2019年中考数学试卷(word版,含答案) (64)
2019年广东省中考数学真题(Word版,含答案)

2019年广东省中考数学真题(W o r d版,含答案)-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN机密★启用前2019年广东省初中学业水平考试数学说明:1.全卷共4页,满分为120分,考试用时为100分钟.2.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的准考证号、姓名、考场号、座位号.用2B铅笔把对应该号码的标号涂黑.3.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试题上.4.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.5.考生务必保持答题卡的整洁.考试结束时,将试卷和答题卡一并交回.一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.2-的绝对值是A.2B.2-C.1 2D.2±2.某网店2019年母亲节这天的营业额为221000元,将数221000用科学记数法表示为A.62.2110⨯ B.52.2110⨯ C.322110⨯D.60.22110⨯3.如图,由4个相同正方体组合而成的几何体,它的左视图是A. B. C.D.4.下列计算正确的是 A.632b b b ÷= B.339b b b ⋅= C.2222a a a +=D.()336a a =5.下列四个银行标志中,既是中心对称图形,又是轴对称图形的是A. B. C.D.6.数据3、3、5、8、11的中位数是 A.3 B.4C.5D.67.实数a 、b 在数轴上的对应点的位置如图所示,下列式子成立的是A.a b >B.a b <C.0a b +>D.0ab< 8.24 A.4-B.4C.4±D.29.已知1x 、2x 是一元二次方程220x x -=的两个实数根,下列结论错误..的是 A.12x x ≠B.21120x x -=C.122x x +=D.122x x ⋅=10.如图,正方形ABCD 的边长为4,延长CB 至E 使2EB =,以EB 为边在上方作正方形EFGB ,延长FG 交DC 于M ,连接AM 、AF ,H 为AD 的中点,连接FH 分别与AB 、AM 交于点N 、K .则下列结论:①ANH GNF ∆≅∆;②AFN HFG ∠=∠;③2FN NK =;④:1:4AFN ADM S S ∆∆=.其中正确的结论有A.1个B.2个C.3个D.4个二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上.11.计算:10120193-⎛⎫+= ⎪⎝⎭_________.12.如图,已知//a b ,175∠=︒,则2∠=_______.13.一个多边形的内角和是1080︒,这个多边形的边数是______. 14.已知23x y =+,则代数式489x y -+的值是_______________.15.如图,某校教学楼AC 与实验楼BD 的水平间距153CD =米,在实验楼顶部B 点测得教学楼顶部A 点的仰角是30︒,底部C 点的俯角是45︒,则教学楼AC 的高度是______米(结果保留根号).16.如题16-1图所示的图形是一个轴对称图形,且每个角都是直角,长度如图所示,小明按题16-2图所示方法玩拼图游戏,两两相扣,相互间不留空隙,那么小明用9个这样的图形(题16-1图)拼出来的图形的总长度是_______(结果用含a 、b 代数式表示).三、解答题(一)(本大题3小题,每小题6分,共18分)17.解不等式组:()12214x x ->⎧⎨+>⎩①②18.先化简,再求值:221224xx x x x x -⎛⎫-÷ ⎪---⎝⎭,其中2x =.19.如图,在ABC ∆中,点D 是边AB 上的一点.(1)请用尺规作图法,在ABC ∆内,求作ADE ∠,使ADE B ∠=∠,DE 交AC 于E ;(不要求写作法,保留作图痕迹) (2)在(1)的条件下,若2AD DB =,求AEEC的值.四、解答题(二)(本大题3小题,每小题7分,共21分)20.为了解某校九年级全体男生1000米跑步的成绩,随机抽取了部分男生进行测试,并将测试成绩分为A 、B 、C 、D 四个等级,绘制如下不完整的统计图表,如题图表所示,根据图表信息解答下列问题:成绩等级频数分布表成绩等级扇形统计图成绩等级频数A24B10C xD2合计y(1)x=______,y=______,扇形图中表示C的圆心角的度数为______度;(2)甲、乙、丙是A等级中的三名学生,学校决定从这三名学生中随机抽取两名介绍体育锻炼经验,用列表法或画树状图法,求同时抽到甲、乙两名学生的概率.21.某校为了开展“阳光体育运动”,计划购买篮球、足球共60个,已知每个篮球的价格为70元,每个足球的价格为80元.(1)若购买这两类球的总金额为4600元,求篮球、足球各买了多少个?(2)若购买篮球的总金额不超过购买足球的总金额,求最多可购买多少个篮球?22.在如图所示的网格中,每个小正方形的边长为1,每个小正方形的顶点叫格点,ABC∆的三个顶点均在格点上,以点A为圆心的EF与BC相切于点D,分别交AB、AC于点E、F.(1)求ABC∆三边的长;(2)求图中由线段EB、BC、CF及FE所围成的阴影部分的面积.五、解答题(三)(本大题3小题,每小题9分,共27分)23.如图,一次函数1y k x b =+的图象与反比例函数2k y x=的图象相交于A 、B 两点,其中点A 的坐标为()1,4-,点B 的坐标为()4,n .(1)根据图象,直接写出满足21k k x b x+>的x 的取值范围; (2)求这两个函数的表达式;(3)点P 在线段AB 上,且:1:2AOP BOP S S ∆∆=,求点P 的坐标.24.如题24-1图,在ABC ∆中,AB AC =,O 是ABC ∆的外接圆,过点C 作BCD ACB ∠=∠交O 于点D ,连接AD 交BC 于点E ,延长DC 至点F ,使CF AC =,连接AF .(1)求证:ED EC =; (2)求证:AF 是O 的切线;(3)如题24-2图,若点G 是ACD ∆的内心,25BC BE ⋅=,求BG 的长.25.如题25-1图,在平面直角坐标系中,抛物线233373848y x x =+-与x 轴交于点A 、B (点A 在点B 右侧),点D 为抛物线的顶点.点C 在y 轴的正半轴上,CD 交x 轴于点F ,CAD ∆绕点C 顺时针旋转得到CFE ∆,点A 恰好旋转到点F ,连接BE .(1)求点A 、B 、D 的坐标;(2)求证:四边形BFCE 是平行四边形;(3)如题25-2图,过顶点D 作1DD x ⊥轴于点1D ,点P 是抛物线上一动点,过点P 作PM x ⊥轴,点M 为垂足,使得PAM ∆与1DD A ∆相似(不含全等). ①求出一个满足以上条件的点P 的横坐标; ②直接回答....这样的点P 共有几个?2019年广东省初中学业水平考试数学试卷参考答案1.A2.B3.A4.C5.C6.C7.D8.B9.D10.C11.4 12.105︒ 13.8 14.2115.()15153+ 16.8a b +三、解答题(一) 17.解不等式①,得3x >, 解不等式②,得1x >, 则不等式组的解集是3x >. 18.解:原式()()()22121x x x x x x +--=⋅-- 22x +=. 当2x =时,原式22212+==+. 19.解:(1)如图.(2)∵ADE B ∠=∠, ∴//DE BC . ∴ADE ABC ∆∆.∴2AE ADEC DB==. 四、解答题(二) 20.(1)44036(2)解:画树状图如图:∴()2163P ==同时抽到甲、乙. 21.解:(1)设篮球、足球各买了x ,y 个,根据题意,得60,70804600,x y x y +=⎧⎨+=⎩解得20,40.x y =⎧⎨=⎩∴篮球、足球各买了20个,40个. (2)设购买了a 个篮球, 根据题意,得()708060a a ≤-. 解得32a ≤.∴最多可购买篮球32个.22.解:(1)AB ==AC ==BC =(2)由(1)得222AB AC BC +=, ∴90BAC ∠=︒.连接AD ,AD == ∴=ABC AEF S S S ∆-阴扇形21124AB AC AD π=⋅-⋅ 205π=-.五、解答题(三)23.解:(1)1x <-或04x <<.(2)把()1,4A -代入2k y x =,得24k =-. ∴4y x =-.∵点()4,B n 在4y x =-上,∴1n =-.∴()4,1B -.把()1,4A -,()4,1B -代入11y k x b =+得114,41,k b k b -+=⎧⎨+=-⎩解得11,3.k b =-⎧⎨=⎩∴3y x =-+.(3)设AB 与y 轴交于点C ,∵点C 在直线3y x =-+上,∴()0,3C .()()113147.522AOB A B S OC x x ∆=⋅+=⨯⨯+=,又:1:2AOD BOP S S ∆∆=, ∴17.5 2.53AOP S ∆=⨯=,5BOP S ∆=. 又131 1.52AOC S ∆=⨯⨯=,∴点P 在第一象限.∴ 2.5 1.51COP S ∆=-=.又3OC =,∴1312P x ⨯⨯=,解得23P x =.把23P x =代入3y x =-+,得73P y =. ∴27,33P ⎛⎫ ⎪⎝⎭. 24.(1)证明:∵AB AC =,∴ABC ACB ∠=∠. 又∵ACB BCD ∠=∠,ABC ADC ∠=∠, ∴BCD ADC ∠=∠.∴ED EC =.(2)证明:连接OA ,∵AB AC =,∴AB AC =.∴OA BC ⊥.∵CA CF =,∴CAF CFA ∠=∠.∴2ACD CAF CFA CAF ∠=∠+∠=∠.∵ACB BCD ∠=∠,∴2ACD ACB ∠=∠.∴CAF ACB ∠=∠.∴//AF BC .∴OA AF ⊥.∴AF 为O 的切线.(3)∵ABE CBA ∠=∠,BAD BCD ACB ∠=∠=∠, ∴ABE CBA ∆∆.∴AB BE BC AB=. ∴2AB BC BE =⋅.∵25BC BE ⋅=,∴5AB =.连接AG ,∴BAG BAD DAG ∠=∠+∠,BGA GAC ACB ∠=∠+∠.∵点G 为内心,∴DAG GAC ∠=∠.又∵BAD BCD ACB ∠=∠=∠,∴BAD DAG GAC ACB ∠+∠=∠+∠.∴BAG BGA ∠=∠.∴5BG AB ==.25.(1)解:令233330848x x +-=, 解得1x =或7-. 故()1,0A ,()7,0B -. 配方得()233238y x =+-,故(3,23D --. (2)证明:∵CF CA =,1OA OF ==, 易证1DD F COF ∆∆. ∴11D D CO FD OF=. ∴3OC =∴2CA CF FA ===,即ACF ∆为等边三角形. ∴60AFC ECF ∠=∠=︒.∴//EC BF .又∵6EC DC ==,6BF =, ∴//EC BF .∴四边形BFCE 是平行四边形.(3)设点P 的坐标为233373x x x ⎛+ ⎝⎭, ①当点P 在B 点左侧时,则1)11DD D A PM MA=,∴11x =(舍),211x =-. 2)11DD D A PA AM =,∴11x =(舍),2373x =-.②当点P 在A 点右侧时, 因为PAM ∆与1DD A ∆相似, 则3)11DD PM MA D A=,∴11x =(舍),23x =-(舍). 4)11D A PM MA DD =,∴11x =(舍),253x =-(舍). ③当点P 在AB 之间时, ∵PAM ∆与1DD A ∆相似,则5)11DD PM MA D A=,11x =(舍),23x =-(舍). 6)11D A PM MA DD =,11x =(舍),253x =-. 综上所述,点P 的横坐标为53-,11-,373-,点共有3个.。
2019年山西省中考数学试卷及答案(Word版)

2019年山西省中考数学试卷及答案(Word版)2019年山西省中考数学试卷一、选择题(共10小题,每小题3分,共30分)1.计算-3+(-1)的结果是()。
A。
2 B。
-2 C。
4 D。
-42.下列运算错误的是()。
A。
B。
x^2+x^2=2x^4C。
|a|=|-a| D。
3.从晋商大院的窗格图案中选取以下四种窗格图案,其中是中心对称图形但不是轴对称图形的是()。
A。
B。
C。
D。
4.在△ABC中,点D、E分别是边AB,BC的中点.若△DBE的周长是6,则△ABC的周长是()。
A。
8 B。
10 C。
12 D。
145.解一元二次方程3x^2-6x=0时,可以运用因式分解法,将此方程化为3x(x-2)=0,从而得到两个一元一次方程:3x=0或x-2=0,进而得到原方程的解为x1=0,x2=2.这种解法体现的数学思想是()。
A。
转化思想 B。
函数思想 C。
数形结合思想 D。
公理化思想6.如图,直线a∥b,一块含60°角的直角三角板ABC (∠A=60°)按如图所示放置.若∠1=55°,则∠2的度数为()。
A。
105° B。
110° C。
120° D。
125°7.化简()的结果是()。
A。
B。
C。
D。
8.我国古代秦汉时期有一部数学著作,堪称是世界数学经典名著.它的出现,标志着我国古代数学体系的正式确立.它采用按类分章的问题集的形式进行编排.其中方程的解法和正负数加减运算法则在世界上遥遥领先,这部著作的名称是()。
A。
《九章算术》B。
《海岛算经》C。
《孙子算经》D。
《五经算术》9.某校举行春季运动会,需要在初一年级选取一名志愿者.初一(1)班、初一(2)班、初一(3)班各有2名同学报名参加.现从这6名同学中随机选取一名志愿者,则被选中的这名同学恰好是初一(3)班同学的概率是()。
A。
B。
C。
D。
10.如图,在网格中,小正方形的边长均为1,点A,B,C都在格点上,则∠ABC的正切值是()。
2019年陕西省中考数学试题(word版含答案)

机密★启用前试卷类型:A2019年陕西省初中毕业学业考试数学试卷注意事项:1、本试卷分为第一部分(选择题)和第二部分(非选择题)。
全卷共8页,总分120分。
考试时间120分钟。
2、领取试卷和答题卡后,请用0.5毫米黑色墨水签字笔,分别在试卷和答题卡上填写姓名和准考证号,同时用2B 铅笔在答题卡填涂对应的试卷类型信息点(A 或B)。
3、请在答题卡上各题的指定区域内作答,否则作答无效。
4、作图时,先用铅笔作图,再用规定签字笔描黑。
5、考试结束,本试卷和答题卡一并交回。
第一部分(选择题 共30分)一、选择题(共10小题,每小题3分,计30分,每小题只有一个选项是符合题意的) 1.计算:(-3)0=【A 】A .1B .0C .3D .-132.如图,是由两个正方体组成的几何体,则该几何体的俯视图为【D 】3.如图,OC 是∠AOB 的平分线,l ∥OB .若∠1=52°,则∠2的度数为【C 】A .52°B .54°C .64°D .69°4.若正比例函数y =-2x 的图象经过点(a -1,4),则a 的值为【A 】 A .-1 B .0 C .1 D .25.下列计算正确的是【D 】 A .2a 2·3a 2=6a 2 B .(-3a 2b )2=6a 4b 2 C .(a -b )2=a 2-b 2 D .-a 2+2a 2=a 26.如图,在△ABC 中,∠B =30°,∠C =45°,AD 平分∠BAC ,交BC 于点D ,DE ⊥AB ,垂足为E ,若DE =1,则BC 的长为【A 】A .2+ 2B .2+ 3C .2+ 3D .37.在平面直角坐标系中,将函数y =3x 的图象向上平移6个单位长度,则平移后的图象与x 轴交点的坐标为【B 】A .(2,0)B .(-2,0)C .(6,0)D .(-6,0) 8.如图,在矩形ABCD 中,AB =3,BC =6.若点E 、F 分别在AB 、CD 上,且BE =2AE ,DF =2FC ,G 、H 分别是AC 的三等分点,则四边形EHFG 的面积为【C 】A .1B .32C .2D .4BE =2AE ,DF =2FC ,G 、H 分别是AC 的三等分点 ∴E 是AB 的三等分点,F 是CD 的三等分点 ∴EG ∥BC 且EG =-13BC =2同理可得HF ∥AD 且HF =-13AD =2∴四边形EHFG 为平行四边形EG 和HF 间距离为1 S 四边形EHFG =2×1=29.如图,AB 是⊙O 的直径,EF 、EB 是⊙O 的弦,且EF =EB ,EF 与AB 交于点C ,连接OF .若∠AOF =40°,则∠F 的度数是【B 】A .20°B .35°C .40°D .55° 连接FB ,得到FOB =140°; ∴∠FEB =70° ∵EF =EB∴∠EFB =∠EBF ∵FO =BO ,∴∠OFB =∠OBF ,∴∠EFO =∠EBO ,∠F =35°10.在同一平面直角坐标系中,若抛物线y =x 2+(2m -1)x +2m -4与y =x 2-(3m +n )x +n 关于y 轴对称,则符合条件的m 、n 的值为【D 】A .m =57,n =-187B .m =5,n =-6C .m =-1,n =6D .m =1,n =-2关于y 轴对称,a ,c 不变,b 变为相反数,列方程组求m ,n第二部分(非选择题 共90分)二、填空题(共4小题,每小题3分,计12分)11.已知实数-12,0.16,3,π,25,34,其中为无理数的是 3,π,34 .12.若正六边形的边长为3,则其较长的一条对角线长为 6 .13.如图,D 是矩形AOBC 的对称中心,A (0,4),B (6,0).若一个反比例函数的图象经过点D ,交AC 于点M ,则点M 的坐标为 ⎝⎛⎭⎫32,4 .14.如图,在正方形ABCD 中,AB =8,AC 与BD 交于点O ,N 是AO 的中点,点M 在BC 边上,且BM =6,P 为对角线BD 上一点,则PM -PN 的最大值为 2 .三、解答题(共11小题,计78分.解答应写出过程) 15.(本题满分5分)计算:-2×3-27+|1-3|-⎝⎛⎭⎫12-2原式=-2×(-3)+3-1-4 =1+ 316.(本题满分5分) 化简:⎝⎛⎭⎪⎫a -2a +2+8aa 2-4÷a +2a 2-2a原式=(a +2)2(a -2)(a +2)×a (a -2)a +2=a17.(本题满分5分) 如图,在△ABC 中,AB =AC ,AD 是BC 边上的高,请用尺规作图法,求作△ABC 的外接圆.(保留作图痕迹,不写作法)18.(本题满分5分)如图,点A 、E 、F 、B 在直线l 上,AE =BF ,AC ∥BD ,且AC =BD . 求证:CF =DE . 证明:∵AE =BF , ∴AF =BE ∵AC ∥BD ,∴∠CAF =∠DBE 又AC =BD , ∴△ACF ≌△BDE ∴CF =DE19.(本题满分7分)本学期初,某校为迎接中华人民共和国建国七十周年,开展了以“不忘初心,缅怀革命先烈,奋斗新时代”为主题的读书活动.校德育处对本校七年级学生四月份“阅读该主题相关书籍的读书量”(下面简称:“读书量”)进行了随机抽样调查,并对所有随机抽取学生的“读书量”(单位:本)进行了统计,如下图所示:根据以上信息,解答下列问题:(1)补全上面两幅统计图;填出本次所抽取学生四月份“读书量”的众数为3本;(2)求本次所抽取学生四月份“读书量”的平均数;(3)已知该校七年级有1200名学生,请你估计该校七年级学生中,四月份“读书量”为5本的学生人数.解:(1)补全两幅统计图(2)∵18÷30%=60∴平均数=(1×3+2×18+3×21+4×12+5×6)÷60=3本∴本次所抽取的学生四月份“读书量”的平均数为3本(3)∵1200×10%=120(人),∴估计该校七年级学生中,四月份“读书量”为5本的学生有120人20.(本题满分7分)小明想利用刚学过的测量知识来测量学校内一棵古树的高度.一天下午,他和学习小组的同学们带着测量工具来到这棵古树前,由于有围栏保护,他们无法到达古树的底部B,如图所示.于是,他们先在古树周围的空地上选择了一点D,并在点D处安装了测倾器DC,测得古树的顶端A 的仰角为45°;再在BD的延长线上确定一点G,使DG=5m,并在点G处的地面上水平放置了一个小平面镜,小明沿BG方向移动,当移动到点F时,他刚好在小平面镜内看到这棵古树的顶端A的像,此时,测得FG=2m,小明眼睛与地面的距离EF=1.6m,测倾器的高度CD=0.5m.已知点F、G、D、B在同一水平直线上,且EF、CD、AB均垂直于FB,求这棵古树的高AB.(小平面镜的大小忽略不计)解:过点C作CH⊥AB于点H,则CH=BD,BH=CD=0.5在Rt△ACH中,∠ACH=45°,∴AH=CH=BD∴AB=AH+BH=BD+0.5∵EF⊥FB,AB⊥FB,∴∠EFG=∠ABG=90°.由题意,易知∠EGF=∠AGB,∴△EFG∽△ABC∴EF AB =FG BG 即 1.6BD +0.5=25+BD解之,得BD =17.5∴AB =17.5+0.5=18(m). ∴这棵古树的高AB 为18m . 21.(本题满分7分)根据记录,从地面向上11km 以内,每升高1km ,气温降低6℃;又知道距地面11km 以上的高空,气温几乎不变.若地面气温为m (℃),设距地面的高度为x (km)处的气温为y (℃).(1)写出距地面的高度在11km 以内的y 与x 之间的函数表达式;(2)上周日,小敏在乘飞机从上海飞回西安途中,某一时刻,她从机舱内屏幕显示的相关数据得知,飞机外气温为-26℃时,飞机距地面的高度为7km ,求当时这架飞机下方地面的气温.小敏想,假如飞机当时在距地面12km 的高空,飞机外的气温是多少度呢?请求出假如当时飞机距地面12km 时,飞机外的气温.解:(1)y =m -6x(2)将x =7,y =-26代入y =m -6x ,得-26=m -42,∴m =16 ∴当时地面气温为16℃ ∵x =12>11,∴y =16-6×11=-50(℃)假如当时飞机距地面12km 时,飞机外的气温为-50℃ 22.(本题满分7分)现有A 、B 两个不透明的袋子,分别装有3个除颜色外完全相同的小球,其中A 袋装有2个白球,1个红球;B 袋装有2个红球,1个白球.(1)将A 袋摇匀,然后从A 袋中随机摸出一个小球,求摸出的小球是白色的概率;(2)小林和小华商定了一个游戏规则:从摇匀后的A 、B 两袋中各随机摸出一个小球,摸出的这两个小球,若颜色相同,则小林获胜;若颜色不同,则小华获胜.请用列表法或画树状图的方法说明这个游戏规则对双方是否公平.解:(1)共有3种等可能结果,而摸出白球的结果有2种∴P (摸出白球)=23由上表可知,共有9种等可能结果,其中颜色相同的结果有4种,颜色不同的结果有5种 ∴P (颜色相同)=49,P (颜色不同)=59∵49<59∴这个游戏规则对双方不公平 23.(本题满分8分)如图,AC 是⊙O 的直径,AB 是⊙O 的一条弦,AP 是⊙O 的切线,作BM =AB ,并与AP 交于点M ,延长MB 交AC 于点E ,交⊙O 于点D ,连接AD .(1)求证:AB =BE ;(2)若⊙O 的半径R =5,AB =6,求AD 的长. (1)证明:∵AP 是⊙O 的切线, ∴∠EAM =90°,∴∠BAE +∠MAB =90°,∠AEB +∠AMB =90°. 又∵AB =BM ,∴∠MAB =∠AMB , ∴∠BAE =∠AEB , ∴AB =BE(2)解:连接BC∵AC 是⊙O 的直径, ∴∠ABC =90°在Rt △ABC 中,AC =10,AB =6, ∴BC =8由(1)知,∠BAE =∠AEB , ∴△ABC ∽△EAM ∴∠C =∠AME ,AC EM =BC AM即1012=8AM ∴AM =485又∵∠D =∠C , ∴∠D =∠AMD ∴AD =AM =48524.(本题满分10分)在平面直角坐标系中,已知抛物线L :y =ax 2+(c -a )x +c 经过点A (-3,0)和点B (0,-6),L 关于原点O 对称的抛物线为L ′.(1)求抛物线L 的表达式;(2)点P 在抛物线L ′上,且位于第一象限,过点P 作PD ⊥y 轴,垂足为D .若△POD 与△AOB 相似.求符合条件的点P 的坐标.解:(1)由题意,得⎩⎨⎧9a -3(c -a )+c =0c =-6,解之,得⎩⎨⎧a =-1c =-6,∴L :y =-x 2-5x -6(2)∵点A 、B 在L ′上的对应点分别为A ′(-3,0)、B ′(0,-6) ∴设抛物线L ′的表达式y =x 2+bx +6将A ′(-3,0)代入y =x 2+bx +6,得b =-5. ∴抛物线L ′的表达式为y =x 2-5x +6 A (-3,0),B (0,-6), ∴AO =3,OB =6.设P (m ,m 2-5m +6)(m >0). ∵PD ⊥y 轴,∴点D 的坐标为(0,m 2-5m +6) ∵PD =m ,OD =m 2-5m +6Rt △POD 与Rt △AOB 相似, ∴PD AO =OD BO 或PD BO =OD AO①当PD AO =OD BO 时,即m 3=m 2-5m +66,解之,得m 1=1,m 2=6∴P 1(1,2),P 2(6,12)②当PD BO =OD AO 时,即m 6=m 2-5m +63,解之,得m 3=32,m 4=4∴P 3(32,34),P 4(4,2)∵P 1、P 2、P 3、P 4均在第一象限∴符合条件的点P 的坐标为(1,2)或(6,12)或(32,34)或(4,2)25.(本题满分12分) 问题提出(1)如图1,已知△ABC ,试确定一点D ,使得以A 、B 、C 、D 为顶点的四边形为平行四边形,请画出这个平行四边形.问题探究 (2)如图2,在矩形ABCD 中,AB =4,BC =10.若要在该矩形中作出一个面积最大的△BPC ,且使∠BPC =90°,求满足条件的点P 到点A 的距离.问题解决(3)如图3,有一座塔A ,按规划,要以塔A 为对称中心,建一个面积尽可能大的形状为平行四边形景区BCDE .根据实际情况,要求顶点B 是定点,点B 到塔A 的距离为50米,∠CBE =120°.那么,是否可以建一个满足要求的面积最大的平行四边形景区BCDE ?若可以,求出满足要求的□BCDE 的最大面积;若不可以,请说明理由.(塔A 的占地面积忽略不计)。
2019年新疆中考数学试题(Word版,含解析)

