钢在加热冷却时的组织转变
钢在加热时的组织转变
钢在加热时的组织转变
1. 钢在加热过程中的组织变化
钢是一种具有高强度和韧性的金属材料,广泛用于机械制造、建筑、船舶、桥梁等领域。
在钢材加工过程中,热处理是一项重要的工艺步骤,可以改善钢的力学性能、提高其使用寿命。
而钢在加热过程中的组织变化,是影响其热处理效果和性能表现的关键因素之一。
2. 软化和晶粒长大
钢材经过冷加工和热加工后,其组织结构会发生变化。
加热可以使钢材发生软化,原因是钢的晶界杂质和碳化物颗粒会被空气中的氧化物气体消耗掉,在高温下形成低能量状态的组织结构,从而改变了材料的硬度和韧度,有利于加工和使用。
同时,钢材在加热时晶粒也会长大,因为温度升高会使晶界能量降低,晶界的迁移和改变也会导致晶粒的长大。
3. 相变和组织重构
除了软化和晶粒长大,加热还可以使钢材发生相变和组织重构。
钢材中的相是指金属组织的多种形态和状态,在不同的温度下会发生相变。
例如,铁素体(ferrite)和奥氏体(austenite)是钢中常见的相,钢的性能也与其相的形态和含量密切相关。
因此,在加热过程中应该控制温度和时间,以使钢材中的相变完成,并尽量避免相的不均匀分布。
4. 总结
总之,钢材在加热时会产生多种组织变化,包括软化、晶粒长大、相变和组织重构等。
这些变化会影响钢材的力学性能、延展性和可加
工性,同时也决定了热处理工艺的制定和实施。
因此,在进行热处理
之前,应该准确了解材料的组织结构和特性,并选择合适的工艺参数
和方式,以使钢材发挥最佳性能。
钢在冷却时的组织转变的连续冷却转变过程
钢在冷却时的组织转变的连续冷却转变过程
钢在冷却时的组织转变是一个非常重要的过程,它决定了钢的力学性
能和使用寿命。
这个过程可以被分为三个阶段:
第一阶段:初次冷却
在初次冷却阶段,钢的组织会发生初步的变化。
当温度降到钢的临界
温度以下时,钢中的所有组织都会开始转变。
这个过程是不可逆的,
一旦开始就不能停止。
第二阶段:持续冷却
在持续冷却阶段,钢的组织会进一步变化。
随着温度的降低,钢中的
残留奥氏体会逐渐转变为贝氏体。
这个过程会在几个小时内完成,然
后钢的组织就会保持不变,直到它被重新加热。
第三阶段:再次加热
在再次加热阶段,钢的组织会重新发生变化。
当温度达到一定程度时,钢中的组织开始再次转变,从贝氏体转变为奥氏体。
这个过程同样是
不可逆的。
以上就是钢在冷却时的组织转变的连续冷却转变过程。
需要注意的是,在这个过程中,钢的组织变化是不可逆的,因此加热和冷却的过程必
须严格控制。
如果温度过高或过低,会导致钢的力学性能和使用寿命
都受到影响。
钢在加热和冷却时的组织转变
钢在加热和冷却时的组织转变嘿,咱聊聊钢在加热和冷却时那神奇的组织转变。
钢啊,这硬家伙,平时看着就挺牛。
可你知道吗?当它被加热的时候,那可就像变魔术一样。
一开始,温度慢慢升高,钢就开始有点小动静了。
就好像一个睡眼惺忪的人,逐渐被唤醒。
那原本排列整齐的原子们,也开始不安分起来。
温度再高点,钢的组织就发生大变化啦。
这时候的钢,就如同一个正在进行大改造的工厂。
各种原子重新排列组合,形成新的结构。
那场面,可壮观了。
想象一下,无数的小原子们,就像一群忙碌的小工人,在高温的催促下,热火朝天地干着活。
要是继续加热,钢可就彻底不一样了。
它变得更加活跃,就像一个疯狂的派对现场。
原子们尽情地舞动,结构也变得越来越复杂。
这时候的钢,有着强大的力量,仿佛能征服一切。
