应用于实际问题中的方法,如购物、长度测量等。
3.3 教学活动3.3.1 课堂讲解讲解有理数加法在实际问题中的应用方法和示例。
3.3.2 学生练习布置练习题,让学生运用有理数加法解决实际问题。
《有理数的加法(一)》教学设计
4.有理数的加法(一)教学目标知识与技能:1.经历探索有理数加法法则的过程,理解有理数的加法法则;2.能熟练进行整数加法运算;过程与方法:培养学生的数学交流和归纳猜想的能力;情感态度价值观:渗透分类、探索、归纳等思想方法,使学生了解研究数学的一些基本方法。
教学重点:有理数加法法则的探索过程,利用有理数的加法法则进行计算。
教学难点:异号两数相加的法则。
教学方法: “引导——分类——归纳”。
三、教学过程(一)温故知新1、什么样的两个数互为相反数?2、一个数的绝对值代表什么意思?(二)新知探究:1、引例:某班举行知识竞赛,评分标准是:答对一题加1分,答错一题扣1分,不回答得0分.如果我们用1个表示+1,用1个,那么就表示0,同样也表示0.(1)计算(-2)+(-3).在方框中放进2个和3个:因此,(-2)+(-3)= -5.用类似的方法计算(2)(-3)+ 2(3) 3 +(-2)(4) 4+(-4)思考:两个有理数相加,还有哪些不同的情形?举例说明。
引导学生列举两个正数相加,如3 + 2,一个数和零相加,如0+(-4),4 + 0.2猜想结论:通过以上探索,你来观察一下,在两个有理数相加的过程中“和的符号”怎样确定?“和的绝对值”怎样确定?一个有理数同0相加,和是多少?你能得出什么结论?3、归纳有理数加法法则同号两数相加,取相同的符号,并把绝对值相加。
异号两数相加,绝对值值相等时和为0;绝对值不相等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。
一个数同0相加,仍得这个数。
例题讲解总结步骤(-4) + (- 8) =-( 4 + 8 ) = - 12(-9) + (+2) =-( 9 – 2 ) = - 7运算步骤:1、先判断题的类型(同号`异号) ;2、再确定和的符号;3、后进行绝对值的加减运算。
(三)验证明确结论:例1 计算下列算式的结果,并说明理由:(1) 180 +(-10); (2) (-10)+(-1);(3)5+(-5);(4) 0+(-2)(四)运用巩固:1.口答下列算式的结果(1) (+4)+(+3); (2) (-4)+(-3);(3) (+4)+(-3); (4) (+3)+(-4);(5) (+4)+(-4); (6) (-3)+0; (7) 0+(+2); (8) 0+0.活动目的:通过这组练习,让学生进一步巩固有理数加法的法则,达到熟练程度。
人教版七年级数学上册第一章《有理数的加法》第一课时教案
课题第一章有理数1.3.1有理数的加法(一)备课时间序号授课时间主备人授课班级七年级课标要求掌握有理数加法的运算,能进行简单计算。
教学目标知识与技能:在现实背景中理解有理数加法的意义.能较为熟练地进行有理数的加法运算,并能解决简单的实际间题.过程与方法:经历探索有理数加法法则的过程,理解有理数的加法法则.能积极地参与探究有理数加法法则的活动情感态度价值观:在教学中适当渗透分类讨论思想,并学会与他人交流合作教学重点和的符号的确定教学难点异号两数相加教学方法引导发现教学过程设计师生活动设计意图一、回顾用正负数表示数量的实际例子在足球比赛中,如果把进球数记为正数,失球数记为负数,它们的和叫做净胜球数.若红队进4个球,失2个球,则红队的胜球数,可以怎样表示?蓝队的胜球数呢?师:如何进行类似的有理数的加法运算呢?这就是我们这节课一起与大家探讨的问题.如果是球队在某场比赛中上半场失了两个球,下半场失了3个球,那么它的得胜球是几个呢?算式应该怎么列?若这支球队上半场进了2个球,下半场失了3个球,又如何列出算式,求它的得胜球呢?思考:请同学们想想,这支球队在这场比赛中还可能出现其他的什么情况?你能列出算式吗?与同伴交流。
二、借助数轴来讨论有理数的加法.一个物体向左右方向运动,我们规定向左运动为负,向右为正,向右运动5m,学生相互交流后,教师进一步引导学生可以把两个有理数相加归纳为同号两数相加、异号两数相加、一个数同零相加这三种情况让学生感受到在实际问题中做加法运算的数可能超出正数的范围,体会学习有理数加法的必要性,激发学生探究新知的兴趣.再次创设足球比赛情境,一方面与引题相呼应,联系密切,另一方面让学生在此情境中感受到有理数相加的几种不同情形,并能将记作5m,向左运动5m,记作-5 m.(1)(小组合作)把我们已经得出的几种有理数相加的情况在数轴上用运动的方向表示出来,并求出结果,解释它的意义.(2)交流汇报.(对学习小组的汇报结果,数轴用实物投影仪展示,算式由教师写在黑板上)(3)说一说有理数相加应注意什么?(符号,绝对值)能用自己的语言归纳如何相加吗?(4)在学生归纳的基础上,教师出示有理数加法法则.三、有理数加法法则1.同号两数相加,取相同的符号,并把绝对值相加.2.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0.3.一个数同0相加,仍得这个数.例1:计算(1)(-3)+(-9);(2)(2)(-5)+13;(3)0十(-7);(4)(-4.7)+3.9.请同学们比较,有理数的加法运算与小学时候学的加法有什么异同?(如:有理数加法计算中要注意符号,和不一定大于加数等等)例2a;足球循环赛中,红队4:1胜黄队,黄队1:0胜蓝队蓝队1:0胜红队,计算各队的净胜球数.学生活动:请学生说一说在生活中用到有理数加法的例子教师板演,让学生说出每一步运算所依据的法则.让学生读数,理解题意,思考解决方案,然后由学生口述,教师板书它分类,渗透分类讨论思想.体现教师的引导者作用.让学生感受“数学模型”的思想.体现化归思想.这里增加了两道题目,要是让学生能较为熟练地运用法则进行计算.拓宽学生视野,让学生体会到数学与生活的密切联系。
有理数的加法的教学设计(第一课时)
2.4有理数的加法(第一课时)一、教学目标:知识与技能:1.通过学生经历探索有理数加法法则的过程,理解有理数加法的意义2.掌握有理数加法法则,并能正确运用法则进行有理数加法的运算。
3.了解有理数加法的意义,会根据有理数加法法则进行有理数的加法运算过程与目标:通过对有理数加法法则的探索,向学生渗透分类讨论、归纳、转化等数学思想方法。
情感态度与价值观:在合作学习与解决问题的过程中,体会与同伴合作交流的重要性。
二、教学重点:了解有理数加法的意义,会根据有理数加法法则进行有理数的加法运算。
三、教学难点:有理数加法中的异号两数如何进行运算四、教材分析:有理数的加法是小学算术加法运算的拓展,是初中数学运算最重要、最基础的内容之一。
熟练掌握有理数的加法运算是学习有理数其它运算的前提。
同时,也为后继学习实数、代数式运算等知识奠定基础,有理数的加法运算是建构在生产、生活实例上,有较强的生活价值,体现了数学来源于实践,又反作用于实践。
就本章而言,有理数的加法是本章的重点之一,学生能否接受和形成有理数范围内进行的各种运算的思考方式,关键在于这一节的学习。
五、教学方法:情境教学六、教具:小汽车模型,带刻度的木板七、课时:1课时八、教学过程:况,并在数轴上表示出来。
板书设计:教学反思:本节课是在前面学习了有理数的意义的基础上进行的,学生已经很牢固地掌握了正数、负数、数轴、相反数、绝对值等概念,因此不必要把时间过多地放在复习这些旧知识上,而应以活动课的方式展开本节课的教学。
有理数的加法法则实际上是一种规定,要让学生经历从问题情境中得到算式并体验规定的合理性,同时鼓励学生在交流的基础上用自己的语言表达运算法则。
在教学过程中,体现教师的导向作用和学生的主体地位。
本节是新课内容的学习,教学过程中尽力引导学生成为知识的发现者,把教师的点拨和学生解决问题结合起来,为学生创设情境,从而不断激发学生的求知欲望和学习兴趣,为学生提供足够的时间和空间,帮助学生主动探究鼓励学生表达与交流,使学生轻松愉快地学习不断克服学生学习中的被动情况,使其在教学过程中在掌握知识同时,发展智力、受到教育。
1.3.1有理数的加法 课时1 教案
教学准备:
PPT课件和微课等。
教学过程
一、温故知新、引入新课
1、比较下列各数的大小:
7______4 7____-4 -7_____4 -7_____-4
2、如果向东走5米记作+5米,那么向西走3米记作_________.