2019年新疆中考数学试卷一、选择题(本大题共9小题,每小题5分,共45分,在每小题列出的四个选项中,只有一项符合题目要求,请按答题卷中的要求作答。
)1.(5分)﹣2的绝对值是()A.2B.﹣2C.±2D.2.(5分)下列四个几何体中,主视图为圆的是()A.B.C.D.3.(5分)如图,AB∥CD,∠A=50°,则∠1的度数是()A.40°B.50°C.130°D.150°4.(5分)下列计算正确的是()A.a2•a3=a6B.(﹣2ab)2=4a2b2C.x2+3x2=4x4D.﹣6a6÷2a2=﹣3a35.(5分)甲、乙两人连续5次射击成绩如图所示,下列说法中正确的是()A.甲的成绩更稳定B.乙的成绩更稳定C.甲、乙的成绩一样稳定D.无法判断谁的成绩更稳定6.(5分)若关于x的一元二次方程(k﹣1)x2+x+1=0有两个实数根,则k的取值范围是()A.k≤B.k>C.k<且k≠1D.k≤且k≠1 7.(5分)在某篮球邀请赛中,参赛的每两个队之间都要比赛一场,共比赛36场.设有x 个队参赛,根据题意,可列方程为()A.x(x﹣1)=36B.x(x+1)=36C.x(x﹣1)=36D.x(x+1)=368.(5分)如图,在△ABC中,∠C=90°,∠A=30°,以点B为圆心,适当长为半径画弧,分别交BA,BC于点M,N;再分别以点M,N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线BP交AC于点D.则下列说法中不正确的是()A.BP是∠ABC的平分线B.AD=BDC.S△CBD:S△ABD=1:3D.CD=BD9.(5分)如图,正方形ABCD的边长为2,点E是BC的中点,AE与BD交于点P,F是CD上一点,连接AF分别交BD,DE于点M,N,且AF⊥DE,连接PN,则以下结论中:①S△ABM=4S△FDM;②PN=;③tan∠EAF=;④△PMN∽△DPE,正确的是()A.①②③B.①②④C.①③④D.②③④二、填空题(本大题共6小题,每小题5分,共30分.)10.(5分)将数526000用科学记数法表示为.11.(5分)五边形的内角和为度.12.(5分)计算:﹣=.13.(5分)同时掷两枚质地均匀的骰子,两枚骰子点数之和小于5的概率是.14.(5分)如图,在△ABC中,AB=AC=4,将△ABC绕点A顺时针旋转30°,得到△ACD,延长AD交BC的延长线于点E,则DE的长为.15.(5分)如图,在平面直角坐标系xOy中,已知正比例函数y=﹣2x与反比例函数y=的图象交于A(a,﹣4),B两点,过原点O的另一条直线l与双曲线y=交于P,Q两点(P点在第二象限),若以点A,B,P,Q为顶点的四边形面积为24,则点P的坐标是.三、解答题(本大题共8小题,共75分.)16.(6分)计算:(﹣2)2﹣+(﹣1)0+()﹣1.17.(8分)解不等式组:并把解集在数轴上表示出来.18.(8分)某校为了解九年级学生每天参加体育锻炼的时间,从该校九年级学生中随机抽取20名学生进行调查,得到如下数据(单位:分钟):30 60 70 10 30 115 70 60 75 90 15 70 40 75 105 80 60 30 70 45对以上数据进行整理分析,得到下列表一和表二:表一时间t(单位:分钟)0≤t<3030≤t<6060≤t<9090≤t<120人数2a10b 表二平均数中位数众数60c d 根据以上提供的信息,解答下列问题:(1)填空①a=,b=;②c=,d=;(2)如果该校现有九年级学生200名,请估计该校九年级学生每天参加体育锻炼的时间达到平均水平及以上的学生人数.19.(10分)如图,在菱形ABCD中,对角线AC,BD相交于点O,E是CD中点,连接OE.过点C作CF∥BD交OE的延长线于点F,连接DF.求证:(1)△ODE≌△FCE;(2)四边形OCFD是矩形.20.(10分)如图,一艘海轮位于灯塔P的东北方向,距离灯塔80海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东30°方向上的B处.(1)求海轮从A处到B处的途中与灯塔P之间的最短距离(结果保留根号);(2)若海轮以每小时30海里的速度从A处到B处,试判断海轮能否在5小时内到达B 处,并说明理由.(参考数据:≈1.41,≈1.73,≈2.45)21.(10分)某水果店以每千克8元的价格购进苹果若干千克,销售了部分苹果后,余下的苹果每千克降价4元销售,全部售完.销售金额y(元)与销售量x(千克)之间的关系如图所示,请根据图象提供的信息完成下列问题:(1)降价前苹果的销售单价是元/千克;(2)求降价后销售金额y(元)与销售量x(千克)之间的函数解析式,并写出自变量的取值范围;(3)该水果店这次销售苹果盈利了多少元?22.(10分)如图,AB是⊙O的直径,CD与⊙O相切于点C,与AB的延长线交于点D,CE⊥AB于点E.(1)求证:∠BCE=∠BCD;(2)若AD=10,CE=2BE,求⊙O的半径.23.(13分)如图,在平面直角坐标系中,抛物线y=ax2+bx+c经过A(﹣1,0),B(4,0),C(0,4)三点.(1)求抛物线的解析式及顶点D的坐标;(2)将(1)中的抛物线向下平移个单位长度,再向左平移h(h>0)个单位长度,得到新抛物线.若新抛物线的顶点D′在△ABC内,求h的取值范围;(3)点P为线段BC上一动点(点P不与点B,C重合),过点P作x轴的垂线交(1)中的抛物线于点Q,当△PQC与△ABC相似时,求△PQC的面积.2019年新疆中考数学试卷参考答案与试题解析一、选择题(本大题共9小题,每小题5分,共45分,在每小题列出的四个选项中,只有一项符合题目要求,请按答题卷中的要求作答。
2019天津市中考数学试题(Word版,含解析)

2019年天津市初中毕业生学生考试试卷数学试卷满分120分,考试时间100分钟。
第I 卷一、选择题(本大题12小题,每小题3分,共36分) 1.计算(-3)×9的 结果等于A. -27B. -6C. 27D. 6 【答案】A【解析】有理数的 乘法运算:=-3×9=-27,故选A. 2.︒60sin 2的 值等于A. 1B. 2C. 3D. 2 【答案】B【解析】锐角三角函数计算,︒60sin 2=2×23=3,故选A. 3.据2019年3月21日《天津日报》报道:“伟大的 变革---庆祝改革开放四十周年大型展览”3月20日圆满闭幕,自开幕以来,现场观众累计约为4230000人次,将4230000用科学记数法表示为A. 0.423×107B.4.23×106C.42.3×105D.423×104 【答案】B【解析】科学记数法表示为4.23×106,故选B.4.在一些美术字中,有的 汉字是轴对称图形,下面4个汉字中,可以看做是轴对称图形的 是【答案】A【解析】美、丽、校、园四个汉子中,“美”可以看做轴对称图形。
故选A 5.右图是一个由6个相同的 正方体组成的 立体图形,它的 主视图是【答案】B【解析】图中的 立体图形主视图为,故选B.6.估计33的 值在A.2和3之间B.3和4之间C.4和5之间D.5和6之间 【答案】D 【解析】因为,所以,故选D.7.计算1212+++a a a 的 结果是 A. 2 B. 22+a C. 1 D.14+a a【答案】A 【解析】21221212=++=+++a a a a a ,故选A. 8.如图,四边形ABCD 为菱形,A 、B 两点的 坐标分别是(2,0),(0,1),点C 、D 在坐标轴上,则菱形ABCD 的 周长等于A.5B.34C.54D. 20【答案】C【解析】由勾股定理可得, 由菱形性质可得, 所以周长等于故选C. 9.方程组⎩⎨⎧=-=+1126723y x y x ,的 解是A.⎩⎨⎧=-=51y xB.⎩⎨⎧==21y xC.⎩⎨⎧==1-3y xD.⎪⎩⎪⎨⎧==212y x【答案】D【解析】用加减消元法,⎩⎨⎧=-=+②①1126723y x y x①+②=1172623+=-++y x y x189=x 2=x 代入2=x 到①中,726=+y 则21=y ,故选D.10.若点A (-3,1y ),B (-2,2y ),C (1,3y )都在反比函数xy 12-=的 图象上,则321,,y y y 的 关系A. 312y y y <<B.213y y y <<C.321y y y <<D.123y y y <<【答案】B【解析】将A (-3,1y ),B (-2,2y ),C (1,3y )代入反比函数xy 12-=中,得:12-112,6212,4312321=-==--==--=y y y ,所以213y y y <<,故选B. 11.如图,将△ABC 绕点C 顺时针旋转得到△DEC ,使点A 的 对应点D 恰好落在边AB 上,点B 的 对应点为E ,连接BE ,下列结论一定正确的 是A.AC=ADB.AB ⊥EBC. BC=DED.∠A=∠EBC【答案】D【解析】由旋转性质可知,AC=CD ,AC ≠AD ,∴A 错 由旋转性质可知,BC=EC ,BC ≠DE ,∴C 错由旋转性质可知,∠ACB=∠DCE ,∵∠ACB=∠ACD+∠DCB ,∠DCE=∠ECB+∠DCB ∴∠ACD=∠ECB ,∵AC=CD ,BC=CE ,∴∠A=∠CDA=21(180°-∠ECB ),∠EBC=∠CEB=21(180°-∠ECB ),∴D 正确,由于由题意无法得到∠ABE=90°,∴B 选项错误. 故选D 。
大连市2019年中考数学试题含答案解析(word版)

2019辽宁省大连市中考数学试卷(解析版)(满分150分,考试时间120分钟)一、选择题(本大题共10小题,每小题3分,满分24分,在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.(2019辽宁大连,1,3分)﹣2的绝对值是( ) A . 2 B .-2 C .21 D .-21 【答案】A【解析】解:根据负数的绝对值等于它的相反数,得|﹣2|=2.故选A .2. (2019辽宁大连,2,3分)如图是某几何体的三视图,则该几何体是( )(第2题)A .球B .圆柱C .圆锥D .三棱柱【答案】C【解析】解:主视图和左视图都是等腰三角形,那么此几何体为锥体,由俯视图为圆,可得此几何体为圆锥,故选C.3.(2019辽宁大连,3,3分)下列长度的三条线段能组成三角形的是( ) A . 1,2,3 B .,1,2,3 C .3,4,8 D .4,5,6【答案】D【解析】解:根据三角形任意两边之和大于第三边,只要两条较短的边的和大于最长边即可。
故选D . 4. (2019辽宁大连,4,3分)在平面直角坐标系中,将点P (3,2)向右平移2个单位长度,所得到的点的坐标为( )A.(1,2)B.(3,0)C.(3,4)D.(5,2) 【答案】D【解析】解:根据点的坐标平移规律“左减右加,下减上加”,可知横坐标应变为5,而纵坐标不变,故选D. 5. (2019辽宁大连,5,3分)方程4)1(2x 3=-+x 的解是( )A. 52=x B. 65=x C.2=x D.1=x【答案】C【解析】解:4)1(2x 3=-+x ,去括号得:3x+2-2x=4.移项合并得:2=x 。
故选C.6. (2019辽宁大连,6,3分)计算()2x 3-的结果是( )A. 2x 6B.2x 6-C.2x 9D.2x 9- 【答案】C【解析】解:根据积的乘方,()2x 3-=()22x 3⋅-=2x 9,故选C.7. (2019辽宁大连,7,3分)某舞蹈队10名队员的年龄如下表所示:年龄(岁) 13 14 15 16 人数2431则这10名队员年龄的众数是( )A. 16B.14C.4D.3 【答案】B【解析】解:一组数据中出现次数最多的那个数据叫做众数,14出现的次数最多,故选B. 8. (2019辽宁大连,8,3分)如图,在△ABC 中,∠C=90°,AC=2,点D 在BC 上,∠ADC=2∠B,AD=5,则BC 的长为( )(第8题)A.3-1B.3+1C.5-1D.5+1【答案】D【解析】解:在△ADC 中,∠C=90°,AC=2,所以CD=()1252222=-=-AC AD ,因为∠ADC=2∠B ,∠ADC=∠B+∠BAD,所以∠B=∠BAD,所以BD=AD=5,所以BC=5+1,故选D.二、填空题(本大题共8小题,每小题3分,满分24分.)9.(2019辽宁大连,9,3分)比较大小:3__________ -2(填>、<或=)【答案】>【解析】解:根据一切正数大于负数,故答案为>。
2019年山东省青岛市中考数学试题(Word版,含答案)

2019 年青岛市初中学业水平考试数学试题(考试时间:120 分钟;满分:120 分)说明:1.本试题分第Ⅰ卷和第Ⅱ卷两部分,共24 题.第Ⅰ卷为选择题,共8 小题,24 分;第Ⅱ卷为填空题、作图题、解答题,共16 小题,96 分.2.所有题目均在答题卡上作答,在试题上作答无效.第Ⅰ 卷(共24 分)一、选择题(本大题共8 小题,每小题 3 分,共24 分)在每小题给出的四个选项中,只有一项是符合题目要求的.1.-3的相反数是A.-3B.-33C.±3D.32.下列四个图形中,既是轴对称图形,又是中心对称图形的是3.2019 年1 月3 日,我国“嫦娥四号”月球探测器在月球背面软着陆,实现人类有史以来首次成功登陆月球背面.已知月球与地球之间的平均距离约为384 000km,把384 000km用科学记数法可以表示为A.38.4 10 ⨯4 km B.3.84 10 ⨯5km C.0.384 10 ⨯ 6km D.3.84 10 ⨯6 km4.计算的结果是A.8m5B.-8m5C.8m6D.-4m4+12m55.如图,线段AB 经过⊙O 的圆心,AC ,BD 分别与⊙O 相切于点C ,D .若AC =BD = 4 ,∠A=45 ︒,则弧CD的长度为A.πB.2πC.2πD.4π6.如图,将线段AB 先向右平移5 个单位,再将所得线段绕原点按顺时针方向旋转90︒,得到线段A'' B ,则点B 的对应点B'的坐标是A.(-4 , 1)B.(-1, 2)C.(4 ,- 1)D.(1 ,- 2)7.如图,BD 是△ABC 的角平分线,AE ⊥BD ,垂足为F .若∠ABC=35︒,∠ C=50︒,则∠CDE 的度数为A.35︒B.40︒C.45︒D.50︒8.已知反比例函数y=abx的图象如图所示,则二次函数y =a x 2-2x和一次函数y=bx+a在同一平面直角坐标系中的图象可能是第Ⅱ卷(共96 分)二、填空题(本大题共6 小题,每小题 3 分,共18 分)9.计算:=.10.若关于x 的一元二次方程有两个相等的实数根,则m 的值为.11.射击比赛中,某队员10 次射击成绩如图所示,则该队员的平均成绩是环.12.如图,五边形ABCDE 是⊙O 的内接正五边形,AF 是⊙O 的直径,则 BDF 的度数是°.13.如图,在正方形纸片ABCD 中,E 是CD 的中点,将正方形纸片折叠,点B 落在线段AE 上的点G 处,折痕为AF .若AD=4 cm,则CF 的长为cm .14.如图,一个正方体由27 个大小相同的小立方块搭成,现从中取走若干个小立方块,得到一个新的几何体.若新几何体与原正方体的表面积相等,则最多可以取走个小立方块.三、作图题(本大题满分 4 分)请用直尺、圆规作图,不写作法,但要保留作图痕迹.15.已知:∠α,直线l 及l 上两点A,B.求作:Rt△ABC ,使点C 在直线l 的上方,且∠ABC=90°,∠BAC=∠α.四、解答题(本大题共9 小题,共74 分)16.(本题每小题4 分,共8 分)(1)化简:(2)解不等式组,并写出它的正整数解.17.(本小题满分6 分)小明和小刚一起做游戏,游戏规则如下:将分别标有数字1,2,3, 4 的 4 个小球放入一个不透明的袋子中,这些球除数字外都相同.从中随机摸出一个球记下数字后放回,再从中随机摸出一个球记下数字.若两次数字差的绝对值小于2,则小明获胜,否则小刚获胜.这个游戏对两人公平吗?请说明理由.18.(本小题满分6 分)为了解学生每天的睡眠情况,某初中学校从全校800 名学生中随机抽取了40 名学生,调查了他们平均每天的睡眠时间(单位:h),统计结果如下:9,8,10.5,7,9,8,10,9.5,8,9,9.5,7.5,9.5,9,8.5,7.5,10,9.5,8,9,7,9.5,8.5,9,7,9,9,7.5,8.5,8.5,9,8,7.5,9.5,10,9.5,8.5,9,8,9.在对这些数据整理后,绘制了如下的统计图表:睡眠时间分组统计表睡眠时间分布情况组别睡眠时间分组人数(频数)1 7≤t<8 m2 8≤t<9 113 9≤t<10 n4 10≤t<11 4请根据以上信息,解答下列问题:(1)m = ,n = ,a = ,b = ;(2)抽取的这40 名学生平均每天睡眠时间的中位数落在组(填组别);(3)如果按照学校要求,学生平均每天的睡眠时间应不少于9 h,请估计该校学生中睡眠时间符合要求的人数.19.(本小题满分6 分)如图,某旅游景区为方便游客,修建了一条东西走向的木栈道AB ,栈道AB 与景区道路CD 平行.在C 处测得栈道一端A 位于北偏西42︒方向,在D 处测得栈道另一端B 位于北偏西32︒方向.已知CD =120 m ,BD =80 m ,求木栈道AB 的长度(结果保留整数).20.(本小题满分8 分)甲、乙两人加工同一种零件,甲每天加工的数量是乙每天加工数量的 1.5 倍,两人各加工600 个这种零件,甲比乙少用5 天.(1)求甲、乙两人每天各加工多少个这种零件?(2)已知甲、乙两人加工这种零件每天的加工费分别是150 元和120 元,现有3000 个这种零件的加工任务,甲单独加工一段时间后另有安排,剩余任务由乙单独完成.如果总加工费不超过7800 元,那么甲至少加工了多少天?21.(本小题满分8 分)如图,在□ABCD 中,对角线AC 与BD 相交于点O ,点 E ,F 分别为OB ,OD 的中点,延长AE 至G ,使EG =AE ,连接CG .(1)求证:△ABE≌△CDF ;(2)当AB 与AC 满足什么数量关系时,四边形EGCF 是矩形?请说明理由.22.(本小题满分10 分)某商店购进一批成本为每件30 元的商品,经调查发现,该商品每天的销售量y(件)与销售单价x(元)之间满足一次函数关系,其图象如图所示.(1)求该商品每天的销售量y 与销售单价x 之间的函数关系式;(2)若商店按单价不低于成本价,且不高于50 元销售,则销售单价定为多少,才能使销售该商品每天获得的利润w(元)最大?最大利润是多少?(3)若商店要使销售该商品每天获得的利润不低于800 元,则每天的销售量最少应为多少件?23.(本小题满分10 分)问题提出:如图,图①是一张由三个边长为 1 的小正方形组成的“L”形纸片,图②是一张a⨯b 的方格纸(a⨯ b的方格纸指边长分别为a,b 的矩形,被分成a⨯b个边长为1 的小正方形,其中a≥2 ,b≥2,且a,b 为正整数).把图①放置在图②中,使它恰好盖住图②中的三个小正方形,共有多少种不同的放置方法?问题探究:为探究规律,我们采用一般问题特殊化的策略,先从最简单的情形入手,再逐次递进,最后得出一般性的结论.探究一:把图①放置在 2 ⨯2的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图③,对于2⨯2的方格纸,要用图①盖住其中的三个小正方形,显然有4 种不同的放置方法.探究二:把图①放置在3⨯2的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图④,在3⨯2的方格纸中,共可以找到 2 个位置不同的 2 2 ⨯方格,依据探究一的结论可知,把图①放置在3⨯2 的方格纸中,使它恰好盖住其中的三个小正方形,共有2 ⨯ 4=8种不同的放置方法.探究三:把图①放置在 a ⨯ 2 的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图⑤,在 a ⨯ 2 的方格纸中,共可以找到_________个位置不同的2⨯2方格,依据探究一的结论可知,把图①放置在 a ⨯ 2 的方格纸中,使它恰好盖住其中的三个小正方形,共有_________种不同的放置方法.探究四:把图①放置在 a ⨯ 3 的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图⑥,在a⨯ 3 的方格纸中,共可以找到_________个位置不同的2⨯ 2方格,依据探究一的结论可知,把图①放置在 a ⨯ 3 的方格纸中,使它恰好盖住其中的三个小正方形,共有_________种不同的放置方法.……问题解决:把图①放置在 a ⨯ b的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?(仿照前面的探究方法,写出解答过程,不需画图.)问题拓展:如图,图⑦是一个由 4 个棱长为1 的小立方体构成的几何体,图⑧是一个长、宽、高分别为a,b ,c (a≥2 ,b≥2 ,c≥2 ,且a,b,c 是正整数)的长方体,被分成了a ⨯b ⨯c 个棱长为1 的小立方体.在图⑧的不同位置共可以找到_________个图⑦这样的几何体.24.(本小题满分12 分)已知:如图,在四边形ABCD 中,AB∥CD,∠ACB =90°,AB=10cm,BC=8cm,OD 垂直平分A C.点P 从点B 出发,沿BA 方向匀速运动,速度为1cm/s;同时,点Q 从点 D 出发,沿DC 方向匀速运动,速度为1cm/s;当一个点停止运动,另一个点也停止运动.过点P作PE⊥AB,交BC 于点E,过点Q 作QF∥AC,分别交AD,OD 于点F,G.连接OP,EG.设运动时间为t ( s )(0<t<5),解答下列问题:(1)当t 为何值时,点E 在 BAC 的平分线上?(2)设四边形PEGO 的面积为S(cm2) ,求S 与t 的函数关系式;(3)在运动过程中,是否存在某一时刻t ,使四边形PEGO 的面积最大?若存在,求出t 的值;若不存在,请说明理由;(4)连接OE,OQ,在运动过程中,是否存在某一时刻t ,使OE⊥OQ?若存在,求出t 的值;若不存在,请说明理由.。
2019年河南省中考数学试卷及答案(Word解析版)

2019年河南省初中学业水平暨高级中等学校招生考试试卷数 学注意事项:1. 本试卷共8页,三个大题,满分120分,考试时间100分钟,请用蓝、黑色水笔或圆珠笔直接答在试卷上。
参考公式:二次函数图像2(0)y ax bx c a =++≠的顶点坐标为24(,)24b ac b a a-- 一、选择题(每小题3分,共24分)下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母填在题后括号内。
1、-2的相反数是【】(A )2 (B)2-- (C)12 (D)12- 【解析】根据相反数的定义可知:-2的相反数为2【答案】A2、下列图形中,既是轴对称图形又是中心对称图形的是【】【解析】轴对称是指在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形。
中心对称图形是指平面内,如果把一个图形绕某个点旋转180°后,能与自身重合,那么就说这两个图形关于这个点成中心对称。
结合定义可知,答案是D【答案】D3、方程(2)(3)0x x -+=的解是【】(A )2x = (B )3x =- (C )122,3x x =-= (D )122,3x x ==-【解析】由题可知:20x -=或者30x +=,可以得到:122,3x x ==-【答案】D4、在一次体育测试中,小芳所在小组8个人的成绩分别是:46,47,48,48,49,49,49,50.则这8个人体育成绩的中位数是【】(A ) 47 (B )48 (C )48.5 (D )49【解析】中位数是将数据按照从小到大的顺序排列,其中间的一个数或中间两个数的平均数就是这组数的中位数。
本题的8个数据已经按照从小到大的顺序排列了,其中间的两个数是48和49,它们的平均数是48.5。
因此中位数是48.5【答案】C5、如图是正方形的一种张开图,其中每个面上都标有一个数字。
那么在原正方形中,与数字“2”相对的面上的数字是【】(A )1 (B )4 (C )5 (D )6【解析】将正方形重新还原后可知:“2”与“4”对应,“3”与“5”对应,“1”与“6”对应。
2019年数学中考试卷(附答案)

