专题_基本不等式常见题型归纳(学生版)

合集下载

不等式常见考试题型总结

不等式常见考试题型总结

《不等式》常见考试题型总结一、高考与不等式高考试题,有关不等式的试题约占总分的12% 左右,主要考查不等式的基本知识,基本技能,以及学生的运算能力,逻辑思维能力,分析问题和解决问题的能力.选择题和填空题主要考查不等式的性质、比较大小和解简单不等式,还可能与函数、方程等内容相结合的小综合.解答题主要是解不等式或证明不等式或以其他知识为载体的综合题。

不等式常与下列知识相结合考查:①不等式的性质的考查常与指数函数、对数函数、三角函数的性质的考查相结合,一般多以选择题的形式出现,有时也与充要条件、函数单调性等知识结合,且试题难度不大;②解不等式的试题主要在解答中出现,常常是解含参不等式较多,且多与二次函数、指数、对数、可能还会出现导数相结合命题;③证明不等式是理科考查的重点,经常同一次函数、二次函数、数列、解析几何,甚至还可能与平面向量等结合起来考查.二、常见考试题型(1)求解不等式解集的题型(分式不等式的解法,根式不等式的解法,绝对值不等式的解法,含参不等式的解法,简单的一元高次不等式的解法)(2)不等式的恒成立问题(不等式恒成立问题的常规处理方式常应用函数方程思想,分离变量法,数形结合法)(3)不等式大小比较常用方法:1.作差:作差后通过分解因式、配方等手段判断差的符号得出结果;2.作商(常用于分数指数幂的代数式);3.分析法;4.平方法;5.分子(或分母)有理化;6.利用函数的单调性;7.寻找中间量或放缩法 ;8.图象法。

(4)不等式求函数最值技巧一:凑项例:已知,求函数的最大值。

54x <14245y x x =-+-技巧二:凑系数例. 当时,求的最大值。

(82)y x x =-技巧三: 分离例. 求的值域。

2710(1)1x x y x x ++=>-+技巧四:换元例. 求的值域。

2710(1)1x x y x x ++=>-+技巧五:函数的单调性(注意:在应用最值定理求最值时,若遇等号取不到的情况,应结合函数的单调性。

高考数学重难点第一讲(全国通用) 利用基本不等式求最值8大题型(原卷版及答案)(学生专用)

高考数学重难点第一讲(全国通用) 利用基本不等式求最值8大题型(原卷版及答案)(学生专用)

重难点1-1利用基本不等式求最值8大题型【命题趋势】基本不等式是高考热点问题,是常考常新的内容,是高中数学中一个重要的知识点,在解决数学问题中有着广泛的应用,尤其是在函数最值问题中。

题型通常为选择题与填空题,但它的应用范围几乎涉及高中数学的所有章节,它在高考中常用于大小判断、求最值、求最值范围等。

在高考中经常考察运用基本不等式求函数或代数式的最值,具有灵活多变、应用广泛、技巧性强等特点。

在复习中切忌生搬硬套,在应用时一定要紧扣“一正二定三相等”这三个条件灵活运用。

第1天认真研究满分技巧及思考热点题型【满分技巧】利用基本不等式求最值的方法1、直接法:条件和问题间存在基本不等式的关系2、配凑法:凑出“和为定值”或“积为定值”,直接使用基本不等式。

3、代换法:代换法适用于条件最值中,出现分式的情况类型1:分母为单项式,利用“1”的代换运算,也称乘“1”法;类型2:分母为多项式时方法1:观察法适合与简单型,可以让两个分母相加看是否与给的分子型成倍数关系;方法2:待定系数法,适用于所有的形式,如分母为34+a b 与3+a b ,分子为2+a b ,设()()()()2343343+=+++=+++a b a b a b a bλμλμλμ∴31432+=⎧⎨+=⎩λμλμ,解得:1525⎧=⎪⎪⎨⎪=⎪⎩λμ4、消元法:当题目中的变元比较多的时候,可以考虑削减变元,转化为双变量或者单变量问题。