可别光看加热的时候,冷却也很有看头呢。
当钢开始冷却,就像是一场疯狂派对后的安静。
原子们不再那么疯狂,开始慢慢回归秩序。
温度逐渐降低,钢的组织也逐渐稳定下来。
这就像一个人在经历了一场刺激的冒险后,开始平静地思考人生。
冷却过程中,钢的变化可细腻了。
有时候,它会变得更加坚硬,就像一个坚强的战士,不屈不挠。
有时候,它又会变得更加有韧性,像一个灵活的运动员,能应对各种挑战。
不同的加热和冷却方式,会让钢有不同的组织转变。
就好比不同的人生选择,会带来不同的结果。
如果加热得太快,冷却得太急,钢可能就会变得很脆弱。
但如果掌握好节奏,钢就能变得无比强大。
咱再想想,生活中的很多东西不都跟钢的组织转变有点像吗?我们在经历一些事情的时候,也会发生变化。
有时候是好的变化,让我们变得更强大;有时候可能不太好,但我们也能从中学到东西。
钢在加热和冷却时的组织转变,真的很神奇。
它让我们看到了物质的奇妙之处,也让我们思考人生的各种可能性。
总之,钢的组织转变告诉我们,变化是不可避免的,我们要学会适应变化,让自己变得更强大。
钢在加热和冷却时的组织转变
A-P转变 终了线
图2.4 共析碳钢连续冷却转变曲线
马氏体临界 冷却速度
钢的热处理
1.2 钢在冷却时的组织转变
2. 过冷奥氏体的连续冷却转变
过共析碳钢的连续冷却转变C曲线与共析碳钢相比,除了多出一 条先共析渗碳体的析出线以外,其他基本相似
亚共析碳钢的连续冷却转变C曲线与共析碳钢却大不相同,它除 了多出一条先共析铁素体析出线以外,还出现了贝氏体转变区
机械制造基础
机械制造基础
钢的热处理
❖ 钢在加热和冷却时的组织转变
1.1 钢在加热时的组织转变 1.2 钢在冷却时的组织转变
钢的热处理
图2.1 钢加热和冷却时各临界点的实际位置
钢的热处理
1.1 钢在加热时的组织转变
钢加热到Accm点以上时会发生珠光体向奥氏体转变 热处理的主要目标就是为了得到奥氏体 严格控制奥氏体的晶粒度是热处理生产中一个重要的问题
钢的热处理
1.1 钢在加热时的组织转变
控制奥氏体晶粒大小的方法:
加热温度 保温时间 加热速度
钢的热处理
1.2 钢在冷却时的组织转变
冷却过程是热处理的关键工序,其冷却转变温度决定了冷却后 的组织和性能
实际生产中采用的冷却方法有:
连续冷却(如炉冷、空冷、水冷等)图b 等温冷却(如等温淬火)图a
图2.2 两种冷却方式示意图
钢的热处理 1.2 钢在冷却时的组织转变
1. 过冷奥氏体的等温冷却转变
图2.3 共析碳钢过冷奥氏体等温转变曲线C曲线
钢的热处理
1.2 钢在冷却时的组织转变
1. 过冷奥氏体的等温冷却转变珠体转变 贝氏体转变 马氏体转变
钢的热处理
1.2 钢在冷却时的组织转变
钢的热处理及组织转变
二、钢在加热及冷却时的组织转变
② 贝氏体型转变 :
一、钢的热处理
钢的退火:
⑴ 退火的定义 将钢加热到一定温度,保温一定时间,然后缓慢冷却下 来,获得接近平衡状态的组织的热处理工艺,称为退火。 ⑵ 退火的目的
① 降低硬度,提高塑性和韧性;
② 消除残余内应力,减轻变形和防止开裂; ③ 均匀成分,细化晶粒,为最终热处理作准备; ④ 改善或消除铸造、轧制、焊接等加工中的组织缺陷。
降低钢的硬度和耐磨性。
温度过低,在淬火组织中出现铁素体,使淬火组织出现软 点,降低钢的强度和硬度。
一、钢的热处理
钢的淬火:
理想的淬火冷却曲线 应该是:在650~550 0 C范围要快冷,其它 温度区间不需快冷, 尤其在Ms点以下更不 需快冷,以免引起工 作变形或开裂。