3、已知a=-5,b=+3,︱a︳+︱b︱=_______
三、巩固训练、深化提高
1、计算下列各式(1)(-11)+(-9)(2)(-3.5)+(+7)
(3)(-1.08)+0(4)(+)+(说明理由
(如果认为结论不成立,请举例说明)
(1)若两个数的和是0,则这两个数都是0.
(2)任意的两个数相加,和不小于任何一个加数.
(3)(—5 )+0;(4)(+2 )+(—2.2);
【拓展应用】
3.(1)a+|a|=0,a是什么数?(2)若|a+1|=2,那么a=?
教学反思:
本节课基本上能采用以建构主义为依据,以学生为学习主体教师为主导的方式进行合作探究的教学方法。通过创设问题情境,提供开展自主、合作、交流的学习的背景;整个探究新知的教学过程基本上由5个问题统领,在教师引导下,学生能对有理数的加法法则进行探究。学生积极思考问题大部分主动参与讨论,敢于发表自己的见解.学生能多样化理解有理数的加法法则,并运用类比、数形结合、游戏等手段形象具体地理解有理数的加法法则。以问题为主线,能减少教师占用课堂时间,把主要时间交还给学生去探索新知识,避免教师“讲得太多”。
【让学生经历观察、猜测、验证思考的过程,放手让学生去探索有理数加法法则。给学生充分的动手操作,合作交流的时间和空间,让学获得丰富的活动经验,进行数形结合思想的渗透。】
人教版数学七年级上册《有理数的加法》教学设计1
人教版数学七年级上册《有理数的加法》教学设计1一. 教材分析人教版数学七年级上册《有理数的加法》是学生在学习有理数的基础知识后,进一步探究有理数运算的第一节内容。
本节课的主要内容是有理数的加法法则,通过加法法则的学习,使学生能够熟练地进行有理数的加法运算。
教材从简单的加法运算开始,逐步引导学生探究有理数加法的规律,从而让学生理解并掌握有理数加法法则。
二. 学情分析七年级的学生已经掌握了有理数的基本概念,对数轴有一定的了解。
但是,对于有理数的加法运算,学生可能还存在一些困惑,例如对于相反数的概念,以及如何判断两个有理数相加的结果是正数还是负数。
因此,在教学过程中,需要引导学生回顾和巩固有理数的基本概念,同时通过实例让学生理解和掌握有理数的加法法则。
三. 教学目标1.知识与技能目标:让学生理解和掌握有理数的加法法则,能够熟练地进行有理数的加法运算。
2.过程与方法目标:通过实例分析,培养学生观察、思考、归纳的能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的合作意识。
四. 教学重难点1.重点:有理数的加法法则。
2.难点:理解并掌握有理数加法法则,能够灵活运用到实际问题中。
五. 教学方法1.采用问题驱动法,引导学生主动探究有理数的加法法则。
2.利用数轴辅助教学,使学生更直观地理解有理数的加法运算。
3.采用分组讨论法,培养学生团队合作精神,提高学生解决问题的能力。
六. 教学准备1.准备相关课件,展示有理数的加法运算实例。
2.准备数轴,方便学生直观地理解有理数的加法运算。
3.准备一些练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)利用一个实际问题引出有理数的加法运算,例如:“小明有3个苹果,小红给了小明2个苹果,请问小明现在有多少个苹果?”通过这个问题,引导学生思考有理数的加法运算。
2.呈现(10分钟)利用课件展示有理数的加法运算实例,引导学生观察和分析这些实例,让学生尝试总结有理数加法的基本规律。
有理数的加法 优秀教学设计(教案)
教学过程设计
问题与情境
师生行为
设计意图
(2)绝对值不相等的异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0.
(3)一个数同0相加,仍得这个数.
教学过程设计
问题与情境
师生行为
设计意图
探究三:(1)如果青蛙第1次向右跳动5次,第二次原地不动,两次跳动后,小青蛙从起点向右跳动了多少次?
(2)如果青蛙第1次向左跳动5次,第二次原地不动,两次跳动后,小青蛙从起点向左跳动了多少次?
探究四:根据以上问题可得等式:
①5+3=8(-5)+(-3)=-8
②5+(-3)=2(-5)+3=-2
本次活动教师应重点关注:
(1)法则的探究过程应循序渐进,即演示→观察→猜想→讨论→归纳.
(2)要给学生充足的时间和空间.
强化师生互动,培养学生的合作精神,树立学习自信心,发展抽象概括能力,渗透出特殊到一般的辨证思想.
活动三运用新知巩固拓展
1、教科书P22例1
2、教科书P22例2
3、P23页T1、T2
教
学
方
案
课题:有理数的加法第一课时
单位:
执教者:
时间:
1.3有理数的加法
教
学
目
标
知识
与
技能
通过实例,了解有理数加法的意义,会根据有理数加法法则进行有理数的加法运算.