5、构造不等式法:寻找条件和问题之间的关系,通过重新分配,使用基本不等式得到含有问题代数式的不等式,通过解不等式得出范围,从而求得最值。

【热点题型】第2天掌握直接法及配凑法求最值模型【题型1直接法求最值】【例1】(2022春·辽宁锦州·高三校考阶段练习)已知0,0x y >>,且12x y +=,则xy 的最大值为()A .16B .25C .36D .49【变式1-1】(2022·四川广安·广安二中校考模拟预测)已知3918x y +=,当2x y +取最大值时,则xy 的值为()A B .2C .3D .4【变式1-2】(2023·河南郑州·高三校联考阶段练习)已知正数,a b 满足2221a b +=,则2ab 的最大值是()A .13B C D .19【变式1-3】(2022·上海·高三统考学业考试)已知x >1,y >1且lg x +lg y =4,那么lg x ·lg y 的最大值是()A .2B .12C .14D .4【变式1-4】(2022春·云南·高三校联考阶段练习)已知正数,a b 满足()()5236a b a b ++=,则2+a b 的最小值为()A .16B .12C .8D .4【题型2配凑法求最值】【例2】(2022·全国·高三专题练习)已知30x -<<,则()f x =________.【变式2-1】(2022春·上海静安·高三上海市市西中学校考期中)函数9()(1)1=+>-f x x x x 的值域为______.【变式2-2】(2022春·湖南长沙·高三雅礼中学校考阶段练习)已知0,0x y >>,且7x y +=,则()()12x y ++的最大值为()A .36B .25C .16D .9【变式2-3】(2022春·山东济宁·高三统考期中)已知向量()()5,1,1,1m a n b =-=+,若0,0a b >>,且m n ⊥,则113223a b a b+++的最小值为()A .15B .110C .115D .120第3天掌握消元法及代换法求最值模型【题型3消元法求最值】【例3】(2022春·湖南永州·高三校考阶段练习)设220,0,12y x y x ≥≥+=,则的最大值为()A .1B 22C .4D 【变式3-1】(2023春·江西鹰潭·高三贵溪市实验中学校考阶段练习)已知正数,a b 满足2240a ab -+=,则4ab -的最小值为()A .1B C .2D .【变式3-2】(2022春·广东广州·高三执信中学校考阶段练习)设正实数x 、y 、z 满足22430x xy y z -+-=,则xyz的最大值为()A .0B .2C .1D .3【变式3-3】(2023·全国·高三专题练习)设正实数x ,y ,z 满足22340x xy y z -+-=,则当xyz取得最大值时,212x y z +-的最大值为()A .0B .3C .94D .1【变式3-4】(2022春·湖南长沙·高三湖南师大附中校考阶段练习)(多选)已知a ,b ,c 均为正实数,2ab ac +=,则118a b c a b c+++++的取值不可能是()A .1B .2C .3D .4【变式3-5】(2022春·云南昆明·高三云南师大附中校考阶段练习)若22221122124,4,2x y x y x y +=+=⋅=-,则21x y ⋅的最大值为___________.【题型4代换法求最值】【例4】(2022春·上海崇明·高三上海市崇明中学校考阶段练习)已知0,0x y >>,且41x y +=,则19x y+的最小值是_____.【变式4-1】(2022春·江西·高三九江一中校联考阶段练习)已知0a >,0b >,2a b +=,则4ba b +的最小值为_______.【变式4-2】(2022春·江西抚州·高三金溪一中校考阶段练习)若正实数x ,y 满足2x y xy +=,则2x y +的最小值为______.【变式4-3】(2022春·黑龙江鹤岗·高三鹤岗一中校考阶段练习)已知2x >-,0y >,23x y +=,则2272x y x y++++的最小值为()A .4B .6C .8D .10【变式4-4】(2022·广西·统考一模)如图,在△ABC 中,M 为线段BC 的中点,G 为线段AM 上一点且2AG GM =,过点G 的直线分别交直线AB 、AC 于P 、Q两点,(0)AB x AP x => ,(0AC y AQ y => ),则111x y ++的最小值为()A .34B .1C .43D .4第4天掌握双换元法及齐次化求最值模型【题型5双换元法求最值】【例5】(2022春·天津河西·高三天津市新华中学校考阶段练习)设1,2x y >->-,且4x y +=,则2212x y x y +++的最小值是__________.【变式5-1】(2022春·江西南昌·高三南昌二中校考阶段练习)已知正数x ,y 满足()()381232x y y x y x +=++,则xy 的最小值是()A .54B .83C .43D .52【变式5-2】(2022·全国·高三专题练习)设正实数, x y 满足1,12x y >>,不等式224121x y m y x +≥--恒成立,则m 的最大值为()A .8B .16C .D .【变式5-3】(2022春·浙江·高三浙江省新昌中学校联考期中)已知0,0x y >>,若1x y +=,则313213x y y +++的最小值是___________.【题型6齐次化求最值】【例6】(2020春·浙江金华·高三浙江金华第一中学校考阶段练习)已知,a b 都是负实数,则2a ba b a b+++的最小值是____________.【变式6-1】(2021春·重庆沙坪坝·高三重庆一中校考阶段练习)已知对任意正实数x ,y ,恒有()2222x y a x xy y +-+≤,则实数a 的最小值是___________.【变式6-2】(2022·全国·高三专题练习)已知0x >,0y >,则2223x y xy y ++的最小值为____.第5天掌握构造不等式法及多次使用不等式求最值模型【题型7构造不等式法求最值】【例7】(2013春·浙江嘉兴·高三阶段练习)已知正实数a ,b 满足212ab a b =++,则ab 的最小值是___________.【变式7-1】已知0x >,0y >,24xy x y =++,则x y +的最小值为______.【变式7-2】(2022·全国·高三专题练习)若2241x y xy ++=,则2x y +的最大值是___________.【变式7-3】(2020春·天津河北·高三天津外国语大学附属外国语学校校考阶段练习)若0x >,0y >,1425y x x y+++=,则2x y +的最小值为___________.【题型8多次使用不等式求最值】【例8】(2022春·重庆沙坪坝·高三重庆八中校考阶段练习)已知0,0a b >>,则242ba b a++的最小值为()A .B .C .1D .1【变式8-1】(2022春·江苏淮安·高三校联考期中)当02,x a <<不等式()221112x a x +≥-恒成立,则实数a 的取值范围是()A .)+∞B .(0C .(]0,2D .[)2,+∞【变式8-2】(2022·全国·模拟预测)已知0a >,0b >,1c >,22a b +=,则1221c a b c ⎛⎫++⎪-⎝⎭的最小值为()A .92B .2C .6D .212【变式8-3】(2022春·安徽·高三校联考阶段练习)已知,,a b c +∈R ,,22ππθ⎡⎤∈-⎢⎥⎣⎦,不等式()2222cos 4b a c a b cθ+++ 恒成立,则θ的取值范围是()A .,22ππ⎛⎫- ⎪⎝⎭B .,33ππ⎡⎤-⎢⎣⎦C .,44ππ⎡⎤-⎢⎥⎣⎦D .,66ππ⎡⎤-⎢⎥⎣⎦【变式8-4】(2023·全国·高三专题练习)若a ,b ,c 均为正实数,则2222ab bca b c +++的最大值为()A .12B .14C .22D .32第6天融会贯通限时练习(1)1.(2022春·江苏徐州·高三学业考试)若正实数x ,y 满足121xy+=,则x +2y 的最小值为()A .7B .8C .9D .102.(2022春·广东湛江·高三校考阶段练习)已知12,2x y x x >=+-,则y 的最小值为()A .2B .1C .4D .33.(2022春·河南·高三安阳一中校联考阶段练习)已知1a >,1b >,且ln 4ln 2a b +=,则4log lo e e g a b +的最小值为()A .9lg2B .212C .252D .124.(2022春·吉林四平·高三四平市第一高级中学校考阶段练习)已知正数,a b 满足494a b +=,则ab 的最大值为()A .19B .16C .13D .125.(2022春·黑龙江牡丹江·高三牡丹江一中校考期末)已知0a >,0b >,9是3a 与27b的等比中项,则22231a b a b+++的最小值为()A .9+B .214+C .7D .143+6.(2022春·河南南阳·高三校考阶段练习)在ABC 中,过重心E 任作一直线分别交AB ,AC 于M ,N 两点,设AM xAB =u u u r u u u r ,AN yAC =u u ur u u u r ,(0x >,0y >),则4x y +的最小值是()A .43B .103C .3D .27.(2022春·四川德阳·高三阶段练习)已知实数0a b >、,且函数()f x =的定义域为R ,则22a b a+的最小值是()A .4B .6C .D .28.(2022春·江西宜春·高三校考阶段练习)设x y z >>,且11()nn x y y z x z +≥∈---N 恒成立,则n的最大值为()A.2B.3C.4D.5第7天融会贯通限时练习(2)1.(2022春·重庆沙坪坝·高三重庆南开中学校考阶段练习)(多选)已知实数a ,b 满足2241a ab b -+=,以下说法正确的是()A .15a ≤B .1a b +<C .2244453a b ≤+≤D .2a b -≤2.(2022·浙江·模拟预测)(多选)已知a ,b 为正数,且220a b +-=,则()A .2168a a +>B .219a b+≥C ≥D .35422a b a +-<<-3.(2022春·山西·高三校联考阶段练习)(多选)若1a b >>,且35a b +=,则()A .141a b b +--的最小值为24B .141a b b +--的最小值为25C .2ab b a b --+的最大值为14D .2ab b a b --+的最大值为1164.(2022春·山东·高三利津县高级中学校联考阶段练习)(多选)在下列函数中,最小值是4的是()A .4y xx=+B .0)y x =>C .4sin sin y x x =+,0,2x π⎛⎤∈ ⎥⎝⎦D .144xx y -=+5.(2022春·山东·高三利津县高级中学校联考阶段练习)已知正实数x ,y 满足474x y +=,则2132x y x y+++的最小值为______.6.(2022春·天津静海·高三静海一中校考阶段练习)若,a b ∈R ,且221b a -=,则22a b a b+-的最大值为___________.7.(2022春·天津和平·高三耀华中学校考阶段练习)已知正数,x y 满足22831322x xy xy y +=++,则xy 的最小值是_________.8.(2022春·陕西商洛·高三校联考阶段练习)已知正实数,,a b c 满足222120a ab b c ++-=,则当a bc+取得最大值时,2a b c -+的最大值为______.答案:第2天掌握直接法及配凑法求最值模型【题型1直接法求最值】例1(辽宁锦州·高三校考阶段练习)已知0,0x y >>,且12x y +=,则xy 的最大值为()A.16B.25C.36D.49【答案】C【解析】因为0,0x y >>,12x y +=≥36xy ≤,当且仅当6x y ==时取到等号,故xy 的最大值为36.故选:C【变式1-1】(四川广安·广安二中校考模拟预测)已知3918x y +=,当2x y +取最大值时,则xy 的值为()B.2C.3D.4【答案】B【解析】由已知3918x y +=可得23318x y +=,则21833x y =+≥+2381x y ≤,所以+24x y ≤,当且仅当=22x y =时取等号,即=2x ,=1y ,此时2xy =.故选:B.【变式1-2】(2023·河南郑州·高三校联考阶段练习)已知正数,a b 满足2221a b +=,则2ab 的最大值是()A.13D.19【答案】C【解析】解:由题知2222212a b a b b =+=++≥13≤,当且仅当a b ==29ab .故选:C.【变式1-3】(2022·上海·高三统考学业考试)已知x >1,y >1且lg x +lg y=4,那么lg x ·lg y 的最大值是()A.2B.12C.14D.4【答案】D【解析】∵x >1,y >1,∴lg x >0,lg y >0,∴22lg lg 4lg lg 422x y x y +⎛⎫⎛⎫⋅≤== ⎪ ⎪⎝⎭⎝⎭,当且仅当lg x =lg y =2,即x =y =100时等号成立.故选:D.【变式1-4】(2022春·云南·高三校联考阶段练习)已知正数,a b 满足()()5236a b a b ++=,则2+a b 的最小值为()A.16B.12C.8D.4【答案】D【解析】因为()()()()252522a b a b a b a b ⎡⎤+++++≤⎢⎥⎣⎦,所以29(2)364a b +≥.又0,0a b >>.所以24a b +≥,当且仅当,3382a b ==时,等号成立.故选:D【题型2配凑法求最值】【例2】(2022·全国·高三专题练习)已知30x -<<,则()f x =值为________.【答案】92-【解析】因为30x -<<,所以()229922x x f x -+==≥-=-,当且仅当229x x -=,即x =()f x =92-.【变式2-1】(2022春·上海静安·高三上海市市西中学校考期中)函数9()(1)1=+>-f x x x x 的值域为______.【答案】[)7,+∞【解析】由题知,1x >,所以10x ->,所以()9()11171f x x x =-++≥=-,当且仅当911x x -=-,即4x =时取等号,所以函数9()(1)1=+>-f x x x x 的值域为[)7,+∞.【变式2-2】(2022春·湖南长沙·高三雅礼中学校考阶段练习)已知0,0x y >>,且7x y +=,则()()12x y ++的最大值为()A.36B.25C.16D.9【答案】B【解析】由7x y +=,得()()1210x y +++=,则()()()()21212252x y x y ⎡⎤+++++≤=⎢⎥⎣⎦,当且仅当12x y +=+,即4,3x y ==时,取等号,所以()()12x y ++的最大值为25.故选:B.【变式2-3】(2022春·山东济宁·高三统考期中)已知向量()()5,1,1,1m a n b =-=+,若0,0a b >>,且m n ⊥,则113223a b a b+++的最小值为()A.15B.110C.115D.120【答案】A【解析】根据题意,510m n a b ⋅=-++=,即4a b +=,则()()322320a b a b +++=,又0,0a b >>,故113223a b a b +++()()1113223203223a b a b a b a b ⎛⎫⎡⎤=++++ ⎪⎣⎦++⎝⎭123321122203223205a b a b a b a b ⎛++⎛⎫=++≥⨯+= ⎪ ++⎝⎭⎝,当且仅当23323223a b a b a b a b++=++,且4a b +=,即2a b ==时取得等号.故选:A.第3天掌握消元法及代换法求最值模型【题型3消元法求最值】【例3】(2022春·湖南永州·高三校考阶段练习)设220,0,12y x y x ≥≥+=,则的最大值为()A.122【答案】C【解析】因为2212y x +=,所以22022y x =-≥,解得:[]0,1x ∈,故22232224x x +-===≤⨯=,当且仅当22232x x =-,即x 的最大值为4.【变式3-1】(2023春·江西鹰潭·高三贵溪市实验中学校考阶段练习)已知正数,a b 满足2240a ab -+=,则4a b -的最小值为()A.1C.2D.【答案】B【解析】,0a b > ,2240a ab -+=,则有22a b a=+,224244a a a a b a a ∴-=+-=+ 24a a =,即a =时b =【变式3-2】(2022春·广东广州·高三执信中学校考阶段练习)设正实数x 、y 、z 满足22430x xy y z -+-=,则xyz的最大值为()A.0B.2C.1D.3【答案】C【解析】因为正实数x 、y 、z 满足22430x xy y z -+-=,则2243z x xy y =-+,则22114433xy xy x y z x xy y y x ==-++-,当且仅当20y x =>时取等号.故xyz的最大值为1.故选:C.【变式3-3】(2023·全国·高三专题练习)设正实数x ,y ,z 满足22340x xy y z -+-=,则当xyz取得最大值时,212x y z +-的最大值为()A.0B.3C.94D.1【答案】D【解析】由正实数x ,y ,z 满足22340x xy y z -+-=,2234z x xy y ∴=-+.∴22114343xy xy x y z x xy y y x ==-++- ,当且仅当20x y =>时取等号,此时22z y =.∴222122121(1)1122x y z y y y y+-=+-=--+ ,当且仅当1y =时取等号,即212x y z +-的最大值是1.故选:D【变式3-4】(2022春·湖南长沙·高三湖南师大附中校考阶段练习)(多选)已知a ,b ,c 均为正实数,2ab ac +=,则118ab c a b c+++++的取值不可能是()A.1B.2C.3D.4【答案】ABC【解析】a ,b ,c 均为正实数,由2ab ac +=得:()2a b c +=,即2b c a+=,所以2211818282222a a aa b c a b c a a a a a+++=++=++++++,由基本不等式得:2211828422a a a b c a b c a a +++=+≥++++,当且仅当222822a a a a +=+,即2a =±【变式3-5】(2022春·云南昆明·高三云南师大附中校考阶段练习)若22221122124,4,2x y x y x y +=+=⋅=-,则21x y ⋅的最大值为___________.【答案】2【解析】()()()()222222121112211444444204x y y x x x x x ⎛⎫⎛⎫=--=--=-+ ⎪ ⎪⎝⎭⋅⎝⎭,由212y x -=,所以211222y x x -==≤,所以112x ≤≤,所以()222112142042044x y x x ⎛⎫=-+≤-⨯⎪⎝⎭⋅= ,当且仅当1||x 时,等号成立,所以21x y ⋅2≤,当且仅当21x y ==21x y ==时取等号,所以21x y ⋅的最大值为2.【题型4代换法求最值】【例4】(2022春·上海崇明·高三上海市崇明中学校考阶段练习)已知0,0x y >>,且41x y +=,则19x y+的最小值是_____.【答案】25【解析】因为0,0x y >>,且41x y +=,所以()1919346913254x y x y x y y x y x +=⎛⎫+=+ ⎪⎝+++⎭+≥=,当且仅当36x y y x =,即13,105x y ==时,等号成立.【变式4-1】(2022春·江西·高三九江一中校联考阶段练习)已知0a >,0b >,2a b +=,则4ba b +的最小值为_______.【答案】2【解析】因为0a >,0b >,且2a b +=,所以4422222b b a b b a a b a b a b +⎛⎫+=+=++≥= ⎪⎝⎭,当且仅当222b a =时取等号故4b a b +的最小值为2【变式4-2】(2022春·江西抚州·高三金溪一中校考阶段练习)若正实数x ,y 满足2x y xy +=,则2x y +的最小值为______.【答案】9【解析】由2x y xy +=得211y x+=,又因为0x >,0y >,所以()212222559x y x y x y y x y x ⎛⎫+=++=++≥= ⎪⎝⎭,当且仅当3x y ==时等号成立,故2x y +的最小值为9.【变式4-3】(2022春·黑龙江鹤岗·高三鹤岗一中校考阶段练习)已知2x >-,0y >,23x y +=,则2272x y x y++++的最小值为()A.4B.6C.8D.10【答案】B【解析】因为2x >-,0y >,23x y +=,所以()227x y ++=,20x +>,()()22722222222222x y x y y x y x x y x y x y +++++=+++=++++++26≥+,当且仅当2x y +=,即13x =,73y =时等号成立,即2272x y x y++++的最小值为6,故选:B.【变式4-4】(2022·广西·统考一模)如图,在△ABC 中,M 为线段BC 的中点,G 为线段AM 上一点且2AG GM =,过点G 的直线分别交直线AB 、AC 于P 、Q 两点,(0)AB x AP x => ,(0AC y AQ y => ),则111x y ++的最小值为()A.34B.1C.43D.4【答案】B【解析】由于M 为线段BC 的中点,则1122AM AB AC =+ ;又2AG GM = ,所以32AM AG = ,又(0)AB x AP x => ,(0AC y AQ y => );所以3222x y AG AP AQ =+,则33x y AG AP AQ =+ ;因为,,G P Q 三点共线,则133x y+=,化得()14x y ++=;由()111111111221141414x y x y x y x y y x ⎛⎫⎛⎫⎛⎫++=+++=++≥+=⎡⎤ ⎪ ⎪ ⎪⎣⎦ ⎪+++⎝⎭⎝⎭⎝⎭;当且仅当11x y y x+=+时,即2,1x y ==时,等号成立,111x y ++的最小值为1故选:B第4天掌握双换元法及齐次化求最值模型【题型5双换元法求最值】【例5】(2022春·天津河西·高三天津市新华中学校考阶段练习)设1,2x y >->-,且4x y +=,则2212x y x y +++的最小值是__________.【答案】167【解析】令1(0)x a a +=>,2(0)y b b +=>,则1x a =-,2y b =-,因为4x y +=,则有7a b +=,所以2222(1)(2)142412x y a b a b x y a b a b--+=++-++-++14724(a b =--++1141()()7a b a b =+++141(147b a a b =++++1161(577≥+⨯+=;当且仅当2b a =,即714,33a b ==时取等号,则,x y 分别等于48,33时,2212x y x y +++的最小值是167.【变式5-1】(2022春·江西南昌·高三南昌二中校考阶段练习)已知正数x ,y 满足()()381232x y y x y x +=++,则xy 的最小值是()A.54B.83C.43D.52【答案】D【解析】()()3838232232x y xy xy x y y x y x x y x y ⎡⎤=+=+⎢⎥++++⎣⎦,令2x y m +=,32x y n +=,则2n m x -=,34m n y -=,38367752322222x y n m xy x y x y m n =+=+-≥-=++,当且仅当362n m m n =且()()381232x y y x y x +=++,即x =y =所以52xy ≥,故xy 有最小值52.故选:D.【变式5-2】(2022·全国·高三专题练习)设正实数, x y 满足1,12x y >>,不等式224121x y m y x +≥--恒成立,则m 的最大值为()A.8B.16C.D.【答案】A【解析】设1,21y b x a -=-=,则()()()110,102y b b x a a =+>=+>所以()()2222114121a b x y y x b a ++++++++=+≥=--()222228⎛=≥=⋅+= ⎝;当且仅当1a b ==即2,1x y ==时取等号;所以224121x y y x +--的最小值是8,则m 的最大值为8.故选A【变式5-3】(2022春·浙江·高三浙江省新昌中学校联考期中)已知0,0x y >>,若1x y +=,则313213x y y+++的最小值是___________.【答案】85【解析】设()()3213x y k x y y λμ++=+++,由对应系数相等得13123k λλμμ=⎧⎪=+⎨⎪=⎩,得1319k λμ⎧=⎪⎪⎨⎪==⎪⎩;所以()()1113213939x y x y y ++=+++;整理得()()31132131010x y y =+++即()()()11961310x y y =+++;所以()()()3113196133213103213x y y x y y x y y ⎛⎫+=++++⎪++++⎝⎭()313196811032135y x y x y y ⎛⎫++=+ ⎪++⎝⎭ .经验证当12x y ==时,等号可取到.【题型6齐次化求最值】【例6】(2020春·浙江金华·高三浙江金华第一中学校考阶段练习)已知,a b 都是负实数,则2a ba b a b+++的最小值是____________.【答案】2-【解析】222222232a b a ab b a b a b a ab b +++=++++22132ab a ab b =-++1123a b b a=-++,因为,a b 都是负实数,所以20,0a b ba >>,所以2a b b a +≥2a b b a =时等号成立).所以233a b b a++≥,所以123a b b a≤++,所以1323a b b a -≥=++,所以1113223a b b a-≥+=++.即2a b a b a b+++的最小值是2.【变式6-1】(2021春·重庆沙坪坝·高三重庆一中校考阶段练习)已知对任意正实数x ,y ,恒有()2222x y a x xy y +-+≤,则实数a 的最小值是___________.【答案】2【解析】因为0,0x y >>,则()2220x xy y x y xy -+=-+>,则()2222x y a x xy y +-+≤,即2222x y a x xy y+-+≤,又22222211x y xy x xy y x y +=-+-+,因为222x y xy +≥,所以22112xy x y -≥+,所以22121xy x y≤-+,即22222x y x xy y +≤-+,当且仅当x y =时,取等号,所以2222max2x y x xy y ⎛⎫+= ⎪-+⎝⎭,所以2a ≥,即实数a 的最小值是2.【变式6-2】(2022·全国·高三专题练习)已知0x >,0y >,则2223x y xy y ++的最小值为____.【答案】2【解析】∵x ,y >0,则2223x y xy y ++=2231x y x y++,设x y =t ,t >0,则()()2222212143311t t x y t xy y t t +-++++==+++=(t +1)+41t +当且仅当t +1=41t +,即t =1时取等号,此时x =y ,故2223x y xy y ++的最小值为2.第5天掌握构造不等式法及多次使用不等式求最值模型【题型7构造不等式法求最值】【例7】(2013春·浙江嘉兴·高三阶段练习)已知正实数a ,b 满足212ab a b =++,则ab 的最小值是___________.【答案】9【解析】由212ab ab =++得,212ab≥,化简得)320≥,解得9ab ≥,所以ab 的最小值是9.【变式7-1】已知0x >,0y >,24xy x y =++,则x y +的最小值为______.【答案】4【解析】由题知0,0,x y >>由基本不等式得22x y xy +⎛⎫≤ ⎪⎝⎭,即2422x y x y +⎛⎫++≤⨯ ⎪⎝⎭,令t x y =+,0t >,则有2422t t ⎛⎫+≤⨯ ⎪⎝⎭,整理得2280t t --≥,解得2t ≤-(舍去)或4t ≥,即4x y +≥,当且仅当2x y ==时等号成立,所以x y +的最小值为4.【变式7-2】(2022·全国·高三专题练习)若2241x y xy ++=,则2x y +的最大值是___________.【答案】5【解析】∵2241x y xy ++=,∴2222325(2)31(2)(2)228x y x y xy x y x y +⎛⎫+-=≥+-=+ ⎪⎝⎭,当且仅当2x y =时,等号成立,此时28(2)5x y +≤,所以2x y +≤2x y +的最大值是5.【变式7-3】(2020春·天津河北·高三天津外国语大学附属外国语学校校考阶段练习)若0x >,0y >,1425y x x y+++=,则2x y +的最小值为___________.【答案】8【解析】因为0x >,0y >,所以20x y +>;由1425y x x y+++=两边同时乘xy ,得22425y y x x xy +++=,即2244254x y xy x y xy xy ++++=+,则()()2229x y x y xy +++=,因为()2222224x y x y xy ++⎛⎫≤= ⎪⎝⎭,所以()()2229999222248x y xy xy x y +=⨯≤⨯=+,故()()()2292228x y x y x y +++≤+,整理得()()22820x y x y +-+≥,即()()2280x y x y ++-≥,所以28x y +≥或20x y +≤(舍去),故2x y +的最小值为8.【题型8多次使用不等式求最值】【例8】(2022春·重庆沙坪坝·高三重庆八中校考阶段练习)已知0,0a b >>,则242ba ba ++的最小值为()A.B.C.1D.1【答案】B【解析】因为0,0a b >>,所以24422224b a a a b a a ++≥=+≥,当且仅当24b ba =且42a a =,即ab ==即242ba b a ++的最小值为故选:B.【变式8-1】(2022春·江苏淮安·高三校联考期中)当02,x a <<不等式()221112x a x +≥-恒成立,则实数a 的取值范围是()A.)+∞B.(0C.(]0,2D.[)2,+∞【答案】B【解析】()221112x a x +≥-恒成立,即()22min 1112x a x ⎡⎤+≥⎢⎥-⎢⎥⎣⎦;02,20x a a x <<∴-> ,又222211222(2)(2)(22)x a x x a x x a x a +≥=≥=+---,上述两个不等式中,等号均在2x a x =-时取到,()m 222in1122x a a x ⎡⎤∴+=⎢⎥-⎢⎥⎣⎦,212a ∴≥,解得a ≤0a ≠,又0a >,实数a的取值范围是(0.故选:B.【变式8-2】(2022·全国·模拟预测)已知0a >,0b >,1c >,22a b +=,则1221c a b c ⎛⎫++ ⎪-⎝⎭的最小值为()A.92B.2C.6D.212【答案】D【解析】()()121121221925542222baa b a b a b a b ⎛⎫⎛⎫+=++=++≥+= ⎪ ⎪⎝⎭⎝⎭,当且仅当23a b ==时等号成立,(应用基本不等式时注意等号成立的条件)所以()12292911212c c a b c c ⎛⎫++≥-++≥ ⎪--⎝⎭92122=,当且仅当()91221c c -=-,即53c =且23a b ==时,等号成立,故最小值为212,故选:D【变式8-3】(2022春·安徽·高三校联考阶段练习)已知,,a b c +∈R ,,22ππθ⎡⎤∈-⎢⎥⎣⎦,不等式()2222cos 4b a c a b cθ+++ 恒成立,则θ的取值范围是()A.,22ππ⎛⎫- ⎪⎝⎭B.,33ππ⎡⎤-⎢⎥⎣⎦C.,44ππ⎡⎤-⎢⎥⎣⎦D.,66ππ⎡⎤-⎢⎥⎣⎦【答案】C【解析】因为,,,,22a b c ππθ+⎡⎤∈∈-⎢⎥⎣⎦R ,不等式()2222cos 4b a ca b c θ+++ 恒成立,所以()222max 2cos 4b a c a b c θ⎡⎤+⎢⎥++⎣⎦ ,因为,,a b c +∈R,所以)))2222222ab aa b ⎤=≤+=+⎥⎦,当且仅当a =时等号成立;)))2222222bc cc c b ⎤=++⎥⎦,当且仅当c 时等号成立.所以()2222222222244b a c ab bc a b c a b c ++=≤++++=,当且仅当a c ==时等号成立,所以()22224b a c a bc +++,所以cos θ≥又因为,22ππθ⎡⎤∈-⎢⎥⎣⎦,所以,44ππθ⎡⎤∈-⎢⎥⎣⎦.故选:C.【变式8-4】(2023·全国·高三专题练习)若a ,b ,c 均为正实数,则2222ab bca b c +++的最大值为()A.12B.14C.22【答案】A【解析】因为a ,b 均为正实数,则2222222ab bc a c a c a b c b b ++=++++12==≤=,当且仅当222a c b b+=,且a c =,即a b c ==时取等号,则2222ab bc a b c +++的最大值为12.故选:A.第8天融会贯通限时练习(1)1.(2022春·江苏徐州·高三学业考试)若正实数x ,y 满足121xy+=,则x +2y 的最小值为()A.7B.8C.9D.10【答案】C【解析】因为x ,y 是正数,所以有()12222559y x x y x y x y ⎛⎫++=++≥+= ⎪⎝⎭,当且仅当22y xx y=时取等号,即当且仅当3x y ==时取等号,故选:C2.(2022春·广东湛江·高三校考阶段练习)已知12,2x y x x >=+-,则y 的最小值为()A.2B.1C.4D.3【答案】C【解析】因为2x >,所以120,02x x ->>-,由基本不等式得11222422y x x x x =+=-++≥=--,当且仅当122x x -=-,即3x =时,等号成立,则y 的最小值为4.故选:C3.(2022春·河南·高三安阳一中校联考阶段练习)已知1a >,1b >,且ln 4ln 2a b +=,则4log lo e e g a b +的最小值为()A.9lg2B.212C.252D.12【答案】C 【解析】n e 1log l a a=,44l l e og n b b =,因为1a >,1b >,故ln 0a >,ln 0b >,()414114log log ln 4ln ln ln 2ln ln e e a b a b a b a b ⎛⎫+=+=⨯++ ⎪⎝⎭14ln 4ln 12517172ln ln 22b a a b ⎛⎛⎫=⨯++≥⨯+= ⎪ ⎝⎭⎝,当且仅当ln ln a b =时,即25e a b ==时等号成立.所以4log lo e e g a b +的最小值为252.故选:C 4.(2022春·吉林四平·高三四平市第一高级中学校考阶段练习)已知正数,a b 满足494a b +=,则ab 的最大值为()A.19B.16C.13D.12【答案】A【解析】正数,a b 满足494a b +=,由基本不等式得:494a b +=≥19ab ≤,当且仅当49a b =,即12,29a b ==时,等号成立,ab 的最大值为19.故选:A5.(2022春·黑龙江牡丹江·高三牡丹江一中校考期末)已知0a >,0b >,9是3a与27b的等比中项,则22231a b a b+++的最小值为()A.9+C.7【答案】B【解析】由等比中项定义知:3232739a b a b +⋅==,34a b ∴+=,()2223121121163434544a b b a a b a b a b a b a b a b ++⎛⎫⎛⎫∴+=+++=+++=+++ ⎪ ⎪⎝⎭⎝⎭1521454444⎛++≥++=+= ⎝(当且仅当6b a a b =,即8a =,(433b =时取等号),即22231a b a b +++6.(2022春·河南南阳·高三校考阶段练习)在ABC 中,过重心E 任作一直线分别交AB ,AC 于M ,N 两点,设AM xAB =u u u r u u u r ,AN yAC =u u ur u u u r ,(0x >,0y >),则4x y +的最小值是()A.43B.103C.3D.2【答案】C【解析】在ABC 中,E 为重心,所以21()32AE AB AC =⋅+ 1()3AB AC =+,设AM xAB =u u u r u u u r ,AN yAC =u u ur u u u r ,(0x >,0y >)所以1AB AM x = ,1AC AN y = ,所以111133AE AM AN x y =⋅+⋅ .因为M 、E 、N 三点共线,所以11133x y+=,所以11(4)33x y x y ⎛⎫++ ⎪⎝⎭4143333y x x y =+++533≥+=(当且仅当433y x x y =,即12x =,1y =时取等号).故4x y +的最小值是3.故选:C.7.(2022春·四川德阳·高三阶段练习)已知实数0a b >、,且函数()f x =的定义域为R ,则22a b a+的最小值是()A.4B.6C.D.2【答案】A【解析】∵()f x =定义域为R,∴22()2()10x a b x a b -+++-≥在R 上恒成立,∴2[2()]4[2()1]0a b a b ∆=-+-⨯+-≤,即:2()2()10a b a b +-++≤∴2(1)0a b +-≤,解得:1a b +=又∵0,0a b >>∴2121212222a b b a b a b a -+=+=+-1212=()()224222a b a b b a b a ++-=++≥=当且仅当22a bb a=,即21,33a b ==时取等号.故选:A.8.(2022春·江西宜春·高三校考阶段练习)设x y z >>,且11()nn x y y z x z +≥∈---N 恒成立,则n 的最大值为()A.2B.3C.4D.5【答案】C【解析】因为x y z >>,所以0x y ->,0y z ->,0x z ->,所以不等式11n x y y z x z +≥---恒成立等价于11()n x z x y y z ⎛⎫≤-+ --⎝⎭恒成立.因为()()x z x y y z -=-+-≥,11x y y z +≥--所以11()44x z x y y z ⎛⎫-⋅+≥ ⎪--⎝⎭(当且仅当x y y z -=-时等号成立),则要使11()n x z x yy z ⎛⎫≤-⋅+⎪--⎝⎭恒成立,只需使4()n n ≤∈N ,故n 的最大值为4.故选:C第9天融会贯通限时练习(2)1.(2022春·重庆沙坪坝·高三重庆南开中学校考阶段练习)(多选)已知实数a ,b 满足2241a ab b -+=,以下说法正确的是()A.15a ≤B.1a b +<C.2244453a b ≤+≤D.2a b -≤【答案】ACD【解析】由2241a ab b -+=,可得22410b ab a -+-=,关于b 的方程有解,所以()()224410a a ∆=---≥,所以2415a ≤,即a ≤A 正确;取0,1a b ==,2241a ab b -+=,则1a b +=,故B 错误;由2241a ab b -+=,可得22141122a b ab ab +=+=+⋅,又222244222a b a b ab ++-≤≤,令224t a b =+,则()2122t t t -≤-≤,所以4453t ≤≤,即2244453a b ≤+≤,故C 正确;由2241a ab b -+=,可得()2231a b ab -+=,所以()()23213122a b ab a b -=-=+⋅⋅-,令2u a b =-,由()2222a b a b -⎛⎫⋅-≤ ⎪⎝⎭,可得22318u u ≤+,所以285u ≤,即25a b -≤,故D 正确.故选:ACD.2.(2022·浙江·模拟预测)(多选)已知a ,b 为正数,且220a b +-=,则()A.2168a a +>B.219a b+≥≥D.35422a b a +-<<-【答案】ACD【解析】对于A 选项,()2216840a a a +-=-≥,当且仅当4a =时等号成立,当4a =时,由于220a b +-=,得22286b a =-=-=-,与b 为正数矛盾,故4a ≠,即得2168a a +>,故A 选项正确;对于B 选项,220a b +-= ,12ba ∴+=.又0,0a b >> 212115922222b b a a a b a b a b ⎛⎫⎛⎫∴+=++=+++≥+ ⎪⎪⎝⎭⎝⎭,当且仅当b aa b =,即23a b ==时等号成立;故B 选项不正确;对于C 选项,220a b +-= ,22b a ∴=-,()0,1a ∈.()2222224422584555a b a a a a a ⎛⎫+=+-=-+=-+ ⎪⎝⎭ ,2245a b ∴+≥,当且仅当45a =时等号成立,≥C 选项正确;对于D 选项,220a b +-= ,22b a ∴=-,()0,1a ∈.()()2552253510122222a ab a a a a a a a a a ---+-+----∴====--<<-----,当01a <<时,221a -<-<-,55522a ∴-<<--,得351422a <--<-,即35422a b a +-<<-,故D 选项正确.故选:ACD3.(2022春·山西·高三校联考阶段练习)(多选)若1a b >>,且35a b +=,则()A.141a b b +--的最小值为24B.141a b b +--的最小值为25C.2ab b a b --+的最大值为14D.2ab b a b --+的最大值为116【答案】BD【解析】由1a b >>,可知0a b ->,10b ->,()()4134541a b b a b -+-=+-=-=,()()()()441411411a b b a b b a b b a b b -+-⎡⎤-+-⎣⎦+=+--()()414171b a b a b b --=++--17≥+25=;当且仅当115a b b -=-=时,等号成立,141a b b +--的最小值为25.又()()141a b b =-+-=≥()1412a b b -=-=时,等号成立,所以()()21116ab b a b a b b --+=-⋅-≤,故2ab b a b --+的最大值为116.故选:BD .4.(2022春·山东·高三利津县高级中学校联考阶段练习)(多选)在下列函数中,最小值是4的是()A.4y xx=+B.0)y x =>C.4sin sin y x x =+,0,2x π⎛⎤∈ ⎥⎝⎦D.144xx y -=+【答案】BD【解析】对于A,当0x >时,44y x x =+≥=,当且仅当4x x=,即2x =时取等号;当0x <时,44[()]4y x x xx=+=--+-≤-=-,当且仅当4x x-=-,即2x =-时取等号,所以(,4][4,)y ∈-∞-+∞ ,A 错误;对于B,y =,因为0x >1>,43x =时取等号,所以0)y x =>的最小值为4,B 正确;对于C,因为0,2x π⎛⎤∈ ⎥⎝⎦,所以sin (0,1]x ∈,由对勾函数性质可知:4sin [5,)sin y x x=+∈+∞,C 错误;对于D,40x >,1444444x x x x y -=++=≥,当且仅当444x x =,即12x =时取等号,所以144x x y -=+的最小值为4,D 正确.故选:BD5.(2022春·山东·高三利津县高级中学校联考阶段练习)已知正实数x ,y 满足474x y +=,则2132x y x y+++的最小值为______.【答案】94【解析】因为474x y +=,所以()()2112123232432x y x y x y x y x y x y ⎛⎫⎡⎤+=++++ ⎣⎦++++⎝⎭,所以()()22211413242233x y x y x y x y x y x y ⎡⎤++=+++⎢⎥++⎣+++⎦,因为,x y 为正实数,所以()()220,02233x y y y x y x x +++>>+,所以()()4222233x y x y x y x y ++++≥=+,当且仅当32474x y x y x y +=+⎧⎨+=⎩时等号成立,即84,1515x y ==时等号成立,所以()21194413244x y x y +≥++=++,当且仅当84,1515x y ==时等号成立,所以2132x y x y +++的最小值为94.6.(2022春·天津静海·高三静海一中校考阶段练习)若,a b ∈R ,且221b a -=,则22a b a +-的最大值为___________.【解析】由题知,,a b ∈R ,且221b a -=,即221b a =+,所以221a b a a b b+-+=,当0a =时,21b =,即1b =±,此时11a +=±,所以22a b a b+-的最大值为1,当0a ≠时,22221212211212a a a a a b b a a ⎛+⎫++==+≤+= ⎪+⎝⎭,当且仅当1=a 时取等号,此时1a b+≤;所以22a ab b+-.综上,22a ab b+-的最大值.7.(2022春·天津和平·高三耀华中学校考阶段练习)已知正数,x y 满足22831322x xy xy y+=++,则xy 的最小值是_________.【答案】52【解析】根据题意,由22831322x xy xy y +=++可得22228(2)3(32)1(32)(2)xy y x xy x xy xy y +++=++,即322223221)6914384384y x xy x x y xy yx xy y y x ++=+++=+;所以222222221691416914383844y yy x xy x x y y y x xy x xxy ++=+=+++++;又因为,x y 均是正数,令()0,y t x =∈+∞,则221614983()4xy f t t t t t =++++=;所以,22221831()4444316149348388183t t t t t t t t t f t t +++++==-=++++-+令2384)183(g t t t t ++=+,则16162112110101899()292718396183272727g t t t t t ⎛⎫=++=+++≥= ⎪++⎝⎭当且仅当1621996183t t ⎛⎫+= ⎪+⎝⎭,即12t =时,等号成立;所以2181455()44184182718332f t t t t +=+=-≥-=+;所以()f t 的最小值为min 5()2f t =;即当1,22y t x y x ====时,即x y ==时,等号成立.8.(2022春·陕西商洛·高三校联考阶段练习)已知正实数,,a b c 满足222120a ab b c ++-=,则当a bc+取得最大值时,2a b c -+的最大值为______.【答案】916【解析】由222120a ab b c ++-=,可得()()()2222231224a b c a b ab a b a b +⎛⎫=+-≥+-=+ ⎪⎝⎭,即4a b c +≤,当且仅当a b =时,等号成立,所以当a b c+取得最大值时,a b =,42a b ac +==,所以。