一、钢的热处理
钢的淬火:
保持适当时间,缓慢冷却,重新形成均匀的晶粒,以消除
形变强化效应和残余应力的退火工艺。
目的:
温度 再结晶温度
消除加工硬化
提高塑性
改善切削加工性能
时间
一、钢的热处理
钢的正火:
⑴ 定义:将钢加热到 AC3 或 Accm 以上 30~50℃,保温一定
时间,出炉后在空气中冷却的热处理工艺,称为钢的正火。
上贝氏体 (羽毛状)
500
下贝氏体 (针叶状)
二、钢在加热及冷却时的组织转变
② 贝氏体型转变 :
性能上看上贝氏体的脆性较大,无实用价值;而下贝 氏体则是韧性较好的组织,是热处理时(如采用等温淬火) 常要求获得的组织。
原因:上贝氏体中的碳 化物呈较粗的片状,分
布在铁素体板条间,且
不均匀,使板条容易发 生脆废;
获得的球化效果较好,在大件和大批量生产中难以实现,
钢的加热冷却组织转变
(F和Fe3C),转变为另一种晶格形式的单相(A)的过程,在这样的相变过程中,必然伴随 着Fe、C原子的扩散和相应的晶格重构。研究证明,α-γ晶格重构过程实际上是固态下重结
晶的过程,因此,同样遵循结晶的基本规律,是一个形核、长大和均匀化的过程。
珠光体向奥氏体的转变可分为以下3个步骤,共析钢中奥氏体形成过程示意图如图6-3
亚共析钢室温下的平衡组织是铁素体和珠光体,因此亚共析钢的奥氏体转变由两个阶段 组成。① 是珠光体向奥氏体的转变(加热到略高Ac1 );② 是铁素体向奥氏体的转变(加热 到Ac1~Ac3之间)。珠光体向奥氏体的转变与共析钢相同。当珠光体向奥氏体转变结束时,在 铁素体晶界上开始形成新的奥氏体晶核,这些新的晶核依靠吸收由先形成的奥氏体中越过晶 界扩散过来的碳原子而不断向铁素体晶粒内部长大。当温度略高于Ac3时,铁素体全部转变成 奥氏体,之后碳原子的扩散还要维持一段时间才能使所有奥氏体的成分达到均匀一致。 2.2.2 过共析钢的奥氏体转变
指在规定加热条件下(把钢加热到930±10℃、保温3~8h)所测得的奥氏体晶粒度。本 质晶粒度的实质是表示钢加热时奥氏体晶粒长大的倾向。不同牌号的钢奥氏体晶粒长大的倾 向是不同的,在一定的温度下把随着温度的升高奥氏体晶粒迅速长大的钢称为本质粗晶粒钢, 而奥氏体的晶粒随温度的升高不易长大的钢称为本质细晶粒钢,钢的本质晶粒度示意图如图 6-8所示。一般需要进行热处理的零件大多采用的是本质细晶粒钢,因为本质细晶粒钢热处理 后易获得细小的实际晶粒度。
过冷或过热现象,在相图上实际的相变温度和平衡临界点就会产生偏移的现象,而且加热或
冷却速度越快,偏移量越大。为了便于区别,通常把实际加热时的各临界点用Ac1、Ac3、Accm 表示,冷却时的各临界点用Ar1、Ar3、Arcm表示。钢的各实际临界点的含义如下:
钢在加热过程中的组织转变
钢在加热过程中的组织转变1. 开场白大家好,今天我们来聊聊一个有趣的话题——钢在加热过程中的组织转变。
这听起来可能有点儿专业,不过别担心,我会尽量用简单易懂的语言来讲。
如果你觉得难懂,没关系,咱们可以一起“打水漂”,边聊边懂,哈哈!2. 钢的基本知识2.1 钢是什么?首先,钢其实就是铁和碳的结合体,想象一下,就像铁和碳是一对小情侣,甜甜蜜蜜地在一起。
为了让我们的钢更坚硬,通常还会加入其他元素,比如锰、镍、铬等,这些就像是调味料,让钢的味道更丰富!而不同的配方,就能造出不同特性的钢。