过程
与
方法
1、经历法则探索的过程,培养学生归纳总结知识的能力;
2、体验初步的算法思想;
《有理数的加法第一课时》精品教学方案
有理数的加法
第一课时
一、教学目标
1.掌握有理数的加法运算法则;
2.通过对有理数加法运算法则的学习,提高学生数学运算能力;
3.经历用数轴和绝对值处理有理数加法运算问题的过程,培养学生分析问题和解决问
题的能力;
4.通过对同号有理数相加和异号有理数相加所得结果的观察和猜想,培养学生归纳总
结的能力。
二、教学重难点
重点:有理数的加法运算法则
难点:有理数的加法运算法则.
三、教学用具
多媒体.
四、教学过程设计
以思维导图的形式呈现本节课所讲解的内容.。
七年级数学上册有理数的加法(第一课时)公开课教案
七年级数学上册1.3.1 有理数的加法(第一课时)教案授课人:教学目标:1.使学生了解有理数加法的意义.2.使学生理解有理数加法的法则,能熟练地进行有理数加法运算.3.培养学生分析问题、解决问题的能力,在有理数加法法则的教学过程中,注意培养学生的观察、比较、归纳及运算能力.教学内容:1.理解有理数加法法则.2.利用加法法则正确地进行有理数的加法运算.教学重点:会根据有理数的加法法则进行有理数的加法运算教学方法:分层次教学,讲授、练习相结合教学过程:一、复习引入:问题1 有理数有几种分类方法?都是如何分类的呢?我们知道,有理数可以根据定义和符号性质分成两类.问题2在小学,我们学过正数及0的加法运算.学过的加法类型是正数与正数相加、正数与0相加.引入负数后,加法的类型还有哪几种呢?画图来说明:所以加法共分为三种类型:1、同号两数相加2、异号两数相加3、一个数与0相加二、讲授新课:1.探究有理数加法法则——同号两数相加例题:一个物体向左右方向运动,我们规定向右为正,向左为负.比如:向右运动 5 m记作5 m,向左运动5 m记作-5 m.问题 (1):如果物体先向右运动5 m,再向右运动了3 m,那么两次运动后总的结果是什么?能否用算式表示?这一运算在数轴上表示如图:问题(2):如果物体先向左运动 5 m,再向左运动 3 m,那么两次运动后总的结果是什么?能否用算式表示?这一运算在数轴上表示如图:总结问题(1)(2)归纳: (+5)+(+3)=8 ; (-5)+(-3)=-8根据以上两个算式能否尝试总结同号两数相加的法则?结论:同号两数相加,取相同符号,并把绝对值相加.2.探究有理数加法法则——异号两数相加求以下物体两次运动的结果,并用算式表示:问题(3):先向左运动3 m,再向右运动5 m,物体从起点向右运动了 2 m, (-3)+5= 2 ;问题(4):先向右运动了3 m,再向左运动了5 m,物体从起点向左运动了 2 m , 3+(-5)=-2 ;问题(5):先向左运动了5 m,再向右运动了5 m,物体从起点运动了 0 m , (-5)+5= 0 .总结问题(3)(4)(5)归纳:(-3)+5= 2 ; 3+(-5)=-2 ; (-5)+5= 0根据以上三个算式能否尝试总结异号两数相加的法则?结论:绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0 .3.探究有理数加法法则——一个数与0相加问题(6):如果物体第1 s向右(或左)运动5 m,第2秒原地不动,很显然,两秒后物体从起点向右(或左)运动了5 m.如何用算式表示呢?5+0=5.或(-5)+0=-5.结论:一个数同0相加,仍得这个数.三.总结概括:综合以上情形,我们得到有理数的加法法则:(1)同号两数相加,取相同符号,并把绝对值相加.(2)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0.(3)一个数同0相加,仍得这个数.注意:一个有理数由符号和绝对值两部分组成,所以进行加法运算时,必须分别确定和的符号和绝对值.这与小学阶段学习加法运算不同。
有理数的加法(第一课时)教案精选全文完整版
可编辑修改精选全文完整版
有理数的加法(第一课时)教案
教学目标
1.知识与技能
经历探索有理数的加法法则,理解有理数加法的意义,初步掌握有理数加法法则,并能准确地进行有理数的加法运算.
2.过程与方法
①有理数加法法则的导出及运用过程中,训练学生独立分析问题的能力及口头表达能力.
②渗透数形结合的思想,培养学生运用数形结合的方法解决问题的能力.
3.情感、态度与价值观
①通过观察、归纳、推断得到数学猜想,体验数学充满探索性和创造性.
②运用知识解决问题的成功体验.
教学重点难点
重点:有理数的加法法则的理解和运用.
难点:异号两数相加.
教与学互动设计
(一)创设情境,导入新课
课件展示下午放学时,小新的车子坏了,他去修车,不能按时回家,怕妈妈担心,打电话告诉妈妈,可妈妈坚持要去接他,问他在什么地方修车,他说在我们学校门前的东西方向的路上,你先走20米,再走30米,就能看到我了.于是妈妈来到校园门口.
(二)合作交流,解读探究
讨论妈妈能找到他吗?
讨论交流若规定向东为正,向西为负.
(1)若两次都向东,很显然,一共向东走了50米.