专题03 等式与不等式的性质 (学生版)高中数学53个题型归纳与方法技巧总结篇

专题03 等式与不等式的性质 (学生版)高中数学53个题型归纳与方法技巧总结篇

【考点预测】1.高中数学53个题型归纳与方法技巧总结篇专题03等式与不等式的性质比较大小基本方法关系方法做差法与0比较做商法与1比较b a >0>-b a )0(1>>b a b a ,或)0(1<<b a b a ,b a =0=-b a )0(1≠=b baba <0=-b a )0(1><b a b a ,或)0(1<>b a ba ,2.不等式的性质(1)基本性质性质性质内容对称性ab b a a b b a >⇔<<⇔>;传递性c a c b b a c a c b b a <⇒<<>⇒>>,;,可加性cb c a b a >>+⇔>可乘性ac c b a bc ac c b a ⇒<>>⇒>>00,;,同向可加性db c a d c c a +>+⇒>>,同向同正可乘性bdac d c b a >⇒>>>>00,可乘方性nn b a N n b a >⇒∈>>*0,【方法技巧与总结】1.应用不等式的基本性质,不能忽视其性质成立的条件,解题时要做到言必有据,特别提醒的是在解决有关不等式的判断题时,有时可用特殊值验证法,以提高解题的效率.2.比较数(式)的大小常用的方法有比较法、直接应用不等式的性质、基本不等式、利用函数的单调性.比较法又分为作差比较法和作商比较法.作差法比较大小的步骤是:(1)作差;(2)变形;(3)判断差式与0的大小;(4)下结论.作商比较大小(一般用来比较两个正数的大小)的步骤是:(1)作商;(2)变形;(3)判断商式与1的大小;(4)下结论.其中变形是关键,变形的方法主要有通分、因式分解和配方等,变形要彻底,要有利于0或1比较大小.作差法是比较两数(式)大小最为常用的方法,如果要比较的两数(式)均为正数,且是幂或者因式乘积的形式,也可考虑使用作商法.【题型归纳目录】题型一:不等式性质的应用题型二:比较数(式)的大小与比较法证明不等式题型三:已知不等式的关系,求目标式的取值范围题型四:不等式的综合问题【典例例题】题型一:不等式性质的应用例1.(2022·北京海淀·二模)已知,x y ∈R ,且0x y +>,则()A .110x y +>B .330x y +>C .lg()0x y +>D .sin()0x y +>例2.(2022·山东日照·二模)若a ,b ,c 为实数,且a b <,0c >,则下列不等关系一定成立的是()A .a c b c+<+B .11a b<C .ac bc >D .b a c->例3.(2022·山西·模拟预测(文))若0αβ<<,则下列结论中正确的是()A .22αβ<B .2βααβ+>C .1122αβ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭D .sin sin αβ<(多选题)例4.(2022·辽宁·二模)己知非零实数a ,b 满足||1a b >+,则下列不等关系一定成立的是()A .221a b >+B .122a b +>C .24a b>D .1ab b>+(多选题)例5.(2022·重庆八中模拟预测)已知0a >,0b >,且3ab a b ++=,则下列不等关系成立的是()A .1ab ≤B .2a b +≥C .1a b ->D .3a b -<(多选题)例6.(2022·广东汕头·二模)已知a ,b ,c 满足c <a <b ,且ac <0,那么下列各式中一定成立的是()A .ac (a -c )>0B .c (b -a )<0C .22cb ab <D .ab ac>(多选题)例7.(2022·福建三明·模拟预测)设a b c <<,且0a b c ++=,则()A .2ab b <B .ac bc <C .11a c<D .1c ac b-<-【方法技巧与总结】1.判断不等式是否恒成立,需要给出推理或者反例说明.2.充分利用基本初等函数性质进行判断.3.小题可以用特殊值法做快速判断.题型二:比较数(式)的大小与比较法证明不等式例8.(2022·全国·高三专题练习(文))设2312m ⎛⎫= ⎪⎝⎭,1312n ⎛⎫= ⎪⎝⎭,2315p ⎛⎫= ⎪⎝⎭,则()A .m p n<<B .p m n<<C .n m p<<D .p n m<<例9.(2022·全国·高三专题练习)若a =ln 22,b =ln 33,则a ____b (填“>”或“<”).例10.(2022·全国·高一)(1)试比较()()15x x ++与()23x +的大小;(2)已知a b >,11a b<,求证:0ab >.例11.(2022·湖南·高一课时练习)比较()()213a a +-与()()62745a a -++的大小.例12.(2022·湖南·高一课时练习)比较下列各题中两个代数式值的大小:(1))21与)21;(2)()()2211xx ++与()()2211xx x x ++-+.【方法技巧与总结】比较数(式)的大小常用的方法有比较法、直接应用不等式的性质、基本不等式、利用函数的单调性.比较法又分为作差比较法和作商比较法.作差法比较大小的步骤是:(1)作差;(2)变形;(3)判断差式与0的大小;(4)下结论.作商比较大小(一般用来比较两个正数的大小)的步骤是:(1)作商;(2)变形;(3)判断商式与1的大小;(4)下结论.其中变形是关键,变形的方法主要有通分、因式分解和配方等,变形要彻底,要有利于0或1比较大小.作差法是比较两数(式)大小最为常用的方法,如果要比较的两数(式)均为正数,且是幂或者因式乘积的形式,也可考虑使用作商法,作商法比较大小的原理是:若0,0a b >>,则1b b a a >⇔>;1b b a a <⇔<;1bb a a =⇔=;若0,0a b <<,则1b b a a >⇔<;1b b a a <⇔>;1bb a a=⇔=.题型三:已知不等式的关系,求目标式的取值范围例13.(2022·浙江·模拟预测)若实数x ,y 满足1522x y x y +≥⎧⎨+≥⎩,则2x y +的取值范围()A .[1,)+∞B .[3,)+∞C .[4,)+∞D .[9,)+∞例14.(2022·全国·高三专题练习)已知12a ≤≤,14b -≤≤,则2a b -的取值范围是()A .724a b -≤-≤B .629a b -≤-≤C .629a b ≤-≤D .228a b -≤-≤例15.(2022·全国·高三专题练习)若,x y 满足44x y ππ-<<<,则x y -的取值范围是()A .(,0)2π-B .(,22ππ-C .(,0)4π-D .(,44ππ-例16.(2022·全国·高三专题练习(文))已知-3<a <-2,3<b <4,则2a b的取值范围为()A .(1,3)B .4934⎛⎫ ⎪⎝⎭,C .2334⎛⎫ ⎪⎝⎭,D .112⎛⎫ ⎪⎝⎭例17.(2022·江西·二模(文))已知122x y ≤-≤,1231x y -≤+≤,则6x +5y 的取值范围为______.例18.(2022·全国·高三专题练习)设二次函数()()22,f x mx x n m n =-+∈R ,若函数()f x 的值域为[)0,∞+,且()12f ≤,则222211m n n m +++的取值范围为___________.例19.(2022·全国·高三专题练习)已知有理数a ,b ,c ,满足a b c >>,且0a b c ++=,那么ca的取值范围是_________.例20.(2022·全国·高三专题练习)已知函数()34f x x ax b =++,当[]1,1x ∈-时,()1f x ≤恒成立,则a b +=____________.例21.(2022·全国·高三专题练习)已知正数a ,b 满足5﹣3a ≤b ≤4﹣a ,ln b ≥a ,则ba的取值范围是___.例22.(2022·全国·高三专题练习)已知,,a b c 均为正实数,且111,,232425ab bc ca a b b c c a +++,那么111a b c++的大值为__________.【方法技巧与总结】在约束条件下求多变量函数式的范围时,不能脱离变量之间的约束关系而独立分析每个变量的范围,否则会导致范围扩大,而只能建立已知与未知的直接关系.题型四:不等式的综合问题例23.(2022·江西鹰潭·二模(理))已知0,0a b >>,且2e 1b aa b -+=+则下列不等式中恒成立的个数是()①1122b a --<②11b aa b -<-③e e b a b a -<-④5ln5a b +<+A .1B .2C .3D .4例24.(2022·江西·临川一中高三期中(文))若实数a ,b 满足65a a b <,则下列选项中一定成立的有()A .a b<B .33a b <C .e 1a b ->D .ln 0a b ⎛⎫< ⎪⎝⎭例25.(2022·湖南·长沙一中高三阶段练习)若m ,n ∈+N ,则下列选项中正确的是()A .()()1log 1log 2m m m m ++<+B .(n m m n mn ⋅≥C .()()22sin1sin 31n n n n n ππ⋅<+⋅>+D .1121111n n n n n n n n +++++<++(多选题)例26.(2022·江苏连云港·模拟预测)已知0,0a b >>,直线2y x a =+与曲线1e 1x y b -=-+相切,则下列不等式一定成立的是()A .19ab ≤B .219ab+≥C D ≤(多选题)例27.(2022·辽宁辽阳·二模)已知0a >,0b >,且24a b +=,则()A .124a b->B .22log log 1a b +≤C ≥D .412528a b +≥(多选题)例28.(2022·重庆八中模拟预测)已知0a >,0b >,且3ab a b ++=,则下列不等关系成立的是()A .1ab ≤B .2a b +≥C .1a b ->D .3a b -<例29.(2022·全国·高三专题练习)若x ,y R ∈,设2223M x xy y x y =-+-+,则M 的最小值为__.例30.(2022·四川泸州·三模(理))已知x 、y ∈R ,且224x y +=,给出下列四个结论:①2x y +≤;②1xy ≥;③23x y +≤;④448x y +≥.其中一定成立的结论是______(写出所有成立结论的编号).【过关测试】一、单选题1.(2022·湖南·宁乡市教育研究中心模拟预测)小李从甲地到乙地的平均速度为a ,从乙地到甲地的平均速度为(0)b a b >>,他往返甲乙两地的平均速度为v ,则()A .2a bv +=B .v =C 2a b v +<<D .b v <<2.(2022·甘肃省武威第一中学模拟预测(文))已知0a b <<,则()A .110->a bB .sin sin 0a b ->C .0a b -<D .ln()ln()0a b -+->3.(2022·陕西宝鸡·三模(理))若a b <,则下列结论正确的是()A .330a b ->B .22a b <C .()ln 0a b ->D .a b<4.(2022·重庆·二模)若非零实数a ,b 满足a b >,则下列不等式一定成立的是()A .11a b<B .a b +>C .22lg lg a b >D .33a b >5.(2022·安徽黄山·二模(文))设实数a 、b 满足a b >,则下列不等式一定成立的是()A .22a b >B .11b b a a +<+C .22ac bc >D .332a b -+>6.(2022·安徽·芜湖一中高三阶段练习(理))已知0a >,0b >,22a b m +=,则以下正确的是()A .若1m =,则1a b +B .若1m =,则331a b +C .若2m =,则2a b +>D .若2m =,则332a b + 7.(2022·全国·高三专题练习(理))已知32a =,53b =,则下列结论正确的有()①a b <②11a b ab+<+③2a b ab+<④b aa ab b +<+A .1个B .2个C .3个D .4个8.(2022·安徽省舒城中学模拟预测(理))若数列{}n a 为等差数列,数列{}n b 为等比数列,则下列不等式一定成立的是()A .1423b b b b +≤+B .4132b b b b ≤--C .3124a a a a ≥D .3124a a a a ≤二、多选题9.(2022·辽宁·一模)已知不相等的两个正实数a 和b ,满足1ab >,下列不等式正确的是()A .1ab a b +>+B .()2log 1a b +>C .11a b ab+<+D .11a b a b+>+10.(2022·湖南省隆回县第二中学高三阶段练习)已知a b c >>,且0a b c ++=,则下列结论正确的是()A .2ab b >B .ac bc<C .11a c>D .1a cb c->-11.(2022·广东·广州市第四中学高三阶段练习)已知实数a ,b ,c 满足1,01a b c >><<,则下列不等式一定成立的有()A .()()c c a c b c -<-B .log (1)log (1)a b c c +<+C .log log 2a c c a +≥D .22224a cbc c >>12.(2022·河北保定·一模)已知a 、b 分别是方程20x x +=,30x x +=的两个实数根,则下列选项中正确的是().A .10b a -<<<B .10a b -<<<C .33a b b a ⋅<⋅D .22b aa b ⋅<⋅三、填空题13.(2022·四川泸州·三模(文))已知x ,R y ∈,满足224x y +=,给出下列四个结论:①2x y +≤;②1xy ≥;③23x y +<;④448x y +≥.其中一定成立的结论是______(写出所有成立结论的编号).14.(2022·全国·江西科技学院附属中学模拟预测(文))已知实数x 、y 满足223x y -≤+≤,220x y -≤-≤,则34x y -的取值范围为______.15.(2022·全国·高三专题练习)如果a >b ,给出下列不等式:①11a b <;②a 3>b 3>2ac 2>2bc 2;⑤ab>1;⑥a 2+b 2+1>ab +a +b .其中一定成立的不等式的序号是________.16.(2022·全国·高三专题练习)设x ,y 为实数,满足238xy ≤≤,249x y≤≤,则3x y 的最小值是______.四、解答题17.(2022·全国·高三专题练习)已知1a >,1b >,2222,1111a b b a M N a b a b =+=+----.(1)试比较M 与N 的大小,并证明;(2)分别求M ,N 的最小值.18.(2022·全国·高三专题练习)(1)已知a ,b 均为正实数.试比较33+a b 与22a b ab +的大小;(2)已知a ≠1且a ∈R ,试比较11a-与1a +的大小.19.(2022·全国·高三专题练习)已知下列三个不等式:①0ab >;②c da b>;③bc ad >,以其中两个作为条件,余下一个作为结论,则可组成几个正确命题?并选取一个结论证明.20.(2022·全国·高三专题练习)已知1<a <4,2<b <8,试求a -b 与ab的取值范围.21.(2022·贵州贵阳·二模(理))已知,,,a b c d R∈(1)证明:()()22222()a b c d ac bd --- ;(2)已知,x y R ∈,2241x y -=,求2|y +的最小值,以及取得最小值时的x ,y 的值.22.(2022·全国·高三专题练习)设二次函数2()2()f x ax bx c c b a =++>>,其图像过点(1,0),且与直线y a =-有交点.(1)求证:01ba≤<;(2)若直线y a =-与函数|()|y f x =的图像从左到右依次交于A ,B ,C ,D 四点,若线段,,AB BC CD 能构成钝角三角形,求ba的取值范围.。

《基本不等式》17种题型高一

《基本不等式》17种题型高一

基本不等式是高中数学中非常重要且基础的一部分。

它在高一数学中占据着重要的地位,对于学生的数学基础和逻辑推理能力的培养起着至关重要的作用。

在高一数学教学中,基本不等式的学习也是一个重要的环节,不仅需要掌握它的概念和性质,还需要学会运用它解决实际问题。

本文将从基本不等式的概念入手,详细介绍其性质和运用方法,并列举17种题型,帮助学生全面理解和掌握基本不等式的相关知识。

一、基本不等式的概念基本不等式是指在任意三个实数a、b、c之间,必有以下基本不等式成立:1)正数的不等式:a >b ⟹ a +c > b + ca > 0,b > 0 ⟹ ac > bca > b, c > 0 ⟹ ac > bca > b, c < 0 ⟹ ac < bc2)负数的不等式:a <b ⟹ a +c < b + ca < 0,b < 0 ⟹ ac > bca < b, c > 0 ⟹ ac < bca < b, c < 0 ⟹ ac > bc以上基本不等式是学习基本不等式的基础,对于解决实际问题是非常重要的。

二、基本不等式的性质基本不等式还具有一些重要的性质,包括:1)传递性:若a > b,b > c,则a > c2)对称性:若a > b,则-b > -a3)倒置性:若a > b,则1/a < 1/b,且a/b > 0这些性质对于运用基本不等式解决实际问题时起着重要的作用,可以帮助学生更好地理解和运用基本不等式。

三、基本不等式的运用方法基本不等式在解决实际问题时有着广泛的应用,其运用方法主要包括:1)利用基本不等式的性质化简题目;2)利用基本不等式构造等式或方程组,进而求解问题;3)利用基本不等式证明不等式关系,讨论最值等问题。

学生在解决实际问题时,可以根据具体情况选择不同的运用方法,灵活运用基本不等式,解决各种复杂的问题。

专题:基本不等式常见题型归纳(学生版)

专题:基本不等式常见题型归纳(学生版)

专题:基本不等式基本不等式求最值 利用基本不等式求最值:一正、二定、三等号.三个不等式关系:(1)a ,b ∈R ,a 2+b 2≥2ab ,当且仅当a =b 时取等号. (2)a ,b ∈R +,a +b ≥2ab ,当且仅当a =b 时取等号. (3)a ,b ∈R ,a 2+b 22≤(a +b 2)2,当且仅当a =b 时取等号.上述三个不等关系揭示了a 2+b 2 ,ab ,a +b 三者间的不等关系.其中,基本不等式及其变形:a ,b ∈R +,a +b ≥2ab (或ab ≤(a +b 2)2),当且仅当a =b 时取等号,所以当和为定值时,可求积的最值;当积为定值是,可求和的最值. 【题型一】利用拼凑法构造不等关系【典例1】已知1>>b a 且7log 3log 2=+a b b a ,则112-+b a 的最小值为 .练习:1.若实数,x y 满足0x y >>,且22log log 1x y +=,则22x y x y+-的最小值为 .2.若实数,x y 满足133(0)2xy x x +=<<,则313x y +-的最小值为 .3.已知0,0,2a b c >>>,且2a b +=,则2ac c c b ab +-+的最小值为 . 【典例2】已知x ,y 为正实数,则4x 4x +y +yx +y 的最大值为 .【典例3】若正数a 、b 满足3ab a b =++,则a b +的最小值为__________.变式:1.若,a b R +∈,且满足22a b a b +=+,则a b +的最大值为_________.2.设0,0>>y x ,822=++xy y x ,则y x 2+的最小值为_______3.设R y x ∈,,1422=++xy y x ,则y x +2的最大值为_________4.已知正数a ,b 满足195ab a b+=-,则ab 的最小值为 【题型二】含条件的最值求法【典例4】已知正数y x ,满足1=+y x ,则1124+++y x 的最小值为练习1.已知正数y x ,满足111=+yx ,则1914-+-y yx x 的最小值为 .2.已知正数,x y 满足22x y +=,则8x yxy+的最小值为 .3.已知函数(0)xy a b b =+>的图像经过点(1,3)P ,如下图所示,则411a b+-的最小值为 .4.己知a ,b 为正数,且直线 60ax by +-=与直线 2(3)50x b y +-+=互相平行,则2a+3b 的最小值为________.5.常数a ,b 和正变量x ,y 满足ab =16,a x +2b y =12.若x +2y 的最小值为64,则a b =________.6.已知正实数,a b 满足()()12122a b b b a a+=++,则ab 的最大值为 .【题型三】代入消元法【典例5】(苏州市2016届高三调研测试·14)已知14ab =,,(0,1)a b ∈,则1211ab+--的最小值为 .练习1.设实数x ,y 满足x 2+2xy -1=0,则x 2+y 2的最小值是 .2.已知正实数x ,y 满足,则x + y 的最小值为 .3.已知正实数,x y 满足(1)(1)16x y -+=,则x y +的最小值为 .4.若2,0>>b a ,且3=+b a ,则使得214-+b a 取得最小值的实数a = 。

第二章 第二节 基本不等式 学生版

第二章 第二节 基本不等式 学生版

6.已知0<x ≤3,则y =x +16x 的最小值为( ) A.253 B .8 C .20 D .107.y =2+x +5x (x <0) 的最大值为________.8.若x <0,则函数y =x +4x 有( ) A .最小值4 B .最大值4 C .最小值-4 D .最大值-49.已知a <b ,则b -a +1b -a+b -a 的最小值为( )A .3B .2C .4D .110.[2019·天津卷]设x >0,y >0,x +2y =5,则x +12y +1xy的最小值为________.题型七基本不等式的实际应用1.某车间分批生产某种产品,每批的生产准备费用为800元.若每批生产x件,则平均仓储时间为x8天,且每件产品每天的仓储费用为1元.为使平均到每件产品的生产准备费用与仓储费用之和最小,每批应生产产品________件.2.某住宅小区为了使居民有一个优雅、舒适的生活环境,计划建一个八边形的休闲小区,如右图所示,它的主体造型的平面图是由两个相同的矩形ABCD和EFGH构成的面积为200 m2的十字形地域.现计划在正方形MNPO上建一花坛,造价为4 200元/m2,在四个相同的矩形上(如右图中黑色部分)铺花岗地坪,造价为210元/m2,再在四个空角(图中四个灰色三角形)上铺草坪,造价为80元/m2.(1)设总造价为S元,AD的长为x m,试建立S关于x的函数关系式;(2)计划至少要投入多少元,才能建造这个休闲小区?3.某公司购买一批机器投入生产,据市场分析,每台机器生产的产品可获得的总利润y(单位:万元)与机器运转时间x(单位:年)的关系为y=-x2+18x-25(x∈N*),则每台机器为该公司创造的年平均利润的最大值是________万元.4.某单位拟建一个扇环面形状的花坛(如图所示),该扇环面是由以点O为圆心的两个同心圆弧和延长后通过点O的两条线段围成的.按设计要求扇环面的周长为30米,其中大圆弧所在圆的半径为10米.设小圆弧所在圆的半径为x米,圆心角为θ(弧度).(1)求θ关于x的函数关系式;(2)已知在花坛的边缘(实线部分)进行装饰时,直线部分的装饰费用为4元/米,弧线部分的装饰费用为9元/米,设花坛的面积与装饰总费用的比为y,求y关于x的函数关系式,并求出x为何值时,y取得最大值.11。

基本不等式完整版(非常全面)

基本不等式完整版(非常全面)

基本不等式完整版(非常全面) 基本不等式专题辅导一、知识点总结1、基本不等式原始形式1) 若 $a,b\in R$,则 $a^2+b^2\geq 2ab$2) 若 $a,b\in R$,则 $ab\leq \frac{a^2+b^2}{2}$2、基本不等式一般形式(均值不等式)若 $a,b\in R^*$,则 $a+b\geq 2\sqrt{ab}$3、基本不等式的两个重要变形1) 若 $a,b\in R^*$,则 $\frac{a+b}{2}\geq \sqrt{ab}$2) 若 $a,b\in R^*$,则 $ab\leq \left(\frac{a+b}{2}\right)^2$总结:当两个正数的积为定值时,它们的和有最小值;当两个正数的和为定值时,它们的积有最大值。

特别说明:以上不等式中,当且仅当 $a=b$ 时取“=”。

4、求最值的条件:“一正,二定,三相等”5、常用结论1) 若 $x>0$,则 $x+\frac{1}{x}\geq 2$(当且仅当$x=1$ 时取“=”)2) 若 $x<0$,则 $x+\frac{1}{x}\leq -2$(当且仅当 $x=-1$ 时取“=”)3) 若 $a,b>0$,则 $\frac{a}{b}+\frac{b}{a}\geq 2$(当且仅当 $a=b$ 时取“=”)4) 若 $a,b\in R$,则 $ab\leq \frac{a+b}{2}\leq\sqrt{\frac{a^2+b^2}{2}}$5) 若 $a,b\in R^*$,则 $\frac{1}{a^2+b^2}\leq\frac{1}{2ab}\leq \frac{1}{a+b}$特别说明:以上不等式中,当且仅当 $a=b$ 时取“=”。

6、柯西不等式1) 若 $a,b,c,d\in R$,则 $(a^2+b^2)(c^2+d^2)\geq(ac+bd)^2$2) 若 $a_1,a_2,a_3,b_1,b_2,b_3\in R$,则$(a_1^2+a_2^2+a_3^2)(b_1^2+b_2^2+b_3^2)\geq(a_1b_1+a_2b_2+a_3b_3)^2$3) 设 $a_1,a_2,\dots,a_n$ 与 $b_1,b_2,\dots,b_n$ 是两组实数,则有$(a_1^2+a_2^2+\dots+a_n^2)(b_1^2+b_2^2+\dots+b_n^2)\geq (a_1b_1+a_2b_2+\dots+a_nb_n)^2$二、题型分析题型一:利用基本不等式证明不等式1、设 $a,b$ 均为正数,证明不等式:$ab\geq\frac{1}{2}(a+b)^2$2、已知 $a,b,c$ 为两两不相等的实数,求证:$a^2+b^2+c^2>ab+bc+ca$3、已知 $a+b+c=1$,求证:$a^2+b^2+c^2\geq\frac{1}{3}$4、已知 $a,b,c\in R^+$,且 $a+b+c=1$,求证:$(1-a)(1-b)(1-c)\geq 8abc$5、已知 $a,b,c\in R^+$,且 $a+b+c=1$,求证:$\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\geq\frac{9}{2(a+b+c)}$题型二:利用柯西不等式证明不等式1、已知 $a,b,c\in R^+$,求证:$\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\geq\frac{(a+b+c)^2}{2(a+b+c)}$2、已知 $a,b,c\in R^+$,求证:$\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\geq 3$3、已知 $a,b,c\in R^+$,且 $abc=1$,求证:$\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\geq a+b+c$4、已知 $a,b,c\in R^+$,求证:$\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\geq a+b+c$5、已知 $a,b,c\in R^+$,求证:$\frac{a^3}{b^2-bc+c^2}+\frac{b^3}{c^2-ca+a^2}+\frac{c^3}{a^2-ab+b^2}\geq a+b+c$题型三:求最值1、已知 $a,b$ 均为正数,且 $a+b=1$,求 $ab$ 的最大值和最小值。