2019年数学中考试卷(附答案)一、选择题1.地球与月球的平均距离为384 000km ,将384 000这个数用科学记数法表示为( ) A .3.84×103 B .3.84×104 C .3.84×105 D .3.84×1062.在同一坐标系内,一次函数y ax b =+与二次函数2y ax 8x b =++的图象可能是A .B .C .D .3.一个正多边形的内角和为540°,则这个正多边形的每一个外角等于( ) A .108°B .90°C .72°D .60°4.下表是某学习小组一次数学测验的成绩统计表: 分数/分 70 80 90100 人数/人13x1已知该小组本次数学测验的平均分是85分,则测验成绩的众数是( ) A .80分B .85分C .90分D .80分和90分5.老师设计了接力游戏,用合作的方式完成分式化简,规则是:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成化简.过程如图所示:接力中,自己负责的一步出现错误的是( ) A .只有乙B .甲和丁C .乙和丙D .乙和丁6.如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是( )A .B .C .D .7.如图,矩形纸片ABCD 中,4AB =,6BC =,将ABC V 沿AC 折叠,使点B 落在点E 处,CE 交AD 于点F ,则DF 的长等于( )A .35B .53C .73D .548.方程21(2)304m x mx ---+=有两个实数根,则m 的取值范围( ) A .52m >B .52m ≤且2m ≠ C .3m ≥ D .3m ≤且2m ≠9.如图中的几何体是由一个圆柱和个长方体组成的,该几何体的俯视图是( )A .B .C .D .10.如图,已知⊙O 的半径是2,点A 、B 、C 在⊙O 上,若四边形OABC 为菱形,则图中阴影部分面积为( )A .23π﹣3B .13π3 C .43π﹣3 D .43π3 11.51-是一个很奇妙的数,大量应用于艺术、建筑和统计决策等方面,请51的值( ) A .在1.1和1.2之间B .在1.2和1.3之间C.在1.3和1.4之间D.在1.4和1.5之间12.为了帮助市内一名患“白血病”的中学生,东营市某学校数学社团15名同学积极捐款,捐款情况如下表所示,下列说法正确的是()捐款数额10203050100人数24531A.众数是100B.中位数是30C.极差是20D.平均数是30二、填空题13.已知a,b,c是△ABC的三边长,a,b满足|a﹣7|+(b﹣1)2=0,c为奇数,则c=_____.14.如图,△ABC的三个顶点均在正方形网格格点上,则tan∠BAC=_____________.15.如图,小明的父亲在相距2米的两棵树间拴了一根绳子,给小明做了一个简易的秋千.拴绳子的地方距地面高都是2.5米,绳子自然下垂呈抛物线状,身高1米的小明距较近的那棵树0.5米时,头部刚好接触到绳子,则绳子的最低点距地面的距离为米.16.如图,在四边形ABCD中,∠B=∠D=90°,AB=3, BC=2,tanA=43,则CD=_____.17.如图,在平面直角坐标系中,菱形OABC的面积为12,点B在y轴上,点C在反比例函数y=kx的图象上,则k的值为________.18.计算:2cos45°﹣(π+1)0+111()42-+=______. 19.如图,将矩形ABCD 沿CE 折叠,点B 恰好落在边AD 的F 处,如果AB 2BC 3=,那么tan ∠DCF 的值是____.20.如图是两块完全一样的含30°角的直角三角尺,分别记做△ABC 与△A′B′C′,现将两块三角尺重叠在一起,设较长直角边的中点为M ,绕中点M 转动上面的三角尺ABC ,使其直角顶点C 恰好落在三角尺A′B′C′的斜边A′B′上.当∠A =30°,AC =10时,两直角顶点C ,C′间的距离是_____.三、解答题21.两个全等的直角三角形 ABC 和 DEF 重叠在一起,其中∠A=60°,AC=1.固定△ABC 不动,将△DEF 进行如下操作:(1)如图,△DEF 沿线段 AB 向右平移(即 D 点在线段 AB 内移动),连接 DC 、CF 、FB ,四边形 CDBF 的形状在不断的变化,但它的面积不变化,请求出其面积.(2)如图,当 D 点移到 AB 的中点时,请你猜想四边形CDBF 的形状,并说明理由.(3)如图,△DEF 的 D 点固定在 AB 的中点,然后绕 D 点按顺时针方向旋转△DEF,使DF 落在 AB 边上,此时 F 点恰好与 B 点重合,连接 AE,请你求出sinα的值.22.“安全教育平台”是中国教育学会为方便学长和学生参与安全知识活动、接受安全提醒的一种应用软件.某校为了了解家长和学生参与“防溺水教育”的情况,在本校学生中随机抽取部分学生作调查,把收集的数据分为以下4类情形:A.仅学生自己参与;B.家长和学生一起参与;C.仅家长自己参与; D.家长和学生都未参与.请根据图中提供的信息,解答下列问题:(1)在这次抽样调查中,共调查了________名学生;(2)补全条形统计图,并在扇形统计图中计算C类所对应扇形的圆心角的度数;(3)根据抽样调查结果,估计该校2000名学生中“家长和学生都未参与”的人数.23.某公司推出一款产品,经市场调查发现,该产品的日销售量y(个)与销售单价x (元)之间满足一次函数关系.关于销售单价,日销售量,日销售利润的几组对应值如下表:销售单价x(元)8595105115日销售量y(个)17512575m日销售利润w87518751875875(元)(注:日销售利润=日销售量×(销售单价﹣成本单价))(1)求y关于x的函数解析式(不要求写出x的取值范围)及m的值;(2)根据以上信息,填空:该产品的成本单价是元,当销售单价x=元时,日销售利润w最大,最大值是元;(3)公司计划开展科技创新,以降低该产品的成本,预计在今后的销售中,日销售量与销售单价仍存在(1)中的关系.若想实现销售单价为90元时,日销售利润不低于3750元的销售目标,该产品的成本单价应不超过多少元?24.对垃圾进行分类投放,能提高垃圾处理和再利用的效率,减少污染,保护环境.为了检查垃圾分类的落实情况,某居委会成立了甲、乙两个检查组,采取随机抽查的方式分别对辖区内的A,B,C,D四个小区进行检查,并且每个小区不重复检查.(1)甲组抽到A小区的概率是多少;(2)请用列表或画树状图的方法求甲组抽到A小区,同时乙组抽到C小区的概率.25.如图,在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于点D,O为AB上一点,经过点A,D的⊙O分别交AB,AC于点E,F,连接OF交AD于点G.(1)求证:BC是⊙O的切线;(2)设AB=x,AF=y,试用含x,y的代数式表示线段AD的长;(3)若BE=8,sinB=513,求DG的长,【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】试题分析:384 000=3.84×105.故选C.考点:科学记数法—表示较大的数.2.C解析:C【解析】【分析】x=0,求出两个函数图象在y轴上相交于同一点,再根据抛物线开口方向向上确定出a>0,然后确定出一次函数图象经过第一三象限,从而得解.【详解】x=0时,两个函数的函数值y=b,所以,两个函数图象与y轴相交于同一点,故B、D选项错误;由A、C选项可知,抛物线开口方向向上,所以,a>0,所以,一次函数y=ax+b经过第一三象限,所以,A选项错误,C选项正确.故选C.3.C解析:C【解析】【分析】首先设此多边形为n边形,根据题意得:180(n-2)=540,即可求得n=5,再由多边形的外角和等于360°,即可求得答案.【详解】解:设此多边形为n边形,根据题意得:180(n-2)=540,解得:n=5,∴这个正多边形的每一个外角等于:3605=72°.故选C.【点睛】此题考查了多边形的内角和与外角和的知识.注意掌握多边形内角和定理:(n-2)•180°,外角和等于360°.4.D解析:D【解析】【分析】先通过加权平均数求出x的值,再根据众数的定义就可以求解.【详解】解:根据题意得:70+80×3+90x+100=85(1+3+x+1),x=3∴该组数据的众数是80分或90分.故选D.【点睛】本题考查了加权平均数的计算和列方程解决问题的能力,解题的关键是利用加权平均数列出方程.通过列方程求出x是解答问题的关键.5.D解析:D【解析】【分析】根据分式的乘除运算步骤和运算法则逐一计算即可判断.【详解】∵22211x x x x x -÷--=2221·1x x x x x ---=() 2212·1xx xx x----=()()221·1x x xx x----=()2xx --=2xx-,∴出现错误是在乙和丁,故选D.【点睛】本题考查了分式的乘除法,熟练掌握分式乘除法的运算法则是解题的关键.6.B解析:B【解析】试题分析:从左面看易得第一层有2个正方形,第二层最左边有一个正方形.故选B.考点:简单组合体的三视图.7.B解析:B【解析】【分析】由折叠的性质得到AE=AB,∠E=∠B=90°,易证Rt△AEF≌Rt△CDF,即可得到结论EF=DF;易得FC=FA,设FA=x,则FC=x,FD=6-x,在Rt△CDF中利用勾股定理得到关于x的方程x2=42+(6-x)2,解方程求出x即可.【详解】∵矩形ABCD沿对角线AC对折,使△ABC落在△ACE的位置,∴AE=AB,∠E=∠B=90°,又∵四边形ABCD为矩形,∴AB=CD,∴AE=DC,而∠AFE=∠DFC,∵在△AEF与△CDF中,AFE CFD E DAE CD ∠∠⎧⎪∠∠⎨⎪⎩=== , ∴△AEF ≌△CDF (AAS ), ∴EF=DF ;∵四边形ABCD 为矩形, ∴AD=BC=6,CD=AB=4, ∵Rt △AEF ≌Rt △CDF , ∴FC=FA ,设FA=x ,则FC=x ,FD=6-x ,在Rt △CDF 中,CF 2=CD 2+DF 2,即x 2=42+(6-x )2,解得x =133, 则FD =6-x=53. 故选B . 【点睛】考查了折叠的性质:折叠前后两图形全等,即对应角相等,对应边相等.也考查了矩形的性质和三角形全等的判定与性质以及勾股定理.8.B解析:B 【解析】 【分析】根据一元二次方程的定义、二次根式有意义的条件和判别式的意义得到20m -≠,30m -≥,(()214204m ∆=--⨯≥,然后解不等式组即可.【详解】 解:根据题意得20m -≠, 30m -≥,(()214204m ∆=--⨯≥,解得m ≤52且m ≠2. 故选B . 9.D解析:D 【解析】 【分析】根据从上边看得到的图形是俯视图,可得答案.【详解】解:从上边看是一个圆形,圆形内部是一个虚线的正方形.故选:D.【点睛】本题考查了简单组合体的三视图,从上边看得到的图形是俯视图.10.C解析:C【解析】分析:连接OB和AC交于点D,根据菱形及直角三角形的性质先求出AC的长及∠AOC 的度数,然后求出菱形ABCO及扇形AOC的面积,则由S菱形ABCO﹣S扇形AOC可得答案.详解:连接OB和AC交于点D,如图所示:∵圆的半径为2,∴OB=OA=OC=2,又四边形OABC是菱形,∴OB⊥AC,OD=12OB=1,在Rt△COD中利用勾股定理可知:22213-=,3∵sin∠COD=3 CDOC=∴∠COD=60°,∠AOC=2∠COD=120°,∴S菱形ABCO=12B×AC=12×2×33S扇形AOC=2120243603ππ⨯⨯=,则图中阴影部分面积为S菱形ABCO﹣S扇形AOC=423 3π-故选C.点睛:本题考查扇形面积的计算及菱形的性质,解题关键是熟练掌握菱形的面积=12 a•b(a、b是两条对角线的长度);扇形的面积=2360n rπ,有一定的难度.11.B 解析:B【解析】【分析】根据4.84<5<5.29,可得答案.【详解】∵4.84<5<5.29,∴,∴,故选B.【点睛】是解题关键.12.B解析:B【解析】分析:根据中位数、众数和极差的概念及平均数的计算公式,分别求出这组数据的中位数、平均数、众数和极差,得到正确结论.详解:该组数据中出现次数最多的数是30,故众数是30不是100,所以选项A不正确;该组共有15个数据,其中第8个数据是30,故中位数是30,所以选项B正确;该组数据的极差是100-10=90,故极差是90不是20,所以选项C不正确;该组数据的平均数是102204305503100100245313⨯+⨯+⨯+⨯+=++++不是30,所以选项D不正确.故选B.点睛:本题考查了中位数、平均数、众数和极差的概念.题目难度不大,注意勿混淆概念.二、填空题13.7【解析】【分析】根据非负数的性质列式求出ab的值再根据三角形的任意两边之和大于第三边两边之差小于第三边求出c的取值范围再根据c是奇数求出c的值【详解】∵ab满足|a﹣7|+(b﹣1)2=0∴a﹣7解析:7【解析】【分析】根据非负数的性质列式求出a、b的值,再根据三角形的任意两边之和大于第三边,两边之差小于第三边求出c的取值范围,再根据c是奇数求出c的值.【详解】∵a,b满足|a﹣7|+(b﹣1)2=0,∴a﹣7=0,b﹣1=0,解得a=7,b=1,∵7﹣1=6,7+1=8,∴68c <<,又∵c 为奇数,∴c=7,故答案为7.【点睛】本题考查非负数的性质:偶次方,解题的关键是明确题意,明确三角形三边的关系.14.【解析】分析:在图形左侧添加正方形网格分别延长ABAC 连接它们延长线所经过的格点可构成直角三角形利用正切的定义即可得出答案详解:如图所示由图形可知∴tan∠BAC=故答案为点睛:本题考查了锐角三角函 解析:13【解析】分析:在图形左侧添加正方形网格,分别延长AB 、AC ,连接它们延长线所经过的格点,可构成直角三角形,利用正切的定义即可得出答案.详解:如图所示,由图形可知,90AFE ∠=︒,3AF AC =,EF AC =,∴tan ∠BAC =133EF AC AF AC ==. 故答案为13. 点睛:本题考查了锐角三角函数的定义. 利用网格构建直角三角形进而利用正切的定义进行求解是解题的关键.15.5【解析】【分析】根据题意运用待定系数法建立适当的函数解析式代入求值即可解答【详解】以左边树与地面交点为原点地面水平线为x 轴左边树为y 轴建立平面直角坐标系由题意可得A(025)B(225)C(051解析:5【解析】【分析】根据题意,运用待定系数法,建立适当的函数解析式,代入求值即可解答.【详解】以左边树与地面交点为原点,地面水平线为x 轴,左边树为y 轴建立平面直角坐标系,由题意可得A(0,2.5),B(2,2.5),C(0.5,1)设函数解析式为y=ax2+bx+c把A. B. C三点分别代入得出c=2.5同时可得4a+2b+c=2.5,0.25a+0.5b+c=1解得a=2,b=−4,c=2.5.∴y=2x2−4x+2.5=2(x−1)2+0.5.∵2>0∴当x=1时,y min=0.5米.16.【解析】【分析】延长AD和BC交于点E在直角△ABE中利用三角函数求得BE 的长则EC的长即可求得然后在直角△CDE中利用三角函数的定义求解【详解】如图延长ADBC相交于点E∵∠B=90°∴∴BE=∴解析:6 5【解析】【分析】延长AD和BC交于点E,在直角△ABE中利用三角函数求得BE的长,则EC的长即可求得,然后在直角△CDE中利用三角函数的定义求解.【详解】如图,延长AD、BC相交于点E,∵∠B=90°,∴4 tan3BEAAB==,∴BE=44 3AB⋅=,∴CE=BE-BC=2,225AB BE+=,∴3 sin5ABEAE==,又∵∠CDE=∠CDA=90°,∴在Rt △CDE 中,sin CD E CE =, ∴CD=36sin 255CE E ⋅=⨯=. 17.-6【解析】因为四边形OABC 是菱形所以对角线互相垂直平分则点A 和点C 关于y 轴对称点C 在反比例函数上设点C 的坐标为(x)则点A 的坐标为(-x)点B 的坐标为(0)因此AC=-2xOB=根据菱形的面积等解析:-6【解析】因为四边形OABC 是菱形,所以对角线互相垂直平分,则点A 和点C 关于y 轴对称,点C 在反比例函数上,设点C 的坐标为(x ,k x ),则点A 的坐标为(-x ,k x ),点B 的坐标为(0,2k x ),因此AC=-2x,OB=2K X,根据菱形的面积等于对角线乘积的一半得: ()OABC 122122k S x x=⨯-⨯=菱形,解得 6.k =- 18.【解析】解:原式==故答案为:32. 【解析】解:原式=121222⨯-++3232. 19.【解析】【分析】【详解】解:∵四边形ABCD 是矩形∴AB =CD ∠D =90°∵将矩形ABCD 沿CE 折叠点B 恰好落在边AD 的F 处∴CF =BC ∵∴∴设CD =2xCF =3x ∴∴tan ∠DCF =故答案为:【点【解析】【分析】【详解】 解:∵四边形ABCD 是矩形,∴AB =CD ,∠D =90°,∵将矩形ABCD 沿CE 折叠,点B 恰好落在边AD 的F 处,∴CF =BC , ∵AB 2BC 3=,∴CD 2CF 3=.∴设CD =2x ,CF =3x ,∴.∴tan ∠DCF =DF =CD 2x 2=.故答案为:5.【点睛】本题考查翻折变换(折叠问题),翻折对称的性质,矩形的性质,勾股定理,锐角三角函数定义.20.5【解析】【分析】连接CC1根据M是ACA1C1的中点AC=A1C1得出CM=A1M=C1M=AC=5再根据∠A1=∠A1CM=30°得出∠CMC1=60°△MCC1为等边三角形从而证出CC1=CM解析:5【解析】【分析】连接CC1,根据M是AC、A1C1的中点,AC=A1C1,得出CM=A1M=C1M=12AC=5,再根据∠A1=∠A1CM=30°,得出∠CMC1=60°,△MCC1为等边三角形,从而证出CC1=CM,即可得出答案.【详解】解:如图,连接CC1,∵两块三角板重叠在一起,较长直角边的中点为M,∴M是AC、A1C1的中点,AC=A1C1,∴CM=A1M=C1M=12AC=5,∴∠A1=∠A1CM=30°,∴∠CMC1=60°,∴△CMC1为等边三角形,∴CC1=CM=5,∴CC1长为5.故答案为5.考点:等边三角形的判定与性质.三、解答题21.(1)过点C作CG⊥AB于G 在Rt△ACG中∵∠A=60°∴sin60°=∴……………1分在Rt△ABC中∠ACB=90°∠ABC=30°∴AB=2 …………………………………………2分∴………3分(2)菱形………………………………………4分∵D是AB的中点∴AD=DB=CF=1在Rt△ABC中,CD是斜边中线∴CD=1……5分同理 BF=1 ∴CD=DB=BF=CF∴四边形CDBF是菱形…………………………6分(3)在Rt△ABE中∴……………………………7分过点D作DH⊥AE 垂足为H则△ADH∽△AEB ∴即∴ DH=……8分在Rt△DHE中sinα==…=…………………9分【解析】(1)根据平移的性质得到AD=BE,再结合两条平行线间的距离相等,则三角形ACD的面积等于三角形BEF的面积,所以要求的梯形的面积等于三角形ABC的面积.根据60度的直角三角形ABC中AC=1,即可求得BC的长,从而求得其面积;(2)根据直角三角形斜边上的中线等于斜边的一半和平移的性质,即可得到该四边形的四条边都相等,则它是一个菱形;(3)过D点作DH⊥AE于H,可以把要求的角构造到直角三角形中,根据三角形ADE的面积的不同计算方法,可以求得DH的长,进而求解.22.(1)400;(2)补全条形图见解析;C类所对应扇形的圆心角的度数为54°;(3)该校2000名学生中“家长和学生都未参与”有100人.【解析】分析:(1)根据A 类别人数及其所占百分比可得总人数;(2)总人数减去A 、C 、D 三个类别人数求得B 的人数即可补全条形图,再用360°乘以C 类别人数占被调查人数的比例可得;(3)用总人数乘以样本中D 类别人数所占比例可得.详解:(1)本次调查的总人数为80÷20%=400人; (2)B 类别人数为400-(80+60+20)=240,补全条形图如下:C 类所对应扇形的圆心角的度数为360°×60400=54°; (3)估计该校2000名学生中“家长和学生都未参与”的人数为2000×0N F N ==100人. 点睛:本题考查了条形统计图、扇形统计图及用样本估计总体的知识,解题的关键是从统计图中整理出进一步解题的信息.23.(1)25;(2)80,100,2000;(3)该产品的成本单价应不超过65元.【解析】分析:(1)根据题意和表格中的数据可以求得y 关于x 的函数解析式;(2)根据题意可以列出相应的方程,从而可以求得生产成本和w 的最大值;(3)根据题意可以列出相应的不等式,从而可以取得科技创新后的成本.详解;(1)设y 关于x 的函数解析式为y=kx+b ,8517595125k b k b +⎧⎨+⎩==,得5600k b ==-⎧⎨⎩, 即y 关于x 的函数解析式是y=-5x+600,当x=115时,y=-5×115+600=25,即m 的值是25;(2)设成本为a 元/个,当x=85时,875=175×(85-a ),得a=80,w=(-5x+600)(x-80)=-5x 2+1000x-48000=-5(x-100)2+2000,∴当x=100时,w 取得最大值,此时w=2000,(3)设科技创新后成本为b 元,当x=90时,(-5×90+600)(90-b )≥3750,解得,b≤65,答:该产品的成本单价应不超过65元.点睛:本题考查二次函数的应用、一元二次方程的应用、不等式的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用函数和数形结合的思想解答.24.(1)甲组抽到A小区的概率是14;(2)甲组抽到A小区,同时乙组抽到C小区的概率为1 12.【解析】【分析】(1)直接利用概率公式求解可得;(2)画树状图列出所有等可能结果,根据概率公式求解可得.【详解】(1)甲组抽到A小区的概率是14,故答案为:14.(2)画树状图为:共有12种等可能的结果数,其中甲组抽到A小区,同时乙组抽到C小区的结果数为1,∴甲组抽到A小区,同时乙组抽到C小区的概率为1 12.【点睛】此题考查列表法与树状图法,解题关键在于根据题意画出树状图.25.(1)证明见解析;xy(3)DG=3013 23.【解析】【分析】(1)连接OD,由AD为角平分线得到一对角相等,再由等边对等角得到一对角相等,等量代换得到内错角相等,进而得到OD与AC平行,得到OD与BC垂直,即可得证;(2)连接DF,由(1)得到BC为圆O的切线,由弦切角等于夹弧所对的圆周角,进而得到三角形ABD与三角形ADF相似,由相似得比例,即可表示出AD;(3)连接EF,设圆的半径为r,由sinB的值,利用锐角三角函数定义求出r的值,由直径所对的圆周角为直角,得到EF与BC平行,得到sin∠AEF=sinB,进而求出DG的长即可.【详解】(1)如图,连接OD,∵AD为∠BAC的角平分线,∴∠BAD=∠CAD,∵OA=OD ,∴∠ODA=∠OAD ,∴∠ODA=∠CAD ,∴OD ∥AC ,∵∠C=90°,∴∠ODC=90°,∴OD ⊥BC ,∴BC 为圆O 的切线;(2)连接DF ,由(1)知BC 为圆O 的切线,∴∠FDC=∠DAF ,∴∠CDA=∠CFD ,∴∠AFD=∠ADB ,∵∠BAD=∠DAF ,∴△ABD ∽△ADF , ∴AB AD AD AF=,即AD 2=AB•AF=xy ,则;(3)连接EF ,在Rt △BOD 中,sinB=513OD OB =, 设圆的半径为r ,可得5813r r =+, 解得:r=5,∴AE=10,AB=18,∵AE 是直径,∴∠AFE=∠C=90°,∴EF ∥BC ,∴∠AEF=∠B ,∴sin ∠AEF=513AF AE =, ∴AF=AE•sin ∠AEF=10×513=5013, ∵AF ∥OD , ∴501013513AG AF DG OD ===,即DG=1323AD ,∴13==,则DG=133033013 231323⨯=.【点睛】圆的综合题,涉及的知识有:切线的判定与性质,相似三角形的判定与性质,锐角三角函数定义,勾股定理,以及平行线的判定与性质,熟练掌握各自的性质是解本题的关键.。
2019年河北省中考数学试卷含答案解析(word版)

2019年河北省中考数学试卷一、(本大题共16小题,共42分,1-10小题各3分,11-16小题各2分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1.计算:﹣(﹣1)=()A.±1 B.﹣2 C.﹣1 D.12.计算正确的是()A.(﹣5)0=0 B.x2+x3=x5C.(ab2)3=a2b5 D.2a2•a﹣1=2a3.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.4.下列运算结果为x﹣1的是()A.1﹣B.•C.÷D.5.若k≠0,b<0,则y=kx+b的图象可能是()A.B.C.D.6.关于▱ABCD的叙述,正确的是()A.若AB⊥BC,则▱ABCD是菱形B.若AC⊥BD,则▱ABCD是正方形C.若AC=BD,则▱ABCD是矩形D.若AB=AD,则▱ABCD是正方形7.关于的叙述,错误的是()A.是有理数B.面积为12的正方形边长是C.=2D.在数轴上可以找到表示的点8.图1和图2中所有的正方形都全等,将图1的正方形放在图2中的①②③④某一位置,所组成的图形不能围成正方体的位置是()A.①B.②C.③D.④9.如图为4×4的网格图,A,B,C,D,O均在格点上,点O是()A.△ACD的外心B.△ABC的外心C.△ACD的内心D.△ABC的内心10.如图,已知钝角△ABC,依下列步骤尺规作图,并保留作图痕迹.步骤1:以C为圆心,CA为半径画弧①;步骤2:以B为圆心,BA为半径画弧②,交弧①于点D;步骤3:连接AD,交BC延长线于点H.下列叙述正确的是()A.BH垂直平分线段AD B.AC平分∠BADC.S△ABC=BC•AH D.AB=AD11.点A,B在数轴上的位置如图所示,其对应的数分别是a和b.对于以下结论:甲:b﹣a<0乙:a+b>0丙:|a|<|b|丁:>0其中正确的是()A.甲乙 B.丙丁 C.甲丙 D.乙丁12.在求3x的倒数的值时,嘉淇同学误将3x看成了8x,她求得的值比正确答案小5.依上述情形,所列关系式成立的是()A.=﹣5 B.=+5 C.=8x﹣5 D.=8x+513.如图,将▱ABCD沿对角线AC折叠,使点B落在B′处,若∠1=∠2=44°,则∠B为()A.66°B.104°C.114°D.124°14.a,b,c为常数,且(a﹣c)2>a2+c2,则关于x的方程ax2+bx+c=0根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.无实数根 D.有一根为015.如图,△ABC中,∠A=78°,AB=4,AC=6.将△ABC沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是()A.B. C.D.16.如图,∠AOB=120°,OP平分∠AOB,且OP=2.若点M,N分别在OA,OB上,且△PMN为等边三角形,则满足上述条件的△PMN有()A.1个B.2个C.3个D.3个以上二、填空题(本大题有3小题,共10分.17-18小题各3分;19小题有2个空,每空2分.把答案写在题中横线上)17.8的立方根是______.18.若mn=m+3,则2mn+3m﹣5mn+10=______.19.如图,已知∠AOB=7°,一条光线从点A出发后射向OB边.若光线与OB边垂直,则光线沿原路返回到点A,此时∠A=90°﹣7°=83°.当∠A<83°时,光线射到OB边上的点A1后,经OB反射到线段AO上的点A2,易知∠1=∠2.若A1A2⊥AO,光线又会沿A2→A1→A原路返回到点A,此时∠A=______°.…若光线从A点出发后,经若干次反射能沿原路返回到点A,则锐角∠A的最小值=______°.三、解答题(本大题有7个小题,共68分.解答应写出必要的文字说明、证明过程或演算步骤)20.请你参考黑板中老师的讲解,用运算律简便计算:(1)999×(﹣15)(2)999×118+999×(﹣)﹣999×18.21.如图,点B,F,C,E在直线l上(F,C之间不能直接测量),点A,D在l异侧,测得AB=DE,AC=DF,BF=EC.(1)求证:△ABC≌△DEF;(2)指出图中所有平行的线段,并说明理由.22.已知n边形的内角和θ=(n﹣2)×180°.(1)甲同学说,θ能取360°;而乙同学说,θ也能取630°.甲、乙的说法对吗?若对,求出边数n.若不对,说明理由;(2)若n边形变为(n+x)边形,发现内角和增加了360°,用列方程的方法确定x.23.如图1,一枚质地均匀的正四面体骰子,它有四个面并分别标有数字1,2,3,4.如图2,正方形ABCD顶点处各有一个圈.跳圈游戏的规则为:游戏者每掷一次骰子,骰子着地一面上的数字是几,就沿正方形的边顺时针方向连续跳几个边长.如:若从圈A起跳,第一次掷得3,就顺时针连续跳3个边长,落到圈D;若第二次掷得2,就从D 开始顺时针连续跳2个边长,落到圈B;…设游戏者从圈A起跳.(1)嘉嘉随机掷一次骰子,求落回到圈A的概率P1;(2)淇淇随机掷两次骰子,用列表法求最后落回到圈A的概率P2,并指出她与嘉嘉落回到圈A的可能性一样吗?24.某商店通过调低价格的方式促销n个不同的玩具,调整后的单价y(元)与调整前的单价x(元)满足一次函数关系,如表:第1个第2个第3个第4个…第n个调整前的单价x(元)x1x2=6 x3=72 x4…x n调整后的单价y(元)y1y2=4 y3=59 y4…y n已知这个n玩具调整后的单价都大于2元.(1)求y与x的函数关系式,并确定x的取值范围;(2)某个玩具调整前单价是108元,顾客购买这个玩具省了多少钱?(3)这n个玩具调整前、后的平均单价分别为,,猜想与的关系式,并写出推导过程.25.如图,半圆O的直径AB=4,以长为2的弦PQ为直径,向点O方向作半圆M,其中P点在上且不与A点重合,但Q点可与B点重合.发现:的长与的长之和为定值l,求l:思考:点M与AB的最大距离为______,此时点P,A间的距离为______;点M与AB的最小距离为______,此时半圆M的弧与AB所围成的封闭图形面积为______;探究:当半圆M与AB相切时,求的长.(注:结果保留π,cos35°=,cos55°=)26.如图,抛物线L:y=﹣(x﹣t)(x﹣t+4)(常数t>0)与x轴从左到右的交点为B,A,过线段OA的中点M作MP⊥x轴,交双曲线y=(k>0,x>0)于点P,且OA•MP=12,(1)求k值;(2)当t=1时,求AB的长,并求直线MP与L对称轴之间的距离;(3)把L在直线MP左侧部分的图象(含与直线MP的交点)记为G,用t表示图象G最高点的坐标;(4)设L与双曲线有个交点的横坐标为x0,且满足4≤x0≤6,通过L位置随t变化的过程,直接写出t的取值范围.2019年河北省中考数学试卷参考答案与试题解析一、(本大题共16小题,共42分,1-10小题各3分,11-16小题各2分。
2019年河南省中考数学试题、答案(解析版)(可编辑修改word版)