算式是:20+30=50
即这位同学位于学校门口东方50米.这一运算可用数轴表示为。
《有理数加法》教案优秀11篇
《有理数加法》教案优秀11篇《有理数的加法》教案篇一(一)知识与技能目标1、经历探索有理数加法法则的过程,理解有理数的加法法则。
2、运用有理数加法法则熟练进行整数加法运算。
(二)过程与方法目标1、在教师创设的熟悉情境与学生探索法则的过程中,通过观察结果的符号及定值与两个加数的符号及其定值的关系,培养学生的分类、归纳、概括的能力。
2、在探索过程中感受数形结合和分类讨论的数学思想。
3、渗透由特殊到一般的唯物辩证法思想(三)情感态度与价值观目标(1)通过师生交流、探索,激发学生的学习兴趣、求知欲望,养成良好的数学思维品质。
(2)让学生体会到数学知识于生活、服务于生活,培养学生对数学的热爱,培养学生运用数学的意识。
(3)培养学生合作意识,体验成功,树立学习自信心。
二、教学重点、难点:重点:理解和运用有理数的加法法则难点:理解有理数加法法则,尤其是理解异号两数相加的法则三、教学组织与教材处理:在教学过程中一如既往的开展“新、行、省、信”四字教育模式的教学。
新:创设新的问题情境(足球净胜球数)、开展新的学习方式(自主、合作、交流)、进行新的评价体系(个人评价、教师评价与小组评价相结合);行:在教师的启发引导下自主、合作探究新知(有理数的加法法则),教师关注学生是否积极思考问题(几组有理数加法的符号与定值特征)、是否主动参与讨论(同号与异号的特征)、是否敢于发表自己的见解(有理数加法法则的概括);省:在特殊实例的基础上观察、归纳、概括有理数的加法法则,在实例讲解和自主练习的基础上总结心得、反省得失(如:解后思)。
信:在本节课的探究法则与运用法则中体验成功,增添学习兴趣,树立学习自信心(如在教师用数带正号球的方法得出(+2)+(+3)= +5后,学生按照此思路可以很快得出(-2)+(-3)等其它情形。
又如以口答形式判断几组有理数加法的和的符号和在较后以“挑战老师”的形式判断一句话的正误等等)。
同时本节课在运用“正负抵消”和数轴探讨有理数法则时,教师只对第一个或前两个进行指导和示例,其它的留给学生独立得出或合作完成。
《有理数的加法》教案【优秀4篇】
《有理数的加法》教案【优秀4篇】《有理数的加法》教案篇一教学目标:1. 知识与技能:使学生理解加减法统一成加法的意义,能准确、熟练地进行加减混合运算,能自觉地运用加法的运算律简化运算,2. 过程与方法:经历加减法统一成加法的过程,体会加法的运算律在运算中的应用3. 情感、态度与价值观:渗透用转化的思想看问题以及解决问题,鼓励学生依据法则简化运算教学重点:能准确、熟练地进行加减混合运算,能自觉地运用加法的运算律简化运算,教学难点:准确、熟练地进行加减混合运算教学过程一、课前预习1、有理数的加法法则是什么?2、有理数的减法法则是什么?3、有理数的加法有什么运算律?具体内容是什么?4、计算下列各题(1)(-5)+(-8) (2)(-5)-(-8) (3)(-5)-8 (4)3-12二、自主探索根据有理数减法法则,有理数的加减混合运算可以统一为加法运算例1、计算(1)14-(-12)+(-25)-17 (2)2+5-8 (3)7-(-4)+(-5) (4)-7.2+4.7-(-8.9)+(-6) (5) - +(- )-(- )-(+ )解: (1) 14-(-12)+(-25)-17 =14+12+(-25)+(-17)____统一为加法= 26+(-42)____运用运算律=-16 (2) (3)(4) (5)算式(-6)-(-13)+(-5)-(+3)+(+6)是有理数的加减混合运算,我们还可以按下列步骤进行计算:解:(-6)-(-13)+(-5)-(+3)+(+6)=(-6)+(+13)+(-5)+(-3)+(+6)__统一加号=-6+13-5-3+6____省略加号=-6-5-3+13+6____-运用运算律=-14+19=5 说明: 省略加号的形式-6+13-5-3+6 表示-6,+13,-5 ,-3,+6这五个数的和。
例2.计算:(1) -3-5+4 (2)-26+43-24+13-46解:(1) (2)例4、若a=-2,b=3,c=-4,求值(1)a+b-c (2)-a+b-|c| (3)a-b+c (4)-a-b-c解:(1)a+b-c=-2+3-(-4)=-2+3+4=5 __ [ 数据代入时,注意括号的运用](2) (3)(4)例5、在伊拉克的战争中,谋生化小组沿东西方向路进行检查,约定向东为正,某天从A地到B地结束时行走记录为(单位:km)+15,-2,+5,-3,+8,-3,-1,+11,+4,-5,-2,+7,-3,+5 问:(1)B地在A地何方,相距多少千米?(2)这小组这一天共走了多少千米三、学习小结这节课你学会了哪几种运算?四、随堂练习A类1、计算:(1)(-30)-(+24)-(-20)+(-32)-(-32)(2) (-2.1)+(-3.2)-(-2.4)-(-4.3)(3)(+ )-(- )+(- )-(+ )(4) -7.52+ -1.48(5)21-12+33+12-67 (6)-3.2+5.8-8.6+122 计算(1) 1+2-3-4+5+6-7-8++97+98-99-100(2) 66-12+11.3-7.4+8.1-2.5(6)-2.7-[3-(-0.6+1.3)]B类3. 计算(1) + + ++ (2) + + ++《有理数的加法》教案篇二教材分析分析本节课在教材中的地位和作用,以及在分析数学大纲的基础上确定本节课的教学目标、重点和难点。
《1.3.1有理数的加法》教学设计(第一课时)
1.3.1有理数的加法(1)
教学
目标
1、理解有理数加法的实际意义;
2、会作简单的加法计算;
3、感受到原来用减法算的问题现在也可以用加法算。
教学
重点
和的符号的确定。
教学
难点
异号两数相加。
教学互动设计
设计意图
一、创设情境导入新课
回顾用正负数表示数量的实际例子;
在足球比赛中,如果把进球数记为正数,失球数记为负数,它们的和叫做净胜球数.若红队进4个球,失2个球,则红队的胜球数,可以怎样表示?蓝队的胜球数呢?
(学生思考回答)
思考:请同学们想想,这支球队在这场比赛中还可能出现其他的什么情况?你能列出算式吗?与同伴交流。
学生相互交流后,教师进一步引导学生可以把两个有理数相加归纳为同号两数相加、异号两数相加、一个数同零相加这三种情况.
2、借助数轴来讨论有理数的加法.I
一个物体向左右方向运动,我们规定向左运动为负,向右为正,向右运动5m,记作5m,向左运动5m,记作-5 m.
(1)(小组合作)把我们已经得出的几种有理数相加的情况在数轴上用运动的方向表示出来,并求出结果,解释它的意义.
(2)交流汇报.(对学习小组的汇报结果,算式由教师写在黑板上)
(3)说一说有理数相加应注意什么?(符号,绝对值)能用自己的语言归纳如何相加吗?
(4)在学生归纳的基础上,教师出示有理数加法法则.
3、有理数加法法则:
⑴同号两数相加,取相同的符号,并把绝对值相加.
⑵绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0.