2020届高三文理科数学一轮复习《基本不等式》专题汇编(学生版)

2020届高三文理科数学一轮复习《基本不等式》专题汇编(学生版)

《基本不等式》专题一、相关知识点1.基本不等式:ab ≤a +b2(1)基本不等式成立的条件:a >0,b >0.(2)等号成立的条件:当且仅当a =b 时取等号. 2.几个重要的不等式(1)a 2+b 2≥2ab (a ,b ∈R); (2)a +b ≥2ab (a >0,b >0).(3)b a +ab ≥2(a ,b 同号且不为零); (4)ab ≤⎝⎛⎭⎫a +b 22(a ,b ∈R);(5)⎝⎛⎭⎫a +b 22≤a 2+b 22(a ,b ∈R).2(a 2+b 2)≥(a +b )2(a ,b ∈R).(6)a 2+b 22≥(a +b )24≥ab (a ,b ∈R).(7)a 2+b 22≥a +b 2≥ab ≥21a +1b(a >0,b >0). 以上不等式等号成立的条件均为a =b . 3.算术平均数与几何平均数设a >0,b >0,则a ,b 的算术平均数为a +b2,几何平均数为ab ,基本不等式可叙述为:两个正数的算术平均数不小于它们的几何平均数. 4.利用基本不等式求最值问题 已知x >0,y >0,则:(1)如果积xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p .(简记:积定和最小) (2)如果和x +y 是定值p ,那么当且仅当x =y 时,xy 有最大值是p 24.(简记:和定积最大)5.重要不等式链 若a ≥b >0,则a ≥a 2+b 22≥a +b 2≥ab ≥2aba +b≥b . 题型一 基本不等式的判断1.若a ,b ∈R ,则下列恒成立的不等式是( )A.|a +b |2≥|ab | B .b a +ab ≥2 C.a 2+b 22≥⎝⎛⎭⎫a +b 22 D .(a +b )⎝⎛⎭⎫1a +1b ≥4 2.若a ,b ∈R ,且ab >0,则下列不等式中,恒成立的是( )A .a 2+b 2>2abB .a +b ≥2abC .1a +1b >2abD .b a +ab ≥23.下列命题中正确的是( )A .函数y =x +1x 的最小值为2 B .函数y =x 2+3x 2+2的最小值为2C .函数y =2-3x -4x (x >0)的最小值为2-4 3D .函数y =2-3x -4x(x >0)的最大值为2-4 34.若a >b >1,P =lg a ·lg b ,Q =12(lg a +lg b ),R =lg ⎝⎛⎭⎫a +b 2,则( )A .R <P <QB .Q <P <RC .P <Q <RD .P <R <Q题型二 利用基本不等式求最值类型一 直接法或配凑法利用基本不等式求最值1.若实数x ,y 满足xy =1,则x 2+2y 2的最小值为________.2.已知a >0,b >0,且2a +b =4,则1ab 的最小值为3.已知0<x <1,则x (3-3x )取得最大值时x 的值为4.已知x <0,则函数y =4x +x 的最大值是5.函数f (x )=xx +1的最大值为6.若x >1,则x +4x -1的最小值为________.7.设0<x <2,则函数y =x (4-2x )的最大值为________.8.若x ,y 均为正数,则3x y +12yx +13的最小值是9.已知a ,b ∈R ,且a -3b +6=0,则2a +18b 的最小值为________.10.已知x <54,则f (x )=4x -2+14x -5的最大值为________.11.设x >0,则函数y =x +22x +1-32的最小值为12.已知x ,y 为正实数,则4x x +3y +3yx的最小值为13.函数y =x 2+2x -1(x >1)的最小值为________.14.已知a >0,b >0,a ,b 的等比中项是1,且m =b +1a ,n =a +1b ,则m +n 的最小值是15.已知x ,y 都为正实数,且x +y +1x +1y =5,则x +y 的最大值是16.已知a >b >0,则2a +4a +b +1a -b的最小值为17.已知正数a ,b 满足2a 2+b 2=3,则a b 2+1的最大值为________.类型二 常数代换法利用基本不等式求最值1.已知a >0,b >0,a +b =1,则1a +1b 的最小值为________.2.已知a >0,b >0,a +2b =3,则2a +1b 的最小值为________.3.已知正实数x ,y 满足2x +y =2,则2x +1y 的最小值为________.4.已知正项等比数列{a n }的公比为2,若a m a n =4a 22,则2m +12n 的最小值为5.已知向量a =(3,-2),b =(x ,y -1),且a ∥b ,若x ,y 均为正数,则3x +2y 的最小值是6.已知x >0,y >0,且4x +y =xy ,则x +y 的最小值为7.若直线x a +yb =1(a >0,b >0)过点(1,2),则2a +b 的最小值为________.8.已知a >0,b >0,函数f (x )=a log 2x +b 的图像经过点⎝⎛⎭⎫4,12,则1a +2b 的最小值为________.9.已知函数y =log a (x +3)-1(a >0且a ≠1)的图象恒过定点A ,若点A 在直线mx +ny +1=0上,其中mn >0,则1m +1n 的最小值为10.已知x >0,y >0,lg 2x +lg 8y =lg 2,则1x +13y 的最小值是11.已知直线l :ax +by -ab =0(a >0,b >0)经过点(2,3),则a +b 的最小值为________.12.已知x ,y 均为正实数,且1x +2+1y +2=16,则x +y 的最小值为13.若a ,b ,c 都是正数,且a +b +c =2,则4a +1+1b +c 的最小值是14.已知正数x ,y 满足x +2y =3,则y x +1y 的最小值为________.15.设a >0,b >1,若a +b =2,则3a +1b -1的最小值为________.16.已知x >0,y >0,且2x +8y -xy =0,求:(1)xy 的最小值;(2)x +y 的最小值.类型三 通过消元法利用基本(均值)不等式求最值1.若正实数m ,n 满足2m +n +6=mn ,则mn 的最小值是________.2.已知正实数x ,y 满足xy +2x +y =4,则x +y 的最小值为________.3.设x ,y 均为正数,且xy +x -y -10=0,则x +y 的最小值是________.4.已知x >0,y >0,且2x +4y +xy =1,则x +2y 的最小值是________.类型四:利用基本不等式求参数值或取值范围1.若对于任意的x >0,不等式xx 2+3x +1≤a 恒成立,则实数a 的取值范围为2.已知函数y =x +mx -2(x >2)的最小值为6,则正数m 的值为________.3.若对x >0,y >0,x +2y =1,有2x +1y ≥m 恒成立,则m 的最大值是________.4.已知a >0,b >0,若不等式3a +1b ≥ma +3b恒成立,则m 的最大值为5.正数a ,b 满足1a +9b =1,若不等式a +b ≥-x 2+4x +18-m 对任意实数x 恒成立,则实数m 的取值范围是________.6.已知不等式(x +y )⎝⎛⎭⎫1x +a y ≥9对任意的正实数x ,y 恒成立,则正实数a 的最小值为7.已知函数f (x )=3x 2+ax +26x +1,若存在x ∈N +使得f (x )≤2成立,则实数a 的取值范围为___题型三 基本不等式的综合问题类型一 基本不等式的实际应用问题1.要制作一个容积为4 m 3,高为1 m 的无盖长方体容器.已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是( )A .80元B .120元C .160元D .240元2.某公司一年购买某种货物400吨,每次都购买x 吨,运费为4万元/次,一年的总存储费用为4x 万元,要使一年的总运费与总存储费用之和最小,则x =__________吨.3.某学校为了支持生物课程基地研究植物生长,计划利用学校空地建造一间室内面积为900 m 2的矩形温室,在温室内划出三块全等的矩形区域,分别种植三种植物,相邻矩形区域之间间隔1 m ,三块矩形区域的前、后与内墙各保留1 m 宽的通道,左、右两块矩形区域分别与相邻的左右内墙保留3 m 宽的通道,如图.设矩形温室的室内长为x (单位:m),三块种植植物的矩形区域的总面积为S (单位:m 2). (1)求S 关于x 的函数关系式;(2)求S 的最大值.类型二 基本不等式与函数的交汇问题1.已知A ,B 是函数y =2x 的图象上不同的两点,若点A ,B 到直线y =12的距离相等,则点A ,B 的横坐标之和的取值范围是( )A .(-∞,-1)B .(-∞,-2)C .(-∞,-3)D .(-∞,-4)类型三 基本不等式与数列的交汇问题1.已知a >0,b >0,并且1a ,12,1b 成等差数列,则a +9b 的最小值为2.已知正项等比数列{a n }的前n 项和为S n ,且S 8-2S 4=5,则a 9+a 10+a 11+a 12的最小值为3.设等差数列{a n }的公差是d ,其前n 项和是S n (n ∈N +),若a 1=d =1,则S n +8a n 的最小值是______.类型四 基本不等式与解析几何的交汇问题1. 已知直线ax +by +c -1=0(b ,c >0)经过圆x 2+y 2-2y -5=0的圆心,则4b +1c的最小值是2.当双曲线M :x 2m -y 2m 2+4=1的离心率最小时,M 的渐近线方程为3.两圆x 2+y 2-2my +m 2-1=0和x 2+y 2-4nx +4n 2-9=0恰有一条公切线,若m ∈R ,n4m2+1n2的最小值为∈R,且mn≠0,则。

基本不等式的常见题型

基本不等式的常见题型
2a b b 2b a a
12.已知x 0, y 0, x y 1, 则
13.已知2 x y 0,
1
1

的最小值是 _____.
1 x 1 2 y
1
1

1, 则x y的最小值是 _____.
2 x-y x +2 y
1 1
4x
9y
14.已知x 0, y 0, 1, 则
2.基本不等式
一、知识点梳理
(1)基本不等式成立的条件:a≥0,b≥0.
(2)等号成立的条件:当且仅当 a=b 时取等号.
a+b
称为正数 a,b 的算术平均数, ab称为正数 a,b 的几何平均数.
2
(3)其中
1 a 2+b2 2ab, a,b R
(当且仅当 a= b时取等号 )
2
a+b
的最小值为_______.
xy
a2 1
的最小值为_______.
ab
x2 3y
的最小值为_______.
xy
[题组训练]
(�+1)(2�+1)
1. (2019 天津,13,5 分)设 x>0,y>0,x+2y=5,则
��
的最小值为
.
1 a
2.设a 0, b >0, 且a b 1, 则 的最小值为_______.
1 1
2.若 2m+n=1 上,且 m,n 为正数,则 + 的最小值为________.
m n
1
4
3.已知正数 x,y 满足 x+y=1,则�+1+�的最小值为________.

专题14 基本不等式(解析版)

专题14 基本不等式(解析版)

专题14 基本不等式1.已知关于x 的不等式b a x <+的解集为{}42<<x x ,则=a b . 【难度】★ 【答案】31-2.若关于实数x 的不等式a x x <++-35无解,则实数a 的取值范围是 . 【难度】★★ 【答案】(]8,∞-【解析】因为35++-x x 表示数轴上的动点x 到数轴上的点3-、5的距离之和,而()835min=++-x x ,所以当8≤a 时,a x x <++-35无解.热身练习3.不等式212+<-x x 的解集为 . 【难度】★【答案】⎪⎭⎫ ⎝⎛-331, 4.若关于x 的不等式21-++≥x x a 存在实数解,则实数a 的取值范围是 . 【难度】★★ 【答案】3≥a 或3-≤a5.若关于x 的不等式164222--≤++x x b ax x 对R x ∈恒成立,则=+b a . 【难度】★★★ 【答案】10-1.基本不等式ab ≤a +b2(1)基本不等式成立的条件:a >0,b >0. (2)等号成立的条件:当且仅当a =b 时取等号.·基本不等式的几何解释:因为()02≥-y x ,令a x =,b y =,代入展开可得2b a ab +≤知识梳理模块一:利用基本不等式求最值·基本不等式的几何解释:如图,AB 是圆的直径,C 是AB 上一点,AC =a ,BC =b ,过点C 作垂直于AB 的弦DE ,连结AD ,BD .由射影定理或三角形相似可得CD =ab ,由CD 小于或等于圆的半径a +b 2, 可得不等式ab ≤a +b2.当且仅当点C 与圆心重合,即当a =b 时,等号成立.【例1】(1)已知,如果,那么的最小值为__________;(2)已知,如果,那么的最小值为______;(3)若,则的最小值为 ; (4)已知,且,则的最大值为.【难度】★【答案】(1)2 (2)12 (3)22 (4)1162.基本不等式及有关结论(1)基本不等式:如果a >0,b >0,则a +b2a b +∈R 、1ab =a b +a b +∈R 、1a b +=22a b +0x >2x x+,x y R +∈41x y +=x y ⋅_____典例剖析≥ab ,当且仅当a =b 时,等号成立,即正数a 与b 的算术平均数不小于它们的几何平均数.(2)重要不等式:a ∈R ,b ∈R ,则a 2+b 2≥2ab ,当且仅当a =b 时,等号成立.(3)几个常用的重要结论① b a +ab ≥2(a 与b 同号,当且仅当a =b 时取等号);② a +1a ≥2(a >0,当且仅当a =1时取等号),a +1a ≤-2(a <0,当且仅当a =-1时取等号);③ ab ≤2)2(ba (a ,b ∈R ,当且仅当a =b时取等号);④ 21a +1b≤ab ≤a +b2≤a 2+b22(a ,b >0,当且仅当a =b 时取等号).调和平均数≤几何平均数≤算术平均数≤平方平均数【例2】已知实数a 、b ,判断下列不等式中哪些一定是正确的?(1)abba ≥+2; (2)abb a 222-≥+; (3)ab b a ≥+22; (4)2≥+baa b (5)21≥+a a ; (6) 2≥+abb a (7)222)(2b a b a +≥+)(【难度】★【答案】(2)(3)(6)(7)(1)错误。

不等式的基本概率及性质的六种常见题型+练习课件+++2023-2024学年华东师大版七年级数学下册

不等式的基本概率及性质的六种常见题型+练习课件+++2023-2024学年华东师大版七年级数学下册
问题:
(1)4※3=
1 ,(-1)※(-3)=
2 ;

(2)若(3x+2)※(x-1)=5,求x的值.
【解】由题意知,
当3x+2≥2(x-1),即x≥-4时,
原方程为3x+2-(x-1)=5,解得x=1.
当3x+2<2(x-1),即x<-4时,
原方程为3x+2+x-1-6=5,解得x=2.5.
∵2.5>-4,∴x=2.5不符合题意,应舍去.
(6)4x-3≤4.
【解】(1)(2)(5)(6)是不等式,(3)(4)不是不等式.因为用
不等号表示不等关系的式子才是不等式,而(3)是等式,
(4)是整式.
题型2一元一次不等式的识别及概念
2.下列式子中,一元一次不等式有( B )



− +
①3x-1≥4;②2+ x>6;③3- <6;④ >0;⑤ -

+ > ,②
解不等式①,得x<6,
解不等式②,得x>a-1.
∵不等式组a<2※x<7无解,∴a-1≥6,∴a≥7.
11.[2023·枣庄新考法阅读定义法]对于任意实数a,b,定义一
− ( ≥ ),
种新运算:a※b=
例如:3※1=3-
+ − ( < ).
1=2,5※4=5+4-6=3.根据上面的材料,请完成下列
(2)根据题意,得
+
=0,

解方程得a=-2.
∴当a的值为-2时,x的值是0.
+
(3)根据题意,得 <0.

两边同时乘3,得a+2<0.
两边同时减去2,得a<-2.
∴当a取小于-2的值时,x的值是负数.

考点04基本不等式(3种核心题型)(学生版) 2025年高考数学大一轮复习核心题型讲与练(新高考版)

考点04基本不等式(3种核心题型)(学生版) 2025年高考数学大一轮复习核心题型讲与练(新高考版)