2 2019 年河南省中考数学试题、答案(解析版)本试卷满分 120 分,考试时间 100 分钟.第Ⅰ卷(选择题 共 30 分)一、选择题(本大题共 10 小题,每小题 3 分,共 30 分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. - 1的绝对值是( )2A. - 12B. 1 2C. 2D. -22. 成人每天维生素 D 的摄入量约为 0.000 004 6 克.数据“0.000 004 6”用科学记数法表示为()A . 46 ⨯10-7B . 4.6 ⨯10-7C . 4.6 ⨯10-6D . 0.46 ⨯10-53.如图, AB ∥CD , ∠B = 75 , ∠E = 27 ,则∠D 的度数为()A . 45B . 48C . 50D . 584. 下列计算正确的是()A . 2a + 3a = 6aB . (-3a )2 = 6a 2C . (x - y )2 = x 2 - y 2D . 3 - = 25. 如图 1 是由大小相同的小正方体搭成的几何体,将上层的小正方体平移后得到图 2.关于平移前后几何体的三视图,下列说法正确的是( )A. 主视图相同B .左视图相同C .俯视图相同D .三种视图都不相同图 1 图 26. 一元二次方程(x + 1)(x -1) = 2x + 3 的根的情况是( )A. 有两个不相等的实数根B .有两个相等的实数根C .只有一个实数根D .没有实数根7. 某超市销售 A ,B ,C ,D 四种矿泉水,它们的单价依次是 5 元、3 元、2 元、1 元.某天的销售情况如图所示,则这天销售的矿泉水的平均单价是( )A .1.95 元2 24⎨B .2.15 元C.2.25 元D.2.75 元8.已知抛物线y =-x2+bx + 4 经过(-2, n) 和(4, n) 两点,则n 的值为( )A.-2B.-4C.2D.49.如图,在四边形ABCD 中, AD∥BC ,∠D = 90 ,AD = 4 ,BC = 3 .分别以点A,C 为圆心,大于1AC 长为半径作弧,两弧交2于点E,作射线BE 交AD 于点F,交AC 于点O.若点O 是AC 的中点,则CD 的长为( )A.2B.4C.3D.10.如图,在△OAB 中,顶点O(0, 0) ,A(-3, 4) ,B(3, 4) .将△OAB 与正方形ABCD 组成的图形绕点O 顺时针旋转,每次旋转90 ,则第70 次旋转结束时,点D 的坐标为( )A. (10,3)B. (-3,10)C. (10, -3)D. (3, -10)第Ⅱ卷(非选择题共90 分)二、填空题(本大题共5 小题,每小题3 分,共15 分.把答案填写在题中的横线上)11.计算:- 2-1=.⎧x≤-1,12.不等式组⎪2⎪⎩-x+7>4的解集是.13.现有两个不透明的袋子,一个装有2 个红球、1 个白球,另一个装有1 个黄球、2 个红球,这些球除颜色外完全相同.从两个袋子中各随机摸出1 个球,摸出的两个球颜色相同的概率是.14.如图,在扇形AOB 中, ∠AOB =120 ,半径OC 交弦AB 于点D,且OC ⊥OA .若OA = 2 ,则阴影部分的面积为.21033 15. 如图,在矩形 ABCD 中, AB = 1 , BC = a ,点 E 在边 BC 上,且 BE =3.连接 AE ,将△ABE 沿 AE 折叠,若点 B 的对应点 B '5落在矩形 ABCD 的边上,则 a 的值为.三、解答题(本大题共 8 小题,共 75 分.解答应写出文字说明、证明过程或演算步骤)16.(本小题满分 8 分)先化简,再求值: ( x + 1 x - 2 -1) ÷x 2 - 2x x 2 - 4x + 4,其中 x = .17.(本小题满分 9 分)如图,在△ABC 中, BA = BC , ∠ABC = 90 .以 AB 为直径的半圆 O 交 AC 于点 D ,点 E 是 B D 上不与点 B ,D 重合的任意一点,连接 AE 交 BD 于点 F ,连接 BE 并延长交 AC 于点 G .(1) 求证: △ADF ≅ △BDG ;(2) 填空:①若 AB = 4 ,且点 E 是 B D 的中点,则 DF 的长为 ;②取 AE 的中点 H ,当∠EAB 的度数为时,四边形 OBEH 为菱形.18.(本小题满分 9 分)某校为了解七、八年级学生对“防溺水”安全知识的掌握情况,从七、八年级各随机抽取 50 名学生进行测试,并对成绩 (百分制)进行整理、描述和分析.部分信息如下:a. 七年级成绩频数分布直方图:3b. 七年级成绩在70≤x <80 这一组的是:70 72 74 75 76 76 77 77 77 78 79c. 七、八年级成绩的平均数、中位数如下:年级平均数 中位数 七 76.9 m 八79.279.5根据以上信息,回答下列问题:(1) 在这次测试中,七年级在 80 分以上(含 80 分)的有人;(2) 表中 m 的值为;(3) 在这次测试中,七年级学生甲与八年级学生乙的成绩都是 78 分,请判断两位学生在各自年级的排名谁更靠前,并说明理由;(4) 该校七年级学生有 400 人,假设全部参加此次测试,请估计七年级成绩超过平均数 76.9 分的人数.19.(本小题满分 9 分)数学兴趣小组到黄河风景名胜区测量炎帝塑像(塑像中高者)的高度.如图所示,炎帝塑像 DE 在高 55 m 的小山 EC 上,在A 处测得塑像底部 E 的仰角为34 ,再沿 AC 方向前进 21 m 到达 B 处,测得塑像顶部 D 的仰角为60 ,求炎帝塑像 DE 的高 度.(精确到 1 m .参考数据: sin34 ≈ 0.56 , cos34 = 0.83 , tan34 ≈ 0.67 , ≈ 1.73 )20.(本小题满分 9 分)学校计划为“我和我的祖国”演讲比赛购买奖品.已知购买 3 个 A 奖品和 2 个 B 奖品共需 120 元;购买 5 个 A 奖品和 4个B 奖品共需210 元. (1)求A,B 两种奖品的单价;(2)学校准备购买A,B 两种奖品共30 个,且A 奖品的数量不少于B1奖品数量的 .请设计出最省钱的购买方案,并说明理由.321.(本小题满分10 分)模具厂计划生产面积为4,周长为m 的矩形模具.对于m 的取值范围,小亮已经能用“代数”的方法解决,现在他又尝试从“图形”的角度进行探究,过程如下:(1)建立函数模型设矩形相邻两边的长分别为x ,y .由矩形的面积为4,得xy = 4 ,即y =4;由周长为m ,得2(x +y) =m ,即y =-x +m.满x 2 足要求的(x, y) 应是两个函数图象在第象限内交点的坐标;(2)画出函数图象函数y =4(x>0) 的图象如图所示,而函数y =-x +m的图象可由直线y =-x 平移得到.请在同一直角坐标系中直接画出x 2直线y =-x ;(3)平移直线y =-x ,观察函数图象①当直线平移到与函数y =4(x>0) 的图象有唯一交点(2, 2) 时,周长m 的值为;x②在直线平移过程中,交点个数还有哪些情况?请写出交点个数及对应的周长m 的取值范围.(4)得出结论若能生产出面积为4 的矩形模具,则周长m 的取值范围为.22.(本小题满分10 分)在△ABC 中,CA =CB ,∠ACB =.点P 是平面内不与点A,C 重合的任意一点,连接AP,将线段AP 绕点P 逆时针旋转得到线段DP,连接AD,BD,CP.(1) 观察猜想如图 1,当= 60 时, BD的值是,直线 BD 与直线 CP 相交所成的较小角的度数是;CP(2) 类比探究如图 2,当= 90 时,请写出 BD的值及直线 BD 与直线 CP 相交所成的小角的度数,并就图 2 的情形说明理由;CP(3) 解决问题当= 90 时,若点 E ,F 分别是 CA ,CB 的中点,点 P 在直线 EF 上,请直接写出点 C ,P ,D 在同一直线上时 AD的值.CP图 1图 2备用图23.(本小题满分 11 分)如图,抛物线 y = ax 2 + 1 x + c 交 x 轴于 A ,B 两点,交 y 轴于点 C .直线 y = - 1x - 2 经过点 A ,C .2 2(1) 求抛物线的解析式;(2) 点 P 是抛物线上一动点,过点 P 作 x 轴的垂线,交直线 AC 于点 M ,设点 P 的横坐标为 m .①当△PCM 是直角三角形时,求点 P 的坐标;②作点 B 关于点 C 的对称点 B ' ,则平面内存在直线 l ,使点 M ,B , B '到该直线的距离都相等.当点 P 在 y 轴右侧的抛物线上, 且与点 B 不重合时,请直接写出直线 l : y = kx + b 的解析式.(k ,b 可用含 m 的式子表示)备用图2 河南省 2019 年普通高中招生考试数学答案解析第Ⅰ卷一、选择题1. 【答案】B【解析】解: | - 1 |= 1,故选:B .2 2【提示】根据一个负数的绝对值是它的相反数进行解答即可.【考点】绝对值的概念.2. 【答案】C【解析】解: 0.000 004 6 = 4.6 ⨯10-6 .【提示】本题用科学记数法的知识即可解答.【考点】科学记数法.3. 【答案】B【解析】解:∵ AB ∥CD ,∴ ∠B = ∠1 ,∵ ∠1 = ∠D + ∠E ,∴ ∠D = ∠B - ∠E = 75 - 27 = 48 ,故选:B .【提示】根据平行线的性质解答即可.【考点】平行线的性质,三角形外角的性质.4. 【答案】D【解析】解: 2a + 3a = 5a ,A 错误; (-3a )2 = 9a 2 ,B 错误; (x - y )2 = x 2 - 2xy + y 2 ,C 错误; 3 - = 2 ,D 正确;故选:D .【提示】根据合并同类项法则,完全平方公式,幂的乘方与积的乘方的运算法则进行运算即可.【考点】整式的运算.5. 【答案】 C2 2【解析】解:观察几何体,确定三视图,此几何体将上层的小正方体平移后俯视图相同,故选C. 【提示】根据三视图解答即可.【考点】几何体的三视图.6.【答案】A【解析】解:原方程可化为:x2 - 2x - 4 = 0 ,∴a = 1 , b =-2 , c =-4 ,∴∆= (-2)2- 4 ⨯1⨯ (-4) = 20>0 ,∴方程由两个不相等的实数根.故选:A.【提示】先化成一般式后,再求根的判别式.【考点】一元二次方程根的情况.7.【答案】C【解析】解:这天销售的矿泉水的平均单价是5 ⨯10% + 3⨯15% + 2 ⨯ 55% + 1⨯ 20% = 2.25 (元), 故选:C.【提示】根据加权平均数的定义列式计算可得.【考点】加权平均数的计算.8.【答案】B【解析】解:抛物线y =-x2+bx + 4 经过(-2, n) 和(4, n) 两点,可知函数的对称轴x = 1 ,∴b= 1, 2∴b = 2 ;∴ y =-x2+ 2x + 4 ,将点(-2, n) 代入函数解析式,可得n = 4 ;故选:B.【提示】根据(-2, n) 和(4, n) 可以确定函数的对称轴x = 1 ,再由对称轴的x =b即可求解.2【考点】二次函数点的坐标特征,二元一次方程组的解法.2 ⎩9. 【答案】A【解析】解:如图,连接 FC ,则 AF = FC .∵ AD ∥BC ,∴ ∠FAO = ∠BCO .在△FOA 与△BOC 中,⎧∠FAO = ∠BCO ⎪⎨OA = OC, ⎪∠AOF = ∠COB∴△FOA ≅ △BOC (ASA) ,∴ AF = BC = 3 ,∴ FC = AF = 3 , FD = AD - AF = 4 - 3 = 1 .在△FDC 中,∵ ∠D = 90 ,∴ CD 2 + DF 2 = FC 2 ,∴ CD 2 + 12 = 32 ,∴ CD = 2 .故选:A .【 提示】 连接 FC ,根据基本作图,可得 OE 垂直平分 AC ,由垂直平分线的性质得出 AF = FC .再根据 ASA 证明△FOA ≅ △BOC ,那么 AF = BC = 3 ,等量代换得到 FC = AF = 3 ,利用线段的和差关系求出 FD = AD - AF = 1.然后在直角△FDC 中利用勾股定理求出 CD 的长.【考点】尺规作图,平行线的性质,勾股定理,角平分线的性质,全等三角形的判定与性质.10. 【答案】D【解析】解:∵ A (-3, 4) , B (3, 4) ,∴ AB = 3 + 3 = 6 ,∵四边形 ABCD 为正方形,∴ AD = AB = 6 ,∴D(-3,10) ,∵70 = 4 ⨯17 + 2 ,∴每 4 次一个循环,第70 次旋转结束时,相当于△OAB 与正方形ABCD 组成的图形绕点O 顺时针旋转2 次,每次旋转90 , ∴点D 的坐标为(3, -10) .故选:D.【提示】先求出AB = 6 ,再利用正方形的性质确定D(-3,10) ,由于70 = 4 ⨯17 + 2 ,所以第70 次旋转结束时,相当于△OAB 与正方形ABCD 组成的图形绕点O 顺时针旋转2 次,每次旋转90 ,此时旋转前后的点D 关于原点对称,于是利用关于原点对称的点的坐标特征可出旋转后的点D 的坐标.【考点】图形的旋转,点的坐标的确定.第Ⅱ卷二、填空题11.【答案】3 2【解析】解:- 2 -1= 2 -12=3 . 2故答案为:3. 2【提示】本题涉及二次根式化简、负整数指数幂两个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果. 【考点】实数的相关运算.12.【答案】x≤- 2【解析】解:解不等式x…2-1,得:x≤- 2 ,解不等式-x + 7>4 ,得:x<3 ,则不等式组的解集为x≤- 2 ,故答案为:x≤- 2 .【提示】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【考点】解不等式组.13.【答案】4 94333【解析】解:列表如下:黄红红红(黄,红) (红,红) (红,红)红(黄,红) (红,红) (红,红)白(黄,白) (红,白) (红,白)由表知,共有9 种等可能结果,其中摸出的两个球颜色相同的有4 种结果,所以摸出的两个球颜色相同的概率为4, 9故答案为:4. 9【提示】列表得出所有等可能结果,从中找到两个球颜色相同的结果数,利用概率公式计算可得. 【考点】概率的计算.14.【答案】+π【解析】解:作OE ⊥AB 于点F,∵在扇形AOB 中, ∠AOB =120 ,半径OC 交弦AB 于点D,且OC ⊥OA .OA=2 ,∴∠AOD = 90 , ∠BOC = 90 , OA =OB ,∴∠OAB =∠OBA = 30 , ∴OD =OA tan30 = 2 3 ⨯3= 2 , AD = 4 , AB = 2 A F = 2 ⨯ 2 3 ⨯33= 6 , OF =,2∴B D = 2 ,2 3 ⨯ 2 30 ⨯π(23)2 2 ⨯ 3∴阴影部分的面积是:S△AOD +S扇形OBC-S△BDO=2+360-=+π,2故答案为:+π.【提示】根据题意,作出合适的辅助线,然后根据图形可知阴影部分的面积是△AOD 的面积与扇形OBC 的面积之和再减去△BDO 的面积,本题得以解决.【考点】不规则图形面积的计算.15.【答案】5或5 3 3 31-a 2 ⎩【解析】解:分两种情况:①当点 B ' 落在 AD 边上时,如图 1.图 1∵四边形 ABCD 是矩形,∴ ∠BAD = ∠B = 90 ,∵将△ABE 沿 AE 折叠,点 B 的对应点 B ' 落在 AD 边上,∴ ∠BAE = ∠B 'AE = 1 ∠BAD = 45 ,2∴ AB = BE ,∴ 3a = 1 , 5∴ a = 5 ;3②当点 B ' 落在 CD 边上时,如图 2.图 2∵四边形 ABCD 是矩形,∴ ∠BAD = ∠B = ∠C = ∠D = 90 , AD = BC = a .∵将△ABE 沿 AE 折叠,点 B 的对应点 B ' 落在 CD 边上,∴ ∠B = ∠AB 'E = 90 , AB = AB ' = 1, EB = EB ' = 3 a ,5∴ DB ' == ,EC = BC - BE = a - 3a = 5 . 5在△ADB ' 与△B 'CE 中,⎧∠B 'AD = ∠EB 'C = 90 - ∠AB 'D⎨∠D = ∠C = 90,∴△ADB ' △B 'CE ,B 'A 2 - AD 21 -a233333DB'=AB'=1∴CE B'E,即,2a3a5 5解得a =5, a = 0 (舍去).1 3 2综上,所求a 的值为5或5.3 3故答案为5或5.3 3【提示】分两种情况:①点B'落在AD 边上,根据矩形与折叠的性质易得AB =BE ,即可求出a 的值;②点B'落在CD 边上, 证明△ADB' △B'CE ,根据相似三角形对应边成比例即可求出a 的值.【考点】图形的折叠,勾股定理.三、解答题16.【答案】解:原式= (x +1-x - 2) ÷x(x - 2)x - 2 x - 2 (x -2)2=3x - 2x - 2 x=3,x当x =时,原式=.【解析】解:原式= (x +1-x - 2) ÷x(x - 2)x - 2 x - 2 (x -2)2=3x - 2当x =时,原式x - 2 x=3,x=.【提示】先根据分式的混合运算顺序和运算法则化简原式,再将x 的值代入计算可得.【考点】分式的化简求值.17.【答案】解:(1)证明:如图1,∵ BA =BC , ∠ABC = 90 ,图1333∴ ∠BAC = 45∵AB 是 O 的直径,∴ ∠ADB = ∠AEB = 90 ,∴ ∠DAF + ∠BGD = ∠DBG + ∠BGD = 90∴ ∠DAF = ∠DBG∵ ∠ABD + ∠BAC = 90∴ ∠ABD = ∠BAC = 45∴ AD = BD∴△ADF ≅ △BDG (ASA) ;(2)① 4 - 2② 30【解析】解:(1)证明:如图 1,∵ BA = BC , ∠ABC = 90 ,图 1∴ ∠BAC = 45∵AB 是 O 的直径,∴ ∠ADB = ∠AEB = 90 ,∴ ∠DAF + ∠BGD = ∠DBG + ∠BGD = 90∴ ∠DAF = ∠DBG∵ ∠ABD + ∠BAC = 90∴ ∠ABD = ∠BAC = 45∴ AD = BD∴△ADF ≅ △BDG (ASA) ;(2)①如图 2,过 F 作 FH ⊥ AB 于 H ,∵点 E 是 BD 的中点, 222 22+12图 2∴∠BAE =∠DAE∵ FD ⊥AD , F H ⊥AB ∴ FH =FD∵FH= sin∠ABD = sin45 =2, BF 2∴FD=BF2,即BF =22FD∵AB = 4 ,∴BD = 4cos45 = 2∴FD == 4 -2,即BF +FD = 2, ( +1)FD = 2故答案为4 - 2 .②连接OE,EH,∵点H 是 AE 的中点,∴OH ⊥AE ,∵∠AEB = 90∴BE ⊥AE∴BE∥OH∵四边形OBEH 为菱形,∴BE =OH =OB =1 AB 2∴ sin∠EAB =BE=1AB 22222∴∠EAB = 30 .故答案为:30 .【提示】(1)利用直径所对的圆周角是直角,可得∠ADB =∠AEB = 90 ,再应用同角的余角相等可得∠DAF =∠DBG ,易得AD =BD , △ADF≌△BDG 得证;(2)作FH ⊥AB ,应用等弧所对的圆周角相等得∠BAE =∠DAE ,再应用角平分线性质可得结论;由菱形的性质可得BE =OB ,结合三角函数特殊值可得∠EAB = 30 .【考点】圆的相关性质,全等三角形的判定和性质,菱形的判定和性质,圆周角定理.18.【答案】(1)23(2)77.5(3)甲学生在该年级的排名更靠前.∵七年级学生甲的成绩大于中位数78 分,其名次在该班25 名之前,八年级学生乙的成绩小于中位数78 分,其名次在该班25 名之后,∴甲学生在该年级的排名更靠前.(4)估计七年级成绩超过平均数76.9 分的人数为400 ⨯5 + 15 + 8= 224 (人).50【解析】解:(1)在这次测试中,七年级在80 分以上(含80 分)的有15 + 8 = 23 人,故答案为:23;(2)七年级50 人成绩的中位数是第25、26 个数据的平均数,而第25、26 个数据分别为78、79,∴m =77 + 78= 77.5 , 2故答案为:77.5;(3)甲学生在该年级的排名更靠前.∵七年级学生甲的成绩大于中位数78 分,其名次在该班25 名之前, 八年级学生乙的成绩小于中位数78 分,其名次在该班25 名之后, ∴甲学生在该年级的排名更靠前.(4)估计七年级成绩超过平均数76.9 分的人数为400 ⨯5 + 15 + 8= 224 (人).50【提示】(1)根据条形图及成绩在70≤x<80 这一组的数据可得;(2)根据中位数的定义求解可得;(3)将各自成绩与该年级的中位数比较可得答案;(4)用总人数乘以样本中七年级成绩超过平均数76.9 分的人数所占比例可得. 【考点】统计知识的实际应用.3 3 ⎨⎩19.【答案】解:∵ ∠ACE = 90 , ∠CAE = 34 , CE = 55 m ,∴ tan ∠CAE = CE,AC∴ AC =CEtan34 = 55 0.67≈ 82.1 m ,∵ AB = 21 m ,∴ BC = AC - AB = 61.1 m ,在Rt △BCD 中, tan60 =CD = ,BC∴ CD = 3BC ≈ 1.73⨯ 61.1 ≈ 105.7 m ,∴ DE = CD - EC = 105.7 - 55 ≈ 51 m ,答:炎帝塑像 DE 的高度约为 51 m .【解析】解:∵ ∠ACE = 90 , ∠CAE = 34 , CE = 55 m ,∴ tan ∠CAE = CE ,AC∴ AC =CEtan34 = 55 0.67≈ 82.1 m ,∵ AB = 21 m ,∴ BC = AC - AB = 61.1 m ,在Rt △BCD 中, tan60 =CD = ,BC∴ CD = 3BC ≈ 1.73⨯ 61.1 ≈ 105.7 m ,∴ DE = CD - EC = 105.7 - 55 ≈ 51 m ,答:炎帝塑像 DE 的高度约为 51 m .【 提 示 】 由 三 角 函 数 求 出 AC =CEtan34≈ 82.1 m ,得 出 BC = AC - AB = 61.1 m ,在 Rt △BCD 中 ,由 三 角 函 数 得 出CD = 3BC ≈ 105.7 m ,即可得出答案.【考点】解直角三角形的实际应用.20. 【答案】解:(1)设 A 的单价为 x 元,B 的单价为 y 元,⎧3x + 2 y = 120根据题意,得 , ⎩5x + 4 y = 210⎧x = 30 ∴ ⎨y = 15 ,∴A 的单价 30 元,B 的单价 15 元;(2)设购买 A 奖品 z 个,则购买 B 奖品为(30 - z )个,购买奖品的花费为 W 元,⎨⎩由题意可知, z ≥1(30 - z ) ,3∴ z ≥15 ,2W = 30z + 15(30 - z ) = 450 + 15z ,当 z = 8 时,W 有最小值为 570 元,即购买 A 奖品 8 个,购买 B 奖品 22 个,花费最少.【解析】解:(1)设 A 的单价为 x 元,B 的单价为 y 元,⎧3x + 2 y = 120根据题意,得 , ⎩5x + 4 y = 210⎧x = 30 ∴ ⎨y = 15 ,∴A 的单价 30 元,B 的单价 15 元;(2)设购买 A 奖品 z 个,则购买 B 奖品为(30 - z )个,购买奖品的花费为 W 元,由题意可知, z ≥1(30 - z ) ,3∴ z ≥15 ,2W = 30z + 15(30 - z ) = 450 + 15z ,当 z = 8 时,W 有最小值为 570 元,即购买 A 奖品 8 个,购买 B 奖品 22 个,花费最少.⎧3x + 2 y = 120【提示】(1)设 A 的单价为 x 元,B 的单价为 y 元,根据题意列出方程组⎨ ⎩5x + 4 y = 210,即可求解;(2)设购买 A 奖品 z 个,则购买 B 奖品为 (30 - z ) 个,购买奖品的花费为 W 元,根据题意得到由题意可知, z ≥1(30 - z ) ,3W = 30z + 15(30 - z ) = 450 + 15z ,根据一次函数的性质,即可求解.【考点】二元一次方程组,不等式及一次函数解决实际问题.21. 【答案】(1)一(2)图象如下所示:(3)①8②在直线平移过程中,交点个数有:0 个、1 个、2 个三种情况,联立y =4和y =-x +m并整理得:x2-1mx + 4 = 0 , x 2 2∆=1m2- 4 ⨯ 4≥0 时,两个函数有交点, 4解得:m≥8 ;(4) m≥8【解析】解:(1) x, y 都是边长,因此,都是正数, 故点(x, y) 在第一象限,答案为:一;(2)图象如下所示:(3)①把点(2, 2) 代入y =-x +m得:22 =-2 +m,解得:m = 8 ;2②在直线平移过程中,交点个数有:0 个、1 个、2 个三种情况,联立y =4和y =-x +m并整理得:x2-1mx + 4 = 0 , x 2 22 2 ∆ = 1 m 2 - 4 ⨯ 4≥0 时,两个函数有交点, 4解得: m ≥8 ;(4)由(3)得: m ≥8 .【提示】(1) x , y 都是边长,因此,都是正数,即可求解;(2) 直接画出图象即可;(3) ①把点(2, 2) 代入 y = -x + m即可求解;②在直线平移过程中,交点个数有:0 个、1 个、2 个三种情况,联立 y = 4 和 2x y = - x + m 并整理得: x 2 - 1 mx + 4 = 0 ,即可求解;2 2(4)由(3)可得.【考点】反比例函数与一次函数图象的应用.22. 【答案】160(2) 如图 2 中,设 BD 交 AC 于点 O ,BD 交 PC 于点 E .图 2∵ ∠PAD = ∠CAB = 45 ,∴ ∠PAC = ∠DAB ,∵ AB= AD= ,AC AP ∴△DAB △PAC ,∴ ∠PCA = ∠DBA , BD = AB =,PCAC ∵ ∠EOC = ∠AOB ,∴ ∠CEO = ∠OABB = 45 ,∴直线 BD 与直线 CP 相交所成的小角的度数为 45 .(3) 如图 3-1 中,当点 D 在线段 PC 上时,延长 AD 交 BC 的延长线于 H.a a + 2 a 2图 3-1∵ CE = EA , CF = FB ,∴ EF ∥AB ,∴ ∠EFC = ∠ABC = 45 ,∵ ∠PAO = 45 ,∴ ∠PAO = ∠OFH ,∵ ∠POA = ∠FOH ,∴ ∠H = ∠APO ,∵ ∠APC = 90 , EA = EC ,∴ PE = EA = EC ,∴ ∠EPA = ∠EAP = ∠BAH ,∴ ∠H = ∠BAH ,∴ BH = BA ,∵ ∠ADP = ∠BDC = 45 ,∴ ∠ADB = 90 ,∴ BD ⊥ AH ,∴ ∠DBA = ∠DBC = 22.5 ,∵ ∠ADB = ∠ACB = 90 ,∴A ,D ,C ,B 四点共圆,∠DAC = ∠DBC = 22.5 , ∠DCA = ∠ABD = 22.5 ,∴ ∠DAC = ∠DCA = 22.5 ,∴ DA = DC ,设 AD = a ,则 DC = AD = a , PD =2 a , 2∴AD == 2 - .CP 2aa-2a2如图3-2 中,当点P 在线段CD 上时,同法可证:DA =DC ,设AD =a ,则CD =AD =a ,PD =2a , 2∴PC =a -图3-2 2a ,2∴AD== 2 +. PC2【解析】解:(1)如图 1 中,延长CP 交BD 的延长线于E,设AB 交EC 于点O.图 1∵∠PAD =∠CAB = 60 ,∴∠CAP =∠BAD ,∵CA =BA , PA =DA ,∴△CAP ≅△BAD(SAS) ,∴PC =BD , ∠ACP =∠ABD ,∵∠AOC =∠BOE ,∴∠BEO =∠CAO = 60 ,∴ BD= 1 ,线BD 与直线CP 相交所成的较小角的度数是60 ,PC故答案为1, 60 .(2)如图2 中,设BD 交AC 于点O,BD 交PC 于点E.2 2图 2∵ ∠PAD = ∠CAB = 45 ,∴ ∠PAC = ∠DAB ,∵ AB = AD = , AC AP∴△DAB △PAC ,∴ ∠PCA = ∠DBA , BD = AB = ,PC AC∵ ∠EOC = ∠AOB ,∴ ∠CEO = ∠OABB = 45 ,∴直线 BD 与直线 CP 相交所成的小角的度数为 45 .(3) 如图 3-1 中,当点 D 在线段 PC 上时,延长 AD 交 BC 的延长线于 H .图 3-1∵ CE = EA , CF = FB ,∴ EF ∥AB ,∴ ∠EFC = ∠ABC = 45 ,∵ ∠PAO = 45 ,∴ ∠PAO = ∠OFH ,∵ ∠POA = ∠FOH ,∴ ∠H = ∠APO ,∵ ∠APC = 90 , EA = EC ,∴ PE = EA = EC ,a a + 2 a 2 a a - 2 a 2 ∴ ∠EPA = ∠EAP = ∠BAH ,∴ ∠H = ∠BAH ,∴ BH = BA ,∵ ∠ADP = ∠BDC = 45 ,∴ ∠ADB = 90 ,∴ BD ⊥ AH ,∴ ∠DBA = ∠DBC = 22.5 ,∵ ∠ADB = ∠ACB = 90 ,∴A ,D ,C ,B 四点共圆,∠DAC = ∠DBC = 22.5 , ∠DCA = ∠ABD = 22.5 ,∴ ∠DAC = ∠DCA = 22.5 ,∴ DA = DC ,设 AD = a ,则 DC = AD = a , PD =2 a ,2 ∴ AD == 2 - .CP 2如图 3-2 中,当点 P 在线段 CD 上时,同法可证: DA = DC ,设 AD = a ,则CD = AD = a , PD =2 a ,2∴ PC = a -图 3-2 2 a ,2 ∴ AD == 2 + .PC2 【提示】(1)如图 1 中,延长 CP 交 BD 的延长线于 E ,设 AB 交 EC 于点 O .证明△CAP ≌△BAD (SAS) ,即可解决问题.(2) 如图 2 中,设 BD 交 AC 于点 O ,BD 交 PC 于点 E .证明△DAB ∽△PAC ,即可解决问题.(3) 分两种情形:①如图 3-1 中,当点 D在线段 PC 上时,延长 AD 交 BC 的延长线于 H .证明 AD=DC 即可解决问题.②如图 3-2 中,当点 P 在线段 CD 上时,同法可证: DA = DC 解决问题.⎨ 【考点】图形变换,规律探究.23.【答案】解:(1)当 x = 0 时, y = - 1 x - 2= -2 ,2∴点 C 的坐标为(0, -2) ; 当 y = 0 时, - 1 x - 2 = 0 ,2解得: x = -4 ,∴点 A 的坐标为(-4, 0) .将 A (-4, 0) , C (0, -2) 代入 y = ax 2 + 1 x + c ,得: 2 ⎧16a - 2 + c = 0 ⎧a = 1 ⎨c = -2 ,解得: ⎪ 4 ,⎪⎩c = -2∴抛物线的解析式为 y = 1 x 2 + 1 x - 2 .4 2(2) ①∵ PM ⊥ x 轴,∴ ∠PMC ≠ 90 ,∴分两种情况考虑,如图 1 所示.图 1(i) 当∠MPC = 90时, PC ∥x 轴,∴点 P 的纵坐标为-2 .当 y = -2 时, 1 x 2 + 1 x - 2 = -2 ,4 2解得: x 1 = -2 , x 2 = 0 ,∴点 P 的坐标为(-2, -2) ;(ii) 当∠PCM = 90时,设 PC 与 x 轴交于点 D .∵ ∠OAC + ∠OCA = 90 , ∠OCA + ∠OCD = 90 ,∴ ∠OAC = ∠OCD .⎩⎨ 1 2 1 又∵ ∠AOC = ∠COD = 90 ,∴△AOC △COD ,∴ OD = OC ,即 OD = 2 , OC OA 2 4∴ OD = 1 ,∴点 D 的坐标为(1, 0) .设直线 PC 的解析式为 y = kx + b (k ≠ 0) ,将C (0, -2) , D (1, 0) 代入 y = kx + b ,得:⎧b = -2 ⎧k = 2 ⎨k + b = 0 ,解得: ⎨ = -2 ,⎩ ⎩b∴直线 PC 的解析式为 y = 2x - 2 .⎧ y = 2x - 2 联立直线 PC 和抛物线的解析式成方程组,得: ⎪ , y = x + x - 2解得: ⎧x 1 = 0 , ⎧x 2 = 6 , ⎩⎪ 4 2 ⎨ y = -2 ⎨ y = 10 ⎩ 1 ⎩ 2点 P 的坐标为(6,10) .综上所述:当△PCM 是直角三角形时,点 P 的坐标为(-2, -2) 或(6,10) .②当 y = 0 时, 1 x 2 + 1 x - 2 = 0 ,4 2解得: x 1 = -4 , x 2 = 2 ,∴点 B 的坐标为(2, 0) .∵点 P 的横坐标为 m (m >0且m ≠ 0) ,∴点 P 的坐标为(m , 1 m 2 + 1 m - 2) ,4 2∴直线 PB 的解析式为 y = 1 (m + 4)x - 1 (m + 4) (可利用待定系数求出).4 2∵点 B , B ' 关于点 C 对称,点 B , B ' ,P 到直线 l 的距离都相等,∴直线 l 过点 C ,且直线l ∥直线PB ,∴直线 l 的解析式为 y = 1 (m + 4)x - 2 .4⎨【解析】解:(1)当 x = 0 时, y= - 1 x -2 = -2 ,2∴点 C 的坐标为(0, -2) ;当 y = 0 时, - 1 x - 2 = 0 ,2解得: x = -4 ,∴点 A 的坐标为(-4, 0) .将 A (-4, 0) , C (0, -2) 代入 y = ax 2 + 1 x + c ,得: 2 ⎧16a - 2 + c = 0 ⎧a = 1 ⎨c = -2 ,解得: ⎪ 4 ,⎪⎩c = -2∴抛物线的解析式为 y = 1 x 2 + 1 x - 2 .4 2(2) ①∵ PM ⊥ x 轴,∴ ∠PMC ≠ 90 ,∴分两种情况考虑,如图 1 所示.图 1(i) 当∠MPC = 90时, PC ∥x 轴,∴点 P 的纵坐标为-2 .当 y = -2 时, 1 x 2 + 1 x - 2 = -2 ,4 2解得: x 1 = -2 , x 2 = 0 ,⎩⎨ 1 2 1 ∴点 P 的坐标为(-2, -2) ;(ii)当∠PCM = 90时,设 PC 与 x 轴交于点 D .∵ ∠OAC + ∠OCA = 90 , ∠OCA + ∠OCD = 90 ,∴ ∠OAC = ∠OCD .又∵ ∠AOC = ∠COD = 90 ,∴△AOC △COD ,∴ OD = OC ,即 OD = 2 , OC OA 2 4∴ OD = 1 ,∴点 D 的坐标为(1, 0) .设直线 PC 的解析式为 y = kx + b (k ≠ 0) ,将C (0, -2) , D (1, 0) 代入 y = kx + b ,得:⎧b = -2 ⎧k = 2 ⎨k + b = 0 ,解得: ⎨ = -2 ,⎩ ⎩b∴直线 PC 的解析式为 y = 2x - 2 .⎧ y = 2x - 2 联立直线 PC 和抛物线的解析式成方程组,得: ⎪ , y = x + x - 2解得: ⎧x 1 = 0 , ⎧x 2 = 6 , ⎩⎪ 4 2 ⎨ y = -2 ⎨ y = 10 ⎩ 1 ⎩ 2点 P 的坐标为(6,10) .综上所述:当△PCM 是直角三角形时,点 P 的坐标为(-2, -2) 或(6,10) .②当 y = 0 时, 1 x 2 + 1 x - 2 = 0 ,4 2解得: x 1 = -4 , x 2 = 2 ,∴点 B 的坐标为(2, 0) .∵点 P 的横坐标为 m (m >0且m ≠ 0) ,∴点 P 的坐标为(m , 1 m 2 + 1 m - 2) ,4 2∴直线 PB 的解析式为 y = 1 (m + 4)x - 1 (m + 4) (可利用待定系数求出).4 2∵点 B , B ' 关于点 C 对称,点 B , B ' ,P 到直线 l 的距离都相等,∴直线 l 过点 C ,且直线l ∥直线PB ,∴直线l 的解析式为y =1(m + 4)x - 2 .4【提示】(1)利用一次函数图象上点的坐标特征可求出点A,C 的坐标,根据点A,C 的坐标,利用待定系数法可求出二次函数解析式;(2)①由PM ⊥x 轴可得出∠PMC ≠ 90 ,分∠MPC = 90 及∠PCM = 90 两种情况考虑:(i)当∠MPC = 90 时, PC∥x 轴,利用二次函数图象上点的坐标特征可求出点P 的坐标;(ii)当∠PCM = 90 时,设PC 与x 轴交于点D,易证△AOC △COD,利用相似三角形的性质可求出点D 的坐标,根据点C,D 的坐标,利用待定系数法可求出直线PC 的解析式,联立直线PC 和抛物线的解析式成方程组,通过解方程组可求出点P 的坐标.综上,此问得解;②利用二次函数图象上点的坐标特征可得出点B,P 的坐标,根据点P,B 的坐标,利用待定系数法可求出直线PB 的解析式,结合题意可知:直线l 过点C,且直线l∥直线PB ,再结合点C 的坐标即可求出直线l 的解析式.【考点】二次函数的图象和性质,直角三角形的性质,相似三角形的判定和性质,中位线定理,一次函数的性质,分类讨论思想.。
2019年上海市中考数学试题及参考答案(word解析版)