新人教版六年级数学下册《有理数的加法(1)》教案
7.3.1 第一课时 有理数的加法一、教学目标(一)学习目标1.经历探索有理数加法法则的过程;2.初步理解有理数的加法法则;3.会正确进行有理数的加法运算.(二)学习重点有理数的加法法则的理解和运用.(三)学习难点异号两数相加.二、教学设计(一)课前设计1.预习任务有理数的加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0;(3)一个数同0相加,仍得这个数.2.预习自测(1)计算-2+3的结果是( )A .-5B .1C .-1D .5【知识点】有理数的加法【解题过程】解:1)23(32=-+=+-【思路点拨】根据绝对值不相等的异号两数相加的法则即可求解.【答案】B(2)下列计算结果是负数的是( )A .0+[-(-3)]B .21211+-C .75.2431+-D .|)31(21-+-| 【知识点】有理数的加法法则【解题过程】解:[]330)3(0=+=--+;121211-=+-;175.2431=+-;65)31(21=-+-.故应选B. 【思路点拨】根据有理数的加法法则即可求解.【答案】B(3)下列运算中正确的是( )A .0)7(7=-+-;B .17107-=+- ;C .21)43(41=++- ;D .6)313()322(-=-+--. 【知识点】有理数的加法【解题过程】解:14)7(7-=-+-,故A 错误;3107=+-,故B 错误;21)43(41=++-,C 正确;32)313(322)313()322(-=-+=-+--,故D 错误. 【思路点拨】根据有理数的加法法则即可求解.【答案】C(4)小明家冰箱冷冻室的温度为-5℃,调高4℃后的温度为( )A .4℃ B.9℃ C.-1℃ D.-9℃【知识点】有理数的加法【解题过程】解:小明家冰箱冷冻室的温度为-5℃,调高4℃后的温度为-5+4=-1℃.【思路点拨】根据有理数的加法法则即可求解.【答案】C.(二)课堂设计1.知识回顾(1)数轴的三要素是什么?(2)绝对值的法则是什么?2.问题探究探究一 探索有理数加法法则★●活动我们已经熟悉正数的运算,然而实际问题中做加法运算的数有可能超出正数范围.例如,在本章引言中,把收入记作正数、支出记作负数,在求“结余”时,需要计算8.5+(-4.5),4+(-5.2)等.这里用到正数与负数的加法.【设计意图】通过情景引入,让学生体会有理数的加法在实际生活中运用的必要性.●活动②看下面的问题:问题:一个物体作左右方向的运动,我们规定向左为负,向右为正,向右运动5 m记作+5 m,向左运动5 m记作-5 m.1.如果物体先向右运动5 m,再向右运动3 m,那么两次运动后的结果是什么?两次运动后物体从起点向右运动了8 m,写成算式就是5+3=8.2.如果物体先向左运动5 m,再向左运动3 m,那么两次运动后的结果是什么?两次运动后物体从起点向左运动了8 m,写出算式就是(-5)+(-3)=-8.这个运算也可以用数轴表示,其中假设原点为运动起点(见课本P17图1.3-2).【设计意图】通过实际问题,让学生能将实际问题转化成数学问题,体会数学建模的重要性.●活动③:1.如果物体先向右运动5 m,再向左运动3 m,那么两次运动后物体从起点向右运动了2 m,写成算式就是5+(-3)=2.这个运算也可以用数轴表示,其中假设原点为运动起点,你能用数轴表示吗?2.探究:利用数轴,求以下情况时物体两次运动的结果:(1)先向右运动3m,再向左运动5m,物体从起点向左运动了 2 m;(2)先向右运动5m,再向左运动5m,物体从起点向左/右运动了0 m;(3)先向左运动5m,再向右运动5m,物体从起点向左/右运动了0 m.【设计意图】通过实际问题,让学生能将实际问题转化成数学问题,体会数学建模的重要性.同时通过学生之间的互助与合作,激发学生学习数学的热情.探究二初步理解有理数的加法法则★●活动①:师问:你能从算式中发现有理数加法的运算法则吗?学生举手抢答总结:有理数加法法则:(1)同号两数相加,取相同符号,并把绝对值相加.(2)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0.(3)一个数同0相加,仍得这个数.注:进行有理数的加法运算时,一定是先确定结果的符号,再定结果的绝对值.【设计意图】通过小组合作学习及老师问题的层层设置,培养学生团结协作的能力以及归纳总结的能力,激发学生学习的热情.探究三 会正确进行有理数的加法运算★▲.●活动①:例1 计算:(1))9()3(-+-;(2))5()8(++-【知识点】有理数的加法【解题过程】解:(1)12)93()9()3(-=+-=-+-;(2)3)58()5(8-=--=++-【思路点拨】利用有理数的加法法则即可求解.【答案】(1)-12; (2)-3练习:计算:(1)(+5)+(+7);(2)(-3)+(-8);(3)(-7)+(+5) ;(4)(-3)+(+8)【知识点】有理数的加法【解题过程】(1)12)75()7(5+=++=+++;(2)(-3)+(-8)=-(3+8)=-11;(3)(-7)+(+5)=-(7-5)=-2;(4)(-3)+(+8)=+(8-3)=+5【思路点拨】根据有理数的加法法则即可求解.【答案】(1)+12;(2)-11; (3)-2; (4)+5【设计意图】通过练习,让学生能根据算式的结构,合理选择相应的计算法则,同时学会有理数加法运算的简单书写过程.●活动②例2 计算:(1)9.3)7.4(+-;(2))32(21-+. 【知识点】有理数的加法【解题过程】解:(1)8.0)9.37.4(9.3)7.4(-=--=+-(2)61)2132()32(21-=--=-+.【思路点拨】根据有理数的加法法则即可求解.【答案】(1)8.0-; (2)61-. 练习:计算:(1))213(312-+;(2))6.7(525-+;(3))69.1()71.2()533(++-+-. 【知识点】有理数的加法.【解题过程】解:(1)67)312213()213(312-=--=-+ (2)2.2)4.56.7()6.7(525-=--=-+; (3)62.4)69.171.26.3()69.1()71.2()533(-=-+-=++-+- 【思路点拨】根据有理数的加法法则即可求解.【答案】(1)67-;(2)2.2-; (3)62.4-. 【设计意图】通过练习,使学生能灵活运用有理数的加法法则进行计算,让学生在运算中提升计算能力.●活动例3 甲地海拔高度是-28 m ,乙地比甲地高32 m ,求乙地的海拔高度.【知识点】有理数的加法【解题过程】解:甲地海拔高度是-28 m ,乙地比甲地高32 m ,则乙地的海拔高度为 -28+32=4m .【思路点拨】根据有理数的加法法则即可求解.【答案】-28+32=4m练习:一个数是11,另一个数比11的相反数大2,求这两个数的和【知识点】有理数的加法【解题过程】解:由题意可得: 2119,9211=+--=+-【思路点拨】根据有理数的加法法则即可求解.【答案】2.【设计意图】通过练习,让学生会用有理数的加法解决实际问题,提高学生解决实际问题的能力.