考点04基本不等式(3种核心题型+基础保分练+综合提升练+拓展冲刺练)【考试提醒】1.了解基本不等式的推导过程.2.会用基本不等式解决简单的最值问题.3.理解基本不等式在实际问题中的应用.【知识点】1≤a+b 2(1)基本不等式成立的条件:.(2)等号成立的条件:当且仅当时,等号成立.(3)其中叫做正数a,b的算术平均数,叫做正数a,b的几何平均数.2.几个重要的不等式(1)a2+b2≥(a,b∈R).(2)ba+ab≥(a,b同号).(3)ab≤(a,b∈R).(4)a2+b22≥(a,b∈R).以上不等式等号成立的条件均为a=b.3.利用基本不等式求最值(1)已知x,y都是正数,如果积xy等于定值P,那么当x=y时,和x+y有最小值.(2)已知x,y都是正数,如果和x+y等于定值S,那么当x=y时,积xy有最大值.注意:利用基本不等式求最值应满足三个条件“一正、二定、三相等”.【核心题型】题型一 利用基本不等式求最值(1)前提:“一正”“二定”“三相等”.(2)要根据式子的特征灵活变形,配凑出积、和为常数的形式,然后再利用基本不等式.(3)条件最值的求解通常有三种方法:一是配凑法;二是将条件灵活变形,利用常数“1”代换的方法;三是消元法.命题点1 配凑法【例题1】(2024·辽宁·一模)已知20m n >>,则 2m mm n n+-的最小值为( )A .3+B .3-C .2+D .2【变式1】故选:D (2024·四川德阳·模拟预测)已知正实数x ,y ,z 满足26x xy yz xz x z +++++=,则32x y z ++的最小值是 .【变式2】(2024·内蒙古呼伦贝尔·一模)已知函()3102f x x x =++-的最小值为m .(1)求m 的值;(2)若a ,b 为正数,且a b m +=.【变式3】(2024·黑龙江·二模)已知实数a ,b 且0ab >,则222229aba b a b +++取得最大值时,a b +的值为( )A B .C .-D .-命题点2 常数代换法【例题2】(2024·江苏南通·二模)设0x >,0y >,122y x+=,则1x y+的最小值为( )A .32B .C .32+D .3【变式1】(2024·四川成都·模拟预测)若,a b 是正实数,且111324a b a b+=++,则a b +的最小值为( )A .45B .23C .1D .2【变式2】(23-24高三上·浙江宁波·期末)已知0,0a b >>,则下列选项中,能使4a b +取得最小值25的为( )A .36ab =B .9ab a b=+C .221a b +=D .2216625a b +=【变式3】(2024·全国·模拟预测)设正实数a ,b 满足2a b +=,则1112+++a b 的最小值为( )A .23B .34C .45D .56命题点3 消元法【例题3】(2024·全国·模拟预测)已知0x >,0y >且1x y +=,则222211x y x y +++的最小值为( )A .15B .25C .35D .45【变式1】(2023·重庆·模拟预测)已知0x >,0y >,且26xy x y ++=,则2x y +的最小值为( ).A .4B .6C .8D .12【变式2】(2023·烟台模拟)已知x >0,y >0,x +3y +xy =9,则x +3y 的最小值为________.【变式3】(2024·浙江·模拟预测)已知,0,1a b ab >=,求11112S a b=+++的最小值.题型二 基本不等式的常见变形应用基本不等式的常见变形(1)ab ≤22a b +⎛⎫ ⎪⎝⎭≤a 2+b 22.(2)21a +1b≤≤a +b2≤a >0,b >0).【例题4】(2023·全国·三模)已知0a >,0b >,且1a b +=,则下列不等式不正确的是( )A .14ab £B .2212a b +³C .1121a b +>+D1£【变式1】(2023·辽宁·二模)数学命题的证明方式有很多种.利用图形证明就是一种方式.现有如图所示图形,在等腰直角三角形ABC V 中,点O 为斜边AB 的中点,点D 为斜边AB 上异于顶点的一个动点,设AD a =,BD b =,用该图形能证明的不等式为( ).A.)0,02a ba b +³>>B.)20,0aba b a b£>>+C.)0,02a b a b +£>>D.)220,0a b a b +³>>【变式2】(2023·陕西宝鸡·二模)设a ,R b Î,则“2a b +³”是“222a b +³”的( )A .充要条件B .必要不充分条件C .充分不必要条件D .既不充分也不必要条件【变式3】(2024·全国·模拟预测)已知正项数列{}n a 的前n 项和为n S ,()211n S n +=+,则下列说法正确的是( )A.11a =B .{}n a 是递减数列C .9911(1)8nn na =-=åD .1152n nn a a +++<题型三 基本不等式的实际应用 利用基本不等式求解实际问题时,要根据实际问题,设出变量,注意变量应满足实际意义,抽象出目标函数的表达式,建立数学模型,再利用基本不等式求得函数的最值.【例题5】(2023·湖南岳阳·模拟预测)如图,某人沿围墙CD 修建一个直角梯形花坛ABCD ,设直角边AD x =米,2BC x =米,若12AD AB BC ++=米,问当x = 米时,直角梯形花坛ABCD的面积最大.【变式1】(2024·黑龙江哈尔滨·一模)已知某商品近期价格起伏较大,假设第一周和第二周的该商品的单价分别为m 元和n 元()m n ¹,甲、乙两人购买该商品的方式不同,甲每周购买100元的该商品,乙每周购买20件该商品,若甲、乙两次购买平均单价分别为12,a a ,则( )A .12a a =B .12a a <C .12a a >D .12,a a 的大小无法确定【变式2】(2024·内蒙古呼和浩特·一模)小明在春节期间,预约了正月初五上午去美术馆欣赏油画,其中有一幅画吸引了众多游客驻足观赏,为保证观赏时可以有最大视角,警卫处的同志需要将警戒线控制在距墙多远处最合适呢?(单位:米,精确到小数点后两位)已知该画挂在墙上,其上沿在观赏者眼睛平视的上方3米处,其下沿在观赏者眼睛平视的上方1米处.( )A .1.73B .1.41C .2.24D .2.45【变式3】(2024·广东韶关·二模)在工程中估算平整一块矩形场地的工程量W (单位:平方米)的计算公式是()()44W =+´+长宽,在不测量长和宽的情况下,若只知道这块矩形场地的面积是10000平方米,每平方米收费1元,请估算平整完这块场地所需的最少费用(单位:元)是( )A .10000B .10480C .10816D .10818【课后强化】基础保分练一、单选题1.(2024·河南南阳·一模)已知正实数,x y 满足111x y+=,则43xy x -的最小值为( )A .8B .9C .10D .112.(2023·河南开封·三模)已知0a >,0b >,且1a b +=,a b ¹,则下列不等式成立的是( )A 1122a b<<+B 1122a b<+<C .1122a b +<<D .1122a b+<3.(22-23高三上·湖南长沙·阶段练习)甲、乙两名司机的加油习惯有所不同,甲每次加油都说“师傅,给我加300元的油”,而乙则说“师傅帮我把油箱加满”,如果甲、乙各加同一种汽油两次,两人第一次与第二次加油的油价分别相同,但第一次与第二次加油的油价不同,乙每次加满油箱,需加入的油量都相同,就加油两次来说,甲、乙谁更合算( )A .甲更合算B .乙更合算C .甲乙同样合算D .无法判断谁更合算4.(2024·陕西西安·一模)“中国剩余定理”又称“孙子定理”,最早可见于中国南北朝时期的数学著作《胁子算经》卷下第二十六题,叫做“物不知数”,原文如下:今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何现有这样一个相关的问题:被3除余2且被5除余3的正整数按照从小到大的顺序排成一列,构成数列{}n a ,记数列{}n a 的前n 项和为n S ,则260n S n+的最小值为( )A .60B .61C .75D .765.(2023·河南信阳·模拟预测)若51x -<<-,则函数()22222x x f x x ++=+有( )A .最小值1B .最大值1C .最小值1-D .最大值1-6.(2024·四川凉山·二模)已知正数,a b 满足e112a b dx x +=ò,则2aba b+的最大值为( )A B .C D .1二、多选题7.(2024·江苏·一模)已知,x y ÎR ,且123x =,124y =,则( )A .y x >B .1x y +>C .14xy <D <8.(2024·贵州贵阳·一模)已知0,0a b >>,且2a b +=,则( )A .22a b +³B .112a b +³C .22log log 1a b +£D .222a b +³三、填空题9.(2024·云南红河·二模)如图,在棱长均相等的斜三棱柱111ABC A B C -中,111π,3A AB A AC BM BB ÐÐl ===uuuur uuur ,1CN CC m =uuu r uuuu r ,若存在()()0,1,0,1l m ÎÎ,使0AM BN ×=uuuu r uuu r 成立,则l m +的最小值为.10.(2024·江西九江·二模)在ABC V 中,角A ,B ,C 所对的边分别为a ,b ,c .已知A ,B ,C 成等差数列,224a c +=,则ABC V 面积的最大值是 ,()24sin sin 3A C b +=.四、解答题11.(2024·四川广安·二模)已知a ,b ,c 均为正数,且3a b c ++=.(1)是否存在a ,b ,c ,使得()190,5a b c +Î+,说明理由;(2)6.12.(2024·四川成都·二模)已知函数()()23,32f x x g x x =-=--(1)求不等式()()f x g x £的解集N ;(2)设N 的最小数为n ,正数,a b 满足32n a b +=,求223b a a b++的最小值.综合提升练一、单选题1.(·0>,2221a ab b ++=,则222a b + )A B C .34D 2.(2024·辽宁鞍山·二模)已知a ,b 均为锐角,()sin 3sin cos a b a b =+,则tan a 取得最大值时,()tan a b +的值为( )A B C .1D .23.(23-24高三上·浙江金华·期末)若()tan 23tan a a b =-,则()tan a b +的最大值为( )A B .1C .2D 4.(2024·黑龙江齐齐哈尔·二模)早在西元前6世纪,毕达哥拉斯学派已经知道算术中项,几何中项以及调和中项,毕达哥拉斯学派哲学家阿契塔在《论音乐》中定义了上述三类中项,其中算术中项,几何中项的定义与今天大致相同.若221a b +=,则()()4141a b++的最小值为( )A .254B .916C .94D .25165.(2024·陕西西安·一模)已知二次函数()2y x b a x ab =-+-+的图象与x 轴交于A 、B 两点,图象在A 、B 两点处的切线相交于点P .若1ab =,则ABP V 的面积的最小值为( ).A .1B C .2D .46.(2023·山东泰安·模拟预测)在实验课上,小明和小芳利用一个不等臂的天平秤称取药品. 实验一:小明将5克的砝码放在天平左盘,取出一些药品放在右盘中使天平平衡;实验二:小芳将20克的砝码放在右盘,取出一些药品放在天平左盘中使天平平衡,则在这两个实验中小明和小芳共秤得的药品( )A .大于20克B .小于20克C .大于等于20克D .小于等于20克7.(2024·云南楚雄·模拟预测)足球是一项深受人们喜爱的体育运动.如图,现有一个11人制的标准足球场,其底线宽68m AB =,球门宽7.32m EF =,且球门位于底线AB 的中间,在某次比赛过程中,攻方球员带球在边界线AC 上的M 点处起脚射门,当EMF Ð最大时,点M 离底线AB 的距离约为( )A .26.32mB .28.15mC .33.80mD .37.66m8.(23-24高三上·浙江宁波·期末)设实数x ,y 满足32x >,3y >,不等式()()33222338123k x y x y x y --+--≤恒成立,则实数k 的最大值为( )A .12B .24C .D .二、多选题9.(23-24高三上·河北沧州·阶段练习)已知0a >,0b >,且111a b +=,则下列说法正确的有( )A .8ab ³B .4a b +³C .228a b +³D .49a b +³10.(23-24高三上·湖南常德·期末)已知0a b >>,则下列不等式一定成立的是( )A .11a ba b >++B .2ab a b <+C .()ln 2a b ab ++>D .111ln 1ln a b<++11.(2024·全国·模拟预测)已知正实数a ,b ,c 满足111a b c<<,则( )A .c a c b ->-B .b b ca a c->-C .a c -³D 12³三、填空题12.(2024·陕西咸阳·二模)已知总体的各个个体的值由小到大依次为2,4,4,6,a ,b ,12,14,18,20,且总体的平均值为10.则11a b+的最小值为 .13.(2024·辽宁大连·一模)对于任意的正数m ,n ,不等式 312m n m n l+³+成立,则λ的最大值为14.(2024·四川泸州·二模)ABC V 的内角A ,B ,C 的对边分别为a ,b ,c ,已知22233c a b =-,则()tan A B -的最大值为.四、解答题15.(2024·四川成都·二模)已知函数()f x x a b =++,不等式()4f x <的解集为{06}x x <<∣.(1)求实数,a b 的值;(2)函数()f x 的最小值为t ,若正实数,,m n p 满足23m n p t ++=,求1122m p n p+++的最小值.16.(2023·陕西宝鸡·二模)已知函数()221f x x x =-++.(1)求()5f x ³的解集;(2)设()f x 的最小值为m ,若正数a ,b ,c 满足a b c m ++=,求ab ac bc ++的最大值.17.(2024·青海·一模)已知正数,,a b c 满足2a b c ++=.求证:(1)22243a b c ++³;6£.18.(2024·广东·一模)海参中含有丰富的蛋白质、氨基酸、维生素、矿物质等营养元素,随着生活水平的提高,海参逐渐被人们喜爱.某品牌的海参按大小等级划分为5、4、3、2、1五个层级,分别对应如下五组质量指标值:[300,350),[350,400),[400,450),[450,500),[500,550].从该品牌海参中随机抽取10000颗作为样本,统计得到如图所示的频率分布直方图.(1)质量指标值越高,海参越大、质量越好,若质量指标值低于400的为二级,质量指标值不低于400的为一级.现利用分层随机抽样的方法按比例从不低于400和低于400的样本中随机抽取10颗,再从抽取的10颗海参中随机抽取4颗,记其中一级的颗数为X ,求X 的分布列及数学期望;(2)甲、乙两人计划在某网络购物平台上参加该品牌海参的订单“秒杀”抢购活动,每人只能抢购一个订单,每个订单均由()*2,n n n ³ÎN 箱海参构成.假设甲、乙两人抢购成功的概率均为()215n +,记甲、乙两人抢购成功的订单总数量为Y ,抢到海参总箱数为Z .①求Y 的分布列及数学期望;②当Z 的数学期望取最大值时,求正整数n 的值.19.(2023·四川达州·二模)在ABC V 中,角A 、B 、C 所对的边分别为a 、b 、c ,3cos cos cos cos cos b c a aB C A B C+=+.(1)求tan tan B C ;(2)若3bc =,求ABC V 面积S 的最小值.拓展冲刺练一、单选题1.(2024·辽宁·一模)已知,R a b Î.则“0a >且0b >”是“2ab b a+³”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件2.(2024·山东济宁·一模)已知ABC V 的内角,,A B C 的对边分别为,,a b c ,且3a =,cos (2)cos a B c b A =-,则ABC V 面积的最大值为( )A B C .94D .923.(2024·湖北武汉·模拟预测)在三棱锥-P ABC 中,AB =1PC =,4PA PB +=,CA -,且PC AB ^,则二面角P AB C --A B .34C .12D 4.(23-24高三上·江苏镇江·开学考试)某校在校庆期间举办羽毛球比赛,某班派出甲、乙两名单打主力,为了提高两位主力的能力,体育老师安排了为期一周的对抗训练,比赛规则如下:甲、乙两人每轮分别与体育老师打2局,当两人获胜局数不少于3局时,则认为这轮训练过关;否则不过关.若甲、乙两人每局获胜的概率分别为1p ,2p ,且满足1243p p +=,每局之间相互独立.记甲、乙在n 轮训练中训练过关的轮数为X ,若()16E X =,则从期望的角度来看,甲、乙两人训练的轮数至少为( )A .27B .24C .32D .28二、多选题5.(2024·江苏·一模)已知函数()sin 2cos2xf x x=-,则( )A .()f x 的最小正周期为πB .()f x 的图象关于点()π,0对称C .不等式()f x x >无解D .()f x 6.(23-24高三上·江苏连云港·阶段练习)已知0a >,()e 1ln 1ab -=,则( )A .1e b <<B .ln a b >C .e ln 1a b -<D .1b a -<7.(2023·全国·模拟预测)实数a ,b 满足2242a b +=,则( )A .12£abB .a b +的最大值为C .a b é-ÎêëD .()()3328a b a b ++的最大值为92三、填空题8.(2024·四川成都·模拟预测)已知实数00,x y >>,若231x y +=,则21x y +的最小值为 .9.(2024·福建漳州·模拟预测)如图,某城市有一条公路从正西方向AO 通过路口O 后转向西北方向OB ,围绕道路,OA OB 打造了一个半径为2km 的扇形景区,现要修一条与扇形景区相切的观光道MN ,则MN 的最小值为km .四、解答题10.(2023·四川资阳·模拟预测)已知0a >,0b >,且2a b +=.(1)求22a b +的最小值;(2)£.11.(22-23高一下·四川·期末)蜀绣又名“川绣”,与苏绣,湘绣,粤绣齐名,为中国四大名绣之一,蜀绣以其明丽清秀的色彩和精湛细腻的针法形成了自身的独特的韵味,丰富程度居四大名绣之首.1915年,蜀绣在国际巴拿马赛中荣获巴拿马国际金奖,在绣品中有一类具有特殊比例的手巾呈如图所示的三角形状,点D 为边BC 上靠近B 点的三等分点,60ADC Ð=°,2AD =.(1)若45ACD Ð=°,求三角形手巾的面积;(2)当ACAB取最小值时,请帮设计师计算BD 的长.12.(2024·江苏盐城·模拟预测)根据多元微分求条件极值理论,要求二元函数(,)z f x y =在约束条件(,)g x y 的可能极值点,首先构造出一个拉格朗日辅助函数(,,)(,)(,)L x y f x y g x y l l =+,其中l 为拉格朗日系数.分别对(,,)L x y l 中的,,x y λ部分求导,并使之为0,得到三个方程组,如下:(,,)(,)(,)0(,,)(,)(,)0(,,)(,)0x x x y y y L x y f x y g x y L x y f x y g x y L x y g x y l l l l l l =+=ìï=+=íï==î,解此方程组,得出解(,)x y ,就是二元函数(,)z f x y =在约束条件(,)g x y 的可能极值点.,x y 的值代入到(,)f x y 中即为极值.补充说明:【例】求函数22(,)f x y x xy y =++关于变量x 的导数.即:将变量y 当做常数,即:(,)2x f x y x y =+,下标加上x ,代表对自变量x 进行求导.即拉格朗日乘数法方程组之中的,,x y L L L l 表示分别对,,x y λ进行求导.(1)求函数222(,)2f x y x y xy xy =++关于变量y 的导数并求当1x =处的导数值.(2)利用拉格朗日乘数法求:设实数,x y 满足22(,)410g x y x y xy =++-=,求(,)2f x y x y =+的最大值.(3)①若,,x y z 为实数,且1x y z ++=,证明:22213x y z ++³.②设0a b c >>>,求221121025()a ac c ab a a b ++-+-的最小值.。

高考数学一轮专题复习——基本不等式(学生版)

高考数学一轮专题复习——基本不等式(学生版)

专题:基本不等式的应用 (ab ≤a +b 2)1.设x 、y 均为正实数,且2+x +2+y=1,则xy 的最小值为 ( ) 2.(2009·天津高考) 设a >0,b >0.若3是3a 与3b 的等比中项,则1a +1b的最小值为 ( ) 3.已知不等式(x +y )(1x +a y)≥9 对任意正实数x ,y 恒成立,则正实数a 的最小值为 ( ) 4.(2010·太原模拟)若直线ax -by +2=0(a >0,b >0)和函数f (x )=a x +1+1(a >0且a ≠1)的图象恒过同一个定点,则当1a +1b取最小值时,函数f (x )的解析式是________.5.设a 、b ①ab >2ab a +b ;②a >|a -b |-b ;③a 2+b 2>4ab -3b 2;④ab +2ab >2恒成立的 序号为 ( )A .①③ B.①④ C.②③ D.②④6.已知a 、b 、c ∈(0,+∞)且a +b +c =1,求证:(1a -1)(1b -1)(1c-1)≥8.7. 某商场中秋前30f (t )=t 2+10t +16,则该商场前t 天平均售出的月饼最少为 ( )8.某公司租地建仓库,每月土地占用费y 1与仓库到车站的距离成反比,而每月库存货物的运费y 2与到车站的距离成正比,如果在距离车站10千米处建仓库,这两项费用y 1和y 2分别为2万元和8万元,那么,要使这两项费用之和最小,仓库应建在离车站________千米处.9.某造纸厂拟建一座平面图形为矩形且面积为162平方米的三级污水处理池,池的深度一定(平面图如图所示),如果池四周围墙建造单价为400元/米,中间两道隔墙建造单价为248元/米,池底建造单价为80元/米2,水池所有墙的厚度忽略不计。

(1)试设计污水处理池的长和宽,使总造价最低,并求出最低总造价;(2)若由于地形限制,该池的长和宽都不能超过16米,试设计污水池的长和宽,使总造价最低,并求出最低总造价。