哎呀,真是一种神奇的化学反应呀!2.2 加热的目的接下来,我们要说的就是加热。
为什么要加热钢呢?这就像冬天里喝热汤一样,让人暖和,钢在加热的过程中,也能变得更“舒服”。
加热的主要目的是为了改变钢的组织结构,增强它的性能。
想象一下,咱们就像在健身房里,通过锻炼来变得更强壮。
钢也是一样,它通过加热,能够提升硬度、韧性,甚至是塑性,听起来是不是有点儿“牛逼”?3. 加热过程中的组织转变3.1 奥氏体的形成好啦,咱们进入正题!在加热过程中,钢首先会形成一种叫“奥氏体”的组织。
这就像是一群小伙伴在一起聚会,彼此之间的距离都变得更远,更松散。
奥氏体的形成温度大约在727℃以上,温度越高,钢里的原子运动就越激烈。
这个时候的钢,变得非常柔软,就像是刚出锅的面条,随便你怎么扭。
3.2 班氏体与贝氏体的出现接着,当温度继续升高,钢的组织会逐渐变成“班氏体”和“贝氏体”。
这时候,钢的性能会进一步提高,硬度也会增加。
班氏体就像是一群精英,组织紧凑,彼此之间的联系非常紧密,而贝氏体则是一种过渡状态,既有班氏体的优点,又保留了奥氏体的一些特性。
可以说,它们是钢的“变形金刚”,随时根据需求变换形态!4. 冷却与最终组织4.1 快速冷却的影响说到这里,咱们不得不提冷却的过程。
加热后,钢如果快速冷却,就会形成“马氏体”。
这种状态就像是铁打的火锅底料,既有韧性又很坚硬。
3-1钢的组织转变
上贝氏体 贝氏体组织的透射电镜形貌 下贝氏体
2,贝氏体转变过程 , 贝氏体转变也是形核和 长大的过程. 长大的过程. 发生贝氏体转变时,首 发生贝氏体转变时 首 先在奥氏体中的贫碳区 形成铁素体晶核, 形成铁素体晶核,其含 碳量介于奥氏体与平衡 铁素体之间, 铁素体之间,为过饱和 铁素体. 铁素体.
当转变温度较高( 当转变温度较高(550-350℃) 时,条片状铁素体从奥氏体 ℃ 晶界向晶内平行生长,随铁素体条伸长和变宽, 晶界向晶内平行生长,随铁素体条伸长和变宽,其碳原子向 条间奥氏体富集,最后在铁素体条间析出 短棒, 条间奥氏体富集,最后在铁素体条间析出Fe3C短棒,奥氏体 短棒 消失,形成 消失,形成B上 .
钢在加热时的转变
加热是热处理的第一道工序.加热分两种: 加热是热处理的第一道工序.加热分两种:一种是在 A1以下加热,不发生相变;另一种是在临界点以上加 以下加热,不发生相变;另一种是在临界点以上加 热,目的是获得均匀的奥氏体组织,称奥氏体化. 目的是获得均匀的奥氏体组织, 奥氏体化. 一,奥氏体的形成过程 奥氏体化也是形核和长大 的过程,分为四步. 的过程,分为四步.以共 析钢为例说明: 析钢为例说明:
珠光体(S): ⑴ 珠光体 : 形成温度为A 倍光镜下可辨. 形成温度为 1-650℃,片层较厚,500倍光镜下可辨 ℃ 片层较厚, 倍光镜下可辨
光镜下形貌
电镜下形貌
索氏体(S) ⑵ 索氏体
电镜形貌 形成温度为650-600℃,片 ℃片 形成温度为 层较薄, 层较薄,800-1000倍光镜 倍光镜 下可辨 光镜形貌
奥氏体晶粒长大及其影响因素 1,奥氏体晶粒长大 奥氏体化刚结束时的 晶粒度称起始晶粒度 晶粒度称起始晶粒度, 起始晶粒度 此时晶粒细小均匀. 此时晶粒细小均匀. 随加热温度升高或保 温时间延长, 温时间延长,奥氏体 晶粒将进一步长大,这也是一个自发的过程. 晶粒将进一步长大,这也是一个自发的过程.奥氏体 晶粒长大过程与再结晶晶粒长大过程相同. 晶粒长大过程与再结晶晶粒长大过程相同.