2019年上海市初中毕业统一学业考试数学试卷(试卷满分150分,考试时间100分钟)一、选择题:(本大题共6题,每题4分,满分24)【下列各题的四个选项中,有且只有一个选项是正确的】1.下列运算正确的是()A.3x+2x=5x2B.3x﹣2x=x C.3x•2x=6x D.3x÷2x=2.如果m>n,那么下列结论错误的是()A.m+2>n+2 B.m﹣2>n﹣2 C.2m>2n D.﹣2m>﹣2n3.下列函数中,函数值y随自变量x的值增大而增大的是()A.y=B.y=﹣C.y=D.y=﹣4.甲、乙两名同学本学期五次引体向上的测试成绩(个数)成绩如图所示,下列判断正确的是()A.甲的成绩比乙稳定B.甲的最好成绩比乙高C.甲的成绩的平均数比乙大D.甲的成绩的中位数比乙大5.下列命题中,假命题是()A.矩形的对角线相等B.矩形对角线交点到四个顶点的距离相等C.矩形的对角线互相平分D.矩形对角线交点到四条边的距离相等6.已知⊙A与⊙B外切,⊙C与⊙A、⊙B都内切,且AB=5,AC=6,BC=7,那么⊙C的半径长是()A.11 B.10 C.9 D.8二、填空题:(本大题共12题,每题4分,满分48分)7.计算:(2a2)2=.8.已知f(x)=x2﹣1,那么f(﹣1)=.9.如果一个正方形的面积是3,那么它的边长是.10.如果关于x的方程x2﹣x+m=0没有实数根,那么实数m的取值范围是.11.一枚材质均匀的骰子,六个面的点数分别是1,2,3,4,5,6,投这个骰子,掷的点数大于4的概率是.12.《九章算术》中有一道题的条件是:“今有大器五一容三斛,大器一小器五容二斛.”大致意思是:有大小两种盛米的桶,5大桶加1小桶共盛3斛米,1大桶加5小桶共盛2斛米,依据该条件,1大桶加1小桶共盛斛米.(注:斛是古代一种容量单位)13.在登山过程中,海拔每升高1千米,气温下降6℃,已知某登山大本营所在的位置的气温是2℃,登山队员从大本营出发登山,当海拔升高x千米时,所在位置的气温是y℃,那么y关于x的函数解析式是.14.小明为了解所在小区居民各类生活垃圾的投放情况,他随机调查了该小区50户家庭某一天各类生活垃圾的投放量,统计得出这50户家庭各类生活垃圾的投放总量是100千克,并画出各类生活垃圾投放量分布情况的扇形图(如图所示),根据以上信息,估计该小区300户居民这一天投放的可回收垃圾共约千克.15.如图,已知直线11∥l2,含30°角的三角板的直角顶点C在l1上,30°角的顶点A在l2上,如果边AB与l1的交点D是AB的中点,那么∠1=度.16.如图,在正边形ABCDEF中,设=,=,那么向量用向量、表示为.17.如图,在正方形ABCD中,E是边AD的中点.将△ABE沿直线BE翻折,点A落在点F处,联结DF,那么∠EDF的正切值是.18.在△ABC和△A1B1C1中,已知∠C=∠C1=90°,AC=A1C1=3,BC=4,B1C1=2,点D、D1分别在边AB、A1B1上,且△ACD≌△C1A1D1,那么AD的长是.三、解答题(本大题共7题,满分78分)19.(10分)计算:|﹣1|﹣×+﹣820.(10分)解方程:﹣=121.(10分)在平面直角坐标系xOy中(如图),已知一次函数的图象平行于直线y=x,且经过点A(2,3),与x轴交于点B.(1)求这个一次函数的解析式;(2)设点C在y轴上,当AC=BC时,求点C的坐标.22.(10分)图1是某小型汽车的侧面示意图,其中矩形ABCD表示该车的后备箱,在打开后备箱的过程中,箱盖ADE可以绕点A逆时针方向旋转,当旋转角为60°时,箱盖ADE落在AD′E′的位置(如图2所示).已知AD=90厘米,DE=30厘米,EC=40厘米.(1)求点D′到BC的距离;(2)求E、E′两点的距离.23.(12分)已知:如图,AB、AC是⊙O的两条弦,且AB=AC,D是AO延长线上一点,联结BD并延长交⊙O于点E,联结CD并延长交⊙O于点F.(1)求证:BD=CD;(2)如果AB2=AO•AD,求证:四边形ABDC是菱形.24.(12分)在平面直角坐标系xOy中(如图),已知抛物线y=x2﹣2x,其顶点为A.(1)写出这条抛物线的开口方向、顶点A的坐标,并说明它的变化情况;(2)我们把一条抛物线上横坐标与纵坐标相等的点叫做这条抛物线的“不动点”.①试求抛物线y=x2﹣2x的“不动点”的坐标;②平移抛物线y=x2﹣2x,使所得新抛物线的顶点B是该抛物线的“不动点”,其对称轴与x轴交于点C,且四边形OABC是梯形,求新抛物线的表达式.25.(14分)如图1,AD、BD分别是△ABC的内角∠BAC、∠ABC的平分线,过点A作AE⊥AD,交BD的延长线于点E.(1)求证:∠E═∠C;(2)如图2,如果AE=AB,且BD:DE=2:3,求cos∠ABC的值;(3)如果∠ABC是锐角,且△ABC与△ADE相似,求∠ABC的度数,并直接写出的值.参考答案与解析一、选择题:(本大题共6题,每题4分,满分24)【下列各题的四个选项中,有且只有一个选项是正确的】1.下列运算正确的是()A.3x+2x=5x2B.3x﹣2x=x C.3x•2x=6x D.3x÷2x=【知识考点】整式的混合运算.【思路分析】根据整式的运算法则即可求出答案.【解题过程】解:(A)原式=5x,故A错误;(C)原式=6x2,故C错误;(D)原式=,故D错误;故选:B.【总结归纳】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.2.如果m>n,那么下列结论错误的是()A.m+2>n+2 B.m﹣2>n﹣2 C.2m>2n D.﹣2m>﹣2n【知识考点】不等式的性质.【思路分析】根据不等式的性质即可求出答案.【解题过程】解:∵m>n,∴﹣2m<﹣2n,故选:D.【总结归纳】本题考查不等式的性质,解题的关键是熟练运用不等式的性质,本题属于基础题型.3.下列函数中,函数值y随自变量x的值增大而增大的是()A.y=B.y=﹣C.y=D.y=﹣【知识考点】正比例函数的性质;反比例函数的性质.【思路分析】一次函数当a>0时,函数值y总是随自变量x增大而增大,反比例函数当k<0时,在每一个象限内,y随自变量x增大而增大.【解题过程】解:A、该函数图象是直线,位于第一、三象限,y随x的增大而增大,故本选项正确.B、该函数图象是直线,位于第二、四象限,y随x的增大而减小,故本选项错误.C、该函数图象是双曲线,位于第一、三象限,在每一象限内,y随x的增大而减小,故本选项错误.D、该函数图象是双曲线,位于第二、四象限,在每一象限内,y随x的增大而增大,故本选项错误.故选:A.【总结归纳】本题考查了一次函数、反比例函数的增减性;熟练掌握一次函数、反比例函数的性质是关键.4.甲、乙两名同学本学期五次引体向上的测试成绩(个数)成绩如图所示,下列判断正确的是()A.甲的成绩比乙稳定B.甲的最好成绩比乙高C.甲的成绩的平均数比乙大D.甲的成绩的中位数比乙大【知识考点】算术平均数;中位数;方差.【思路分析】分别计算出两人成绩的平均数、中位数、方差可得出答案.【解题过程】解:甲同学的成绩依次为:7、8、8、8、9,则其中位数为8,平均数为8,方差为×[(7﹣8)2+3×(8﹣8)2+(9﹣8)2]=0.4;乙同学的成绩依次为:6、7、8、9、10,则其中位数为8,平均数为8,方差为×[(6﹣8)2+(7﹣8)2+(8﹣8)2+(9﹣8)2+(10﹣8)2]=2,∴甲的成绩比乙稳定,甲、乙的平均成绩和中位数均相等,甲的最好成绩比乙低,故选:A.【总结归纳】本题考查了方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了中位数.5.下列命题中,假命题是()A.矩形的对角线相等B.矩形对角线交点到四个顶点的距离相等C.矩形的对角线互相平分D.矩形对角线交点到四条边的距离相等【知识考点】命题与定理.【思路分析】利用矩形的性质分别判断后即可确定正确的选项.【解题过程】解:A、矩形的对角线相等,正确,是真命题;B、矩形的对角线的交点到四个顶点的距离相等,正确,是真命题;C、矩形的对角线互相平分,正确,是真命题;D、矩形的对角线的交点到一组对边的距离相等,故错误,是假命题,故选:D.【总结归纳】本题考查了命题与定理的知识,解题的关键是了解矩形的性质,难度不大.6.已知⊙A与⊙B外切,⊙C与⊙A、⊙B都内切,且AB=5,AC=6,BC=7,那么⊙C的半径长是()A.11 B.10 C.9 D.8【知识考点】圆与圆的位置关系.【思路分析】如图,设⊙A,⊙B,⊙C的半径为x,y,z.构建方程组即可解决问题.【解题过程】解:如图,设⊙A,⊙B,⊙C的半径为x,y,z.由题意:,解得,故选:C.【总结归纳】本题考查两圆的位置关系,解题的关键是学会利用参数构建方程组解决问题,属于中考常考题型.二、填空题:(本大题共12题,每题4分,满分48分)7.计算:(2a2)2=.【知识考点】幂的乘方与积的乘方.【思路分析】根据积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘,计算即可.【解题过程】解:(2a2)2=22a4=4a4.【总结归纳】主要考查积的乘方的性质,熟练掌握运算性质是解题的关键.8.已知f(x)=x2﹣1,那么f(﹣1)=.【知识考点】函数值.【思路分析】根据自变量与函数值的对应关系,可得答案.【解题过程】解:当x=﹣1时,f(﹣1)=(﹣1)2﹣1=0.故答案为:0.【总结归纳】本题考查了函数值,把自变量的值代入函数解析式是解题关键.9.如果一个正方形的面积是3,那么它的边长是.【知识考点】算术平方根.【思路分析】根据算术平方根的定义解答.【解题过程】解:∵正方形的面积是3,∴它的边长是.故答案为:【总结归纳】本题考查了二次根式的应用,主要利用了正方形的性质和算术平方根的定义.10.如果关于x的方程x2﹣x+m=0没有实数根,那么实数m的取值范围是.【知识考点】根的判别式.【思路分析】由于方程没有实数根,则其判别式△<0,由此可以建立关于m的不等式,解不等式即可求出m的取值范围.【解题过程】解:由题意知△=1﹣4m<0,∴m>.故填空答案:m>.【总结归纳】总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根(3)△<0⇔方程没有实数根.11.一枚材质均匀的骰子,六个面的点数分别是1,2,3,4,5,6,投这个骰子,掷的点数大于4的概率是.【知识考点】列表法与树状图法.【思路分析】先求出点数大于4的数,再根据概率公式求解即可.【解题过程】解:∵在这6种情况中,掷的点数大于4的有2种结果,∴掷的点数大于4的概率为=,故答案为:.【总结归纳】本题考查的是概率公式,熟记随机事件A的概率P(A)=事件A可能出现的结果数所有可能出现的结果数的商是解答此题的关键.12.《九章算术》中有一道题的条件是:“今有大器五一容三斛,大器一小器五容二斛.”大致意思是:有大小两种盛米的桶,5大桶加1小桶共盛3斛米,1大桶加5小桶共盛2斛米,依据该条件,1大桶加1小桶共盛斛米.(注:斛是古代一种容量单位)【知识考点】二元一次方程组的应用.【思路分析】直接利用5个大桶加上1个小桶可以盛米3斛,1个大桶加上5个小桶可以盛米2斛,分别得出等式组成方程组求出答案.【解题过程】解:设1个大桶可以盛米x斛,1个小桶可以盛米y斛,则,故5x+x+y+5y=5,则x+y=.答:1大桶加1小桶共盛斛米.故答案为:.【总结归纳】此题主要考查了二元一次方程组的应用,正确得出等量关系是解题关键.13.在登山过程中,海拔每升高1千米,气温下降6℃,已知某登山大本营所在的位置的气温是2℃,登山队员从大本营出发登山,当海拔升高x千米时,所在位置的气温是y℃,那么y关于x的函数解析式是.【知识考点】函数关系式.【思路分析】根据登山队大本营所在地的气温为2℃,海拔每升高1km气温下降6℃,可求出y 与x的关系式.【解题过程】解:由题意得y与x之间的函数关系式为:y=﹣6x+2.故答案为:y=﹣6x+2.【总结归纳】本题考查根据实际问题列一次函数式,关键知道气温随着高度变化,某处的气温=地面的气温﹣降低的气温.14.小明为了解所在小区居民各类生活垃圾的投放情况,他随机调查了该小区50户家庭某一天各类生活垃圾的投放量,统计得出这50户家庭各类生活垃圾的投放总量是100千克,并画出各类生活垃圾投放量分布情况的扇形图(如图所示),根据以上信息,估计该小区300户居民这一天投放的可回收垃圾共约千克.【知识考点】用样本估计总体;扇形统计图.【思路分析】求出样本中100千克垃圾中可回收垃圾的质量,再乘以可得答案.【解题过程】解:估计该小区300户居民这一天投放的可回收垃圾共约×100×15%=90(千克),故答案为:90.【总结归纳】本题主要考查扇形统计图,扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数.也考查了用样本估计总体.15.如图,已知直线11∥l2,含30°角的三角板的直角顶点C在l1上,30°角的顶点A在l2上,如果边AB与l1的交点D是AB的中点,那么∠1=度.【知识考点】平行线的性质;直角三角形斜边上的中线.【思路分析】根据直角三角形斜边上的中线性质得到DA=DC,则∠DCA=∠DAC=30°,再利用三角形外角性质得到∠2=60°,然后根据平行线的性质求∠1的度数.【解题过程】解:∵D是斜边AB的中点,∴DA=DC,∴∠DCA=∠DAC=30°,∴∠2=∠DCA+∠DAC=60°,∵11∥l2,∴∠1+∠2=180°,∴∠1=180°﹣60°=120°.故答案为120.【总结归纳】本题考查了直接三角形斜边上的中线:在直角三角形中,斜边上的中线等于斜边的一半(即直角三角形的外心位于斜边的中点).也考查了平行线的性质.16.如图,在正边形ABCDEF中,设=,=,那么向量用向量、表示为.【知识考点】*平面向量.【思路分析】连接CF.利用三角形法则:=+,求出即可.【解题过程】解:连接CF.∵多边形ABCDEF是正六边形,AB∥CF,CF=2BA,∴=2,∵=+,∴=2+,故答案为2+.【总结归纳】本题考查平面向量,正六边形的性质等知识,解题的关键是熟练掌握三角形法则,属于中考常考题型.17.如图,在正方形ABCD中,E是边AD的中点.将△ABE沿直线BE翻折,点A落在点F处,联结DF,那么∠EDF的正切值是.【知识考点】正方形的性质;翻折变换(折叠问题);解直角三角形.【思路分析】由折叠可得AE=FE,∠AEB=∠FEB,由折叠的性质以及三角形外角性质,即可得到∠AEB=∠EDF,进而得到tan∠EDF=tan∠AEB==2.【解题过程】解:如图所示,由折叠可得AE=FE,∠AEB=∠FEB=∠AEF,∵正方形ABCD中,E是AD的中点,∴AE=DE=AD=AB,∴DE=FE,∴∠EDF=∠EFD,又∵∠AEF是△DEF的外角,∴∠AEF=∠EDF+∠EFD,∴∠EDF=∠AEF,∴∠AEB=∠EDF,∴tan∠EDF=tan∠AEB==2.故答案为:2.【总结归纳】本题主要考查了折叠问题,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.18.在△ABC和△A1B1C1中,已知∠C=∠C1=90°,AC=A1C1=3,BC=4,B1C1=2,点D、D1分别在边AB、A1B1上,且△ACD≌△C1A1D1,那么AD的长是.【知识考点】全等三角形的性质.【思路分析】根据勾股定理求得AB=5,设AD=x,则BD=5﹣x,根据全等三角形的性质得出C1D1=AD=x,∠A1C1D1=∠A,∠A1D1C1=∠CDA,即可求得∠C1D1B1=∠BDC,根据等角的余角相等求得∠B1C1D1=∠B,即可证得△C1B1D∽△BCD,根据其性质得出=2,解得求出AD的长.【解题过程】解:如图,∵在△ABC和△A1B1C1中,∠C=∠C1=90°,AC=A1C1=3,BC=4,B1C1=2,∴AB==5,设AD=x,则BD=5﹣x,∵△ACD≌△C1A1D1,∴C1D1=AD=x,∠A1C1D1=∠A,∠A1D1C1=∠CDA,∴∠C1D1B1=∠BDC,∵∠B=90°﹣∠A,∠B1C1D1=90°﹣∠A1C1D1,∴∠B1C1D1=∠B,∴△C1B1D∽△BCD,∴=,即=2,解得x=,∴AD的长为,故答案为.【总结归纳】本题考查了全等三角形的性质,勾股定理的应用,三角形相似的判定和性质,证得△C1B1D∽△BCD是解题的关键.三、解答题(本大题共7题,满分78分)19.(10分)计算:|﹣1|﹣×+﹣8【知识考点】实数的运算;分数指数幂.【思路分析】首先计算乘方,然后计算乘法,最后从左向右依次计算,求出算式的值是多少即可.【解题过程】解:|﹣1|﹣×+﹣8=﹣1﹣2+2+﹣4=﹣3【总结归纳】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.20.(10分)解方程:﹣=1【知识考点】解分式方程.【思路分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解题过程】解:去分母得:2x2﹣8=x2﹣2x,即x2+2x﹣8=0,分解因式得:(x﹣2)(x+4)=0,解得:x=2或x=﹣4,经检验x=2是增根,分式方程的解为x=﹣4.【总结归纳】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.21.(10分)在平面直角坐标系xOy中(如图),已知一次函数的图象平行于直线y=x,且经过点A(2,3),与x轴交于点B.(1)求这个一次函数的解析式;(2)设点C在y轴上,当AC=BC时,求点C的坐标.【知识考点】待定系数法求一次函数解析式;两条直线相交或平行问题.【思路分析】(1)设一次函数的解析式为y=kx+b,解方程即可得到结论;(2)求得一次函数的图形与x轴的解得为B(﹣4,0),根据两点间的距离公式即可得到结论.【解题过程】解:(1)设一次函数的解析式为:y=kx+b,∵一次函数的图象平行于直线y=x,∴k=,∵一次函数的图象经过点A(2,3),∴3=+b,∴b=2,∴一次函数的解析式为y=x+2;(2)由y=x+2,令y=0,得x+2=0,∴x=﹣4,∴一次函数的图形与x轴的解得为B(﹣4,0),∵点C在y轴上,∴设点C的坐标为(﹣4,y),∵AC=BC,∴=,∴y=﹣,经检验:y=﹣是原方程的根,∴点C的坐标是(0,﹣).【总结归纳】本题考查了两直线相交与平行问题,待定系数法求函数的解析式,正确的理解题意是解题的关键.22.(10分)图1是某小型汽车的侧面示意图,其中矩形ABCD表示该车的后备箱,在打开后备箱的过程中,箱盖ADE可以绕点A逆时针方向旋转,当旋转角为60°时,箱盖ADE落在AD′E′的位置(如图2所示).已知AD=90厘米,DE=30厘米,EC=40厘米.(1)求点D′到BC的距离;(2)求E、E′两点的距离.【知识考点】矩形的性质;解直角三角形的应用.【思路分析】(1)过点D′作D′H⊥BC,垂足为点H,交AD于点F,利用旋转的性质可得出AD′=AD=90厘米,∠DAD′=60°,利用矩形的性质可得出∠AFD′=∠BHD′=90°,在Rt△AD′F中,通过解直角三角形可求出D′F的长,结合FH=DC=DE+CE及D′H=D′F+FH可求出点D′到BC的距离;(2)连接AE,AE′,EE′,利用旋转的性质可得出AE′=AE,∠EAE′=60°,进而可得出△AEE′是等边三角形,利用等边三角形的性质可得出EE′=AE,在Rt△ADE中,利用勾股定理可求出AE的长度,结合EE′=AE可得出E、E′两点的距离.【解题过程】解:(1)过点D′作D′H⊥BC,垂足为点H,交AD于点F,如图3所示.由题意,得:AD′=AD=90厘米,∠DAD′=60°.∵四边形ABCD是矩形,∴AD∥BC,∴∠AFD′=∠BHD′=90°.在Rt△AD′F中,D′F=AD′•sin∠DAD′=90×sin60°=45厘米.又∵CE=40厘米,DE=30厘米,∴FH=DC=DE+CE=70厘米,∴D′H=D′F+FH=(45+70)厘米.答:点D′到BC的距离为(45+70)厘米.(2)连接AE,AE′,EE′,如图4所示.由题意,得:AE′=AE,∠EAE′=60°,∴△AEE′是等边三角形,∴EE′=AE.∵四边形ABCD是矩形,∴∠ADE=90°.在Rt△ADE中,AD=90厘米,DE=30厘米,∴AE==30厘米,∴EE′=30厘米.答:E、E′两点的距离是30厘米.【总结归纳】本题考查了解直角三角形的应用、矩形的性质、等边三角形的判定与性质以及勾股定理,解题的关键是:(1)通过解直角三角形求出D′F的长度;(2)利用勾股定理求出AE的长度.23.(12分)已知:如图,AB、AC是⊙O的两条弦,且AB=AC,D是AO延长线上一点,联结BD并延长交⊙O于点E,联结CD并延长交⊙O于点F.(1)求证:BD=CD;(2)如果AB2=AO•AD,求证:四边形ABDC是菱形.【知识考点】菱形的判定;圆心角、弧、弦的关系;圆周角定理;相似三角形的判定与性质.【思路分析】(1)连接BC,根据AB=AC,OB=OA=OC,即可得出AD垂直平分BC,根据线段垂直平分线性质求出即可;(2)根据相似三角形的性质和判定求出∠ABO=∠ADB=∠BAO,求出BD=AB,再根据菱形的判定推出即可.【解题过程】证明:(1)如图1,连接BC,OB,OC,∵AB、AC是⊙O的两条弦,且AB=AC,∴A在BC的垂直平分线上,∵OB=OA=OC,∴O在BC的垂直平分线上,∴AO垂直平分BC,∴BD=CD;(2)如图2,连接OB,∵AB2=AO•AD,∴=,∵∠BAO=∠DAB,∴△ABO∽△ADB,∴∠OBA=∠ADB,∵OA=OB,∴∠OBA=∠OAB,∴∠OAB=∠BDA,∴AB=BD,∵AB=AC,BD=CD,∴AB=AC=BD=CD,∴四边形ABDC是菱形.【总结归纳】本题考查了相似三角形的性质和判定,圆心角、弧、弦之间的关系,线段垂直平分线的性质,菱形的判定,垂径定理等知识点,能综合运用知识点进行推理是解此题的关键.24.(12分)在平面直角坐标系xOy中(如图),已知抛物线y=x2﹣2x,其顶点为A.(1)写出这条抛物线的开口方向、顶点A的坐标,并说明它的变化情况;(2)我们把一条抛物线上横坐标与纵坐标相等的点叫做这条抛物线的“不动点”.①试求抛物线y=x2﹣2x的“不动点”的坐标;②平移抛物线y=x2﹣2x,使所得新抛物线的顶点B是该抛物线的“不动点”,其对称轴与x轴交于点C,且四边形OABC是梯形,求新抛物线的表达式.【知识考点】二次函数综合题.【思路分析】(1)∵a=1>0,故该抛物线开口向上,顶点A的坐标为(1,﹣1);(2)①设抛物线“不动点”坐标为(t,t),则t=t2﹣2t,即可求解;②新抛物线顶点B为“不动点”,则设点B(m,m),则新抛物线的对称轴为:x=m,与x轴的交点C(m,0),四边形OABC是梯形,则直线x=m在y轴左侧,而点A(1,﹣1),点B(m,m),则m=﹣1,即可求解.【解题过程】解:(1)∵a=1>0,故该抛物线开口向上,顶点A的坐标为(1,﹣1);(2)①设抛物线“不动点”坐标为(t,t),则t=t2﹣2t,解得:t=0或3,故“不动点”坐标为(0,0)或(3,3);②∵新抛物线顶点B为“不动点”,则设点B(m,m),∴新抛物线的对称轴为:x=m,与x轴的交点C(m,0),∵四边形OABC是梯形,∴直线x=m在y轴左侧,∵BC与OA不平行,∴OC∥AB,又∵点A(1,﹣1),点B(m,m),∴m=﹣1,故新抛物线是由抛物线y=x2﹣2x向左平移2个单位得到的,∴新抛物线的表达式为:y=(x+1)2﹣1.【总结归纳】本题为二次函数综合运用题,涉及到二次函数基本知识、梯形基本性质,此类新定义题目,通常按照题设顺序,逐次求解即可.25.(14分)如图1,AD、BD分别是△ABC的内角∠BAC、∠ABC的平分线,过点A作AE⊥AD,交BD的延长线于点E.(1)求证:∠E═∠C;(2)如图2,如果AE=AB,且BD:DE=2:3,求cos∠ABC的值;(3)如果∠ABC是锐角,且△ABC与△ADE相似,求∠ABC的度数,并直接写出的值.【知识考点】相似形综合题.【思路分析】(1)由题意:∠E=90°﹣∠ADE,证明∠ADE=90°﹣∠C即可解决问题.(2)延长AD交BC于点F.证明AE∥BC,可得∠AFB=∠EAD=90°,=,由BD:DE=2:3,可得cos∠ABC===.(3)因为△ABC与△ADE相似,∠DAE=90°,所以∠ABC中必有一个内角为90°因为∠ABC 是锐角,推出∠ABC≠90°.接下来分两种情形分别求解即可.【解题过程】(1)证明:如图1中,∵AE⊥AD,∴∠DAE=90°,∠E=90°﹣∠ADE,∵AD平分∠BAC,∴∠BAD=∠BAC,同理∠ABD=∠ABC,∵∠ADE=∠BAD+∠DBA,∠BAC+∠ABC=180°﹣∠C,∴∠ADE=(∠ABC+∠BAC)=90°﹣∠C,∴∠E=90°﹣(90°﹣∠C)=∠C.(2)解:延长AD交BC于点F.∵AB=AE,∴∠ABE=∠E,BE平分∠ABC,∴∠ABE=∠EBC,∴∠E=∠CBE,∴AE∥BC,∴∠AFB=∠EAD=90°,=,∵BD:DE=2:3,∴cos∠ABC===.(3)∵△ABC与△ADE相似,∠DAE=90°,∴∠ABC中必有一个内角为90°∵∠ABC是锐角,∴∠ABC≠90°.①当∠BAC=∠DAE=90°时,∵∠E=∠C,∴∠ABC=∠E=∠C,∵∠ABC+∠C=90°,∴∠ABC=30°,此时=2﹣.②当∠C=∠DAE=90°时,∠∠C=45°,∴∠EDA=45°,∵△ABC与△ADE相似,∴∠ABC=45°,此时=2﹣.综上所述,∠ABC=30°或45°,=2﹣或2﹣.【总结归纳】本题属于相似形综合题,考查了相似三角形的判定和性质,平行线的判定和性质,锐角三角函数等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考压轴题.21。
长春市2019年中考数学试卷及答案解析(word版)