高一数学复习考点题型专题讲解7 基本不等式

高一数学复习考点题型专题讲解7  基本不等式

高一数学复习考点题型专题讲解第7讲 基本不等式一、单选题1.下列不等式恒成立的是( ) A .222a b ab +≤B .222a b ab +≥-C .a b +≥-.a b +≤【答案】B【分析】由基本不等式,可判定A 不正确;由2222()0a b ab a b ++=+≥,可判定B 正确;根据特例,可判定C 、D 不正确;【解析】由基本不等式可知222a b ab +≥,故A 不正确;由222a b ab +≥-,可得2220a b ab ++≥,即()20a b +≥恒成立,故B 正确; 当1,1a b =-=-时,不等式不成立,故C 不正确; 当0,1a b ==时,不等式不成立,故D 不正确. 故选:B.2.已知0x >,则2x x+的最小值为( ) A.2C ..4 【答案】C【分析】根据给定条件利用均值不等式直接计算作答.【解析】因为0x >,则2x x +≥2x x=,即x =“=”, 所以2xx+的最小值为故选:C3.已知a >0,b >0,a +b =4,则下列各式中正确的是( )A .1114ab+…B .111a b +…C 2D .11ab…【答案】B【分析】利用基本不等式逐个分析判断即可 【解析】解:因为a >0,b >0,a +b =4,所以111112(22)1444a b a b b a a b a b a b ++⎛⎫⎛⎫+=+=+++= ⎪ ⎪⎝⎭⎝⎭…, 当且仅当a =b =2时取等号,B 正确,A 错误;由基本不等式可知ab 22a b +⎛⎫⎪⎝⎭…=4,当且仅当a =b =2时取等号,2,C 错误;114ab …,D 错误. 故选:B .4.0ab >是2ba ab+>的( ) A .充分不必要条件B .必要不充分条件 C .充要条件D .既不充分也不必要条件 【答案】B【分析】解法一:根据充分条件与必要条件的概念,结合不等式的基本性质直接判断,即可得出结果.解法二:利用基本不等式的等号成立的条件可以否定充分性,利用代数变形,结合不等式的基本性质可以论证必要性.【解析】解法一:当1a b ==时,满足10ab =>,但2b a ab+=,2b a ab+>不成立,故0ab >是2b aa b+>的不充分条件; 当0ab <时02b a a b +<<,2b a a b +>不成立,当0ab =时b a a b +无意义,即2b a a b+>不成立,故0ab >是2b a a b+>的必要条件;综上,0ab >是2b a ab+>的必要不充分条件.解法二:当0ab >时,0,0b a ab>>,2b a ab+≥=,当且仅当a b =时取等号,所以0ab >是2ba a b+>的不充分条件;若2b a a b +>,则222b a b a a b ab++=>,所以0ab >,故0ab >是2b a a b +>的必要条件; 综上,0ab >是2b a a b+>的必要不充分条件. 故选:B.5.已知0x >,0y >,48x y +=,则x y的最大值为( )A..4C .6D .8 【答案】B【分析】利用基本不等式化简已知条件,由此求得x y的最大值【解析】因为48x y =+≥2,从而4x y ≤.当且仅当44,1x x y y=⇒==时等号成立. 故选:B6.若a >0,b >0,且a ≠b ,则( )A.2a b +2a b +C2a b +D 2a b + 【答案】B【解析】利用基本不等式或作差法判断选项. 【解析】∵a ,b ∈R +,且a ≠b ,∴a +b >2a b+, 而222()24a b a b ++-=2()4a b ->0,∴2a b +故选:B7.已知0x >,0y >,251x y +=,则1125x y+的最小值是( ) A .2B .8C .4D .6 【答案】C【分析】根据题意,结合“1”的妙用,即可求解. 【解析】解析:由251x y +=得()1111522522224252525y x x y x y x y x y ⎛⎫+=+⋅+=++≥=+= ⎪⎝⎭,当且仅当5225y x x y =,即14x =,110y =时,等号成立,所以1125x y +的最小值是4. 故选:C .8.《几何原本》中的几何代数法是以几何方法研究代数问题,这种方法是后西方数学家处理问题的重要依据,通过这一原理,很多的代数公理或定理都能够通过图形实现证明,也称之为无字证明.下图是我国古代数学家赵爽创作的弦图,弦图由四个全等的直角三角形与一个小正方形拼成的一个大正方形.若直角三角形的直角边长分别为a 和b ,则该图形可以完成的无字证明为( ).A.)0,02a b a b +>>B .()22200a b ab a b +≥>>, C()20,011a b a b≥>>+D()002a ba b +>>,【答案】B【分析】由图可知大正方形的面积大于等于4个直角三角形的面积和,从而可得结论 【解析】解:因为直角三角形的直角边长分别为a 和b ,所以大正方形的面积为22a b + 由图可知大正方形的面积大于等于4个直角三角形的面积和,所以221422a b ab ab +≥⨯=(0,0a b >>)故选:B9.下列结论正确的是( )A .当0x >,0y >且21x y +=时,11x y+≤B .当0x >4≥ C .当2x ≥时,2x x+的最小值是D .当0a >时,11a a ++的最小值为1 【答案】B【分析】根据1122x y x yx y x y+++=+结合基本不等式,即可判断A ;直接利用基本不等式即可判断BC ,注意取等号的条件; 根据111111a a a a +=++-++结合基本不等式,即可判断D. 【解析】解:因为0x >,0y >且21x y +=,所以112221233x y x y y x xyx y x y +++=+=+++≥+=+当且仅当2y x x y =,21x y +=,即1x ,1y =113x y +≥+A 错误:当0x >4≥=4x =时等号成立,故B 正确;当0x >时,2x x +≥当且仅当2x x=.即x 但已知条件中2x ≥,故C 错误;当10a +>时,1111121111a a a a +=++-≥=-=++,当且仅当111a a +=+,即0a =时等号成立,但已知条件中0a >,故D 错误.故选:B.10.已知0a >,0b >,若不等式41ma b a b+≥+恒成立,则m 的最大值为( ) A .10B .12C .16D .9【答案】D【分析】利用参变分离的方法将不等式变形为41()m a b a b⎛⎫≤++ ⎪⎝⎭恒成立,再由基本不等式得出代数式的最值,可得选项.【解析】由已知0a >,0b >,若不等式41ma b a b+≥+恒成立, 所以41()m a b a b⎛⎫≤++ ⎪⎝⎭恒成立,转化成求41()y a b a b⎛⎫=++ ⎪⎝⎭的最小值,414()559b a y a b a b a b ⎛⎫=++=++≥+= ⎪⎝⎭,当且仅当4b aa b=时取等 所以9m ≤. 故选:D .11.若x >1,则22222x x x -+-有( )A .最小值1B .最大值1C .最小值-1D .最大值-1 【答案】A【分析】将给定表达式整理变形,再利用基本不等式即可作答.【解析】因x >1,则()()()2211221*********x x x x x x x -+-+⎡⎤=⋅=-+≥⎢⎥---⎣⎦1,当且仅当111x x -=-,即2x =时取等号. 所以22222x x x -+-有最小值为1.故选:A12.设a ,b ,c ,d 均为大于零的实数,且abcd =1,令m =a (b +c +d )+b (c +d )+cd ,则a 2+b 2+m 的最小值为( )A .8B ...【答案】B【分析】根据条件可得2222()()a b m a b a b c d ab cd ++=++++++,然后利用重要不等式和基本不等式可求出22a b m ++的最小值.【解析】解:a ,b ,c ,d 均大于零且1abcd =,()()m a b c d b c d cd =+++++,2222()()a b m a b a b c d ab cd ∴++=++++++ 2243ab ab cd ab cd ab cd +++=++…44++…当且仅当a b =,c d =,3ab cd=,即141()3a b ==,143c d ==时取等号,22a b m ∴++的最小值为4+故选:B .【点睛】本题考查了重要不等式和基本不等式在求最值中的应用,考查了转化思想,属中档题.二、多选题13.(多选题)下列不等式不一定成立的是( )A.x +1x ≥2B 2.2212x x +≥D .2-3x -4x ≥2【答案】AD【分析】取0x <可判断A ;2B ;由基本不等式可判断C ;取0x >可判断D.【解析】对于选项A :当x <0时,102x x+<<,故A 错误;对于选项B 2B 正确;对于选项C :221122x x x x+≥⋅=,故C 正确; 对于选项D :变形为430x x+≤,当x 取正数时不成立,故D 错误. 故选:AD.14.已知0,0a b >>,则下列不等式一定成立的是( )A .114ab+B .11()()4a b ab++≥C 22a b≥+D .2≥+aba b 【答案】ABC【分析】对A ,利用基本不等式a b +≥B ,将不等式左边展开,再利用基本不等式即可判断;对C ,利用()2222a b a b ++≥以及a b +≥D ,利用特殊值即可判断.【解析】解:对A ,114a b ++≥, 当且仅当“a b =”时“=”成立,故A 正确;对B ,11()224baa b a b a b ⎛⎫++=++≥+ ⎪⎝⎭,当且仅当“a b =”时“=”成立,故B 正确;对C ()2222a b a b a b a b ++≥≥=++, 当且仅当“a b =”时“=”成立,故C 正确;对D ,当1,2a b ==时,2224123ab a b ⨯==++=2≥+aba b 不成立,故D 错误; 故选:ABC.15.某公司一年购买某种货物800吨,现分次购买,设每次购买x 吨,运费为8万元/次.已知一年的总存储费用为4x 万元,要使一年的总运费与总存储费用之和y 最小,则下列说法正确的是( ) A .当40x =时,y 取得最小值 B .当45x =时,y 取得最小值 C .min 320y = D .min 360y = 【答案】AC【分析】根据题意列出总存储费用之和80084y x x=⨯+的表达式,再利用基本不等式求最值即可判断选项【解析】一年购买某种货物800吨,每次购买x 吨,则需要购买800x次,又运费是8万元/次,一年的总存储费用为4x 万元, 所以一年的总运费与总存储费用之和80084y x x=⨯+万元.因为80084320y x x =⨯+≥=,当且仅当64004x x =,即40x =时,等号成立, 所以当40x =时,y 取得最小值,min 320y =. 故选:AC .16.设0,0a b >>,则下面不等式中恒成立的是( ) A .221a b a b ++>+BC.211ab≤+.114a b a b+≤+ 【答案】ABC【解析】利用做差法可判断A ;讨论,a b ,平方作差可判断B ;利用基本不等式可判断C 、D.【解析】对于A ,()222222111110222a b a b a a b b a b ⎛⎫⎛⎫++-+=-+-+=-+-+> ⎪ ⎪⎝⎭⎝⎭,所以221a b a b ++>+,故A 正确;对于B ,当a b <当a b ≥时,2a b b a b b a =-+=-+≥,a b =时取等号,故B 正确;对于C ,0,0a b >>,2211ab a b ab=≤=++ 当且仅当a b =时取等号,故C 正确;对于D ,0,0a b >>,()11224b a a b ab ab⎛⎫∴++=++≥+ ⎪⎝⎭,114a b a b∴+≥+,当且仅当a b =时取等号,故D 错误. 故选:ABC【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方. 17.下列不等式正确的是( )A .若0x <,则12xx +≤-B .若x ∈R 22≥ C .若x ∈R ,则2111x <+D .若0x >,则()1114⎛⎫++≥ ⎪⎝⎭x x 【答案】ABD【解析】利用基本不等式可判断ABD 选项的正误;取0x =可判断C 选项的正误.【解析】对于A 选项,当0x <时,0x ->,则()()112x x xx ⎡⎤+=--+≤-=-⎢⎥-⎣⎦, 当且仅当1x =-时,等号成立,A 选项正确; 对于B 选项,x R ∈Q ,则222x ≥+,22212x ++==≥,时,即221x +=,显然不成立,等号不成立,22>,B 选项正确;对于C 选项,取0x =,可得2111x =+,C 选项错误;对于D 选项,0x >,()1111224x x x x⎛⎫++=++≥+= ⎪⎝⎭,当且仅当1x =时,等号成立,D 选项正确. 故选:ABD.【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.18.若不等式()2232a b x a b ++≥+对任意正数a ,b 恒成立,则实数x 的可能取值为( ) A.2C.1 【答案】AD【分析】由题设可得()()2260,02a b a b a b x ++>>+≤恒成立,应用基本不等式求不等式右边的最小值,即可确定x 的范围.【解析】∵不等式()2232a b x a b ++≥+对任意正数a ,b 恒成立, ∴()()2260,02a b a b a b x ++>>+≤恒成立. ∵()()()2226632224a b a b a b a b a b a b +++++≥=+≥=+++a b =.∴x ≤A ,D. 故选:AD.三、填空题19.给出下面三个推导过程:①∵a ,b 为正实数,∴b a +a b 2;②∵a ∈R ,a ≠0,∴4a+a 4;③∵x ,y ∈R ,xy <0,∴xy +yx =-x y y x ⎡⎤⎛⎫⎛⎫-+-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎣⎦≤- 2.其中正确的推导过程为________. 【答案】①③【分析】①符合基本不等式的条件,故①的推导过程正确; ②不符合基本不等式的条件,所以②的推导过程错误;③x y⎛⎫- ⎪⎝⎭,y x ⎛⎫- ⎪⎝⎭均为正数,符合基本不等式的条件,故③的推导过程正确.【解析】①∵a ,b 为正实数,∴ba ,a b为正实数,符合基本不等式的条件,故①的推导过程正确;②a ∈R ,a ≠0,不符合基本不等式的条件,∴②的推导过程错误;③由xy <0,得xy ,y x均为负数,∴x y⎛⎫- ⎪⎝⎭,y x ⎛⎫- ⎪⎝⎭均为正数,符合基本不等式的条件,故③的推导过程正确.故选①③. 故答案为:①③【点睛】本题主要考查基本不等式的应用,意在考查学生对该知识的理解掌握水平. 20.若0a b <<,且1a b +=,则实数12、b 、2ab 、22a b +中最大的一个是______. 【答案】b【分析】由0a b <<,1a b +=,所以12a b <<,再结合222a b ab +>,则可判断22122a ab a b b <<<+<,得解.【解析】因为0a b <<,1a b +=,所以12a b <<,222ab a b <+,因为22222a b a b +⎛⎫+> ⎪⎝⎭,所以2212a b +>,又()222221a b a a b a b b b b b b +=⋅+<⋅+=-+=,所以2212a b b <+<,又212222a b ab +⎛⎫<= ⎪⎝⎭,1222ab a a >⨯=, 所以122a ab <<.所以22122a ab a b b <<<+<. 故答案为:b .21.若a 、b 、x 、y ∈R ,221x y +=,221a b +=,则ax by +的最大值是______. 【答案】1【分析】利用基本不等式得最大值. 【解析】因为221x y +=,221a b +=,所以22222222222222222()2()()1ax by a x abxy b y a x a y b x b y a b x y +=++≤+++=++=, 当且仅当ay bx =即a xb y =时等号成立.故答案为:1.22.设0,0a b >>,且不等式110ka b a b++≥+恒成立,则实数k 的最小值等于___________. 【答案】4-【分析】先分离出参数k ,得11()()k a b a b -++…,然后利用基本不等式求得11()()a b a b -++的最大值即可.【解析】解:由110ka b a b +++…,得11()()k a b a b-++…,11()()(2)(24b a a b a b a b -++=-++-+=-…, 当且仅当a b =时取等号,4k ∴-…,即实数k 的最小值等于4-.故答案为:4-.23.若一个三角形的三边长分别为a ,b ,c ,设()12p a b c =++,则该三角形的面积S =这就是著名的“秦九韶-海伦公式”若△ABC 的周长为8,2AB =,则该三角形面积的最大值为___________. 【答案】【分析】计算得到4p =,2c =,6a b +=,根据均值不等式得到9ab ≤,代入计算得到答案.【解析】()142p a b c =++=,2c =,6a b +=,6a b +=≥9ab ≤, 当3a b ==时等号成立.S ==故答案为:24.已知a b c >>2a c-的大小关系是____________2a c-. 【分析】将2a c -化为()()2a b b c -+-,然后运用基本不等式比较大小. 【解析】∵a b c >>,∴0a b ->,0b c ->,∴()()22a b b c a c -+--=a b b c -=-,即2b a c =+时取等号,2a c-. 【点睛】本题考查利用基本不等式的运用,属于简单题,将2a c -化为()()2a b b c -+-是关键.四、解答题25.已知实数a 和b ,判断下列不等式中哪些是正确的. (1)222a b ab +≥; (2)222a b ab +≥-(3)2a b+≥ (4)2b a a b+≥; (5)12a a +≥; (6)2b aa b+≥; (7)()()2222a b a b +≥+. 【答案】(1)正确 (2)正确 (3)错误 (4)错误 (5)错误 (6)正确 (7)正确【分析】(1)由()20a b -≥判断不等式成立. (2)由()20a b +≥判断不等式成立. (3)利用特殊值判断不等式错误. (4)利用特殊值判断不等式错误. (5)利用特殊值判断不等式错误. (6)结合基本不等式判断不等式成立. (7)利用差比较法判断不等式成立. (1)由于()20a b -≥,222220,2a ab b a b ab -+≥+≥,所以不等式正确. (2)由于()20a b +≥,222220,2a ab b a b ab ++≥+≥-,所以不等式正确. (3)当,a b 为负数时,不等式2a b+≥. (4)当,b a a b 为负数时,不等式2b a a b+≥不成立,所以不等式错误. (5)当a 为负数时,不等式12a a +≥不成立,所以不等式错误. (6)依题意,a b 不为零,,b a a b同号,2b a b a a b a b +=+≥,当且仅当1b a =±时等号成立,所以不等式正确.()()()222220a b a b a b +-+=-≥,所以()()2222a b a b +≥+,所以不等式正确.26.下列结论是否成立?若成立,试说明理由;若不成立,试举出反例.(1)若0ab >,则a b +≥(2)若0ab >2; (3)若0ab <,则2b a ab+≤-. 【答案】(1)不成立,理由见解析; (2)成立,理由见解析; (3)成立,理由见解析;【分析】取特殊值判断(1),由均值不等式判断(2)(3). (1)取1,2a b =-=-满足0ab >,此时a b +≥ (2)0ab >,0,0a bb a∴>>,2,当a b =时等号成立. (3)0ab <,0,0b aa b∴<<,2b a b a a b a b ⎡⎤⎛⎫⎛⎫∴+=--+-≤-- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,当a b =-时等号成立. 27.证明下列不等式,并讨论等号成立的条件: (1)若0a >,则322a a a +≥; (2)若4ab =,则228a b +≥;(3)若11x -≤≤12; (4)若0ab ≠,则2b aa b+≥; (5)对任意实数a 和b ,2222431a b a b ++≥++.【答案】(1)证明见解析,当且仅当1a =时等号成立; (2)证明见解析,当且仅当2a b ==±时,等号成立.(3)证明见解析,当且仅当x = (4)证明见解析,当且仅当220a b =≠时,等号成立. (5)证明见解析,当且仅当221a b +=时等号成立.【分析】(1)直接利用作差法对关系式进行变换,进一步求出结果. (2)利用基本不等式的应用求出结果.(3)利用算术平均数和几何平均数的运用及整体思想的应用求出结果. (4)利用分类讨论思想的应用和均值不等式的应用求出结果. (5)利用关系式的变换和均值不等式的应用求出结果. (1)证明:由于3232222()()(1)a a a a a a a a a -+=---=-,当0a >时,2(1)0a -≥,所以20(1)a a -≥,即3202a a a -+≥,所以322a a a +≥,当且仅当1a =时,等号成立.(2)证明:因为4ab =,所以2228a b ab +≥=,当且仅当2a b ==±时,等号成立. (3)证明:因为11x -≤≤,所以201x ≤≤,210x -≥22(1)122x x +-=,当且仅当221x x =-,即x = (4)证明:因为0ab ≠,当0ab >时,2ba b a a b a b +=+…,当且仅当0a b =≠时,等号成立.当0ab <时,()()2b a b a a b a b +=-+-…,当且仅当0a b =-≠时,等号成立. 综上可得0ab ≠,则2b aa b+≥,当且仅当220a b =≠时,等号成立. (5)证明:对任意实数a 和b ,2211a b ++≥所以222222224411141311a b a b a b a b ++=+++-=-=++++.当且仅当221a b +=时等号成立.28.已知0a >,0b >,21a b +=,求23ab+的最小值.下面是某同学的解答过程:请指出上面解答过程中的错误,并给出正确解答.【答案】解答过程中没有给出取最小值的条件,事实上这个最小值是取不到的,原因是两次利用均值不等式,等号成立的条件不一致;正确解答见解析.【分析】根据基本不等式应用的条件: “一正”、“二定”、 “三相等” 即可得出答案. 【解析】解答过程中没有给出取最小值的条件,事实上这个最小值是取不到的, 原因是两次利用均值不等式,等号成立的条件不一致.具体情况如下:23a b +≥23a b =,即32a b =时,等号成立,2a b +≥2a b =时,等号成立,显然,32a b =和2a b =不可能同时成立. 正确的解答如下:因为0a >,0b >,21a b +=,所以()2323432888baa b a b a b a b ⎛⎫+=++=+++⎪≥+ ⎝⎭当且仅当43b aa b=时,等号成立,即2b =,代入21a b +=,得a =,从而b =因此23ab+的最小值为8+a =,b =29.已知1y x x=+.(1)已知x >0,求y 的最小值; (2)已知x <0,求y 的最大值. 【答案】(1)2;(2)-2.【分析】(1)直接利用基本不等式求解即可(2)由于x <0,所以先对式子变形()1y x x ⎡⎤=--+⎢⎥-⎣⎦,然后再利用基本不等式即可【解析】(1)因为x >0,所以12y x x=+≥,当且仅当1x x=,即x =1时等号成立.所以y 的最小值为2.(2)因为x <0,所以-x >0.所以()12y x x ⎡⎤=--+≤-=-⎢⎥-⎣⎦,当且仅当1x x -=-,即x =-1时等号成立. 所以y 的最大值为-2.【点睛】此题考查基本不等式的应用,属于基础题. 30.已知x ,y 都是正数.求证:()12y xx y+≥; ()2()()()2233338.x y x y x y x y +++≥【答案】()1证明见解析;()2证明见解析.【分析】()1运用基本不等式:a b +≥a b =时取得等号),即可求证;()2运用基本不等式和不等式的基本性质即可求证.【解析】解:()1证明:由x ,y 都是正实数,可得2y x xy+≥(当且仅当x y =时取得等号);()2证明:由基本不等式可知()()()(()(22332x y x y x y xy +++≥⋅⋅()23388xy xy x y =⋅=,(当且仅当x y =时取得等号).【点睛】本题考查不等式的证明,运用基本不等式,考查化简推理的能力,属于基础题.31.已知a ,b ,c 均为正数,且1abc =,求证: (1)()()()8a b b c a c +++≥;(2111a b c≤++.【答案】(1)证明见解析;(2)证明见解析. 【分析】(1)利用基本不等式直接证明即可. (2)利用基本不等式直接证明即可.【解析】证明:(1)因为a ,b ,c 均为正数,1abc =,所以a b +≥b c +≥a c +≥ 三式相乘,得()()()88a b b c a c abc +++≥=, 当且仅当1a b c ===时,等号成立. (2)因为a ,b ,c 均为正数,1abc =,所以11ab+≥=11b c +≥=11a c +≥=三式相加,得11122a b c⎛⎫++≥ ⎪⎝⎭,111a b c≤++,当且仅当1a b c ===时,等号成立.32.已知0a >,0b >,且(1a b +.(1)求3311a b +的最小值;(2)是否存在实数,a b ,使得1123a b +?若存在,求出,a b 的值;若不存在,请说明理由.【答案】(1)(2)不存在,理由见解析【分析】(1a b=+≥12≤ab ,再根据3311a b +≥=求解即可.(2)首先根据基本不等式得到1123a b +≥>,即可判断不存在实数,a b ,使得1123a b +. (1)因为0a >,0b >,(1a b +,a b=+≥a b == 所以12≤ab .因为3311a b +≥=≥a b == 所以3311a b +的最小值为 (2)因为0a >,0b >,又由(1)知12≤ab ,所以1123a b +≥=≥, 当且仅当23a b =时取等号.因为当且仅当a b ==12ab =,所以1123a b +><,a b ,使得1123a b +. 33.在城市旧城改造中,某小区为了升级居住环境,拟在小区的闲置地中规划一个面积为2200m 的矩形区域(如图所示),按规划要求:在矩形内的四周安排2m 宽的绿化,绿化造价为200元/2m ,中间区域地面硬化以方便后期放置各类健身器材,硬化造价为100元/2m .设矩形的长为(m)x ,总造价为y (元).(1)将y 表示为关于x 的函数;(2)当x 取何值时,总造价最低,并求出最低总造价. 【答案】(1)8000040018400,050y x xx=++<<;(2)当x =为18400.【解析】(1)根据题设先计算出绿化的面积和硬化地面的面积,从而可得y 表示为关于x 的函数;(2)利用基本不等式可求何时取何最值.【解析】(1)因为矩形区域的面积为2200m ,故矩形的宽为200x, 绿化的面积为20080022224416x x x x ⎛⎫⨯⨯+⨯⨯-=+-⎪⎝⎭,中间区域硬化地面的面积为()200800442164x x x x ⎛⎫--=--⎪⎝⎭,故8008004162002164100y x x x x ⎛⎫⎛⎫=+-⨯+--⨯ ⎪ ⎪⎝⎭⎝⎭, 整理得到8000040018400y x x=++, 由4020040x x->⎧⎪⎨->⎪⎩可得050x <<,故8000040018400,050y x x x=++<<. (2)由基本不等式可得80000400184004001840018400x x++≥⨯=,当且仅当x =故当x =18400.【点睛】方法点睛:利用基本不等式解决应用问题时,注意合理构建数学模型,求最值时注意“一正二定三相等”,特别是检验等号是否可取. 34.(1)已知01x <<,则(43)x x -取得最大值时x 的值为? (2)已知54x <,则1()4245f x x x =-+-的最大值为? (3)函数22(1)1x y x x +=>- 的最小值为? 【答案】(1)23;(2)1;(3)2【分析】(1)积的形式转化为和的形式,利用基本不等式求最值,并要检验等号成立的条件;(2)结构为和的形式转化为积的形式,并使积为定值,同时要检验等号成立的条件;(3)二次式除以一次式求最值,一般二次式用一次式表示出来,然后再分离,最后用基本不等式求解即可.【解析】(1)2113434(43)(3)(43)[]3323x x x x x x +--=⨯⨯-≤⨯=, 当且仅当343x x =-,即23x =时,取等号. 故所求x 的值为23.(2)因为54x <,所以540x ->,则11()42(54)332314554f x x x x x =-+=--++≤-=-+=--. 当且仅当15454x x-=-,即1x =时,取等号. 故1()4245f x x x =-+-的最大值为1. (3)2222122311x x x x y x x +-++-+==-- 2(1)2(1)31x x x -+-+=-3(1)221x x =-++≥-.当且仅当311x x -=-,即1x =时,取等号.故函数的最小值为2.。

专题训练:基本不等式求最值-【题型分类归纳】高一数学上学期同步讲与练(解析版)

专题训练:基本不等式求最值-【题型分类归纳】高一数学上学期同步讲与练(解析版)