钢在冷却时的转变
图4-5 珠光体的显微组织
3
奥氏体转变为珠光体的过程也是形核和长大的过程,如图4-6所示。当奥氏体过冷到A1 以下时,首先在奥氏体晶界上产生渗碳体晶核,通过原子扩散,渗碳体依靠其周围奥氏体 不断地供应碳原子而长大。同时,由于渗碳体周围奥氏体含碳量不断降低,从而为铁素体 形核创造了条件,使这部分奥氏体转变为铁素体。由于铁素体溶碳能力低(<0.0218%C), 所以又将过剩的碳排挤到相邻的奥氏体中,使相邻奥氏体含碳量增高,这又为产生新的渗 碳体创造了条件。如此反复进行,奥氏体最终全部转变为铁素体和渗碳体片层相间的珠光 体组织。
5
1.2 贝氏体转变及其组织
过冷奥氏体在550℃~Ms的转变称为中温 转变,其转变产物为贝氏体,所以又称贝氏 体转变。贝氏体用符号B表示,它是渗碳体分 布在碳过饱和的铁素体基体上的两相混合物, 硬度也比珠光体型的高。奥氏体向贝氏体的 转变属半扩散型相变,铁原子基本不扩散而 碳原子有一定扩散能力。
6
9
生产上,中、高碳钢常利用 等温淬火获得以下贝氏体为主的 组织,使钢件具有较高的强韧性, 同时由于下贝氏体比容比马氏体 小,可减少变形开裂。
10
1.3 马氏体转变及其组织
当奥氏体以极大的冷却速度过冷到Ms以下时, 即发生马氏体转变。与珠光体转变和贝氏体转变不 同,马氏体转变是在连续冷却的过程中进行的,由 于过冷度极大,碳原子已无法扩散,过冷奥氏体以 非扩散的形式发生铁的晶格转变,即由面心立方晶 格的γ-Fe“切变”为体心立方的α-Fe中,形成了碳 在α-Fe中的过饱和间隙固溶体,称之为马氏体,用 符号M表示。马氏体的成分与过冷奥氏体相同。
1 上贝氏体组织形态
上贝氏体在550~350℃温度范围内形成,在低碳钢中形成温度要高些。在光学显微镜下 呈羽毛状,即成束的自晶界向晶粒内生长的铁素体条,如图4-7(a)所示。在电子显微镜下, 可以看到铁素体和渗碳体两个相,渗碳体(亮白色)以不连续的、短杆状形状分布于许多平 行而密集的过饱和铁素体条(暗黑色)之间,如图4-8(a)所示。在铁素体条内分布有位错 亚结构,位错密度随形成温度的降低而增大。
08讲 钢在加热、冷却时组织的转变
《机械制造技术基础》教案教学内容:钢在加热和冷却时的组织转变教学方式:结合实际,由浅如深讲解教学目的:1.掌握钢在加热时组织转变——钢的奥氏体化;2.明确过冷奥氏体的等温转变;3.掌握冷奥氏体连续冷却转变。
重点、难点:钢的奥氏体化过冷奥氏体的等温转变冷奥氏体连续冷却转变教学过程:1.3 钢的热处理热处理:采用适当的方式对金属材料或工件进行加热、保温和冷却以获得预期的组织结构与性能的工艺。
热处理的分类:1.整体热处理:对工件整体进行穿透加热的热处理,如退火、正火、淬火、回火等。
2.表面热处理:仅对表面进行热处理的工艺,如火焰淬火、感应淬火等。
3.化学热处理:将工件置于适当的活性介质中加热、保温,使一种或几种元素渗入它的表层,以改变其化学成分、组织和性能的热处理,如渗碳等。
钢的热处理过程包括加热、保温和冷却三个阶段。
其主要工艺参数是加热温度、保温时间和冷却速度。
1.3.1 钢在加热和冷却时的组织转变1.3.1.1钢在加热时组织转变Fe-Fe3C相图相变点A1、A3、A cm是碳钢在极缓慢地加热或冷却情况下测定的。
但在实际生产中,加热和冷却并不是极其缓慢的,因此,钢的实际相变点都会偏离平衡相变点。
即:加热转变相变点在平衡相变点以上,而冷却转变相变点在平衡相变点以下。
通常把实际加热温度标为Ac1、Ac3、Ac cm、Ar1、Ar3、Ar cm。
如图6-1所示。
图6-1 钢在加热、冷却时的相变温度钢加热到Ac1点以上时会发生珠光体向奥氏体的转变,加热到Ac3和Ac cm以上时,便全部转变为奥氏体,这种加热转变过程称为钢的奥氏体化。