●活动④例4 若3||=x ,2||=y ,且y x <,求y x +的值.【知识点】有理数的加法,绝对值. 【解题过程】解:因为2,3==y x ,所以2,3±=±=y x ,又y x <,所以2,3±=-=y x ,故1-=+y x 或5-=+y x【思路点拨】先根据绝对值等于一个正数的数有两个,求出y x ,的值,再根据条件确定y x ,的值,最后代入即可求解.【答案】1-=+y x 或5-=+y x练习:已知|a |=2,|b |=2,|c |=3,且有理数a ,b ,c 在数轴上的位置如图所示,计算a +b +c 的值.【知识点】有理数的加法.【数学思想】数形结合.【解题过程】解:由数轴上a 、b 、c 的位置知:b <0,0<a <c ;又∵|a |=2,|b |=2,|c |=3,∴a =2,b =﹣2,c =3;故a +b +c =2﹣2+3=3.【思路点拨】根据数轴上a 、b 、c 和原点的位置,判断出三个数的取值,然后再代值求解.【答案】a +b +c =2﹣2+3=3【设计意图】通过练习,让学生能运用有理数的加法的相关知识解决较复杂的问题,培养学生的综合解题能力.3.课堂总结知识梳理有理数的加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0;(3)一个数同0相加,仍得这个数.重难点归纳(1)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0;(2)进行有理数的加法时,一定是先确定结果的符号,再确定结果的绝对值.(三)课后作业基础型 自主突破1.计算(-3)+(-9)的结果等于( )A .12B .-12C .6D .-6【知识点】有理数的加法【解题过程】解:12)93()9()3(-=+-=-+-【思路点拨】根据有理数的加法法则即可求解.【答案】B2.下列计算中,不正确的是( )A .-(-6)+(-4)=2B .(-9)+[-(-4)]=-5C .-|-9|+4=13D .-(+9)+[+(-4)]=-13【知识点】有理数的加法【解题过程】解:由题意可知:A 、B 、D 的计算结果均是正确的,只有C 是错误的,因为 54949-=+-=+--【思路点拨】根据有理数的加法法则计算后即可判断.【答案】C3.两个数相加,其和小于每一个加数,那么( )A .这两个加数必有一个数是0B .这两个加数必是两个负数C .这两个加数一正一负,且负数的绝对值较大D .这两个加数的符号不确定【知识点】有理数的加法【解题过程】解:两个数相加,若其和小于每一个加数,那么这两个数必定均为负数.故应选B【思路点拨】根据有理数的加法法则即可判断.【答案】B4.填空:①若a >0,b >0,则a +b 0;②若a <0,b <0,则a +b 0;③若a >0,b <0,且│a │>│b │,则a +b 0;④若a >0,b <0,且│a │<│b │,则a +b 0.【知识点】有理数的加法【解题过程】解:①若a >0,b >0,则a +b > 0;②若a <0,b <0,则a +b < 0;③若a >0,b <0,且│a │>│b │,则a +b > 0;④若a >0,b <0,且│a │<│b │,则a +b < 0.【思路点拨】根据有理数的加法法则即可判断.【答案】>,<,>,<,5.计算:(1)(-34)+(+76) ;(2))43()31(-+-(3))32(21-++ ;(4))312()433(++-. 【知识点】有理数的加法.【解题过程】解:(1)42)3476()76()34(=-+=++-; (2)1213)4331()43()31(-=+-=-+-; (3)61)2132()32()21(-=--=-++; (4)1251)312433(312433-=--=⎪⎭⎫⎝⎛++⎪⎭⎫⎝⎛-【思路点拨】根据有理数加法法则即可求解.【答案】(1)42;(2)1213-;(3)61-;(4)1251-.6.已知|a |=8,|b |=2;(1)当a 、b 同号时,求a +b 的值;(2)当a 、b 异号时,求a +b 的值.【知识点】有理数加法【解题过程】解:(1)∵|a |=8,|b |=2,且a ,b 同号,∴a =8,b =2;a =﹣8,b =﹣2,则a +b =10或﹣10;(2)∵|a |=8,|b |=2,且a ,b 异号,∴a =8,b =﹣2;a =﹣8,b =2,则a +b =6或﹣6.【思路点拨】各项根据题意,利用绝对值的代数意义求出a 与b 的值,即可求出a +b 的值.【答案】(1)a +b =10或﹣10;(2)a +b =6或﹣6.能力型 师生共研1.若a 、b 互为相反数,则=-+|5|b a .【知识点】有理数的加法【解题过程】解:因为a 、b 互为相反数,所以0=+b a ,5505=-=-+b a【思路点拨】根据互为相反数的两个数的和为零即可求解.【答案】52.(1)已知:a 是最小的正整数,b 是最大的负整数,c 是绝对值最小的有理数,则a = ;b = ;c = .(2)若|x |=3,|y |=4,|b |=1且b<0,a =1且ay <0,求a +b +x +y 的值.【知识点】有理数的加法.【数学思想】分类讨论.【解题过程】解:∵a 是最小的正整数,b 是最大的负整数,c 是绝对值最小的有理数, ∴a =1,b =﹣1,c =0;故答案为1,﹣1,0.(2)因为a =1,由于ay <0,所以y <0.因为|x |=3,|y |=4,所以x =±3,y =﹣4.当a =1,b =﹣1,x =3,y =﹣4时a +b +x +y =1+(﹣1)+3+(﹣4)=﹣1;当a =1,b =﹣1,x =﹣3,y =﹣4时a +b +x +y =1+(﹣1)+(﹣3)+(﹣4)=﹣7.【思路点拨】(1)根据最小的正整数是1,最大的负整数是﹣1,0的绝对值最小确定a 、b 、c 的值;(2)由绝对值的意义,求出x 、y ,再由ay <0,确定y 的值.代入代数式求出a +b +x +y 的值.【答案】(1)1,﹣1,0.(2)-1或-7探究型 多维突破1.计算:++++++++++= .【知识点】有理数的加法【解题过程】解:原式=×(+++…+)=×(1﹣﹣…+﹣)=×(1﹣)=×=. 【思路点拨】先提取,然后利用拆项裂项法求解即可. 【答案】.2.若规定b a b a f +=),(.如43)4,3(+=f =7.试求)]4,3(,4[--f f 的值.【知识点】有理数的加法【解题过程】解:314)1,4())4,3(,4(,143)4,3(-=+-=-=--=+-=-f f f f【思路点拨】根据题目要求,抓关键信息即b a b a f +=),( 即可.【答案】-3.自助餐1.计算3+(-3)的结果是( )A .6B .-6C .1D .0【知识点】有理数的加法【解题过程】解:3+(-3)=0【思路点拨】根据有理数的加法法则即可计算.【答案】D2.