专题训练:基本不等式求最值1.若实数,x y 满足:,0,310x y xy x y >---=,则xy 的最小值为( ) A .1 B .2 C .3 D .4 【答案】A【解析】因为310xy x y ---=,所以31xy x y -=+,由基本不等式可得31xy x y -=+≥故310xy -≥1≥13-(舍),即1xy ≥当且仅当1x y ==时等号成立, 故xy 的最小值为1,故选:A.2.已知,a b 为正实数且2a b +=,则2ba b+的最小值为( ) A .32 B 1 C .52D .3 【答案】D【解析】因为,a b 为正实数且2a b +=,所以2b a =-,所以,2221212211ba b a b a b a ab ⎛⎫+=+=+-=+- ⎪⎭-⎝因为()22111122224baa b a b a b a b a b ⎛⎫⎛⎫+=+=++=++≥+= ⎪ ⎪⎝⎭⎝⎭,当且仅当1a b ==时等号成立; 所以2222213b aba b a a b++=+--=≥,当且仅当1a b ==时等号成立;故选:D3.若0x <,则124x x +-有( ) A .最小值1- B .最小值3- C .最大值1- D .最大值3- 【答案】D【解析】因为0x <,所以11222344x x x x ⎛⎫+-=--+-≤-=- ⎪-⎝⎭, 当且仅当14x x-=-,即12x =-时等号成立, 故124x x+-有最大值3-.故选:D.4.已知42244924x x y y ++=,则2253x y +的最小值是( ) A .2 B .127C .52 D .4【答案】D【解析】由42244924x x y y ++=,得()()222222222222425342422x y x y x y x y x y ⎛⎫⎛⎫++++++=≤= ⎪ ⎪⎝⎭⎝⎭, 即()2221653x y ≤+,所以22534x y +≥,当且仅当222242x y x y +=+,即2226,77x y ==时,等号成立,所以2253x y +的最小值是4.故选:D.5.若正实数x,y 满足29x y +=,则14x y--的最大值是( )AB .C .6+D .6--【答案】B【解析】由题意可得正实数x,y 满足29x y +=,所以1411418(2)2499y xx y x y x y x y ⎛⎫⎛⎫+=⨯++=+++≥⎪ ⎪⎝⎭⎝⎭当且仅当8y xx y =即9(2x y ==时取等号,所以14x y --≤B .6.设正实数m ,n 满足2m n +=,则12n m n+的最小值是( ) A .32B .52C .54D .94【答案】C【解析】因为正实数m ,n ,2m n +=,所以1115244444n n m n n m m n m n m n ++=+=++≥=, 当且仅当4n m m n =且2m n +=,即43m =,23n =时取等号, 此时取得最小值54,故选:C7.已知正数x 、y 满足()()212x y --=,若不等式2x y m +>恒成立,则实数m 的取值范围是( )A .()8,+∞B .()4,+∞C .(),8∞-D .(),4-∞ 【答案】C【分析】由已知可得出211x y +=,将2x y +与21x y +相乘,利用基本不等式可求得2x y +的最小值,即可得出实数m 的取值范围.【解析】因为0x >,0y >,则()()()21222x y xy x y --=-++=,2x y xy ∴+=,所以,211x y +=,所以()21422448yxx y x y x y x y ⎛⎫+=++=++≥+= ⎪⎝⎭, 当且仅当4y xx y =时,即4x =,2y =时等号成立. 又2x y m +>恒成立,所以8m <.故选:C.8.已知22a b -=,且02a b <+<,则112a b a b++-的最小值为( ) A .2 B .3 C .4 D .5 【答案】A【分析】转化后由基本不等式“1”的妙用求解【解析】因为()()222a b a b a b -=++-=,02a b <+<,所以20a b ->,所以()()2111112222222a b a b a b a b a b a b a b a b a b a b ++-+-⎛⎫⎛⎫+=+⋅=++ ⎪ ⎪+-+--+⎝⎭⎝⎭1222⎛≥⨯+= ⎝, 当且仅当22a b a ba b a b+-=-+,即1a =,0b =时等号成立. 所以112a b a b++-的最小值为2.故选:A9.若0x >,则241xx +的最大值为( ) A .2 B .3 C .4 D .5 【答案】A【分析】利用基本不等式求最值即可.【解析】当0x >时,244211x x x x =≤=++,当且仅当1x x=,即1x =时等号成立.故选:A.10.已知正实数x 、y 满足144x y x y++=+,则x y +的最小值为( ) A2 B .2 C.2 D.2【答案】C【分析】在等式144x y x y ++=+的两边同乘以x y +,结合基本不等式可得出关于x y +的二次不等式,即可解得x y +的最小值.【解析】因为正实数x 、y 满足144x y x y ++=+,等式两边同乘以x y +可得()()()()24454549y x x y x y x y x y x y +=++++≥+++=++, 所以,()()2490x y x y +-+-≥,因为0x y +>,解得2x y +≥2y x =时,等号成立. 因此,x y +的最小值为2故选:C.11.设0a >,0b >,若35a b +=)A .B .2C .D .【答案】C=.【解析】解:因为0a >,0b >且35a b+=,=≥当且仅当2a =,1b =时,等号成立.故选:C .12.若0a >,0b >,且a b ab +=,则2a b +的最小值为() A .3+B .2+C .6D .3-【答案】A【分析】由a b ab +=,得111a b+=,利用“1”的代换求最值. 【解析】因为0a >,0b >,且a b ab +=,所以111a b+=,所以()11222333aba b a b a b b a ⎛⎫+=++=++≥+=+ ⎪⎝⎭当且仅当2a bb a=时,取等号, 所以2a b +的最小值为3+ A.13.已知正实数,a b ,且22a b +=,则11121a ab ++++ 的最小值是( ) A .2 B .32C .54D .43【答案】C【分析】将22a b +=变为(1)(21)4a b +++=,即可得1121(1)141b a a +=+++, 因此将11121a a b ++++变为111211(1)1214121a b a a b a b ++++=++++++,结合基本不等式即可求得答案. 【解析】因为正实数,a b ,22a b +=,故(1)(21)4a b +++=,所以111121[(1)(21)](1)14141b a b a a a +=+++⨯=++++,故1112111121115(1)212141214412144a b a b a a b a b a b ++++++=++=+⨯+≥+=++++++, 当且仅当15,36a b ==时取得等号,故选:C14.已知正实数,a b 满足4111a b b +=++,则2+a b 的最小值为( ) A .6 B .8 C .10 D .12 【答案】B【分析】令211a b a b b +=+++-,用1a b b +++分别乘4111a b b +=++ 两边再用均值不等式求解即可.【解析】因为4111a b b +=++,且,a b 为正实数所以1(414(1))41111)(a b b a b b a b b a b b a b b +++=++++++++=+++++59≥+=, 当且仅当4(1)1a b b b a b++=++即2a b =+时等号成立.所以219,28a b a b ++≥+≥.故选:B.15.设220,0,4x y x y x y >>+-=,则11x y +的最小值等于( )A .2B .4C .12 D .14【答案】B【分析】根据题意得到221144x y x y xy x y xy xy xy+++===+,结合基本不等式,即可求解. 【解析】因为224x y x y +-=,可得224x y x y +=+且0,0x y >>,所以2211444x y x y xy x y xy xy xy +++===+≥, 当且仅当4xy xy=时,即2xy =等号成立, 所以11x y +的最小值为4.故选:B.16.已知x ,y 都是正数,若2x y +=,则14x y +的最小值为( )A .74 B .92 C .134D .1 【答案】B【分析】利用基本不等式求解. 【解析】因为2x y +=,所以1414141422x y y x x y x y x y ⎛⎫⎛⎫++=+⋅=+++ ⎪ ⎪⎝⎭⎝⎭. 因为x ,y都是正数,由基本不等式有:44yx xy +≥=, 所以141491422y x x y x y ⎛⎫+=+++≥ ⎪⎝⎭,当且仅当2,? 2,y x x y =⎧⎨+=⎩ 即2,343x y ⎧=⎪⎪⎨⎪=⎪⎩时取“=”.故A ,C ,D 错误.故选:B .17.已知0a >,0b >,1ab =,则226a b a b+++的最小值为( )A .2B .4 C. D.【答案】B【分析】对原式化简,然后根据基本不等式求解. 【解析】因为0a >,0b >,1ab =.所以()()2222264644a b ab a b a b a b a b a b a b a b+-+++++===++≥++++,当且仅当1a b ==时,等号成立.故选:B.18.若不等式()2232a b x a b ++≥+对任意正数a ,b 恒成立,则实数x 的最大值为( ) AB .3 CD .1 【答案】C【分析】对原不等式进行化简可得()2262a b x a b ++≤+,再利用基本不等式求最值可得答案.【解析】∵不等式()2232a b x a b ++≥+对任意正数a ,b 恒成立, ∴()2262a b x a b ++≤+(0a >,0b >)恒成立, ∵()()()2226632224a b a b a b a b a b a b +++++≥=+≥=+++ 当且仅当a b =且34a b a b+=+,即a b ==.∴x ≤故选:C.19.(多选)已知0x >,0y >,且30x y xy ++-=,则( ) A .xy 的取值范围是[]1,9 B .x y +的取值范围是[)2,3 C .4x y +的最小值是3 D .2x y +的最小值是3 【答案】BD【分析】根据基本不等式可求得01xy <≤,判断A;将30x y xy ++-=变形为()232x y x y xy +⎛⎫-+=≤ ⎪⎝⎭结合基本不等式,判断B ;由30x y xy ++-=整理得到411x y =-++ 结合基本不等式可判断C,D.【解析】对于A ,因为0x >,0y >,所以x y +≥x y =时取等号,即3xy -≥01<≤,即01xy <≤,A 错误;对于B, 由0x >,0y >,()232x y x y xy +⎛⎫-+=≤ ⎪⎝⎭,当且仅当x y =时取等号, 得()()24120x y x y +++-≥,所以2x y +≥,又()03x y xy -+=>,所以3x y +<,B 正确; 对于C, 由0x >,0y >,30x y xy ++-=,得34111y x y y -+==-+++,则()4441441511x y y y y y +=-++=++-++ 53≥=, 当且仅当()4411y y =++,即0y =时等号成立,但0y >,所以43x y +>.(等号取不到),故C 错误; 对于D ,由C 的分析知:0x >,0y >,411x y =-++,()44212213311x y y y y y +=-++=++-≥++, 当且仅当()4211y y =++,即1y 时等号成立,D 正确,故选:BD20.(多选)若正实数,a b 满足1a b +=,则下列说法正确的是( )A.ab 有最小值14B C .1122a b a b +++有最小值43D .22a b +有最小值12 【答案】BCD【分析】由已知结合基本不等式及其变形形式分别检验各选项即可判断.【解析】由正实数,a b 满足1a b +=,则2124a b ab +⎛⎫≤= ⎪⎝⎭, 当且仅当12a b ==时,等号成立,所以ab 的最大值为14,故A 选项错误; 由()222a b a b =+++=当且仅当12a b ==B 选项正确;由11111111(33)[(2)(2)]22322322⎛⎫⎛⎫+=++=++++ ⎪ ⎪++++++⎝⎭⎝⎭a b a b a b a b a b a b a b a b a b1222322++⎛⎫=++ ⎪++⎝⎭a b a b a b a b 14233⎛≥+= ⎝,当且仅当12a b ==时,等号成立, 所以1122a b a b +++有最小值43,故C 选项正确; 由222222()1()2()2222a b a b a b a b ab a b ++⎛⎫+=+-≥+-⨯== ⎪⎝⎭, 当且仅当12a b ==时,等号成立,所以22a b +有最小值12,故D 选项正确. 故选:BCD.21.(多选)下列说法正确的有( ) A .若12x <,则1221x x +-的最大值是-1 B .若x ,y ,z 都是正数,且2x y z ++=,则411x y z+++的最小值是3 C .若0x >,0y >,228x y xy ++=,则2x y +的最小值是2 D .若实数x ,y 满足0xy >,则22x yx y x y+++的最大值是4-【答案】ABD 【分析】对1221x x +-进行构造,利用基本不等式即可判断A ; 由2x y z ++=得13x y z +++=,进而将411x y z +++转化为()411531y z x x y z +⎡⎤+++⎢⎥++⎣⎦, 结合基本不等式即可判断B ;由228x y xy ++=得()282xy x y =-+,根据2222x y xy +⎛⎫≤ ⎪⎝⎭可得()()22824x y x y +-+≤,从而可判断C;令x y t +=,2x y s +=,原式转化成24s tt s--,结合基本不等式即可判断D 【解析】对于A ,因为12x <,所以210x -<,所以120x ->,所以()()1112211121212112x x x x x x ⎡⎤+=-++=--++⎢⎥---⎣⎦211≤-=-, 当且仅当11212x x-=-,即0x =时等号成立, 所以1221x x +-的最大值为-1,故A 正确; 对于B ,因为x ,y ,z 都是正数,且2x y z ++=, 所以13x y z +++=,所以()411411131x y z x y z x y z ⎛⎫+=++++ ⎪++++⎝⎭()4111553313y z x x y z ⎡+⎡⎤+=++≥+=⎢⎢⎥++⎢⎣⎦⎣, 当且仅当()411y z x x y z ++=++,即()12x y z +=+即11x y z =⎧⎨+=⎩时等号成立,所以411x y z +++的最小值为3,故B 正确;对于C ,因为0x >,0y >,所以2222x y x y +⎛⎫⋅≤ ⎪⎝⎭, 即()2224x y xy +≤(当且仅当2x y =时等号成立),因为228x y xy ++=,所以()282xy x y =-+,所以()()22824x y x y +-+≤,所以()()2242320x y x y +++-≥, 解得28x y +≤-(舍去)或24x y +≥,当且仅当22x y ==时等号成立, 所以2x y +的最小值为4,故C 错误;对于D ,令x y t +=,2x y s +=,则2x t s =-,y s t =-, 因为0xy >,所以x ,y 同号,则s ,t 同号,所以224442x y s t x y x y t s +=--≤--++ 当且仅当2s tts=,即s 时取等号,所以22xyx y x y +++的最大值是4-D 正确,故选:ABD .22.(多选)已知实数0a >,0b >,1111a b+=+,则4a b +的值可能是( ) A .7 B .8 C .9 D .10 【答案】BCD【分析】根据题中条件配凑,再运用“1”的代换与基本不等式求出原式范围即可得到答案. 【解析】因为0a >,0b >,1111a b+=+, 所以()()1141414114114111b a a b a b a b a b a b +⎛⎫⎡⎤+=++-=++⋅+-=+++- ⎪⎣⎦++⎝⎭48≥+, 当且仅当4111111b a a ba b +⎧=⎪⎪+⎨⎪+=⎪+⎩,即232a b =⎧⎪⎨=⎪⎩时取等号,所以48a b +≥,可能为8,9,10. 故选:BCD23.已知(),0,x y ∈+∞,且1x y +=,若不等式2221124x y xy m m ++>+恒成立,则实数m 的取值范围______.【答案】3,12⎛⎫- ⎪⎝⎭【分析】由题意结合基本不等式可得2234x y xy ++≥,则不等式等价于2311424m m >+,由此即可解出m 的取值范围.【解析】因为(),0,x y ∈+∞,且1x y +=,所以()222231124x y x y xy x y xy xy +⎛⎫++=+-=-≥-= ⎪⎝⎭, 当且仅当12x y ==时等号成立,又不等式2221124x y xy m m ++>+恒成立,所以2311424m m >+,即2230m m +-<,解得312m -<<.故答案为:3,12⎛⎫- ⎪⎝⎭.24.已知正数,a b 满足34318a b a b+++=,则3a b +的最大值是___________.【答案】9+【分析】设3t a b =+,表达出()18t t -,结合基本不等式求解最值,再根据二次不等式求解即可. 【解析】设3t a b =+,则3418t a b+=-,所以()()3494183151527bat t a b a b a b ⎛⎫-=++=++≥+= ⎪⎝⎭, 当且仅当23a b =时取等号.所以218270t t -+…,解得99t -+3a b +的最大值9+当且仅当23a b =,即3a =2b =. 故答案为:9+25.已知0x >,则423x x--的最大值是_________ 【答案】2-2-【分析】直接利用基本不等式求最大值.【解析】0x >,则44232322⎛⎫--=-+≤-=- ⎪⎝⎭x x xx当且仅当43x x=即x = 故答案为:2-26.若正数a ,b 满足11ab+=1,则41611a b +--的最小值为__. 【答案】16 【分析】由条件可得11a b b=-,11ba a =-,代入所求式子,再由基本不等式即可求得最小值, 注意等号成立的条件.【解析】因为正数a ,b 满足11ab+=1,则有1a=111b bb--=, 则有11a b b=-,1b =111a a a --=,即有11ba a =-,则有41641611b a a b a b +=+≥=--16, 当且仅当416b a a b =即有b =2a ,又11a b+=1, 即有a 32=,b =3,取得最小值,且为16. 故答案为:16.27.若正数a ,b 满足21a b +=,则222a ba b+--的最小值是__.12【分析】设22,2u a v b =-=-,得到1231123()()222232a b u v a b u v u v +=+-=++---,结合基本不等式,即可求解.【解析】设22,2u a v b =-=-,则2,22ua b v -==-,可得3(,0)u v u v +=>, 所以11212311232()()222232ua b v u v a b u v u v u v --+=+=+-=++---1231331(3)(31323222v u u v =++-≥+-=-=,当且仅当63v u =-=时,等号成立,取得最小值.12.28.设a ,b ≥0,且1b =,则ab的最小值为___________. 【答案】0【分析】由题可得()214b a -=,代入a b,结合均值不等式即可得出答案.【解析】因为1b =,所以()221124b b a --⎛⎫=-=⎪⎝⎭,所以2(1)111044422a b b b b b -==+-≥=, 当且仅当0,1a b ==时取等. 所以a b的最小值为0. 故答案为:0.29.(1)已知1x >,求1411x x ++-的最小值; (2)已知01x <<,求()43x x -的最大值. 【答案】(1)9;(2)43.【分析】(1)由于10x ->,则()114141511x x x x ++=-++--,然后利用基本不等式求解即可, (2)由于01x <<,变形得()()()1433433x x x x -=⋅⋅-,然后利用基本不等式求解即可.【解析】(1)因为1x >,所以10x ->,所以()11414155911x x x x ++=-++≥=--,当且仅当()1411x x -=-,即32x =时取等号,所以1411x x ++-的最小值为9. (2)因为01x <<,所以()()()2113434433433323x x x x x x +-⎛⎫-=⋅⋅-≤= ⎪⎝⎭, 当且仅当343x x =-,即23x =时取等号, 故()43x x -的最大值为43.30.(1)已知01x <<,则()43x x -取得最大值时x 的值为? (2)已知54x <,则1()4245f x x x =-+-的最大值为? 【答案】(1)23;(2)1.【分析】(1)根据基本不等式,和为定值求积的最大值,(2)由基本不等式即可求解.【解析】(1)()()()2113(43)4433433323x x x x x x +-⎡⎤-=⨯-≤=⎢⎥⎣⎦, 当且仅当343x x =-,即23x =时取等号. 故所求x 的值为23.(2)因为54x <,所以540x ->,则11()42=(54)323=1.4554f x x x x x =-+--++≤---+ 当且仅当154=54x x--,即=1x 时,取等号. 故()14245f x x x =-+-的最大值为1.。

基本不等式总结题型

基本不等式总结题型

基本不等式总结题型一、基本不等式的概念基本不等式呢,就是那个超有用的不等式啦,对于正数a、b,有(a + b)/2 ≥ √(ab)。

这就像是数学世界里的一个小宝藏,在好多题型里都会用到哦。

二、基本不等式总结题型1. 求最值题型比如给你一个式子y = x+1/x(x>0),要求这个式子的最小值。

这时候就可以用基本不等式啦。

因为x和1/x都是正数,根据基本不等式(a + b)/2 ≥ √(ab),这里 a = x,b = 1/x,那么y=x + 1/x≥2√(x×1/x)=2,所以y的最小值就是2啦。

还有像已知2x + 3y = 6,求xy的最大值这种题。

我们可以把2x和3y看作基本不等式里的a和b,由2x+3y = 6可得y=(6 - 2x)/3,那么xy=x×(6 - 2x)/3=-2/3x² + 2x。

再根据基本不等式变形可得2x+3y≥2√(6xy),6≥2√(6xy),解这个不等式就可以求出xy的最大值。

2. 证明不等式题型比如说要证明(a² + b²)/2≥ab。

我们可以从基本不等式出发,因为(a - b)²≥0,展开得到a² - 2ab + b²≥0,移项就得到a² + b²≥2ab,两边同时除以2,就得到(a² + b²)/2≥ab啦。

再比如证明1/(a + b)+1/(b + c)+1/(c + a)≥9/(2(a + b + c))(a,b,c都是正数)。

这种题就需要巧妙地构造基本不等式的形式,把式子进行变形然后利用基本不等式来证明。

3. 比较大小题型例如比较(a + b)/2和√((a² + b²)/2)的大小(a,b都是正数)。

我们可以采用作差法,把(a + b)/2 - √((a² + b²)/2)进行化简,然后根据基本不等式的性质来判断这个差是大于0、小于0还是等于0,从而得出两个式子的大小关系。

第03讲 基本不等式 (精讲+精练)(学生版)

第03讲 基本不等式 (精讲+精练)(学生版)