1.奥氏体的形成珠光体转变为奥氏体是一个从新结晶的过程。
由于珠光体是铁素体和渗碳体的机械混合物,铁素体与渗碳体的晶包类型不同,含碳量差别很大,转变为奥氏体必须进行晶包的改组和铁碳原子的扩散。
下面以共析钢为例说明奥氏体化大致可分为四个过程,如图4-2所示。
1)奥氏体形核奥氏体的晶核上首先在铁素体和渗碳体的相界面上形成的。
第一节 钢在加热和冷却时的转变
板条马氏体 针状马氏体
23
图12 马氏体透射电镜图
(二)奥氏体转变产物的组织和性能
(4) 马氏体转变的特点 马氏体转变也是形核和长大的过程。其主要特点
3. 马 氏 体 转 变
是: ①无扩散性 铁和碳原子都不 扩散,因而马氏 体的含碳量与奥 氏体的含碳量相 同。
图13 马氏体组织图
3. 马 氏 体 转 变
状。在电镜下,亚结构主要是孪晶,又称孪晶 马氏体。
光镜下
21
电镜下
图12 针状马氏体结构图
(二)奥氏体转变产物的组织和性能
70 60 硬度 ( HRC ) 50 1400 40 1000 30 20 10 600
(3) 马氏体的性能
2000 1800
200
0
0.1
0.2
0.3
A1~550℃;高温转变 区;扩散型转变; P 转变 区。
550~230℃;中温转变 区; 半扩散型转变; 贝氏体( B ) 转变区;
物
0
1
10
102
103
104
时间(s)
图 9 3 共析钢C曲线分析
(二)奥氏体转变产物的组织和性能
(1)普通珠光体 形成温度为A1~650℃,片层较厚,500倍 光镜下可辨,用符号P表示.
3. 马 氏 体 转 变
转变为马氏体类型组织。
马氏体转变是强化钢的重 要途径之一。 (1) 马氏体的晶体结构 碳在-Fe中的过饱和固溶 体称马氏体,用M表示。
马氏体转变时,奥氏体中的
马氏体组织
碳全部保留到马氏体中。
19
图10 马氏体组织金相图
(二)奥氏体转变产物的组织和性能
钢在加热及冷却时的组织转变
2.奥氏体的形成
钢在加热时的组织转变,主要包括奥氏体的形成和晶粒长大两个过程。
物元素(如铌、钒、钛等),会形成难熔的碳化物和氮化物颗粒,弥散分布于奥氏体晶界上,阻碍奥氏体晶粒的长大。
因此,大多数合金钢、本质细晶粒钢加热时奥氏体的晶粒一般较细。
原始组织:钢的原始晶粒越细,热处理加热后的奥氏体的晶粒越细。
二、钢在冷却时的组织转变
冷却方式是决定热处理组织和性能的主要因素。
热处理冷却方式分为等温冷却和连续冷却。
等温转变产物及性能:用等温转变图可分析钢在A
线以下不同温度进行等温转变
1
所获的产物。
根据等温温度不同,其转变产物有珠光体型和贝氏体型两种。
~550℃ ,获片状珠光体型(F+P)组织。
[ 高温转变]:转变温度范围为A
1
依转变温度由高到低,转变产物分别为珠光体、索氏体、托氏体,片层间距由粗到细。
其力学性能与片层间距大小有关,片层间距越小,则塑性变形抗力越大,强度
炉冷V
:比较缓慢,相当于随炉冷却(退火的冷却方式),它分别与C曲线的
1
转变开始和转变终了线相交于1、2点,这两点位于C曲线上部珠光体转变区域,估计它的转变产物为珠光体,硬度170~220HBS。
空冷V
:相当于在空气中冷却(正火的冷却方式),它分别与C曲线的转变开
2
始线和转变终了线相交于3、4点,位于C曲线珠光体转变区域中下部分,故可判断。
钢在加热时的组织转变
钢在加热时的组织转变
实际晶粒度是指钢在具体的热处理或热加工 条件下实际获得的奥氏体晶粒大小。实际晶粒度 直接影响钢件的性能。实际晶粒度一般比起始晶 粒度大,因为热处理生产中,通常都有一个升温 和保温阶段,就在这段时间内,晶粒有了不同程 度的长大。
钢在加热时的组织转变