下列运算错误的有( )① (-21)+(+21)=0; ②(-6)+(+4)= -10;③ 0+(-13)=+13; ④32)61()65(=-++A .1个B .2个C .3个D .4个【知识点】有理数的加法【解题过程】解: ① (-21)+(+21)=0,正确;②(-6)+(+4)= -10,错误,(-6)+(+4)=-2;③ 0+(-13)=+13,错误,0+(-13)=-13; ④正确;故错误的个数为2个.【思路点拨】根据有理数的加法法则即可求解.【答案】B3.若|a |=7,b 的相反数是2,则a +b 的值是 .【知识点】有理数的加法.【数学思想】分类讨论.【解题过程】解:∵|a |=7,∴a =±7,∵b 的相反数是2,∴b =﹣2,①当a =7,b =﹣2时,a +b =7+(﹣2)=5;②当a =﹣7,b =﹣2时,a +b =﹣7+(﹣2)=﹣9;故答案为:5或﹣9.【思路点拨】分别求出a b 的值,分为两种情况:①当a =7,b =﹣2时,②当a =﹣7,b =﹣2时,分别代入求出即可.【答案】5或﹣9.4.在数﹣5、1、﹣3、5、﹣2中任取三个数相加,其中最大的和是 ,最小的和是 .【知识点】有理数的加法【解题过程】解:5+1+(﹣2)=4,(﹣5)+(﹣3)+(﹣2)=﹣10.答:其中最大的和是4,最小的和是﹣10.【思路点拨】由题意可知,要任取三个不同的数相加,使其中最大,则取其中三个较大的数相加即可;使其中的和最小,则取其中三个较小的数相加即可.【答案】4,﹣10.5.计算:(1))75()41(-++ (2))851()3(++- (3))57.1()61.7(++- (4)659)5.11(+- 【知识点】有理数的加法【解题过程】解:(1)()()34417575)41(-=--=-++;(2)()83185138513-=⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛++-;(3)()()()04.657.161.757.161.7-=--=++-(4)()356595.116595.11-=⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛++- 【思路点拨】根据有理数的加法法则即可求解.【答案】(1)-34;(2)831-;(3)04.6-; (4)35- 6.股民小王上星期五以收盘价67元买进某公司股票1000股,下表为本周内每日该股票的涨跌情况:(1)星期三收盘时,每股多少元?(2)本周内每股买最高价多少元?最低价多少元?【知识点】有理数的加法【解题过程】解:(1)67+(+4)+(+4.5)+(﹣1)=74.5(元),故星期三收盘时,每股74.5元;(2)周一:67+4=71元,周二:71+4.5=75.5元,周三:75.5+(﹣1)=74.5元,周四:74.5+(﹣2.5)=72元,周五:72+(﹣6)=66元,∴本周内最高价为75.5元,最低价66元.【思路点拨】(1)用买进的价格加上周一周二周三的涨跌价格,然后根据有理数加法运算法则进行计算即可求解;(2)分别求出这五天的价格,然后即可得解.【答案】(1)星期三收盘时,每股74.5元;(2)本周内最高价为75.5元,最低价66元。
有理数的加法(第一课时)教案六年级上册数学
二次备课
及双边活动
课前准备
一位同学在一条东西方向的跑道上,先向东走了20米,又向西走了30米,能否确定他现在的位置位于出发点的哪个方向,与原来出发的位置相距多少米?若向东记为正,该问题用算式表示为。
温故知新
1、输和赢是生活中相反意义的两个量,输3个球可记作3,赢5个球记作_________;
(1)同号两数相加,取的符号作为“和”的符号,并把绝对值作为“和”的绝对值;
(2)异号两数相加,绝对值相等时和为(即:互为相反数的两个数相加得0);绝对值不等时,取绝对值作为“和”的符号,并用较的绝对值较的绝对值作为“和”的绝对值;
(3)任何一个数同0相加,仍得.
学习任务(二)
例1计算下列各题,并注明每一步的理由(根据两个加数符号的具体情况选用某一条加法法则作为每一步的理由,即“算理”)
(1)(0.9)+(+1.5);(2)(+2.7)+(3);(3)(1.1)+(2.9);
板书设计
教学反思
解:(1)180 +(100);();(2)(10)+(16);()
=();=()
==
(3)15 +(15);(4)0 +(8)
=();=()
跟踪训练
(1)(+29)+(78)(2)(36)+(380);(3)(36)+(+380)
(4)45 +(78)(5)(199)+ 78(6)29000 +(29000)
5、|25| + |20| =______;|30| + |+12| =______;|30|-|+12| =______;|3| × |6| =______;
有理数的加法(第1课时)-教学设计
北师大版数学七年级上册《第二章有理数及其运算》“4.有理数的加法(第1课时)”教学设计一、教学内容及其解析1.教学内容:经历探索有理数的加法法则,初步掌握有理数加法法则,并会进行有理数的加法运算.2.教学内容的地位与作用:本节课内容有理数的加法是小学算术加法运算的拓展,是初中数学运算最基础的内容之一. 熟练掌握有理数的加法是学习有理数其它运算的前提,同时,也为后继学习实数、代数式运算、方程、不等式、函数等知识奠定基础. 有理数的加法运算是建构在生产、生活实例上,有较强的生活价值,体现了数学来源于实践,又反作用于实践. 就本章而言,有理数的加法是本章的重点之一. 学生能否接受和形成在有理数范围内进行的各种运算的思考方式(确定结果的符合和绝对值),关键在于这一节的学习.二、学情分析学生在小学时已经熟悉正数加正数,正数加零的情况. 经过第二章前面三节的学习,对于数的分类、数轴、绝对值的相关知识已经掌握. 且初一学生较为活跃,善于形象思维,能够积极参与讨论.三、教学目标(1)经历探索有理数的加法法则,理解有理数加法的意义,初步掌握有理数加法法则,并能准确地进行有理数的加法运算.(2)通过观察、归纳、总结得到有理数加法法则,训练学生独立分析问题的能力及口头表达能力,体验数学充满探索性和创造性.(3)渗透数形结合的思想,培养学生运用数形结合的方法解决问题的能力.四、教学重点、难点1.教学重点:有理数的加法法则的理解与运用.2.教学难点:异号两数相加的法则.五、教学过程设计(一)过程设计1、新课导入教师提问:我们小学学过“正数+ 正数”和“正数+ 0”两种形式的算式. 引入负数之后,有理数的加法还会出现哪些新的情况呢?播放一段篮球比赛视频.【师生活动】教师引导,学生思考,师生互动. 引导学生写出两个有理数相加的不同情形并进行归类.【设计意图】强化学生分类讨论的意识,明确研究数学问题一般所应采取的具体步骤. 同时也增强了孩子们学习的信心,因为在几种不同的情况中,学生们仅剩两种需要攻克. 引导学生对有理数相加的不同情境进行分类,从而引出本节学习任务.2、讲授新课探究1 :一只小猴子做左右方向的运动,我们规定向右为正,向左为负. 它先向右运动5 m,记作5 m;再向右运动3 m,记作3 m;那么两次运动的结果是向______运动_________ ?如何用算式表示?【师生活动】(1)借助数轴写出算式的结果.