第03讲基本不等式 (精讲+精练)目录第一部分:思维导图(总览全局)第二部分:知识点精准记忆第三部分:课前自我评估测试第四部分:典型例题剖析高频考点一:利用基本不等式求最值①凑配法②“1”的代入法③二次与二次(一次)商式(换元法)④条件等式求最值高频考点二:利用基本不等式求参数值或取值范围高频考点三:利用基本不等式解决实际问题高频考点四:基本不等式等号不成立,优先对钩函数第五部分:高考真题感悟第六部分:第03讲基本不等式(精练)1、基本不等式(一正,二定,三相等,特别注意“一正”,“三相等”这两类陷阱)①如果0a >,0b >2a b+≤,当且仅当a b =时,等号成立. ②叫做正数a ,b 的几何平均数;2a b+叫做正数a ,b 的算数平均数. 2、两个重要的不等式①222a b ab +≥(,a b R ∈)当且仅当a b =时,等号成立. ②2()2a b ab +≤(,a b R ∈)当且仅当a b =时,等号成立. 3、利用基本不等式求最值①已知x ,y 是正数,如果积xy 等于定值P ,那么当且仅当x y =时,和x y +有最小值;②已知x ,y 是正数,如果和x y +等于定值S ,那么当且仅当x y =时,积xy 有最大值24S;4、常用技巧利用基本不等式求最值的变形技巧——凑、拆(分子次数高于分母次数)、除(分子次数低于分母次数))、代(1的代入)、解(整体解). ①凑:凑项,例:()1123x x a a a x a x a x a+=-++≥+=>--; 凑系数,例:()()2112121112212022282x x x x x x x +-⎛⎫⎛⎫-=⋅-≤⋅=<< ⎪ ⎪⎝⎭⎝⎭;②拆:例:()2244442244822223x x x x x x x x x -+==++=-++≥=>----;③除:例:()2221011x x x x x=≤>++; ④1的代入:例:已知0,0,1a b a b >>+=,求11a b+的最小值. 解析:1111()()24b aa b a b a b a b+=++=++≥. ⑤整体解:例:已知a ,b 是正数,且3ab a b =++,求a b +的最小值.解析:22,322a b a b ab a b ++⎛⎫⎛⎫≤∴≥++ ⎪ ⎪⎝⎭⎝⎭,即()()21304a b a b +-+-≥,解得()62a b a b +≥+≤-舍去.一、判断题1.(2022·江西·贵溪市实验中学高二期末)当0,2x π⎛⎤∈⎥⎝⎦时,4sin sin x x +的最小值为4 ( )2.(2021·江西·贵溪市实验中学高二阶段练习)已知102x <<,则()12x x -的最大值为18( ) 二、单选题1.(2022·江西·高一阶段练习)当0x >时,92x x+的最小值为( ) A .3B .32C .D .2.(2022·湖南湖南·二模)函数()122y x x x =+>-+的最小值为( ) A .3B .2C .1D .03.(2022·湖南·高一阶段练习)已知0a >,0b >且2510a b +=,则ab 的最大值为( ) A .2B .5C .32D .524.(2022·新疆·乌苏市第一中学高一开学考试)下列函数,最小值为2的函数是( ) A .1y x x=+B .222y x x -=+C .3y x =+D .2y =高频考点一:利用基本不等式求最值①凑配法1.(2022·北京大兴·高一期末)当02x <<时,(2)x x -的最大值为( ) A .0B .1C .2D .42.(2022·山西·怀仁市第一中学校二模(文))函数413313y x x x ⎛⎫⎪⎝=>-⎭+的最小值为( ) A .8B .7C .6D .53.(2022·安徽省蚌埠第三中学高一开学考试)已知x >3,则对于43y x x =+-,下列说法正确的是( ) A .y 有最大值7B .y 有最小值7C .y 有最小值4D .y 有最大值44.(2022·江苏省天一中学高一期末)设实数x 满足1x >-,则函数41y x x =++的最小值为( ) A .3B .4C .5D .65.(2022·上海虹口·高一期末)已知04x <<,则()4x x -的最大值为______.②“1”的代入法1.(2022·河南·夏邑第一高级中学高二期末(文))已知x ,y 均为正数,若261x y+=,则当3x y +取得最小值时,x y +的值为( ) A .16B .4C .24D .122.(2022·安徽·高三阶段练习(文))已知0x >,0y >,22x y +=,则12x y+的最小值是( )A .1B .2C .4D .63.(2022·四川·泸县五中高二开学考试(文))已知,x y 为正实数,且2x y +=,则212x y+的最小值为__________.4.(2022·广西桂林·高一期末)已知0,0a b >>,若31a b +=,则31a b+的最小值是___________.5.(2022·天津·南开中学高一期末)已知110, 0, 4a b a b>>+=,则4a b +的最小值为_______________.③二次与二次(一次)商式1.(2022·全国·高三专题练习(理))若11x -<< ,则22222x x y x -+=-有( )A .最大值1-B .最小值1-C .最大值1D .最小值12.(2022·全国·高三专题练习)函数233(1)1x x y x x ++=<-+的最大值为( ) A .3 B .2 C .1 D .-13.(2022·江西南昌·高一期末)当2x >-时,函数2462++=+x x y x 的最小值为___________.4.(2022·上海·高三专题练习)若1x >,则函数211x x y x -+=-的最小值为___________.5.(2021·江西·宁冈中学高一阶段练习(理))()21147x x x x ->-+的最大值为______.6.(2022·全国·高三专题练习)求下列函数的最小值 (1)21(0)x x y x x ++=>;(2)226(1)1x x y x x ++=>-.④条件等式求最值1.(2022·陕西咸阳·高二期末(文))已知0x >,0y >,若28x y xy +=,则xy 的最小值是( )A B C .18D .142.(2022·全国·高三专题练习)已知0,0a b >>,且3ab a b =++,则a b +的最小值为( ) A .4B .8C .7D .63.(2022·江苏·高三专题练习)已知0a >,0b >且满足2a b ab +=,则2+a b 的最小值为( ) A .4B .6C .8D .104.(2022·安徽芜湖·高一期末)已知正数x ,y 满足8xy x y =++,则x y +的最小值为_________ 5.(2022·全国·高三专题练习)已知2,1a b >>,且满足21ab a b =++,则2a b +的最小值为_______. 6.(2022·重庆·高一期末)已知0x >,0y >,24xy x y =++,则x y +的最小值为______. 7.(2022·广东广州·高一期末)已知0a >,0b >,且3a b ab +=-,则a b +的最小值为______.高频考点二:利用基本不等式求参数值或取值范围1.(2022·全国·高三专题练习)当2x >时,不等式12+≥-x a x 恒成立,则实数a 的取值范围是( ) A .(],2-∞B .[)2,+∞C .[)4,+∞D .(],4-∞2.(2022·浙江·高三专题练习)若关于 x 的不等式220x ax -+>在区间[]1,5上恒成立,则a 的取值范围为( )A .()+∞B .(-∞C .(),3-∞D .27,5⎛⎫-∞ ⎪⎝⎭3.(2022·全国·高三专题练习)已知0a >,0b >,若不等式41ma b a b+≥+恒成立,则m 的最大值为( ) A .10B .12C .16D .94.(2022·全国·高三专题练习)已知x ,()0,y ∈+∞,且1x y +=,若不等式2221124x y xy m m ++>+恒成立,则实数m 的取值范围是( ) A .3,12⎛⎫- ⎪⎝⎭B .3,12⎡⎤-⎢⎥⎣⎦C .()2,1-D .()3,1,2⎛⎫-∞-⋃+∞ ⎪⎝⎭5.(2022·全国·高三专题练习)若对任意220,1xx a x x >≥++恒成立,则实数a 的取值范围是( )A .[1,)-+∞B .[3,)+∞C .2,3⎡⎫+∞⎪⎢⎣⎭D .(,1]-∞6.(2022·甘肃·无高二期末(文))已知正实数a ,b 满足191a b+=,若不等式2418a b x x m +≥-++-对任意的实数x 恒成立,则实数m 的取值范围是( ) A .[)3,+∞B .(],3-∞C .(],6-∞D .[)6,+∞7.(2022·全国·高三专题练习)若对任意0x >,231xa x x ≤++恒成立,则实数a 的取值范围是( ) A .1,5⎡⎫+∞⎪⎢⎣⎭B .1,5⎛⎫+∞ ⎪⎝⎭C .1,5⎛⎫-∞ ⎪⎝⎭D .1,5⎛⎤-∞ ⎥⎝⎦高频考点三:利用基本不等式解决实际问题1.(2022·北京市十一学校高二期末)某公司要建造一个长方体状的无盖箱子,其容积为48m 3,高为3m ,如果箱底每1m 2的造价为15元,箱壁每1m 2造价为12元,则箱子的最低总造价为( ) A .72元B .300元C .512元D .816元2.(2022·河南开封·高一期末)中国宋代的数学家秦九韶曾提出“三斜求积术”,即假设在平面内有一个三角形,边长分别为a ,b ,c ,三角形的面积S 可由公式S =p 为三角形周长的一半,这个公式也被称为海伦秦九韶公式,现有一个三角形的边长满足14a b +=,6c =,则此三角形面积的最大值为( )A .6B .C .12D .3.(2022·江苏常州·高一期末)2021年初,某地区甲、乙、丙三位经销商出售钢材的原价相同.受钢材进价普遍上涨的影响,甲、乙计划分两次提价,丙计划一次提价.设0p q <<,甲第一次提价%p ,第二次提价%q ;乙两次均提价%2p q+;丙一次性提价()%p q +.各经销商提价计划实施后,钢材售价由高到低的经销商依次为( ) A .乙、甲、丙 B .甲、乙、丙 C .乙、丙、甲D .丙、甲、乙4.(2022·全国·高三专题练习(文))已知k ∈R ,则“对任意,a b ∈R ,22a b kab +≥”是“k 2≤”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件5.(2022·河南·模拟预测(理))一家商店使用一架两臂不等长的天平称黄金.一位顾客到店里购买10g 黄金,售货员先将5g 的砝码放在天平左盘中,取出一些黄金放在天平右盘中使天平平衡;再将5g 的砝码放在天平右盘中,再取出一些黄金放在天平左盘中使天平平衡;最后将两次称得的黄金交给顾客.若顾客实际购得的黄金为g m ,则( ) A .10m >B .10m =C .10m <D .以上都有可能6.(2022·全国·高一)如图所示,将一矩形花坛ABCD 扩建为一个更大的矩形花坛AMPN ,要求点B 在AM 上,点D 在AN 上,且对角线MN 过点C ,已知4AB =米,3AD =米,当BM =_______时,矩形花坛AMPN 的面积最小.高频考点四:基本不等式等号不成立,优先对钩函数1.(2022·重庆南开中学模拟预测)已知命题p :“21,4,402x x ax ⎡⎤∃∈-+>⎢⎥⎣⎦”为真命题,则实数a 的取值范围是( ) A .4a < B .172a <C .133a <D .5a >2.(2022·浙江·高三专题练习)若不等式210x ax ++≥对一切10,2x ⎛⎤∈ ⎥⎝⎦恒成立,则a 的取值范围是( )A .0a ≥B .2a ≤-C .52a ≥-D .3a ≤-3.(2022·全国·高三专题练习)函数2y =)A .2B .52C .1D .不存在4.(2022·新疆·石河子第二中学高二阶段练习)已知函数4()f x x x =+,()2x g x a =+,若11,12x ⎡⎤∀∈⎢⎥⎣⎦,2[2,3]x ∃∈,使得()()12f x g x ,则实数a 的取值范围是( ) A .1,2⎡⎫+∞⎪⎢⎣⎭B .9,2⎡⎫+∞⎪⎢⎣⎭C .[3,)-+∞D .[1,)+∞5.(2022·全国·高二课时练习)函数()3421x xf x x x -=++在区间[]1,3上( )A0 B .有最大值为2491,最小值为0 CD .有最大值为2491,无最小值1.(2021·江苏·高考真题)已知奇函数()f x 是定义在R 上的单调函数,若正实数a ,b 满足()()240f a f b +-=则121a b++的最小值是( ) A .23B .43C .2D .42.(2021·全国·高考真题(文))下列函数中最小值为4的是( ) A .224y x x =++ B .4sin sin y x x=+ C .222x x y -=+D .4ln ln y x x=+3.(2021·天津·高考真题)若0 , 0a b >>,则21ab ab ++的最小值为____________. 4.(2021·江苏·高考真题)某化工厂引进一条先进生产线生产某种化工产品,其生产的总成本y 万元与年产量x 吨之间的函数关系可以近似地表示为22420005x y x =-+,已知此生产线的年产量最小为60吨,最大为110吨.(1)年产量为多少吨时,生产每吨产品的平均成本最低?并求最低平均成本;(2)若每吨产品的平均出厂价为24万元,且产品能全部售出,则年产量为多少吨时,可以获得最大利润?并求最大利润.一、单选题1.(2022·江西·赣州市赣县第三中学高一开学考试)下列说法正确的为( )A .12x x+≥ B .函数224x y += 4C .若0,x >则(2)x x -最大值为1D .已知3a >时,43+≥-a a 43=-a a 即4a =时,43+-a a 取得最小值8 2.(2022·福建·莆田一中高一期末)函数2455()()22x x f x x x -+=≥-有( ) A .最大值52 B .最小值52 C .最大值2 D .最小值23.(2022·河南·郏县第一高级中学高二开学考试(理))正实数ab 满足121a b+=,则()()24a b ++的最小值为( )A .16B .24C .32D .404.(2022·江西抚州·高二期末(文))若命题“对任意(),0x ∈-∞,使得2240x ax -+≥成立”是真命题,则实数a 的取值范围是( )A .[)2,-+∞B .[)2,+∞C .(],2-∞-D .(],2-∞5.(2022·河南·驻马店市基础教学研究室高二期末(理))中国大运河项目成功人选世界文化遗产名录,成为中国第46个世界遗产项目,随着对大运河的保护与开发,大运河已成为北京城市副中心的一张亮丽的名片,也成为众多旅游者的游览目的地.今有一旅游团乘游船从奥体公园码头出发顺流而下至漕运码头,又立即逆水返回奥体公园码头,已知游船在顺水中的速度为1V ,在逆水中的速度为()212V V V ≠,则游船此次行程的平均速度V 与122V V +的大小关系是( ) A .122V V V +<B .122V V V +≤C .122V V V +>D .122V V V += 6.(2022·浙江温州·二模)已知正数a ,b 和实数t 满足221a tab b ++=,若a b +存在最大值,则t 的取值范围是( )A .(],2-∞B .()2,-+∞C .(]2,2-D .[)2,+∞7.(2022·广东·高三阶段练习)在足球比赛中,球员在对方球门前的不同的位置起脚射门对球门的威胁是不同的,出球点对球门的张角越大,射门的命中率就越高.如图为室内5人制足球场示意图,设球场(矩形)长BC 大约为40米,宽AB 大约为20米,球门长PQ 大约为4米.在某场比赛中有一位球员欲在边线BC 上某点M 处射门(假设球贴地直线运行),为使得张角PMQ ∠最大,则BM 大约为( )(精确到1米)A .8米B .9米C .10米D .11米8.(2022·江苏无锡·模拟预测)已知实数a ,b 满足如下两个条件:(1)关于x 的方程2320x x ab --=有两个异号的实根;(2)211a b+=,若对于上述的一切实数a ,b ,不等式222a b m m +>+恒成立,则实数m 的取值范围是( )A .()4,2-B .()2,4-C .][(),42,-∞-⋃+∞D .][(),24,-∞-⋃+∞二、填空题9.(2022·陕西西安·高三阶段练习(文))已知0x >,0y >,334x y x y +--=.则x y +的取值范围为__________. 10.(2022·上海·二模)已知对()0,x ∀∈+∞,不等式1x m x>-恒成立,则实数m 的最大值是_________. 11.(2022·浙江·高三阶段练习)已知函数()29x f x x+=,()2log g x x a =+,若存在[]13,4x ∈,任意[]24,8x ∈,使得()()12f x g x ≥,则实数a 的取值范围是___________.12.(2022·安徽合肥·高一期末)如图所示,某农科院有一块直角梯形试验田ABCD ,其中//,AB CD AD AB ⊥.某研究小组计则在该试验田中截取一块矩形区域AGEH 试种新品种的西红柿,点E 在边BC 上,则该矩形区域的面积最大值为___________.三、解答题13.(2022·湖南·高一课时练习)(1)把36写成两个正数的积,当这两个正数取什么值时,它们的和最小? (2)把18写成两个正数的和,当这两个正数取什么值时,它们的积最大?14.(2022·辽宁朝阳·高一开学考试)如图,设矩形()ABCD AB AD >的周长为8cm ,将△ABC 沿AC 向△ADC 折叠,AB 折过去后交DC 于点P ,设AB xcm =,求ADP △面积的最大值及相应x 的值.15.(2022·贵州·赫章县教育研究室高一期末)已知关于x 的不等式220ax ax ++>的解集为R ,记实数a 的所有取值构成的集合为M .(1)求M ;(2)若0t >,对a M ∀∈,有245321a t t a --≤+-+,求t 的最小值.16.(2022·山西·怀仁市第一中学校高一期末)党中央国务院对节能减排高度重视,各地区认真贯彻党中央国务院关于“十三五”节能减排的决策部署,把节能减排作为转换发展方式,新能源汽车环保节能以电代油,减少排放,既符合我国国情,也代表了汽车产业发展的方向.为了响应国家节能减排的号召,2022年某企业计划引进新能源汽车生产设备.通过市场分析:全年需投入固定成本2500万元.每生产x (百辆)新能源汽车,需另投入成本()C x 万元,且()210500,040,64009016300,40.x x x C x x x x ⎧+<<⎪=⎨+-≥⎪⎩由市场调研知,每辆车售价9万元,且生产的车辆当年能全部销售完.(1)请写出2022年的利润()L x (万元)关于年产量x (百辆)的函数关系式;(利润=售价-成本)(2)当2022年的总产量为多少百辆时,企业所获利润最大?并求出最大利润.。

专题:基本不等式常见题型归纳

专题:基本不等式常见题型归纳

专题函数常见题型归纳三个不等式关系:(1)a ,b ∈R ,a 2+b 2≥2ab ,当且仅当a =b 时取等号. (2)a ,b ∈R +,a +b ≥2ab ,当且仅当a =b 时取等号. (3)a ,b ∈R ,a 2+b 22≤(a +b2)2,当且仅当a =b 时取等号.上述三个不等关系揭示了a 2+b 2,ab ,a +b 三者间的不等关系. 其中,基本不等式及其变形:a ,b ∈R +,a +b ≥2ab (或ab ≤(a +b2)2),当且仅当a=b 时取等号,所以当和为定值时,可求积的最值;当积为定值是,可求和的最值.利用基本不等式求最值:一正、二定、三等号. 【题型一】利用拼凑法构造不等关系【典例1】(扬州市2015—2016学年度第一学期期末·11)已知1>>b a 且7log 3log 2=+a b b a ,则112-+b a 的最小值为 .【解析】∵1>>b a 且7log 3log 2=+a b b a ∴32log 7log a a b b +=,解得1log 2a b =或log 3a b =,∵1>>b a ∴1log 2a b =,即2a b =.2111111a ab a +=-++--13≥=. 练习:1.(南京市、盐城市2015届高三年级第一次模拟·10)若实数满足,且,则的最小值为 .解析:由log 2x+log 2y=1可得log 2xy=1=log 22,则有xy=2,那么==(x -y )+≥2=4,当且仅当(x -y )=,即x=+1,y=-1时等号成立,故的最小值为4.2.(苏北四市(徐州、淮安、连云港、宿迁)2017届高三上学期期末)若实数,x y 满足133(0)2xy x x +=<<,则313x y +-的最小值为 .3.(无锡市2017届高三上学期期末)已知0,0,2a b c >>>,且2a b +=,则2ac c c b ab +-+的最小值为 . 【典例2】(南京市2015届高三年级第三次模拟·12)已知x ,y 为正实数,则4x 4x +y +yx +y 的最大值为 .解析:由于4x 4x +y +y x +y =))(4()4()(4y x y x y x y y x x +++++=22225484y xy x yxy x ++++ =1+22543y xy x xy ++=1+345x y y x ⋅++≤1+5423+⋅xy y x =43,当且仅当4y x =xy,即y=2x 时等号成立. 【典例3】若正数a 、b 满足3ab a b =++,则a b +的最小值为__________. 解析:由,a b R +∈,得223(),()4()1202a b ab a b a b a b +=++≤+-+-≥,解得6a b +≥(当且仅当a b =且3ab a b =++,即3a b ==时,取等号).变式:1.若,a b R +∈,且满足22a b a b +=+,则a b +的最大值为_________.解析:因为,a b R +∈,所以由22222()2a b a b a b a b a b ++=+⇒+=+≥,2()a b +-2()0a b +≤,解得02a b <+≤(当且仅当a b =且22a b a b +=+,即1a b ==时,取等号).2.设0,0>>y x ,822=++xy y x ,则y x 2+的最小值为_______ 43.设R y x ∈,,1422=++xy y x ,则y x +2的最大值为_________10524.(苏北四市(淮安、宿迁、连云港、徐州)2017届高三上学期期中)已知正数a ,b 满足195a b+=,则ab 的最小值为 【题型二】含条件的最值求法【典例4】(苏州市2017届高三上期末调研测试)已知正数y x ,满足1=+y x ,则1124+++y x 的最小值为 练习1.(江苏省镇江市高三数学期末·14)已知正数y x ,满足111=+yx ,则1914-+-y yx x 的最小值为 . 解析:对于正数x ,y ,由于x 1+y 1=1,则知x>1,y>1,那么14-x x +14-y y =(14-x x +14-y y )(1+1-x 1-y 1)=(14-x x +14-y y )(xx 1-+y y 1-)≥(x x x x 114-⋅-+yy y y 114-⋅-)2=25,当且仅当14-x x ·y y 1-=14-y y ·xx 1-时等号成立.2.(2013~2014学年度苏锡常镇四市高三教学情况调查(一)·11)已知正数满足,则的最小值为 .解析:,当且仅当时,取等号.故答案为:9.3.(南通市2015届高三第一次调研测试·12)已知函数(0)xy a b b =+>的图像经过点(1,3)P ,如下图所示,则411a b+-的最小值为 .解析:由题可得a+b=3,且a>1,那么14-a +b 1=21(a -1+b )(14-a +b 1)=21(4+b a 1-+14-a b +1)≥21(2141-⋅-a b b a +5)=29,当且仅当b a 1-=14-a b 时等号成立. 4.(江苏省苏北四市2015届高三第一次模拟考试·12)己知a ,b 为正数,且直线 与直线 互相平行,则2a+3b 的最小值为________.【解析】由于直线ax+by -6=0与直线2x+(b -3)y+5=0互相平行,则有=,即3a+2b=ab ,那么2a+3b=(2a+3b )·=(2a+3b )(+)=++13≥2+13=25,当且仅当=,即a=b 时等号成立.5.常数a ,b 和正变量x ,y 满足ab =16,a x +2b y =12.若x +2y 的最小值为64,则a b=________.答案:64;(考查基本不等式的应用).6.已知正实数,a b 满足()()12122a b b b a a +=++,则ab 的最大值为 .答案:【题型三】代入消元法【典例5】(苏州市2016届高三调研测试·14)已知14ab =,,(0,1)a b ∈,则1211ab+--的最小值为 .解析:由14ab =得14a b = ,2221211424122711411451451a b b b b b b b b b b b +---+--=+==+---+--+- 令71b t -=则22714949111418451427183427b t b b t t t t-+=+=-≥+-+--+-+-当且仅当2t =即214等号成立.练习1.(江苏省扬州市2015届高三上学期期末·12)设实数x ,y 满足x 2+2xy -1=0,则x 2+y 2的最小值是 .解析:由x 2+2xy -1=0可得y=212x x -,那么x 2+y 2= x 2+222(1)4x x -=54x 2+214x -12≥21212,当且仅当54x 2=214x ,即x 4=15时等号成立.2.(苏州市2014届高三调研测试·13)已知正实数x ,y 满足,则x + y 的最小值为 . 解析:∵正实数x ,y 满足xy+2x+y=4,∴(0<x <2).∴x+y=x+==(x+1)+﹣3,当且仅当时取等号.∴x+y 的最小值为.故答案为:.3.(南通市2014届高三第三次调研测试·9)已知正实数,x y 满足(1)(1)16x y -+=,则x y +的最小值为 .解析:∵正实数x ,y 满足(x ﹣1)(y+1)=16,∴1116++=y x ,∴x+y=()8116121116=+⋅+≥+++y y y y ,当且仅当y=3,(x=5)时取等号.∴x+y 的最小值为8.故答案为:8.4.(扬州市2017届高三上学期期中)若2,0>>b a ,且3=+b a ,则使得214-+b a 取得最小值的实数a = 。

专题2.2 基本不等式【九大题型】(解析版)

专题2.2 基本不等式【九大题型】(解析版)
vQ
2+2
2
g 1 +
&
>
+
2
2+2
%
2
2
Qe
2+2
2
2
> 1+
>
+
%
2
+
Q
2
2
Q
!"#u(1 + %)(1 + %) < 1 +
vQ 1 +
2+2
%
2

C.
3
+,
2
> 1+
+
%
2
2
+
%
2
2
Q
> (1 + %)(1 + %).
>?@ 1 AB!"#
1. AB!"#
!"#
CD
" 7834
EF!"#
a2+b2≥2ab(a,bGR)
HIJH“a=b”
KL“=”

!"#
a+b
HIJH“a=b”
2
KL“=”
abM
(a>0,b>0)
a+b
2

NOP aQb $RSTU Q abNOP aQb $VWTU X
!"#Y.
ABP $RSTU !*Z[\$VWTU X
2+5
1
Z BQ 2 +2 > 0Qv2 +2 + 2+2 ≥ 2 (2 + 2) ⋅
" !78Q B !
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题:基本不等式
基本不等式求最值 利用基本不等式求最值:一正、二定、三等号.
三个不等式关系:
(1)a ,b ∈R ,a 2+b 2≥2ab ,当且仅当a =b 时取等号. (2)a ,b ∈R +
,a +b ≥2ab ,当且仅当a =b 时取等号. (3)a ,b ∈R ,a 2+b 22≤(a +b 2)2
,当且仅当a =b 时取等号.
上述三个不等关系揭示了a 2+b 2 ,ab ,a +b 三者间的不等关系.
其中,基本不等式及其变形:a ,b ∈R +
,a +b ≥2ab (或ab ≤(a +b 2)2),当且仅当a =b 时取等号,所以当和为定值时,可求积的最值;当积为定值是,可求和的最值. 【题型一】利用拼凑法构造不等关系
【典例1】已知1>>b a 且7log 3log 2=+a b b a ,则
1
12
-+b a 的最小值为 .
练习:1.若实数满足,且,则的最小值为 .
2.若实数,x y 满足1
33(0)2
xy x x +=<<
,则313x y +
-的最小值为 . 3.已知0,0,2a b c >>>,且2a b +=
,则
2ac c c b ab +-+
的最小值为 . 【典例2】已知x ,y 为正实数,则4x 4x +y +y
x +y 的最大值为 .
【典例3】若正数a 、b 满足3ab a b =++,则a b +的最小值为__________.
变式:1.若,a b R +∈,且满足22
a b a b +=+,则a b +的最大值为_________.
2.设0,0>>y x ,822=++xy y x ,则y x 2+的最小值为_______
3.设R y x ∈,,142
2
=++xy y x ,则y x +2的最大值为_________
4.已知正数a ,b
满足
19
5a b
+=,则ab 的最小值为 ,x y 0x y >>22log log 1x y +=22
x y x y
+-
【题型二】含条件的最值求法
【典例4】已知正数y x ,满足1=+y x ,则1
1
24+++y x 的最小值为
练习1.已知正数y x ,满足111=+y
x ,则1914-+-y y
x x 的最小值为 .
2.已知正数满足,则的最小值为 .
3.已知函数(0)x
y a b b =+>的图像经过点(1,3)P ,如下图所示,则41
1a b
+-的最小值为 .
4.己知a ,b 为正数,且直线 与直线 互相平行,则2a+3b 的最小值为________.
5.常数a ,b 和正变量x ,y 满足ab =16,a x +2b y =1
2.若x +2y 的最小值为64,则a b =________.
6.已知正实数,a b 满足()()
12
122a b b b a a +=++,则ab 的最大值为 .
,x y 22x y +=8x y
xy
+60ax by +-=2(3)50x b y +-+=
【题型三】代入消元法
【典例5】(市2016届高三调研测试·14)已知14
ab =,,(0,1)a b ∈,则
1211a
b
+
--的最小
值为 .
练习1.设实数x ,y 满足x 2+2xy -1=0,则x 2+y 2的最小值是 .
2.已知正实数x ,y 满足,则x + y 的最小
值为 .
3.已知正实数,x y 满足(1)(1)16x y -+=,则x y +的最小值为 .
4.若2,0>>b a ,且3=+b a ,则使得2
1
4-+
b a 取得最小值的实数a = 。

5.设实数x 、y 满足x 2
+2xy -1=0,则x +y 的取值围是_________
6.已知R z y x ∈,,,且1=++z y x ,32
2
2
=++z y x ,求xyz 的最大值为______
【题型四】换元法
【典例6】已知函数f (x )=ax 2+x -b (a ,b 均为正数),不等式f (x )>0的解集记为P ,集合Q ={x |-2-t <x <-2+t }.若对于任意正数t ,P ∩Q ≠,则1a -1
b 的最大值是 .
2.已知正数a ,b ,c 满足b+c ≥a ,则+的最小值为 .
练习1.若实数x ,y 满足2x 2+xy -y 2=1,则的最大值为 .
2.设是正实数,且,则的最小值是____.
3..若实数x ,y 满足2x 2+xy -y 2=1,则x -2y
5x 2-2xy +2y 2
的最大值为

24
22
2522x y
x xy y --+,x y 1x y +=22
21
x y x y +++
4.若实数满足
,当
取得最大值时,
的值为.【题型五】判别式法
【典例7】已知正实数x,y满足
24
310
x y
x y
+++=,则xy的取值围为.
练习1.若正实数满足
,则
的最大值为.
2.设R y x ∈,,132
2
=++xy y x ,则y x +2的最大值为________
变式1.在平面直角坐标系xOy 中,设点(1 0)A ,,(0 1)B ,,( )C a b ,,( )D c d ,,若不等式
2(2)()()CD m OC OD m OC OB OD OA -⋅+⋅⋅⋅u u u r u u u r u u u r u u u r u u u r u u u r u u r
≥对任意实数a b c d ,,,都成立,
则实数m 的最大值是 .
【方法技巧】不等式恒成立常用的方法有判别式法、分离参数法、换主元法.判别式法:将所求问题可转化为二次不等式,则可考虑应用判别式法解题。

一般地,对于二次函数
),0()(2R x a c bx ax x f ∈≠++=,有
1)0)(>x f 对R x ∈恒成立⎩⎨
⎧<∆>⇔00a 2)0)(<x f 对R x ∈恒成立.00

⎨⎧<∆<⇔a 分离变量法:若所给的不等式能通过恒等变形使参数与主元分离于不等式两端,从而问题转化为求主元函数的最值,进而求出参数围。

这种方法本质也还是求最值。

一般地有:
1)为参数)a a g x f )(()(<恒成立max )()(x f a g >⇔ 2)为参数)a a g x f )(()(>恒成立max )()(x f a g <⇔
确定主元法:如果把已知取值围的变量作为主元,把要求取值围的变量看作参数,则可简化解题过程。

2.设二次函数()c bx ax x f ++=2
(c b a ,,为常数)的导函数为()x f
'
.对任意R x ∈,
不等式()()x f x f '
≥恒成立,则2
22
c
a b +的最大值为 .
【题型六】分离参数法
【典例8】已知x >0,y >0,若不等式x 3+y 3≥kxy (x+y )恒成立,则实数k 的最大值为_______ .
练习1.已知对满足42x y xy ++=的任意正实数,x y ,都有
22210x xy y ax ay ++--+≥,则实数a 的取值围为 .
2.若不等式x2+2xy≤a(x2+y2)对于一切正数x,y恒成立,则实数a的最小值为.。

相关文档
最新文档