不同牌号的钢,奥氏体晶粒的长大倾向是不同的。有些钢的 奥氏体晶粒随着加热温度的升高会迅速长大,而有些钢的奥氏体 晶粒则不容易长大,如图1-3所示。根据奥氏体晶粒长大倾向的 不同,将钢分为两类:一类与曲线1相似,另一类与曲线2相似。 符合曲线1的钢,晶粒长大倾向大,称为本质粗晶粒钢。符合曲 线2的钢,晶粒长大倾向小,称为本质细晶粒钢。所以“本质晶 粒”并不指具体的晶粒,而是表示某种钢的奥氏体晶粒长大的倾 向性。“本质晶粒度”也不是晶粒大小的实际度量,而是表示在 规定的加热条件下,奥氏体晶粒长大倾向性的高低。
钢在加热时的组织转变
(3)残余渗碳体的溶解。在奥氏体形成过程中,铁素体比 渗碳体先消失,因此奥氏体形成之后,还残存未溶渗碳体。这 部分未溶的残余渗碳体将随着时间的延长,继续不断地溶入奥 氏体,直至全部消失。
(4)奥氏体均匀化。当残余渗碳体全部溶解时,奥氏体中 的碳浓度仍然是不均匀的,在原来渗碳体处含碳量较高,而在 原来铁素体处含碳量较低。如果继续延长保温时间,通过碳的 扩散,可使奥氏体的含碳量逐渐趋于均匀。
在连续加热时,随着加热速度的增大,奥氏 体形成温度升高,形成的温度范围扩大,形成所 需的时间缩短。
钢在加热时的组织转变
二、 奥氏体晶粒的长大及其影响因素 1. 奥氏体晶粒度的概念
根据奥氏体形成过程和晶粒长大情况,奥氏体晶粒度 可分为起始晶粒度、实际晶粒度和本质晶粒度三种。
起始晶粒度是指珠光体刚刚全部转变为奥氏体时的奥 氏体晶粒度。一般奥氏体的起始晶粒度比较小,继续加热 或保温将使它长大。
钢在热处理时的组织转变
钢在热处理时的组织转变
1.2钢在冷却时的组织转变
图 2-29 共析钢过冷奥氏体等温转变图的建立
钢在热处理时的组织转变
1.2钢在冷却时的组织转变
图2-30为共析钢过冷奥氏体等温转变图。两条C曲线中,左边的一条 为过冷奥氏体转变开始线,右边一条为转变终了线,其右侧为转变产 物区,两条C曲线之间为过冷奥氏体部分转变区。从图看出:A1以上 是奥氏体稳定区域;在A1以下,转变开始线以左,由于过冷现象, 奥氏体仍能存在一段时间,这段时间称为孕育期。孕育期的长短标志 着过冷奥氏体的稳定性的大小。曲线的拐弯处(550℃左右)俗称 “鼻尖”,孕育期最短,过冷奥氏体稳定性最小。鼻尖将曲线分为上 下两部分,上部称为高温转变区,下部称为中温转变区。
图 2-32 上贝氏体
图 2-33 下贝氏体
钢在热处理时的组织转变
1.2钢是碳在⑶在冷马γ却氏-F体e时中型的所转组形变成。织在的转过M变饱s 以和下固温溶度体范,围用内符冷号却M,表转示变。产硬物度主取要决为于马碳氏的体过。马饱氏和体程
度,即随碳的质量分数增加,强度明显增高。 3)亚共析钢和过共析钢的等温转变图 亚共析钢和过共析钢的过冷奥氏体在转变为珠光体之前,要分别析出先析铁素体
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.3.1 钢在加热时的组织转变
1、奥氏体的形成 以共析钢为例,当加热到AC1以上时,发生珠光体向 奥氏体的转变(即奥氏体化)过程可分为三个阶段: 1)奥氏体晶核的形成和长大 2)剩余渗碳体的溶解 3)奥氏体均匀化 当加热到AC1线稍上时钢中的珠光体向奥氏体转变, 只有分别加热到AC3或ACCm温度以上,保温足够时间, 才能获得成分均匀的单相奥氏体。
2.3.2 钢在冷却时的组织转变
2)过冷奥氏体等温转变产物的组织与性能 (1)珠光体型转变(A1~550℃)
(2)贝氏体转变(550℃~MS)
2.3.2 钢在冷却时的组织转变
3)亚共析钢和过共析钢的等温转变
由于亚共析钢和过共析钢的碳含量低于或高于共析 成分,当过冷奥氏体在C曲线“鼻尖”上部区域等温时, 亚共析钢先析出铁素体,然后进行珠光体转变,得到 铁素体和珠光体组织;同理,过共析钢先析出渗碳体, 然后进行珠光体转变,得到渗碳体和珠光体组织。