2019年吉林省长春市中考数学试卷一、选择题:本大题共8小题,每小题3分,共24分1.﹣5的相反数是()A.B.C.﹣5 D.52.吉林省在践行社会主义核心价值观活动中,共评选出各级各类“吉林好人”45000多名,45000这个数用科学记数法表示为()A.45×103B.4.5×104C.4.5×105D.0.45×1033.如图是由5个相同的小正方体组成的立体图形,这个立体图形的俯视图是()A.B.C.D.4.不等式组的解集在数轴上表示正确的是()A.B.C.D.5.把多项式x2﹣6x+9分解因式,结果正确的是()A.(x﹣3)2B.(x﹣9)2C.(x+3)(x﹣3)D.(x+9)(x﹣9)6.如图,在Rt△ABC中,∠BAC=90°,将Rt△ABC绕点C按逆时针方向旋转48°得到Rt△A′B′C′,点A 在边B′C上,则∠B′的大小为()A.42° B.48° C.52° D.58°7.如图,PA、PB是⊙O的切线,切点分别为A、B,若OA=2,∠P=60°,则的长为()A.π B.π C.D.8.如图,在平面直角坐标系中,点P(1,4)、Q(m,n)在函数y=(x>0)的图象上,当m>1时,过点P分别作x轴、y轴的垂线,垂足为点A,B;过点Q分别作x轴、y轴的垂线,垂足为点C、D.QD 交PA于点E,随着m的增大,四边形ACQE的面积()A.减小B.增大C.先减小后增大D.先增大后减小二、填空题:本大题共6小题,每小题3分,共18分9.计算(ab)3=.10.关于x的一元二次方程x2+2x+m=0有两个相等的实数根,则m的值是.11.如图,在△ABC中,AB>AC,按以下步骤作图:分别以点B和点C为圆心,大于BC一半的长为半径作圆弧,两弧相交于点M和点N,作直线MN交AB于点D;连结CD.若AB=6,AC=4,则△ACD 的周长为.12.如图,在平面直角坐标系中,正方形ABCD的对称中心与原点重合,顶点A的坐标为(﹣1,1),顶点B在第一象限,若点B在直线y=kx+3上,则k的值为.13.如图,在⊙O中,AB是弦,C是上一点.若∠OAB=25°,∠OCA=40°,则∠BOC的大小为度.14.如图,在平面直角坐标系中,菱形OABC的顶点A在x轴正半轴上,顶点C的坐标为(4,3),D 是抛物线y=﹣x2+6x上一点,且在x轴上方,则△BCD面积的最大值为.三、解答题:本大题共10小题,共78分15.先化简,再求值:(a+2)(a﹣2)+a(4﹣a),其中a=.16.一个不透明的口袋中有三个小球,上面分别标有数字0,1,2,每个小球除数字不同外其余均相同,小华先从口袋中随机摸出一个小球,记下数字后放回并搅匀;再从口袋中随机摸出一个小球记下数字、用画树状图(或列表)的方法,求小华两次摸出的小球上的数字之和是3的概率.17.A、B两种型号的机器加工同一种零件,已知A型机器比B型机器每小时多加工20个零件,A型机器加工400个零件所用时间与B型机器加工300个零件所用时间相同,求A型机器每小时加工零件的个数.18.某中学为了解该校学生一年的课外阅读量,随机抽取了n名学生进行调查,并将调查结果绘制成如下条形统计图,根据统计图提供的信息解答下列问题:(1)求n的值;(2)根据统计结果,估计该校1100名学生中一年的课外阅读量超过10本的人数.19.如图,为了解测量长春解放纪念碑的高度AB,在与纪念碑底部B相距27米的C处,用高1.5米的测角仪DC测得纪念碑顶端A的仰角为47°,求纪念碑的高度(结果精确到0.1米)【参考数据:sin47°=0.731,cos47°=0.682,tan47°=1.072】20.如图,在▱ABCD中,点E在边BC上,点F在边AD的延长线上,且DF=BE,BE与CD交于点G (1)求证:BD∥EF;(2)若=,BE=4,求EC的长.21.甲、乙两车分别从A、B两地同时出发,甲车匀速前往B地,到达B地立即以另一速度按原路匀速返回到A地;乙车匀速前往A地,设甲、乙两车距A地的路程为y(千米),甲车行驶的时间为x(时),y与x之间的函数图象如图所示(1)求甲车从A地到达B地的行驶时间;(2)求甲车返回时y与x之间的函数关系式,并写出自变量x的取值范围;(3)求乙车到达A地时甲车距A地的路程.22.感知:如图1,AD平分∠BAC.∠B+∠C=180°,∠B=90°,易知:DB=DC.探究:如图2,AD平分∠BAC,∠ABD+∠ACD=180°,∠ABD<90°,求证:DB=DC.应用:如图3,四边形ABCD中,∠B=45°,∠C=135°,DB=DC=a,则AB﹣AC=(用含a 的代数式表示)23.如图,在菱形ABCD中,对角线AC与BD相交于点O,AB=8,∠BAD=60°,点E从点A出发,沿AB以每秒2个单位长度的速度向终点B运动,当点E不与点A重合时,过点E作EF⊥AD于点F,作EG∥AD交AC于点G,过点G作GH⊥AD交AD(或AD的延长线)于点H,得到矩形EFHG,设点E 运动的时间为t秒(1)求线段EF的长(用含t的代数式表示);(2)求点H与点D重合时t的值;(3)设矩形EFHG与菱形ABCD重叠部分图形的面积与S平方单位,求S与t之间的函数关系式;(4)矩形EFHG的对角线EH与FG相交于点O′,当OO′∥AD时,t的值为;当OO′⊥AD 时,t的值为.24.如图,在平面直角坐标系中,有抛物线y=a(x﹣h)2.抛物线y=a(x﹣3)2+4经过原点,与x轴正半轴交于点A,与其对称轴交于点B,P是抛物线y=a(x﹣3)2+4上一点,且在x轴上方,过点P作x轴的垂线交抛物线y=(x﹣h)2于点Q,过点Q作PQ的垂线交抛物线y=(x﹣h)2于点Q′(不与点Q重合),连结PQ′,设点P的横坐标为m.(1)求a的值;(2)当抛物线y=a(x﹣h)2经过原点时,设△PQQ′与△OAB重叠部分图形的周长为l.①求的值;②求l与m之间的函数关系式;(3)当h为何值时,存在点P,使以点O,A,Q,Q′为顶点的四边形是轴对称图形?直接写出h的值.2019年吉林省长春市中考数学试卷参考答案与试题解析一、选择题:本大题共8小题,每小题3分,共24分1.﹣5的相反数是()A.B.C.﹣5 D.5【考点】相反数.【分析】根据只有符号不同的两个数互为相反数,可得答案.【解答】解:﹣5的相反数是5.故选:D.【点评】本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.2.吉林省在践行社会主义核心价值观活动中,共评选出各级各类“吉林好人”45000多名,45000这个数用科学记数法表示为()A.45×103B.4.5×104C.4.5×105D.0.45×103【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:45000这个数用科学记数法表示为4.5×104,故选:B.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.3.如图是由5个相同的小正方体组成的立体图形,这个立体图形的俯视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】从上面看到的平面图形即为该组合体的俯视图,据此求解.【解答】解:从上面看共有2行,上面一行有3个正方形,第二行中间有一个正方形,故选C.【点评】本题考查了简单组合体的三视图的知识,解题的关键是了解俯视图的定义,属于基础题,难度不大.4.不等式组的解集在数轴上表示正确的是()A.B.C.D.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】分别求出各不等式的解集,再在数轴上表示出来即可.【解答】解:,由①得,x>﹣2,由②得,x≤3,故不等式组的解集为:﹣2<x≤3.在数轴上表示为:.故选C.【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.5.把多项式x2﹣6x+9分解因式,结果正确的是()A.(x﹣3)2B.(x﹣9)2C.(x+3)(x﹣3)D.(x+9)(x﹣9)【考点】因式分解-运用公式法.【专题】计算题;因式分解.【分析】原式利用完全平方公式分解即可.【解答】解:x2﹣6x+9=(x﹣3)2,故选A【点评】此题考查了因式分解﹣运用公式法,熟练掌握完全平方公式是解本题的关键.6.如图,在Rt△ABC中,∠BAC=90°,将Rt△ABC绕点C按逆时针方向旋转48°得到Rt△A′B′C′,点A 在边B′C上,则∠B′的大小为()A.42° B.48° C.52° D.58°【考点】旋转的性质.【分析】先根据旋转的性质得出∠A′=∠BAC=90°,∠ACA′=48°,然后在直角△A′CB′中利用直角三角形两锐角互余求出∠B′=90°﹣∠ACA′=42°.【解答】解:∵在Rt△ABC中,∠BAC=90°,将Rt△ABC绕点C按逆时针方向旋转48°得到Rt△A′B′C′,∴∠A′=∠BAC=90°,∠ACA′=48°,∴∠B′=90°﹣∠ACA′=42°.故选A.【点评】本题考查了转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了直角三角形两锐角互余的性质.7.如图,PA、PB是⊙O的切线,切点分别为A、B,若OA=2,∠P=60°,则的长为()A.π B.π C.D.【考点】弧长的计算;切线的性质.【专题】计算题;与圆有关的计算.【分析】由PA与PB为圆的两条切线,利用切线的性质得到两个角为直角,再利用四边形内角和定理求出∠AOB的度数,利用弧长公式求出的长即可.【解答】解:∵PA、PB是⊙O的切线,∴∠OBP=∠OAP=90°,在四边形APBO中,∠P=60°,∴∠AOB=120°,∵OA=2,∴的长l==π,故选C【点评】此题考查了弧长的计算,以及切线的性质,熟练掌握弧长公式是解本题的关键.8.如图,在平面直角坐标系中,点P(1,4)、Q(m,n)在函数y=(x>0)的图象上,当m>1时,过点P分别作x轴、y轴的垂线,垂足为点A,B;过点Q分别作x轴、y轴的垂线,垂足为点C、D.QD 交PA于点E,随着m的增大,四边形ACQE的面积()A.减小B.增大C.先减小后增大D.先增大后减小【考点】反比例函数系数k的几何意义.【分析】首先利用m和n表示出AC和AQ的长,则四边形ACQE的面积即可利用m、n表示,然后根据函数的性质判断.【解答】解:AC=m﹣1,CQ=n,=AC•CQ=(m﹣1)n=mn﹣n.则S四边形ACQE∵P(1,4)、Q(m,n)在函数y=(x>0)的图象上,∴mn=k=4(常数).∴S=AC•CQ=4﹣n,四边形ACQE∵当m>1时,n随m的增大而减小,∴S=4﹣n随m的增大而增大.四边形ACQE故选B.【点评】本题考查了二次函数的性质以及矩形的面积的计算,利用n表示出四边形ACQE的面积是关键.二、填空题:本大题共6小题,每小题3分,共18分9.计算(ab)3=a3b3.【考点】幂的乘方与积的乘方.【专题】计算题;整式.【分析】原式利用积的乘方运算法则计算即可得到结果.【解答】解:原式=a3b3,故答案为:a3b3【点评】此题考查了幂的乘方与积的乘方,熟练掌握运算法则是解本题的关键.10.关于x的一元二次方程x2+2x+m=0有两个相等的实数根,则m的值是1.【考点】根的判别式.【分析】由于关于x的一元二次方程x2+2x+m=0有两个相等的实数根,可知其判别式为0,据此列出关于m的方程,解答即可.【解答】解:∵关于x的一元二次方程x2+2x+m=0有两个相等的实数根,∴△=0,∴22﹣4m=0,∴m=1,故答案为:1.【点评】本题主要考查了根的判别式的知识,解答本题的关键是掌握一元二次方程有两个相等的实数根,则可得△=0,此题难度不大.11.如图,在△ABC中,AB>AC,按以下步骤作图:分别以点B和点C为圆心,大于BC一半的长为半径作圆弧,两弧相交于点M和点N,作直线MN交AB于点D;连结CD.若AB=6,AC=4,则△ACD 的周长为10.【考点】作图—基本作图;线段垂直平分线的性质.【分析】根据题意可知直线MN是线段BC的垂直平分线,推出DC=DB,可以证明△ADC的周长=AC+AB,由此即可解决问题.【解答】解:由题意直线MN是线段BC的垂直平分线,∵点D在直线MN上,∴DC=DB,∴△ADC的周长=AC+CD+AD=AC+AD+BD=AC+AB,∵AB=6,AC=4,∴△ACD的周长为10.故答案为10.【点评】本题考查基本作图、线段垂直平分线性质、三角形周长等知识,解题的关键是学会转化,把△ADC 的周长转化为求AC+AB来解决,属于基础题,中考常考题型.12.如图,在平面直角坐标系中,正方形ABCD的对称中心与原点重合,顶点A的坐标为(﹣1,1),顶点B在第一象限,若点B在直线y=kx+3上,则k的值为﹣2.【考点】一次函数图象上点的坐标特征;正方形的性质.【分析】先求出B点坐标,再代入直线y=kx+3,求出k的值即可.【解答】解:∵正方形ABCD的对称中心与原点重合,顶点A的坐标为(﹣1,1),∴B(1,1).∵点B在直线y=kx+3上,∴1=k+3,解得k=﹣2.故答案为:﹣2.【点评】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.13.如图,在⊙O中,AB是弦,C是上一点.若∠OAB=25°,∠OCA=40°,则∠BOC的大小为30度.【考点】圆周角定理.【分析】由∠BAO=25°,利用等腰三角形的性质,可求得∠AOB的度数,又由∠OCA=40°,可求得∠CAO 的度数,继而求得∠AOC的度数,则可求得答案.【解答】解:∵∠BAO=25°,OA=OB,∴∠B=∠BAO=25°,∴∠AOB=180°﹣∠BAO﹣∠B=130°,∵∠ACO=40°,OA=OC,∴∠C=∠CAO=40°,∴∠AOC=180°﹣∠CAO﹣∠C=100°,∴∠BOC=∠AOB﹣∠AOC=30°.故答案为30°.【点评】本题考查了圆周角定理以及等腰三角形的性质.注意利用等腰三角形的性质求解是关键.14.如图,在平面直角坐标系中,菱形OABC的顶点A在x轴正半轴上,顶点C的坐标为(4,3),D 是抛物线y=﹣x2+6x上一点,且在x轴上方,则△BCD面积的最大值为.【考点】二次函数的性质;菱形的性质.【分析】设D(x,﹣x2+6x),根据勾股定理求得OC,根据菱形的性质得出BC,然后根据三角形面积公式得出∴S△BCD=×5×(﹣x2+6x﹣3)=﹣(x﹣3)2+,根据二次函数的性质即可求得最大值.【解答】解:∵D是抛物线y=﹣x2+6x上一点,∴设D(x,﹣x2+6x),∵顶点C的坐标为(4,3),∴OC==5,∵四边形OABC是菱形,∴BC=OC=5,BC∥x轴,∴S△BCD=×5×(﹣x2+6x﹣3)=﹣(x﹣3)2+,∵﹣<0,∴S△BCD有最大值,最大值为,故答案为.【点评】本题库存了菱形的性质,二次函数的性质,注意数与形的结合是解决本题的关键.三、解答题:本大题共10小题,共78分15.先化简,再求值:(a+2)(a﹣2)+a(4﹣a),其中a=.【考点】整式的混合运算—化简求值.【专题】计算题;探究型.【分析】根据平方差公式和单项式乘以多项式可以对原式化简,然后将a=代入化简后的式子,即可解答本题.【解答】解:(a+2)(a﹣2)+a(4﹣a)=a2﹣4+4a﹣a2=4a﹣4,当a=时,原式=.【点评】本题考查整式的混合运算﹣化简求值,解题的关键是明确整式的混合运算的计算方法.16.一个不透明的口袋中有三个小球,上面分别标有数字0,1,2,每个小球除数字不同外其余均相同,小华先从口袋中随机摸出一个小球,记下数字后放回并搅匀;再从口袋中随机摸出一个小球记下数字、用画树状图(或列表)的方法,求小华两次摸出的小球上的数字之和是3的概率.【考点】列表法与树状图法.【分析】列举出符合题意的各种情况的个数,再根据概率公式即可求出两次摸出的小球上的数字之和是3的概率.【解答】解:列表得:1 2 3和1 2 3 42 3 4 53 4 5 6∴P(和为3)=.【点评】本题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题的关键是要区分放回实验还是不放回实验.17.A、B两种型号的机器加工同一种零件,已知A型机器比B型机器每小时多加工20个零件,A型机器加工400个零件所用时间与B型机器加工300个零件所用时间相同,求A型机器每小时加工零件的个数.【考点】分式方程的应用.【分析】关键描述语为:“A型机器加工400个零件所用时间与B型机器加工300个零件所用时间相同”;等量关系为:400÷A型机器每小时加工零件的个数=300÷B型机器每小时加工零件的个数.【解答】解:设A型机器每小时加工零件x个,则B型机器每小时加工零件(x﹣20)个.根据题意列方程得:=,解得:x=80.经检验,x=80是原方程的解.答:A型机器每小时加工零件80个.【点评】本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.18.某中学为了解该校学生一年的课外阅读量,随机抽取了n名学生进行调查,并将调查结果绘制成如下条形统计图,根据统计图提供的信息解答下列问题:(1)求n的值;(2)根据统计结果,估计该校1100名学生中一年的课外阅读量超过10本的人数.【考点】条形统计图;用样本估计总体.【分析】(1)可直接由条形统计图,求得n的值;(2)首先求得统计图中课外阅读量超过10本的百分比,继而求得答案.【解答】解:(1)根据题意得:n=6+33+26+20+15=100,答:n的值为100;(2)根据题意得:×1100=385(人),答:估计该校1100名学生中一年的课外阅读量超过10本的人数为:385人.【点评】此题考查了条形统计图的知识以及由样本估计总体的知识.注意能准确分析条形统计图是解此题的关键.19.如图,为了解测量长春解放纪念碑的高度AB,在与纪念碑底部B相距27米的C处,用高1.5米的测角仪DC测得纪念碑顶端A的仰角为47°,求纪念碑的高度(结果精确到0.1米)【参考数据:sin47°=0.731,cos47°=0.682,tan47°=1.072】【考点】解直角三角形的应用-仰角俯角问题.【分析】作DE⊥AB于E,根据正切的概念求出AE的长,再结合图形根据线段的和差计算即可求解.【解答】解:作DE⊥AB于E,由题意得DE=BC=27米,∠ADE=47°,在Rt△ADE中,AE=DE•tan∠ADE=27×1.072=28.944米,AB=AE+BE≈30.4米,答:纪念碑的高度约为30.4米.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.20.如图,在▱ABCD中,点E在边BC上,点F在边AD的延长线上,且DF=BE,BE与CD交于点G (1)求证:BD∥EF;(2)若=,BE=4,求EC的长.【考点】相似三角形的判定与性质;平行四边形的性质.【分析】(1)根据平行四边的判定与性质,可得答案;(2)根据相似三角形的判定与性质,可得答案.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC.∵DF=BE,∴四边形BEFD是平行四边形,∴BD∥EF;(2)∵四边形BEFD是平行四边形,∴DF=BE=4.∵DF∥EC,∴△DFG∽CEG,∴=,∴CE==4×=6.【点评】本题考查了相似三角形的判定与性质,利用了平行四边形的判定与性质,相似三角形的判定与性质.21.甲、乙两车分别从A、B两地同时出发,甲车匀速前往B地,到达B地立即以另一速度按原路匀速返回到A地;乙车匀速前往A地,设甲、乙两车距A地的路程为y(千米),甲车行驶的时间为x(时),y与x之间的函数图象如图所示(1)求甲车从A地到达B地的行驶时间;(2)求甲车返回时y与x之间的函数关系式,并写出自变量x的取值范围;(3)求乙车到达A地时甲车距A地的路程.【考点】一次函数的应用.【分析】(1)根据题意列算式即可得到结论;(2)根据题意列方程组即可得到结论;(3)根据题意列算式即可得到结论.【解答】解:(1)300÷(180÷1.5)=2.5(小时),答:甲车从A地到达B地的行驶时间是2.5小时;(2)设甲车返回时y与x之间的函数关系式为y=kx+b,∴,解得:,∴甲车返回时y与x之间的函数关系式是y=﹣100x+550;(3)300÷[(300﹣180)÷1.5]=3.75小时,当x=3.75时,y=175千米,答:乙车到达A地时甲车距A地的路程是175千米.【点评】本题考查了待定系数法一次函数的解析式的运用,行程问题的数量关系的运用,解答时求出一次函数的解析式是关键.22.感知:如图1,AD平分∠BAC.∠B+∠C=180°,∠B=90°,易知:DB=DC.探究:如图2,AD平分∠BAC,∠ABD+∠ACD=180°,∠ABD<90°,求证:DB=DC.应用:如图3,四边形ABCD中,∠B=45°,∠C=135°,DB=DC=a,则AB﹣AC=a(用含a的代数式表示)【考点】全等三角形的判定与性质.【分析】探究:欲证明DB=DC,只要证明△DFC≌△DEB即可.应用:先证明△DFC≌△DEB,再证明△ADF≌△ADE,结合BD=EB即可解决问题.【解答】探究:证明:如图②中,DE⊥AB于E,DF⊥AC于F,∵DA平分∠BAC,DE⊥AB,DF⊥AC,∴DE=DF,∵∠B+∠ACD=180°,∠ACD+∠FCD=180°,∴∠B=∠FCD,在△DFC和△DEB中,,∴△DFC≌△DEB,∴DC=DB.应用:解;如图③连接AD、DE⊥AB于E,DF⊥AC于F,∵∠B+∠ACD=180°,∠ACD+∠FCD=180°,∴∠B=∠FCD,在△DFC和△DEB中,,∴△DFC≌△DEB,∴DF=DE,CF=BE,在RT△ADF和RT△ADE中,,∴△ADF≌△ADE,∴AF=AE,∴AB﹣AC=(AE+BE)﹣(AF﹣CF)=2BE,在RT△DEB中,∵∠DEB=90°,∠B=∠EDB=45°,BD=a,∴BE=a,∴AB﹣AC=a.故答案为a.【点评】本题考查全等三角形的判定和性质、角平分线的性质、等腰直角三角形的性质、勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形,属于中考常考题型.23.如图,在菱形ABCD中,对角线AC与BD相交于点O,AB=8,∠BAD=60°,点E从点A出发,沿AB以每秒2个单位长度的速度向终点B运动,当点E不与点A重合时,过点E作EF⊥AD于点F,作EG∥AD交AC于点G,过点G作GH⊥AD交AD(或AD的延长线)于点H,得到矩形EFHG,设点E 运动的时间为t秒(1)求线段EF的长(用含t的代数式表示);(2)求点H与点D重合时t的值;(3)设矩形EFHG与菱形ABCD重叠部分图形的面积与S平方单位,求S与t之间的函数关系式;(4)矩形EFHG的对角线EH与FG相交于点O′,当OO′∥AD时,t的值为4;当OO′⊥AD时,t的值为3.【考点】四边形综合题.【分析】(1)由题意知:AE=2t,由锐角三角函数即可得出EF=t;(2)当H与D重合时,FH=GH=8﹣t,由菱形的性质和EG∥AD可知,AE=EG,解得t=;(3)矩形EFHG与菱形ABCD重叠部分图形需要分以下两种情况讨论:①当H在线段AD上,此时重合的部分为矩形EFHG;②当H在线段AD的延长线上时,重合的部分为五边形;(4)当OO′∥AD时,此时点E与B重合;当OO′⊥AD时,过点O作OM⊥AD于点M,EF与OA相交于点N,然后分别求出O′M、O′F、FM,利用勾股定理列出方程即可求得t的值.【解答】解:(1)由题意知:AE=2t,0≤t≤4,∵∠BAD=60°,∠AFE=90°,∴sin∠BAD=,∴EF=t;(2)∵AE=2t,∠AEF=30°,∴AF=t,当H与D重合时,此时FH=8﹣t,∴GE=8﹣t,∵EG∥AD,∴∠EGA=30°,∵四边形ABCD是菱形,∴∠BAC=30°,∴∠BAC=∠EGA=30°,∴AE=EG,∴2t=8﹣t,∴t=;(3)当0≤t≤时,此时矩形EFHG与菱形ABCD重叠部分图形为矩形EFHG,∴由(2)可知:AE=EG=2t,∴S=EF•EG=t•2t=2t2,当<t≤4时,如图1,设CD与HG交于点I,此时矩形EFHG与菱形ABCD重叠部分图形为五边形FEGID,∵AE=2t,∴AF=t,EF=t,∴DF=8﹣t,∵AE=EG=FH=2t,∴DH=2t﹣(8﹣t)=3t﹣8,∵∠HDI=∠BAD=60°,∴tan∠HDI=,∴HI=DH,∴S=EF•EG﹣DH•HI=2t2﹣(3t﹣8)2=﹣t2+24t﹣32;(4)当OO′∥AD时,如图2此时点E与B重合,∴t=4;当OO′⊥AD时,如图3,过点O作OM⊥AD于点M,EF与OA相交于点N,由(2)可知:AF=t,AE=EG=2t,∴FN=t,FM=t,∵O′O⊥AD,O′是FG的中点,∴O′O是△FNG的中位线,∴O′O=FN=t,∵AB=8,∴由勾股定理可求得:OA=4∴OM=2,∴O′M=2﹣t,∵FE=t,EG=2t,∴由勾股定理可求得:FG2=7t2,∴由矩形的性质可知:O′F2=FG2,∵由勾股定理可知:O′F2=O′M2+FM2,∴t2=(2﹣t)2+t2,∴t=3或t=﹣6(舍去).故答案为:t=4;t=3.【点评】本题考查四边形的综合问题,涉及矩形和菱形的性质,勾股定理,锐角三角函数,解方程等知识,综合程度较高,考查学生灵活运用知识的能力.24.如图,在平面直角坐标系中,有抛物线y=a(x﹣h)2.抛物线y=a(x﹣3)2+4经过原点,与x轴正半轴交于点A,与其对称轴交于点B,P是抛物线y=a(x﹣3)2+4上一点,且在x轴上方,过点P作x轴的垂线交抛物线y=(x﹣h)2于点Q,过点Q作PQ的垂线交抛物线y=(x﹣h)2于点Q′(不与点Q重合),连结PQ′,设点P的横坐标为m.(1)求a的值;(2)当抛物线y=a(x﹣h)2经过原点时,设△PQQ′与△OAB重叠部分图形的周长为l.①求的值;②求l与m之间的函数关系式;(3)当h为何值时,存在点P,使以点O,A,Q,Q′为顶点的四边形是轴对称图形?直接写出h的值.【考点】二次函数综合题.【分析】(1)把(0,0)代入y=a(x﹣3)2+4即可解决问题.(2)①用m的代数式表示PQ、QQ′,即可解决问题.②分0<m≤3或3<m<6两种情形,画出图形,利用相似三角形或锐角三角函数求出相应线段即可解决.(3),①当h=3时,两个抛物线对称轴x=3,四边形OAQQ′是等腰梯形.②当四边形OQ′1Q1A是菱形时,求出抛物线对称轴即可解决问题.【解答】解:(1)∵抛物线y=a(x﹣3)2+4经过原点,∴x=0时,y=0,∴9a+4=0,∴a=﹣.(2)∵抛物线y=a(x﹣h)2经过原点时,∴h=0,∵a=﹣,∴y=﹣x2.①∵P(m,﹣+m),Q(m,﹣),∴PQ=﹣+m﹣(﹣)=m,QQ′=2m,∴==.②如图1中,当0<m≤3时,设PQ与OB交于点E,与OA交于点F,∵=,∠PQQ′=∠BMO=90°,∴△PQQ′∽△BMO,∴∠QPQ′=∠OBM,∵EF∥BM,∴∠OEF=∠OBM,∴∠OEF=∠QPQ′,∴OE∥PQ′,∵=,∴EF=,OE=,∴l=OF+EF+OE=m++m=4m,当3<m<6时,如图2中,设PQ′与AB交于点H,与x轴交于点G,PQ交AB于E,交OA于F,作HM⊥OA 于M.∵AF=6﹣m,tan∠EAF==,∴EF=m,AE=,∵tan∠PGF==,PF=﹣+,∴GF=﹣m2+2m,∴AG=﹣m2+m+6,∴GM=AM=﹣m2+m+3,∵HG=HA=,=﹣m2+m+5,∴l=GH+EH+EF+FG=﹣m2++10.综上所述l=.(3)如图3中,①当h=3时,两个抛物线对称轴x=3,∴点O、A关于对称轴对称,点Q,Q′关于对称轴对称,∴OA∥QQ′,OQ′=AQ,∴四边形OAQQ′是等腰梯形,属于轴对称图形.②当四边形OQ′1Q1A是菱形时,OQ′1=OA=6,∵Q′1Q1=OA=6,∴点Q1的纵坐标为4,在RT△OHQ′1,中,OH=4,OQ′1=6,∴HQ′1=2,∴h=3﹣2或3+2,综上所述h=3或3﹣2或3+2时点O,A,Q,Q′为顶点的四边形是轴对称图形.【点评】本题考查二次函数的综合题、相似三角形的性质和判定、菱形的性质、等腰梯形的性质,锐角三角函数等知识,解题的关键是学会分类讨论,需要正确画出图象解决问题,属于中考压轴题.。
【中考真题】2019年全国中考数学试卷(含答案及解析)