+5+ (+3)=学生容易得出结果为+8.(2)明确算式中“+”符号表示的意义.教师引导学生明白+5,+3前面的+号表示运动方向向右,中间的+号为运算符号.探究2 :如果小猴子先向左运动2 m,记作-2 m;再向左运动3 m,记作-3 m,那么两次运动的最后结果是什么?如何用算式表示?【师生活动】(1)借助数轴写出算式的结果.(-2) + (-3)=学生容易得出结果为-5.(2)明确算式中“+”和“-”符号表示的意义.教师提出问题:(-2) + (-3) = -5,-5这个结果合理吗?“-”是什么意思?5又代表什么?引导学生回答:“-”表示运动方向向左.(3)综合探究1和2,引导学生归纳出同号两数相加的法则.你能根据刚才所举的两个例子总结出同号两个有理数相加的法则吗?引导学生得到:同号两数相加,取相同的符号,并把绝对值相加.探究1和2【设计意图】通过将生活情境抽象出来,借助实际例子和数轴,引导学生自主探探索归纳得到同号两数相加的法则. 该学习过程强调学生借助生活情境的自主探索,而不是采用直接告诉的方式. 同时,教师可以通过引导学生思考分析:我们不能碰到任何一个有理数加法算式都从生活中的实例来推答案,所以找到有理数的加法规律看来很必要,让学生理解法则的重要性和意义. 本环节也为学习异号两数相加的法则作铺垫.探究3:如果小猴子先向左运动8 m,再向右运动5 m,那么两次运动的最后结果是什么?如何用算式表示?【师生活动】借助数轴写出算式的结果并解释其意义.(-8) + (+5) =教师提问学生该算式的结果,学生容易得出结果为-3,需要学生解释得到-3的过程. 教师引导学生从符号和绝对值两方面进行思考.探究4:如果小猴子先向右运动2 m,再向左运动5 m,那么两次运动的最后结果是什么?如何用算式表示?【师生活动】(1)借助数轴写出算式的结果并解释其意义.+2 + (-5) =学生能够马上得出结果为-3.(2)综合探究3和4,引导学生归纳出异号两数相加的法则.教师提问:类比前面的做法,你能从符号和绝对值两个方面概括异号两数相加的情况吗?学生思考后,能够归纳得到异号两数相加的法则为:异号两数相加,结果取绝对值较大的加数的符号,并将较大的绝对值减较小的绝对值.探究3和4【设计意图】在同号两数相加的基础上,通过实际生活例子展示异号两数相加的情形. 学生通过类比归纳出异号两数相加的法则,其实是主动的获取知识和技能. 同时,鼓励学生用自己的语言概括法则,可以提高学生的概括能力和语言表达能力.探究5:如果小猴子先向右运动8 m,再向左运动8 m,那么两次运动的最后结果是什么?如何用算式表示?【师生活动】借助数轴写出算式结果,教师引导学生得到互为相反数的两个数相加得0.(+8) + (-8) =学生容易得出结果为0. 学生在这一过程中可以非常清楚地认识到互为相反数的两个数相加得0.探究5【设计意图】借助数轴,学生能够理解直观理解互为相反数的两个数相加得0.探究6:如果小猴子第一秒先向右运动5 m,第二秒原地不动,你能用算式表示吗?如果小猴子第一秒先向左运动6 m,第二秒原地不动,又怎么表示呢?【师生活动】借助数轴写出算式结果并归纳法则.学生能马上得出结果为5 + 0 = 5,(-6) + 0 = -6.探究6【设计意图】学生能够归纳得出一个数同0相加,仍得这个数.3、归纳总结【师生活动】教师提问:两个有理数相加,和的符号怎样确定?和的绝对值怎样确定?一个有理数通0相加,和是多少?引导学生总结:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值.(3)一个数同0相加,仍得这个数.【设计意图】由学生总结,归纳反思,加深对知识的理解,并且能熟练运用所学知识解决问题及养成归纳总结的习惯和语言表达的能力.4、习题检测:【师生活动】学生完成巩固练习题目,教师指出学生错误之处,并进一步强调算理.1. 计算:(1)(-4) + (-8);(2)(-5) + 13;(3)0 + (-7);(4)(-4.7) + 4.7.2. 若x的相反数是3,|y|=5,则x+y=.3. 股民默克上星期五以收盘价67元买进某公司股票1000股,下表为本周内每日该股票的涨跌情况:(1)星期三收盘时,每股多少元?(2)本周内每股最高价为多少元?最低价为多少元?【设计意图】练习应用有理数加法法则进行计算,提高学生掌握法则的熟练程度. 既要培养学生的计算能力,又要让学生在练习中不断总结计算技巧.(二)板书设计六、作业设计1.必做题:完成教材第36页随堂练习;习题2.4第1题、第2题和第3题.【设计意图】巩固所学知识,学生能够熟练进行有理数加法的运算,教师发现学生在学习中存在的问题.2.选做题:习题2.4第4题和第5题.【设计意图】发散学生思维,培养学生将数学知识与实际生活联系的能力;培养学生分类讨论的思想,进一步提升学生的思维能力. 学习由课堂延伸到课外,不仅为下节课做好了铺垫,也给学有余力的同学留下了无限的思考空间.附:教学反思本节课的主要内容是有理数加法的法则和利用数轴表示直观地阐释有理数加法的法则,以学生易于接受的实际生活例子引入有理数加法. 为此,本节课安排较多的时间用于探索加法法则,以学生作为探索的主体,结合学生的实际,因材施教,为每一个学生创造发挥自己的空间. 这很大程度上调动了学生的学习积极性,特别是学生的创造性得到了充分的展示,增强了学生的求知欲. 这正是新课程理念所倡导的,即课程不再只是知识的载体,而是教师和学生共同探究新知识的过程,只有真正被学生经历、理解和接受了的东西才称得上是课程.经过探究、讨论、相互交流,对有理数的加法运算,同学们基本都能理解并掌握,但仍然有的同学不善于利用加法法则来进行运算以及常出现符号之类的错误,特别是异号两数相加的和的符号的确定,模糊不清. 接下来教师要进一步强调计算要以法则为依据,加强用法则的熟练程度.双师互动课堂安排。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有理数的加法(第一课时)教案
教学目标
1.知识与技能
经历探索有理数的加法法则,理解有理数加法的意义,初步掌握有理数加法法则,并能准确地进行有理数的加法运算.
2.过程与方法
①有理数加法法则的导出及运用过程中,训练学生独立分析问题的能力及口头表达能力.
②渗透数形结合的思想,培养学生运用数形结合的方法解决问题的能力.
3.情感、态度与价值观
①通过观察、归纳、推断得到数学猜想,体验数学充满探索性和创造性.
②运用知识解决问题的成功体验.
教学重点难点
重点:有理数的加法法则的理解和运用.
难点:异号两数相加.
教与学互动设计
(一)创设情境,导入新课
课件展示下午放学时,小新的车子坏了,他去修车,不能按时回家,怕妈妈担心,打电话告诉妈妈,可妈妈坚持要去接他,问他在什么地方修车,他说在我们学校门前的东西方
向的路上,你先走20米,再走30米,就能看到我了.于是妈妈来到校园门口.
(二)合作交流,解读探究
讨论妈妈能找到他吗?
讨论交流若规定向东为正,向西为负.
(1)若两次都向东,很显然,一共向东走了50米.
算式是:20+30=50
即这位同学位于学校门口东方50米.
这一运算可用数轴表示为。