2.3.2 钢在冷却时的组织转变
转变开始线与纵坐标轴之间的 时间为孕育期。在C曲线拐弯的 “鼻尖处”(约550℃),孕育 期最短,过冷奥氏体最不稳定。 水平线MS为马氏体转变开始线 (约230℃),水平线Mf为马氏 体转变终了线(约-50℃)。 A′:残余奥氏体,即淬火冷却 到室温后残留的奥氏体。
2.3.2 钢在冷却时的组织转变
2、过冷奥氏体的连续冷却转变 以共析钢为例,介绍等温转变曲线及转变产物。 1)等温转变曲线在连续冷却转变中的应用 共折钢连续冷却时,根据 冷却速度曲线V1、V2、V3、V4 与C曲线相交的位置,可估计 连续冷却转变的产物。 马氏体临界冷却速度Vk: 与冷却曲线相切,称临界冷却 速度,是获得全部马氏体转变 的最小冷却速度。
2.3.2 钢在冷却时的组织转变
2、过冷奥氏体的连续冷却转变 过冷奥氏体连续冷却转变产物的组织与性能见下表:
2.3.2 钢在冷却时的组织转变
2)马氏体转变(MS~Mf) 马氏体的组织形态有板条状和片状两种类型,主要取决 于奥氏体中碳含量。1、当Wc<0.20%时,形成板条状低碳马 氏体,有较好的强韧性;2、当Wc>1.0%时,形成片状(针 状)高碳马氏体,性能硬而脆;3、当Wc在0.20%~l.0%时, 形成片状和板条状马氏体的混合组织。 强度、硬度随碳含量增加而增大,当碳含量超过0.6%, 强度和硬度增加不明显。马氏体转变不能进行到底。 残余奥氏体的存在,会降低淬火钢的硬度和耐磨性,并 且在工件长期使用过程中残余奥氏体会逐步转变为马氏体, 使工件变形而引起尺寸的不稳定。 减少残余奥氏体的措施:冷处理。即把淬火后的工件继续 冷却到室温以下-80~-50℃,以减少残余奥氏体的含量。
2.3.1 钢在加热时的组织转变
2、奥氏体晶粒长大及其控制措施 钢加热时珠光体向奥氏体转变刚刚结束时,奥氏体晶 粒是比较细小的。如果继续加热或保温,奥氏体晶粒会变 粗大,影响热处理后钢的强度、塑性、韧性较低。因此, 加热时获得细小晶粒的奥氏体对提高热处理效果和钢的性 能有重要的意义。 控制奥氏体晶粒长大措施: 1)合理选择加热温度和保温时间 2)采用快速加热和短时间保温 3)加入一定量合金元素(除锰、磷外)
本课题重点与难点
教 学 重 点
奥氏体的形成及其晶粒大小 的控制措施,C曲线及其应用。
教 学 难 点
钢在加热时和冷却时组织转变。
2.3.1 钢在加热时的组织转变
A1、A3、Acm各相变点 是固态下铁碳合金的组 织转变线,是在极其缓 慢加热和冷却条 件下 得到的。 在实际生产中,固态相 变时都有不同程度的过 热度或过冷度(见右 图)。为便于区别,将 加热时各相变点用ACl、 AC3、ACcm表示,冷却 时各相变点用Arl、Ar3、 Arcm表示。
2.3.2 钢在冷却时的组织转变
1、过冷奥氏体的等温转变 以共析钢为例,介绍等温转变曲线及转变产物。 1)过冷奥氏体等温转变曲线(C曲线) 左边曲线为过冷奥氏体转 变开始线,右边曲线为过冷奥 氏体等温转变终了线。 A1线以上是奥氏体稳定区; A1线以下,转变开始线的左边 为过冷奥氏体区,转变终了线 的右边是转变产物区,转变开 始线和终了线之间为过
钢经加热奥氏体化后,可以采用不同方式冷却,获得 所需要的组织和性能。 成分相同的钢,奥氏体化后,采用不同方式冷却,将 获得不同的力学性能,见下表。
2.3.2 钢在冷却时的组织转变
实际生产中,必须过冷到A1温度以下才开始转变。 在相变温度A1以下还没有发生转变而处于不稳定状态的奥 氏体称过冷奥氏体。 过冷奥氏体有等温 转变和连续冷却转变 两种冷却转变方式 (见右图)。