【中考真题】2019年全国中考数学试卷(含答案及解析)2019年全国中考数学试卷(含答案及解析)。
一、选择题。
1.已知函数y=2x+3,那么当x=5时,y的值是多少?A. 8B. 10C. 13D. 15。
解析,将x=5代入y=2x+3中,得到y=25+3=13,因此答案为C。
2.下列各数中,最小的是()。
A. -5B. -3C. 1D. 2。
解析,-5是负数中最小的,因此答案为A。
3.已知集合A={x|x是2的倍数},集合B={x|x是3的倍数},则A∪B是()。
A. {x|x是2和3的公倍数}B. {x|x是2或3的倍数} 。
C. {x|x是2和3的公因数}D. {x|x是2和3的倍数}。
解析,A∪B表示A和B的并集,即A和B中所有的元素的集合。
A={...,-4,-2,0,2,4,...},B={...,-6,-3,0,3,6,...},A∪B={...,-6,-4,-3,-2,0,2,3,4,6,...},即A∪B是2和3的倍数的集合,因此答案为D。
4.已知△ABC中,AB=BC=6cm,AC=8cm,则△ABC的周长是()。
A. 12cmB. 20cmC. 24cmD. 30cm。
解析,△ABC的周长为AB+BC+AC=6+6+8=20cm,因此答案为B。
5.已知直角三角形的两条直角边分别为3cm和4cm,则斜边长为()。
A. 5cmB. 7cmC. 9cmD. 12cm。
解析,根据勾股定理,斜边长为√(3^2+4^2)=√(9+16)=√25=5cm,因此答案为A。
6.已知a:b=3:4,b:c=2:5,则a:b:c=()。
A. 3:4:5B. 6:8:10C. 12:16:20D. 15:20:25。
解析,根据比例的性质,a:b=3:4,b:c=2:5,将两个比例相连结,得到a:b:c=32:42:45=6:8:20,因此答案为B。
7.已知(-2)×(-3)×(-4)×(-5)的结果是()。
(完整版)2019年河南省中考数学试题、答案(解析版)

2019年河南省中考数学试题、答案(解析版)本试卷满分120分,考试时间100分钟.第Ⅰ卷(选择题 共30分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.12-的绝对值是 ( )A .12-B .12C .2D .2-2.成人每天维生素D 的摄入量约为0.000 004 6克.数据“0.000 004 6”用科学记数法表示为( ) A .74610-⨯B .74.610-⨯C .64.610-⨯D .50.4610-⨯ 3.如图,AB CD ∥,75B ∠=,27E ∠=,则D ∠的度数为( )A .45B .48C .50D .584.下列计算正确的是( )A .236a a a +=B .22(3)6a a -=C .222()x y x y -=-D .32222-=5.如图1是由大小相同的小正方体搭成的几何体,将上层的小正方体平移后得到图2.关于平移前后几何体的三视图,下列说法正确的是( )A .主视图相同B .左视图相同C .俯视图相同D .三种视图都不相同是( )6.一元二次方程()12()13x x x +-=+的根的情况A .有两个不相等的实数根 B .有两个相等的实数根 C .只有一个实数根D .没有实数根7.某超市销售A ,B ,C ,D 四种矿泉水,它们的单价依次是5元、3元、2元、1元.某天的销售情况如图所示,则这天销售的矿泉水的平均单价是( )A .1.95元B .2.15元C .2.25元D .2.75元8.已知抛物线24y x bx =-++经过()2,n -和(4,)n 两点,则n 的值为( )A .2-B .4-C .2D .49.如图,在四边形ABCD 中,AD BC ∥,90D ∠=,4AD =,3BC =.分别以点A ,C 为圆心,大于12AC 长为半径作弧,两弧交于点E ,作射线BE 交AD 于点F ,交AC 于点O .若点O 是AC 的中点,则CD 的长为( )图1图2A .22 B .4 C .3 D .10与正方形ABCD 组成的图形绕点O 10.如图,在OAB △中,顶点()0,0O ,4()3,A -,()3,4B .将OAB △顺时针旋转,每次旋转90,则第70次旋转结束时,点D 的坐标为( )A .(10,3)B .()3,10-C .(10,)3-D .(3,)10-第Ⅱ卷(非选择题 共90分)二、填空题(本大题共5小题,每小题3分,共15分.把答案填写在题中的横线上) 11.计算:142--= .12.不等式组1,274xx ⎧-⎪⎨⎪-+⎩≤>的解集是 .13.现有两个不透明的袋子,一个装有2个红球、1个白球,另一个装有1个黄球、2个红球,这些球除颜色外完全相同.从两个袋子中各随机摸出1个球,摸出的两个球颜色相同的概率是 .14.如图,在扇形AOB 中,120AOB ∠=,半径OC 交弦AB 于点D ,且OC OA ⊥.若23OA =,则阴影部分的面积为 .15.如图,在矩形ABCD 中,1AB =,BC a =,点E 在边BC 上,且35BE α=.连接AE ,将ABE △沿AE 折叠,若点B 的对应点B '落在矩形ABCD 的边上,则a 的值为 .三、解答题(本大题共8小题,共75分.解答应写出文字说明、证明过程或演算步骤) 16.(本小题满分8分)先化简,再求值:2212(1)244x x xx x x +--÷--+,其中3x =.17.(本小题满分9分)如图,在ABC △中,BA BC =,90ABC ∠=.以AB 为直径的半圆O 交AC 于点D ,点E 是BD 上不与点B ,D 重合的任意一点,连接AE 交BD 于点F ,连接BE 并延长交AC 于点G . (1)求证:ADF BDG ≅△△;(2)填空:①若4AB =,且点E 是BD 的中点,则DF 的长为 ;②取AE 的中点H ,当EAB ∠的度数为 时,四边形OBEH 为菱形.18.(本小题满分9分)某校为了解七、八年级学生对“防溺水”安全知识的掌握情况,从七、八年级各随机抽取50名学生进行测试,并对成绩(百分制)进行整理、描述和分析.部分信息如下: a .七年级成绩频数分布直方图:b .七年级成绩在7080x ≤<这一组的是:70 72 74 75 76 76 77 77 77 78 79 c .根据以上信息,回答下列问题:(1)在这次测试中,七年级在80分以上(含80分)的有 人; (2)表中m 的值为 ;(3)在这次测试中,七年级学生甲与八年级学生乙的成绩都是78分,请判断两位学生在各自年级的排名谁更靠前,并说明理由;(4)该校七年级学生有400人,假设全部参加此次测试,请估计七年级成绩超过平均数76.9分的人数.19.(本小题满分9分)数学兴趣小组到黄河风景名胜区测量炎帝塑像(塑像中高者)的高度.如图所示,炎帝塑像DE 在高55 m 的小山EC 上,在A处测得塑像底部E 的仰角为34,再沿AC 方向前进21 m 到达B 处,测得塑像顶部D 的仰角为60,求炎帝塑像DE 的高度.(精确到1 m .参考数据:sin340.56≈,cos340.83=,tan340.67≈ 1.73≈)20.(本小题满分9分)学校计划为“我和我的祖国”演讲比赛购买奖品.已知购买3个A 奖品和2个B 奖品共需120元;购买5个A 奖品和4个B 奖品共需210元. (1)求A ,B 两种奖品的单价;(2)学校准备购买A ,B 两种奖品共30个,且A 奖品的数量不少于B 奖品数量的13.请设计出最省钱的购买方案,并说明理由.21.(本小题满分10分)模具厂计划生产面积为4,周长为m 的矩形模具.对于m 的取值范围,小亮已经能用“代数”的方法解决,现在他又尝试从“图形”的角度进行探究,过程如下: (1)建立函数模型设矩形相邻两边的长分别为x ,y .由矩形的面积为4,得4xy =,即4y x =;由周长为m ,得2()x y m +=,即2m y x =-+.满足要求的(),x y 应是两个函数图象在第________象限内交点的坐标; (2)画出函数图象 函数4(0)y x x =>的图象如图所示,而函数2my x =-+的图象可由直线y x =-平移得到.请在同一直角坐标系中直接画出直线y x =-;(3)平移直线y x =-,观察函数图象 ①当直线平移到与函数4(0)y x x=>的图象有唯一交点(2,2)时,周长m 的值为 ; ②在直线平移过程中,交点个数还有哪些情况?请写出交点个数及对应的周长m 的取值范围. (4)得出结论若能生产出面积为4的矩形模具,则周长m 的取值范围为 .22.(本小题满分10分)在ABC △中,CA CB =,ACB α∠=.点P 是平面内不与点A ,C 重合的任意一点,连接AP ,将线段AP 绕点P 逆时针旋转α得到线段DP ,连接AD ,BD ,CP .(1)观察猜想 如图1,当60α=时,BDCP的值是 ,直线BD 与直线CP 相交所成的较小角的度数是 ; (2)类比探究如图2,当90α=时,请写出BDCP的值及直线BD 与直线CP 相交所成的小角的度数,并就图2的情形说明理由; (3)解决问题当90α=时,若点E ,F 分别是CA ,CB 的中点,点P 在直线EF 上,请直接写出点C ,P ,D 在同一直线上时ADCP的值.图1图2备用图23.(本小题满分11分) 如图,抛物线212y ax x c =++交x 轴于A ,B 两点,交y 轴于点C .直线122y x =--经过点A ,C . (1)求抛物线的解析式;(2)点P 是抛物线上一动点,过点P 作x 轴的垂线,交直线AC 于点M ,设点P 的横坐标为m . ①当PCM △是直角三角形时,求点P 的坐标;②作点B 关于点C 的对称点B ',则平面内存在直线l ,使点M ,B ,B '到该直线的距离都相等.当点P 在y 轴右侧的抛物线上,且与点B 不重合时,请直接写出直线l :y kx b =+的解析式.(k ,b 可用含m 的式子表示)备用图河南省2019年普通高中招生考试数学答案解析第Ⅰ卷一、选择题 1.【答案】B 【解析】解:11||22-=,故选:B . 【提示】根据一个负数的绝对值是它的相反数进行解答即可. 【考点】绝对值的概念. 2.【答案】C【解析】解:60.0000046 4.610-=⨯. 【提示】本题用科学记数法的知识即可解答. 【考点】科学记数法. 3.【答案】B【解析】解:∵AB CD ∥,∴1B ∠=∠, ∵1D E ∠=∠+∠,∴752748D B E ∠=∠-∠=-=, 故选:B .【提示】根据平行线的性质解答即可. 【考点】平行线的性质,三角形外角的性质. 4.【答案】D【解析】解:235a a a +=,A 错误;22(3)9a a -=,B 错误;222(2)x y x xy y -=-+,C错误;=D 正确;故选:D .【提示】根据合并同类项法则,完全平方公式,幂的乘方与积的乘方的运算法则进行运算即可. 【考点】整式的运算. 5.【答案】C【解析】解:观察几何体,确定三视图,此几何体将上层的小正方体平移后俯视图相同,故选C . 【提示】根据三视图解答即可. 【考点】几何体的三视图. 6.【答案】A【解析】解:原方程可化为:2240x x --=, ∴1a =,2b =-,4c =-, ∴2241()(4)200∆=--⨯⨯-=>, ∴方程由两个不相等的实数根. 故选:A .【提示】先化成一般式后,再求根的判别式. 【考点】一元二次方程根的情况.7.【答案】C【解析】解:这天销售的矿泉水的平均单价是510%315%255%120% 2.25⨯+⨯+⨯+⨯=(元), 故选:C .【提示】根据加权平均数的定义列式计算可得. 【考点】加权平均数的计算. 8.【答案】B【解析】解:抛物线24y x bx =-++经过()2,n -和(4,)n 两点, 可知函数的对称轴1x =, ∴12b=, ∴2b =;∴224y x x =-++,将点()2,n -代入函数解析式,可得4n =; 故选:B .【提示】根据()2,n -和(4,)n 可以确定函数的对称轴1x =,再由对称轴的2bx =即可求解. 【考点】二次函数点的坐标特征,二元一次方程组的解法. 9.【答案】A【解析】解:如图,连接FC ,则AF FC =. ∵AD BC ∥, ∴FAO BCO ∠=∠. 在FOA △与BOC △中,FAO BCO OA OCAOF COB ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴()ASA FOA BOC ≅△△, ∴3AF BC ==,∴3FC AF ==,431FD AD AF =-=-=. 在FDC △中,∵90D ∠=, ∴222CD DF FC +=, ∴21232CD +=,∴CD = 故选:A .【提示】连接FC ,根据基本作图,可得OE 垂直平分AC ,由垂直平分线的性质得出AF FC =.再根据ASA 证明FOA BOC ≅△△,那么3AF BC ==,等量代换得到3FC AF ==,利用线段的和差关系求出1FD AD AF =-=.然后在直角FDC △中利用勾股定理求出CD 的长.【考点】尺规作图,平行线的性质,勾股定理,角平分线的性质,全等三角形的判定与性质.10.【答案】D【解析】解:∵4()3,A -,()3,4B , ∴336AB =+=, ∵四边形ABCD 为正方形, ∴6AD AB ==, ∴0()3,1D -, ∵704172=⨯+,∴每4次一个循环,第70次旋转结束时,相当于OAB △与正方形ABCD 组成的图形绕点O 顺时针旋转2次,每次旋转90, ∴点D 的坐标为(3,)10-. 故选:D .【提示】先求出6AB =,再利用正方形的性质确定0()3,1D -,由于704172=⨯+,所以第70次旋转结束时,相当于OAB △与正方形ABCD 组成的图形绕点O 顺时针旋转2次,每次旋转90,此时旋转前后的点D 关于原点对称,于是利用关于原点对称的点的坐标特征可出旋转后的点D 的坐标. 【考点】图形的旋转,点的坐标的确定.第Ⅱ卷二、填空题 11.【答案】3221-122=- 32=. 故答案为:32. 【提示】本题涉及二次根式化简、负整数指数幂两个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【考点】实数的相关运算. 12.【答案】2x -≤ 【解析】解:解不等式12x-,得:2x -≤, 解不等式74x -+>,得:3x <, 则不等式组的解集为2x -≤, 故答案为:2x -≤.【提示】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集. 【考点】解不等式组. 13.【答案】49由表知,共有9种等可能结果,其中摸出的两个球颜色相同的有4种结果, 所以摸出的两个球颜色相同的概率为49, 故答案为:49. 【提示】列表得出所有等可能结果,从中找到两个球颜色相同的结果数,利用概率公式计算可得. 【考点】概率的计算. 14.π【解析】解:作OE AB ⊥于点F ,∵在扇形AOB 中,120AOB ∠=,半径OC 交弦AB 于点D ,且OC OA ⊥.OA=2,∴90AOD ∠=,90BOC ∠=,OA OB =, ∴30OAB OBA ∠=∠=,∴tan30232OD OA ===,4AD =,226ABAF ==⨯=,OF = ∴2BD =,∴阴影部分的面积是:πAOD BDO OBC S S S +-==△△扇形,π.【提示】根据题意,作出合适的辅助线,然后根据图形可知阴影部分的面积是AOD △的面积与扇形OBC 的面积之和再减去BDO △的面积,本题得以解决.【考点】不规则图形面积的计算. 15.【答案】53【解析】解:分两种情况: ①当点B '落在AD 边上时,如图1.图1∵四边形ABCD 是矩形, ∴90BAD B ∠=∠=,∵将ABE △沿AE 折叠,点B 的对应点B '落在AD 边上, ∴1452BAE B AE BAD ∠=∠'=∠=, ∴AB BE =, ∴315a =, ∴53a =; ②当点B'落在CD 边上时,如图2.图2∵四边形ABCD 是矩形,∴90BAD B C D ∠=∠=∠=∠=,AD BC a ==. ∵将ABE △沿AE 折叠,点B 的对应点B '落在CD 边上, ∴90B AB E ∠=∠'=,1AB AB ='=,35EB EB a ='=,∴DB '==355EC BC BE a a =-=-=. 在ADB '△与B CE '△中,9090B AD EB C AB DD C '''⎧∠=∠=-∠⎨∠=∠=⎩, ∴ADB B CE ''△△,∴DB AB CE B E ''=',1355a a =,解得1a ,20a =(舍去).综上,所求a 的值为53.故答案为53.【提示】分两种情况:①点B '落在AD 边上,根据矩形与折叠的性质易得AB BE =,即可求出a 的值;②点B '落在CD 边上,证明ADB B CE ''△△,根据相似三角形对应边成比例即可求出a 的值. 【考点】图形的折叠,勾股定理. 三、解答题16.【答案】解:原式212(2)()22(2)x x x x x x x +--=-÷--- 322x x x -=-3x=, 当x=,=【解析】解:原式212(2)()22(2)x x x x x x x +--=-÷--- 322x x x -=-3x=, 当x =,=【提示】先根据分式的混合运算顺序和运算法则化简原式,再将x 的值代入计算可得. 【考点】分式的化简求值.17.【答案】解:(1)证明:如图1,∵BA BC =,90ABC ∠=,图1∴45BAC ∠=∵AB 是O 的直径,∴90ADB AEB ∠=∠=,∴90DAF BGD DBG BGD ∠+∠=∠+∠=∴DAF DBG ∠=∠∵90ABD BAC ∠+∠=∴45ABD BAC ∠=∠=∴AD BD =∴()ASA ADF BDG ≅△△;(2)①4-②30【解析】解:(1)证明:如图1,∵BA BC =,90ABC ∠=,图1∴45BAC ∠=∵AB 是O 的直径,∴90ADB AEB ∠=∠=,∴90DAF BGD DBG BGD ∠+∠=∠+∠=∴DAF DBG ∠=∠∵90ABD BAC ∠+∠=∴45ABD BAC ∠=∠=∴AD BD =∴()ASA ADF BDG ≅△△;(2)①如图2,过F 作FH AB ⊥于H ,∵点E 是BD 的中点,图2∴BAE DAE ∠=∠∵FD AD ⊥,FH AB ⊥∴FH FD = ∵2sin sin452FH ABD BF =∠==,∴FD BF 即BF = ∵4AB =, ∴4cos4522BD ==即BF FD +=1)FD =∴4FD ==-故答案为4-②连接OE ,EH ,∵点H 是AE 的中点,∴OH AE ⊥,∵90AEB ∠=∴BE AE ⊥ ∴BE OH ∥∵四边形OBEH 为菱形,∴12BE OH OB AB ===∴1sin 2BE EAB AB ∠== ∴30EAB ∠=.故答案为:30.【提示】(1)利用直径所对的圆周角是直角,可得90ADB AEB ∠=∠=,再应用同角的余角相等可得DAF DBG ∠=∠,易得AD BD =,ADF BDG △≌△得证;(2)作FH AB ⊥,应用等弧所对的圆周角相等得BAE DAE ∠=∠,再应用角平分线性质可得结论;由菱形的性质可得BE OB =,结合三角函数特殊值可得30EAB ∠=.【考点】圆的相关性质,全等三角形的判定和性质,菱形的判定和性质,圆周角定理.18.【答案】(1)23(2)77.5(3)甲学生在该年级的排名更靠前.∵七年级学生甲的成绩大于中位数78分,其名次在该班25名之前,八年级学生乙的成绩小于中位数78分,其名次在该班25名之后,∴甲学生在该年级的排名更靠前.(4)估计七年级成绩超过平均数76.9分的人数为515840022450++⨯=(人). 【解析】解:(1)在这次测试中,七年级在80分以上(含80分)的有15823+=人,故答案为:23;(2)七年级50人成绩的中位数是第25、26个数据的平均数,而第25、26个数据分别为78、79,∴777877.52m +==,故答案为:77.5;(3)甲学生在该年级的排名更靠前.∵七年级学生甲的成绩大于中位数78分,其名次在该班25名之前,八年级学生乙的成绩小于中位数78分,其名次在该班25名之后,∴甲学生在该年级的排名更靠前.(4)估计七年级成绩超过平均数76.9分的人数为515840022450++⨯=(人). 【提示】(1)根据条形图及成绩在7080x ≤<这一组的数据可得;(2)根据中位数的定义求解可得;(3)将各自成绩与该年级的中位数比较可得答案;(4)用总人数乘以样本中七年级成绩超过平均数76.9分的人数所占比例可得.【考点】统计知识的实际应用.19.【答案】解:∵90ACE ∠=,34CAE ∠=,55m CE =, ∴tan CE CAE AC∠=, ∴5582.1m tan340.67CE AC ==≈, ∵21m AB =,∴61.1m BC AC AB =-=,在Rt BCD △中,tan60CD BC==, ∴ 1.7361.1105.7m CD ≈⨯≈,∴105.75551m DE CD EC =-=-≈,答:炎帝塑像DE 的高度约为51 m .【解析】解:∵90ACE ∠=,34CAE ∠=,55m CE =, ∴tan CE CAE AC∠=, ∴5582.1m tan340.67CE AC ==≈, ∵21m AB =,∴61.1m BC AC AB =-=,在Rt BCD △中,tan60CD BC==, ∴ 1.7361.1105.7m CD ≈⨯≈,∴105.75551m DE CD EC =-=-≈,答:炎帝塑像DE 的高度约为51 m .【提示】由三角函数求出82.1m tan34CE AC =≈,得出61.1m BC AC AB =-=,在Rt BCD △中,由三角函数得出105.7m CD =≈,即可得出答案.【考点】解直角三角形的实际应用.20.【答案】解:(1)设A 的单价为x 元,B 的单价为y 元,根据题意,得3212054210x y x y +=⎧⎨+=⎩, ∴3015x y =⎧⎨=⎩,∴A 的单价30元,B 的单价15元;(2)设购买A 奖品z 个,则购买B 奖品为30-z ()个,购买奖品的花费为W 元,由题意可知,13)3(0z z -≥, ∴152z ≥, 30153045(51)0W z z z =+-=+,当8z =时,W 有最小值为570元,即购买A 奖品8个,购买B 奖品22个,花费最少.【解析】解:(1)设A 的单价为x 元,B 的单价为y 元,根据题意,得3212054210x y x y +=⎧⎨+=⎩,∴3015x y =⎧⎨=⎩, ∴A 的单价30元,B 的单价15元;(2)设购买A 奖品z 个,则购买B 奖品为30-z ()个,购买奖品的花费为W 元, 由题意可知,13)3(0z z -≥, ∴152z ≥, 30153045(51)0W z z z =+-=+,当8z =时,W 有最小值为570元,即购买A 奖品8个,购买B 奖品22个,花费最少.【提示】(1)设A 的单价为x 元,B 的单价为y 元,根据题意列出方程组3212054210x y x y +=⎧⎨+=⎩,即可求解; (2)设购买A 奖品z 个,则购买B 奖品为(30)z -个,购买奖品的花费为W 元,根据题意得到由题意可知,13)3(0z z -≥,30153045(51)0W z z z =+-=+,根据一次函数的性质,即可求解.【考点】二元一次方程组,不等式及一次函数解决实际问题.21.【答案】(1)一(2)图象如下所示:(3)①8②在直线平移过程中,交点个数有:0个、1个、2个三种情况, 联立4y x =和2m y x =-+并整理得:21402x mx -+=, 214404m ∆=-⨯≥时,两个函数有交点, 解得:8m ≥;(4)8m ≥【解析】解:(1),x y 都是边长,因此,都是正数,故点(),x y 在第一象限,答案为:一;(2)图象如下所示:(3)①把点(2,2)代入2m y x =-+得: 222m =-+,解得:8m =; ②在直线平移过程中,交点个数有:0个、1个、2个三种情况, 联立4y x =和2m y x =-+并整理得:21402x mx -+=, 214404m ∆=-⨯≥时,两个函数有交点, 解得:8m ≥;(4)由(3)得:8m ≥.【提示】(1),x y 都是边长,因此,都是正数,即可求解;(2)直接画出图象即可;(3)①把点()2,2代入2m y x =-+即可求解;②在直线平移过程中,交点个数有:0个、1个、2个三种情况,联立4y x=和 = 2m y x -+并整理得:21402x mx -+=,即可求解; (4)由(3)可得.【考点】反比例函数与一次函数图象的应用.22.【答案】1 60(2)如图2中,设BD 交AC 于点O ,BD 交PC 于点E .图2∵45PAD CAB ∠=∠=,∴PAC DAB ∠=∠,∵AB AD AC AP== ∴DAB PAC △△, ∴PCA DBA ∠=∠,BD AB PC AC== ∵EOC AOB ∠=∠,∴45CEO OABB ∠=∠=,∴直线BD 与直线CP 相交所成的小角的度数为45.(3)如图3-1中,当点D 在线段PC 上时,延长AD 交BC 的延长线于H .图3-1∵CE EA =,CF FB =,∴EF AB ∥,∴45EFC ABC ∠=∠=,∵45PAO ∠=,∴PAO OFH ∠=∠,∵POA FOH ∠=∠,∴H APO ∠=∠,∵90APC ∠=,EA EC =,∴PE EA EC ==,∴EPA EAP BAH ∠=∠=∠,∴H BAH ∠=∠,∴BH BA =,∵45ADP BDC ∠=∠=,∴90ADB ∠=,∴BD AH ⊥,∴22.5DBA DBC ∠=∠=,∵90ADB ACB ∠=∠=,∴A ,D ,C ,B 四点共圆,22.5DAC DBC ∠=∠=,22.5DCA ABD ∠=∠=,∴22.5DAC DCA ∠=∠=,∴DA DC =,设AD a =,则DC AD a ==,PD ,∴2AD CP ==如图3-2中,当点P 在线段CD 上时,同法可证:DA DC =,设AD a =,则CD AD a ==,PD ,图3-2∴PC a=-,∴2ADPC==+【解析】解:(1)如图1中,延长CP交BD的延长线于E,设AB交EC于点O.图1∵60PAD CAB∠=∠=,∴CAP BAD∠=∠,∵CA BA=,PA DA=,∴()SASCAP BAD≅△△,∴PC BD=,ACP ABD∠=∠,∵AOC BOE∠=∠,∴60BEO CAO∠=∠=,∴1BDPC=,线BD与直线CP相交所成的较小角的度数是60,故答案为1,60.(2)如图2中,设BD交AC于点O,BD交PC于点E.图2∵45PAD CAB∠=∠=,∴PAC DAB∠=∠,∵AB ADAC AP==∴DAB PAC△△,∴PCA DBA∠=∠,BD ABPC AC==∵EOC AOB∠=∠,∴45CEO OABB∠=∠=,∴直线BD与直线CP相交所成的小角的度数为45.(3)如图3-1中,当点D在线段PC上时,延长AD交BC的延长线于H.图3-1∵CE EA =,CF FB =,∴EF AB ∥,∴45EFC ABC ∠=∠=,∵45PAO ∠=,∴PAO OFH ∠=∠,∵POA FOH ∠=∠,∴H APO ∠=∠,∵90APC ∠=,EA EC =,∴PE EA EC ==,∴EPA EAP BAH ∠=∠=∠,∴H BAH ∠=∠,∴BH BA =,∵45ADP BDC ∠=∠=,∴90ADB ∠=,∴BD AH ⊥,∴22.5DBA DBC ∠=∠=,∵90ADB ACB ∠=∠=,∴A ,D ,C ,B 四点共圆,22.5DAC DBC ∠=∠=,22.5DCA ABD ∠=∠=,∴22.5DAC DCA ∠=∠=,∴DA DC =,设AD a =,则DC AD a ==,PD ,∴2AD CP ==如图3-2中,当点P 在线段CD 上时,同法可证:DA DC =,设AD a =,则CD AD a ==,PD ,图3-2∴PC a =-,∴2AD PC ==+ 【提示】(1)如图1中,延长CP 交BD 的延长线于E ,设AB 交EC 于点O .证明()SAS CAP BAD △≌△,即可解决问题.(2)如图2中,设BD 交AC 于点O ,BD 交PC 于点E .证明△DAB ∽△PAC ,即可解决问题.(3)分两种情形:①如图3-1中,当点D 在线段PC 上时,延长AD 交BC 的延长线于H .证明AD=DC 即可解决问题. ②如图3-2中,当点P 在线段CD 上时,同法可证:DA DC =解决问题.【考点】图形变换,规律探究.23.【答案】解:(1)当0x =时,1222y x =--=-,∴点C 的坐标为(0,)2-;当0y =时,1202x --=,解得:4x =-,∴点A 的坐标为()4,0-.将0()4,A -,2(0,)C -代入212y ax x c =++,得: 16202a c c -+=⎧⎨=-⎩,解得:142a c ⎧=⎪⎨⎪=-⎩, ∴抛物线的解析式为211242y x x =+-. (2)①∵PM x ⊥轴,∴90PMC ∠≠,∴分两种情况考虑,如图1所示.图1(i )当90MPC ∠=时,PC x ∥轴,∴点P 的纵坐标为2-.当2y =-时,2112242x x +-=-, 解得:12x =-,20x =,∴点P 的坐标为(2,2)--;(ii )当90PCM ∠=时,设PC 与x 轴交于点D .∵90OAC OCA ∠+∠=,90OCA OCD ∠+∠=,∴OAC OCD ∠=∠.又∵90AOC COD ∠=∠=,∴AOC COD △△, ∴OD OC OC OA =,即224OD =, ∴1OD =,∴点D 的坐标为(1,0).设直线PC 的解析式为()0y kx b k =+≠,将2(0,)C -,()1,0D 代入y kx b =+,得:20b k b =-⎧⎨+=⎩,解得:22k b =⎧⎨=-⎩, ∴直线PC 的解析式为22y x =-.联立直线PC 和抛物线的解析式成方程组,得:22211242y x y x x =-⎧⎪⎨=+-⎪⎩,解得:1102x y =⎧⎨=-⎩,22610x y =⎧⎨=⎩, 点P 的坐标为(6,10).综上所述:当PCM △是直角三角形时,点P 的坐标为(2,2)--或(6,10). ②当0y =时,2112042x x +-=, 解得:14x =-,22x =,∴点B 的坐标为(2,0).∵点P 的横坐标为0()0m m m ≠>且,∴点P 的坐标为211(,2)42m m m +-,∴直线PB 的解析式为11(4)(4)42y m x m =+-+(可利用待定系数求出). ∵点B ,B '关于点C 对称,点B ,B ',P 到直线l 的距离都相等, ∴直线l 过点C ,且直线l PB ∥直线,∴直线l 的解析式为1(4)24y m x =+-. 【解析】解:(1)当0x =时,1222y x =--=-,∴点C 的坐标为(0,)2-;当0y =时,1202x --=,解得:4x =-,∴点A 的坐标为()4,0-.将0()4,A -,2(0,)C -代入212y ax x c =++,得: 16202a c c -+=⎧⎨=-⎩,解得:142a c ⎧=⎪⎨⎪=-⎩, ∴抛物线的解析式为211242y x x =+-. (2)①∵PM x ⊥轴,∴90PMC ∠≠,∴分两种情况考虑,如图1所示.图1(i )当90MPC ∠=时,PC x ∥轴,∴点P 的纵坐标为2-.当2y =-时,2112242x x +-=-, 解得:12x =-,20x =,∴点P 的坐标为(2,2)--;(ii )当90PCM ∠=时,设PC 与x 轴交于点D .∵90OAC OCA ∠+∠=,90OCA OCD ∠+∠=,∴OAC OCD ∠=∠.又∵90AOC COD ∠=∠=,∴AOC COD △△, ∴OD OC OC OA =,即224OD =, ∴1OD =,∴点D 的坐标为(1,0).设直线PC 的解析式为()0y kx b k =+≠,将2(0,)C -,()1,0D 代入y kx b =+,得:20b k b =-⎧⎨+=⎩,解得:22k b =⎧⎨=-⎩, ∴直线PC 的解析式为22y x =-.联立直线PC 和抛物线的解析式成方程组,得:22211242y x y x x =-⎧⎪⎨=+-⎪⎩, 解得:1102x y =⎧⎨=-⎩,22610x y =⎧⎨=⎩, 点P 的坐标为(6,10).综上所述:当PCM △是直角三角形时,点P 的坐标为(2,2)--或(6,10).②当0y =时,2112042x x +-=, 解得:14x =-,22x =,∴点B 的坐标为(2,0).∵点P 的横坐标为0()0m m m ≠>且,∴点P 的坐标为211(,2)42m m m +-,∴直线PB 的解析式为11(4)(4)42y m x m =+-+(可利用待定系数求出). ∵点B ,B '关于点C 对称,点B ,B ',P 到直线l 的距离都相等,∴直线l 过点C ,且直线l PB ∥直线,∴直线l 的解析式为1(4)24y m x =+-.【提示】(1)利用一次函数图象上点的坐标特征可求出点A ,C 的坐标,根据点A ,C 的坐标,利用待定系数法可求出二次函数解析式;(2)①由PM x ⊥轴可得出90PMC ∠≠,分90MPC ∠=及90PCM ∠=两种情况考虑:(i )当90MPC ∠=时,PC x ∥轴,利用二次函数图象上点的坐标特征可求出点P 的坐标;(ii )当90PCM ∠=时,设PC 与x 轴交于点D ,易证AOC COD △△,利用相似三角形的性质可求出点D 的坐标,根据点C ,D 的坐标,利用待定系数法可求出直线PC 的解析式,联立直线PC 和抛物线的解析式成方程组,通过解方程组可求出点P 的坐标.综上,此问得解;②利用二次函数图象上点的坐标特征可得出点B ,P 的坐标,根据点P ,B 的坐标,利用待定系数法可求出直线PB 的解析式,结合题意可知:直线l 过点C ,且直线l PB ∥直线,再结合点C 的坐标即可求出直线l 的解析式.【考点】二次函数的图象和性质,直角三角形的性质,相似三角形的判定和性质,中位线定理,一次函数的性质,分类讨论思想.。
2019年河北省中考数学真题及答案(word版)

2019年河北省中考数学真题及答案(word版)2019年河北省初中毕业生升学文化课考试数学试卷本试卷分卷Ⅰ和卷Ⅱ两部分。
卷Ⅰ为选择题,卷Ⅱ为非选择题。
本试卷共120分,考试时间120分钟。
卷I(选择题,共42分)注意事项:1.答卷Ⅰ前,考生务必将自己的姓名、准考证号、科目填涂在答题卡上。
考试结束,监考人员将试卷和答题卡一并收回。
2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
答在试卷上无效。
一、选择题(本大题有16个小题,共42分,1-10小题各3分,11-16小题各2分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列图形为正多边形的是()A.B.C.D.2.规定:(→ 2)表示向右移动2记作+2,则(← 3)表示向左移动3记作()A.+3B.-3C.-D.+3.如图,从点C观测点D的仰角是()A.∠ DABB.∠ DCEC.∠ DCAD.∠ADC4.语句“ x的与x的和不超过5 ”可以表示为()A.+ x ≤ 5B.+ x ≥ 5C.≤ 5D.+ x = 55.如图,菱形ABCD中,∠ D=150°,则∠ 1=()A.30°B.25°C.20°D.15°6.XXX总结了以下结论:① a(b + c)=ab + ac;② a(b-c)=ab-ac;③(b-c)÷ a=b÷a-c÷a(a≠0);④ a÷(b+c)=a÷b+a÷c(a≠0)其中一定成立的个数是()A.1B.2C.3D.47.下面是投影屏上出示的抢答题,需要回答横线上符号代表的内容则回答正确的是()A.◎代表∠ XXXB.@代表同位角C.▲代表∠ XXXD.※代表AB8.一次抽奖活动特等奖的中奖率为(),把用科学记数法表示为A.5×10^-4B.5×10^-5C.2×10^-4D.2×10^-59.如图,在小正三角形组成的网格中,已有6个小正三角形涂黑,还需涂黑n个小正三角形,使它们与原来涂黑的小正三角形组成的新图案恰有三条对称轴,则n的最小值为()A.10B.6C.3D.218.如图,在△ABC中,AD是角平分线,DE⊥AB,DF⊥AC,DE=6,DF=8,则BC=______,AD=______.19.已知函数f(x)=ax 3 +bx 2 +cx+d,其中a=﹣1,b=2,c=﹣2,d=3,则f(2)=______,f(﹣1)=______.17.若 $7^{-2} \times 7^{-1} \times 7^0 = 7^p$,则 $p$ 的值为多少?18.如图,约定:上方相邻两数之和等于这两数下方箭头共同指向的数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(第9题图) 2019年初中毕业生学业考试数 学 试 题学校:________考生姓名:________ 准考证号: 注意事项: 1.本试题卷共6页,满分120分,考试时间120分钟。
2.答题前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
3.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
答在试题卷上无效。
4.非选择题用0.5毫米黑色墨水签字笔直接答在答题卡上对应的答题区域内。
答在试题卷上无效。
5.考生必须保持答题卡的整洁。
考试结束后,请将本试题卷和答题卡一并上交。
6.考生不准使用计算器。
一、选择题(每小题3分,共30分) 1. -2019的绝对值是( )A. 2019B.-2019C.12019D.12019-2. 下列运算正确的是( )A. a 3·a 2 = a 6B. a 7÷a 3 = a 4C. (-3a )2 = -6a 2D. (a -1)2= a 2-13. 据统计,2019年全国高考人数再次突破千万,高达1031万人.数据1031万用科学计数法可表示为( )A. 0.1031×106B. 1.031×107C. 1.031×108D. 10.31×1094. 如图是由7个小正方体组合成的几何体,则其左视图为( )A. B. C. D.5. 如图,一块直角三角尺的一个顶点落在直尺的一边上,若∠2=35o,则∠1的度数为( )A. 45oB. 55oC. 65oD. 75o6. 已知一组数据为7,2,5,x ,8,它们的平均数是5,则这组数据的方差为( ) A. 3 B. 4.5 C. 5.2 D. 67. 关于x 的一元二次方程x 2-4x +m =0的两实数根分别为x 1、x 2,且x 1+3x 2=5,则m 的值为( )A.74B.75 C.76D. 08. 在同一平面直角坐标系中,函数y x k =-+与ky x=(k 为常数,且k ≠ 0)的图象大致是( )A. B. C. D.9. 二次函数2y ax bx c =++的图象如图所示,对称轴是直线x =1.下列结论:①abc ﹤0 ②3a +c ﹥0 ③(a +c )2-b 2﹤0 ④a +b ≤m (am +b )(m 为实数).其中结论正确的个数为( )A. 1个B. 2个C. 3个D. 4个(第5题图) (第4题图)10. 如图,在平面直角坐标系中,点A 1、A 2、A 3…A n 在x 轴上,B 1、B 2、B 3…B n 在直线 y =3x 上,若A 1(1,0),且△A 1B 1A 2、△A 2B 2A 3 … △A nB n A n+1都是等边三角形,从左到右的小三角形(阴影部分)的面积分别记为S 1、S 2、S 3…S n .则S n 可表示为( ) A. 22n √3 B. 22n−1√3 C. 22n−2√3 D. 22n−3√3二.填空题(每小题3分,共18分)11. 因式分解:4ax 2-4ax +a =_______.12. 若关于x 、y 的二元一次方程组34355x y m x y -=+⎧⎨+=⎩ 的解满足x +y ≤0,则m 的取值范围是_________. 13. 一个圆锥的底面半径r =5,高h =10,则这个圆锥的侧面积是________. 14. 在平面直角坐标系中,点P (x 0,y 0)到直线 Ax +By +C =0的距离公式为: 0022Ax By Cd A B++=+ ,则点P (3,-3)到直线2533y x =-+的距离为_____.15. 如图,已知线段AB =4,O 是AB 的中点,直线l 经过点O ,∠1=60°,P 点是直线l 上一点,当△APB 为直角三角形时,则BP =____________.16. 如图,在平面直角坐标系中,已知C (3,4),以点C 为圆心的圆与y 轴相切.点A 、B 在x 轴上,且OA =OB .点P 为⊙C 上的动点,∠APB =90°,则AB 长度的最大值为 _______.三.解答题(17~21题每题8分,22、23题每题10分,24题12分,共72分)17. (本题满分8分)先化简,再从-1、2、3、4中选一个合适的数作为x 的值代入求值.222244()4424x x x x x x x ---÷-+--18. (本题满分8分)如图,矩形ABCD 中,AB =8,AD =6,点O 是对角线BD 的中点,过点O 的直线分别交AB 、CD 边于点E 、F .(1)求证:四边形DEBF 是平行四边形; (2)当DE =DF 时,求EF 的长.(第10题图) (第15题图) (第16题图) (第18题图)(第22题图)19. (本题满分8分)某校为了解全校学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机选取该校部分学生进行调查,要求每名学生从中选出一类最喜爱的电视节目,以下是根据调查结果绘制的统类别 ABCDE类型 新闻 体育 动画 娱乐戏曲 人数112040m4请你根据以上信息,回答下列问题:(1)统计表中m 的值为____,统计图中n 的值为____,A 类对应扇形的圆心角为____度; (2)该校共有1500名学生,根据调查结果,估计该校最喜爱体育节目的学生人数;(3)样本数据中最喜爱戏曲节目的有4人,其中仅有1名男生. 从这4人中任选2名同学去观赏戏曲表演,请用树状图或列表求所选2名同学中有男生的概率.20. (本题满分8分)已知关于x 的方程x 2-2x +2k -1=0有实数根.(1)求k 的取值范围;(2)设方程的两根分别是x 1、x 2,且211212x xx x x x +=⋅,试求k 的值.21. (本题满分8分)为积极参与鄂州市全国文明城市创建活动,我市某校在教学楼顶部新建了一块大型宣传牌,如下图.小明同学为测量宣传牌的高度AB ,他站在距离教学楼底部E 处6米远的地面C 处,测得宣传牌的底部B 的仰角为60°,同时测得教学楼窗户D 处的仰角为30°(A 、B 、D 、E 在同一直线上).然后,小明沿坡度i =1:1.5的斜坡从C 走到F 处,此时DF 正好与地面CE 平行. (1)求点F 到直线CE 的距离(结果保留根号);(2)若小明在F 处又测得宣传牌顶部A 的仰角为45°,求宣传牌的高度AB (结果精确到0.1米,√2 ≈1.41,√3 ≈1.73).22.(本题满分10分)如图,PA 是⊙O 的切线,切点为A , AC 是⊙O 的直径,连接OP 交⊙O 于E .过A 点作AB ⊥PO 于点D ,交⊙O 于B ,连接BC ,PB . (1)求证:PB 是⊙O 的切线; (2)求证:E 为△PAB 的内心;(3)若cos ∠PAB =10, BC =1,求PO 的长.(第21题图) (第19题图)23. (本题满分10分)“互联网+”时代,网上购物备受消费者青睐. 某网店专售一款休闲裤,其成本为每条40元,当售价为每条80元时,每月可销售100条.为了吸引更多顾客,该网店采取降价措施. 据市场调查反映:销售单价每降1元,则每月可多销售5条. 设每条裤子的售价为x 元(x 为正整数),每月的销售量为y 条.(1)直接写出y 与x 的函数关系式;(2)设该网店每月获得的利润为w 元,当销售单价降低多少元时,每月获得的利润最大,最大利润是多少? (3)该网店店主热心公益事业,决定每月从利润中捐出200元资助贫困学生. 为了保证捐款后每月利润不低于4220元,且让消费者得到最大的实惠,该如何确定休闲裤的销售单价?24. (本题满分12分)如图,已知抛物线y =-x 2+b x +c 与x 轴交于A 、B 两点,AB =4,交y 轴于点C ,对称轴是直线x =1.(1)求抛物线的解析式及点C 的坐标;(2)连接BC ,E 是线段OC 上一点,E 关于直线x =1的对称点F 正好落在BC 上,求点F 的坐标;(3)动点M 从点O 出发,以每秒2个单位长度的速度向点B 运动,过M 作x 轴的垂线交抛物线于点N ,交线段BC 于点Q .设运动时间为t(t>0)秒. ①若△AOC 与△BMN 相似,请直接写出t 的值;②△BOQ 能否为等腰三角形?若能,求出t 的值;若不能,请说明理由.初中毕业生学业考试(第24题图)(第24题备用图1) (第24题备用图2)数学试题参考答案及评分标准一、选择题(每小题3分,共30分)1~5 A B B A B 6~10 C A C C D 二、填空题(每小题3分,共18分)11. a(2x-1)2. 12. m ≤-2. 13. 25√5π.14. 813√13 15. 2或2√3或2√7(说明:3解中每对一个得1分,若有错误答案得0分)16.16 三、解答题17.(8分)解:原式=x+2 ………… 4′ ∵ x-2≠0,x-4≠0 ∴ x ≠2且x ≠4 ………… 7′∴当x=-1时,原式=-1+2=1 ………… 8′ ① (或当x=3时,原式=3+2=5 ………… 8′)②注:①或②任做对一个都可以 18. (1)证明:∵ 四边形ABCD 是矩形∴ AB ∥CD∴ ∠DFO =∠BEO , 又因为∠DOF =∠BOE ,OD =OB ∴△DOF ≌ △BOE ∴DF =BE 又因为DF ∥BE ,∴四边形BEDF 是平行四边形. ………… 4′ (2)解:∵DE=DF ,四边形BEDF 是平行四边形∴ BEDF 是菱形 ∴ DE =BE ,EF ⊥BD ,OE =OF 设AE=x ,则DE =BE=8-x在Rt △ADE 中,根据勾股定理,有AE 2+AD 2=DE 2∴ x 2+62= (8-x)2解之得:x = 74∴ DE=8 - 74 = 254 ………… 6′ 在Rt △ABD 中,根据勾股定理,有AB 2+AD 2=BD 2∴BD=√62+82 =10 ∴ OD = 12BD = 5,在Rt △DOE 中,根据勾股定理,有DE 2 - OD 2=OE 2, ∴ OE = √(254)2−52 = 154∴ EF = 2OE= 15 2………… 8′(此题有多种解法,方法正确即可分)19. (1)25 25 39.6 ………… 3′(2)1500×20100 = 300(人)答:该校最喜爱体育节目的人数约有300人. ………… 5′ (3)P = 12 (说明:直接写出答案的只给1分,画树状图或列表的按步骤给分) ………… 8′20. (1)解:∵原方程有实数根,∴b 2-4ac ≥0 ∴(-2)2-4(2k-1) ≥0∴k ≤1 ………… 3′(2)∵x 1,x 2是方程的两根,根据一元二次方程根与系数的关系,得: x 1 + x 2 = 2,x 1 ·x 2 =2k-1又∵∴x 12+x 22x1·x 2=x 1·x 2∴(x 1 + x 2)2-2x 1 x 2 = (x 1 ·x 2)2………… 5′∴ 22-2(2k-1)= (2k-1)2解之,得: k 1=√52 , k 2=−√52 . 经检验,都符合原分式方程的根 ………… 6 ∵ k ≤1 ………… 7′ ∴k =−√52. ………… 8′21.解:(1)过点F作FG⊥EC于G,依题意知FG∥DE,DF∥GE,∠FGE=90o∴四边形DEFG是矩形∴FG=DE在Rt△CDE中,DE=CE·tan∠DCE= 6×tan30 o =2√3(米)∴点F到地面的距离为2√3米. …………3′(2) ∵斜坡CF i=1:1.5∴Rt△CFG中,CG=1.5FG=2√3×1.5=3√3∴FD=EG=3√3 +6 ………… 5′在Rt△BCE中,BE=CE·tan∠BCE = 6×tan60 o =6√3………… 6′∴AB=AD+DE-BE=3√3+6+2√3-6√3=6-√3≈4.3 (米)答:宣传牌的高度约为4.3米. ………… 8′22.(1)证明:连结OB∵AC为⊙O的直径∴∠ABC=90o又∵AB⊥PO∴PO∥BC∴∠AOP=∠C,∠POB=∠OBC而OB=OC ∴∠OBC=∠C ∴∠AOP=∠POB在△AOP和△BOP中{OA=OB∠AOP=∠POBPO=PO∴△AOP≌△BOP ∴∠OBP=∠OAP∵PA为⊙O的切线∴∠OAP=90o ∴∠OBP=90o∴PB是⊙O的切线…………3′(2)证明:连结AE∵PA为⊙O的切线∴∠PAE+∠OAE=90o∵AD⊥ED ∴∠EAD+∠AED=90o∵OE=OA ∴∠OAE=∠AED∴∠PAE=∠DAE 即EA平分∠PAD∵PA、PD为⊙O的切线∴PD平分∠APB∴E为△PAB的内心…………6′(3)∵∠PAB+∠BAC=90o∠C+∠BAC=90o∴∠PAB=∠C ∴cos∠C = cos∠PAB= √1010在Rt△ABC中,cos∠C=BCAC =1AC= √1010∴AC=√10,AO=√102…………8′由△PAO∽△ABC ∴POAC =AOBC∴PO=AOBC ·AC=√1021·√10=5 …………10′(此题有多种解法,解法正确即可)23.解:(1)y=100+5(80-x)或y=-5x+500 …………2′(2)由题意,得:W=(x-40)( -5x+500) =-5x2+700x-20000=-5(x-70)2+4500 …………4′∵a=-5<0 ∴w 有最大值即当x=70时,w 最大值=4500∴应降价80-70=10(元) 答:当降价10元时,每月获得最大利润为4500元 …………6′ (3)由题意,得:-5(x-70)2+4500=4220+200 解之,得:x 1=66 x 2 =74 …………8′ ∵抛物线开口向下,对称轴为直线x=70,∴当66≤x ≤74时 ,符合该网店要求 而为了让顾客得到最大实惠 , 故x =66∴当销售单价定为66元时,即符合网店要求,又能让顾客得到最大实惠. …………10′24.解:(1))∵点A 、B 关于直线x=1对称,AB =4∴A (-1,0),B (3,0) …………1′代入y=-x 2+bx+c 中,得:{−9+3b +c =0−1−b +c =0 解得 {b =2c =3∴抛物线的解析式为y=-x 2+2x+3 …………2′∴C 点坐标为(0,3) …………3′(2)设直线BC 的解析式为y=mx+n ,则有:{n =33m +n =0解得 {m =−1n =3∴直线BC 的解析式为y=-x+3 …………4′ ∵点E 、F 关于直线x=1对称 ,又E 到对称轴的距离为1, ∴ EF=2∴F 点的横坐标为2,将x=2代入y=-x+3中,得:y=-2+3=1∴F (2,1) …………6′ (3)○1t=1 (若有t = 32 ,则扣1分) …………9′○2∵M (2t,0),MN ⊥x 轴∴Q (2t,3-2t )∵△BOQ 为等腰三角形, ∴分三种情况讨论第一种,当OQ =BQ 时, ∵QM ⊥OB ∴OM =MB ∴2t=3-2t∴t= 34 …………10′第二种,当BO =BQ 时,在Rt △BMQ 中∵∠OBQ =45O∴ BQ =√2BM ∴BO =√2BM 即3=√2(3−2t)∴t =6−3√24…………11′ 第三种,当OQ =OB 时,则点Q 、C 重合,此时t=0 而t>0,故不符合题意综上述,当t=34秒或6−3√24秒时,△BOQ 为等腰三角形. …………12′(解法正确即可)。