多因素时间序列的灰色预测模型
灰色预测模型公式
灰色预测模型公式灰色预测模型是一种基于历史数据和现有数据的预测方法,它可以用来预测未来某个事件或指标的发展趋势。
灰色预测模型的核心思想是利用系统自身的信息和规律,通过建立灰色微分方程来进行预测。
灰色预测模型的公式可以表示为:$$\hat{X}_{0}^{(k)} = (X_{0}^{(1)} + X_{0}^{(2)} + ... + X_{0}^{(k)}) / k$$$$\hat{X}_{i}^{(k)} = (X_{0}^{(1)} + X_{0}^{(2)} + ... + X_{0}^{(k)}) / k$$$$\hat{X}_{i+1}^{(1)} = aX_{i}^{(1)} + b$$$$\hat{X}_{i+1}^{(k+1)} = aX_{i}^{(k+1)} + b$$其中,$X_{0}^{(k)}$表示观测数据的累加生成序列,$\hat{X}_{i}^{(k)}$表示预测值,$a$和$b$为待确定的系数。
灰色预测模型的核心思想是将数据分为两个部分:系统的发展规律部分和随机波动部分。
系统的发展规律部分可以通过灰色微分方程进行建模和预测,而随机波动部分则通过随机项来表示。
灰色预测模型的建模步骤如下:1. 数据预处理:对原始数据进行平滑处理,消除随机波动的影响,得到累加生成序列。
2. 确定发展规律:根据累加生成序列,建立灰色微分方程,估计系统的发展规律。
3. 模型参数估计:通过最小二乘法估计模型的参数,确定$a$和$b$的值。
4. 模型检验和优化:对模型进行检验和优化,确保预测结果的准确性和可靠性。
5. 模型预测:利用建立好的灰色预测模型,对未来的数据进行预测。
灰色预测模型在实际应用中具有广泛的应用价值。
它可以用来预测各种经济指标、环境数据、自然灾害等,为决策提供科学依据。
同时,灰色预测模型还可以用于评估和分析系统的可持续发展能力,帮助企业和机构合理规划和管理资源。
灰色预测模型是一种基于历史数据和现有数据的预测方法,它通过利用系统自身的信息和规律,建立灰色微分方程来进行预测。
灰色预测模型及其应用
x(0) {x(0) (1), x(0) (2), , x(0) (N ) } {6, 3, 8, 10, 7}
4.2 灰色系统的模型
对数据累加
x(1) (1) x(0) (1) 6, x(1) (2) x(0) (1) x(0) (2) 6 3 9, x(1) (3) x(0) (1) x(0) (2) x(0) (3) 6 3+8 17, x(1) (4) x(0) (1) x(0) (2) x(0) (3) x(0) (4) 6 3+8+10 27, x(1) (5) x(0) (1) x(0) (2) x(0) (3) x(0) (4) x(0) (5)
第四章 灰色预测模型及其应用
灰色预测模型(Gray Forecast Model)是通过少量 的、不完全的信息,建立数学模型并做出预测的 一种预测方法.当我们应用运筹学的思想方法解决 实际问题,制定发展战略和政策、进行重大问题 的决策时,都必须对未来进行科学的预测. 预测是 根据客观事物的过去和现在的发展规律,借助于 科学的方法对其未来的发展趋势和状况进行描述 和分析,并形成科学的假设和判断.
(5)系统预测. 通过对系统行为特征指标建立一组相互关联的灰 色预测模型,预测系统中众多变量间的相互协调关系的变化。
数学建模-灰色预测模型(讲解
2 灰色系统的模型
在灰色系统理论中,把一切随机变量都看作灰色数,
即使在指定范围内变化的所有白色数的全体,对灰数处理 主要是利用数据处理的方法去寻求数据间的内在规律,通 过对已知数据列中的数据进行处理而产生新的数据列,以 此来研究寻求数据的规律性,这种方法称为数据的生成。
得到原始数据序列
7.3 销售额预测
注意到一阶常微分方程是导出GM(1,1)模型的桥梁,在我 们应用GM(1,1)模型于实际问题预测时,不必求解一阶常 微分方程。
7.2 灰色系统的模型
4.GM(1,1)的建模步骤 综上所述,GM(1,1)的建模步骤如下:
销售额预测
7.3 销售额预测
随着生产的发展、消费的扩大,市场需求通常总是 增加的,一个商店、一个地区的销售额常常呈增长趋 势. 因此,这些数据符合建立灰色预测模型的要求。
或称相减生成,它是指后前两个数据之差,如上例中
7.2 灰色系统的模型
x(1) (5) x(1) (5) x(1) (4) 34 27 7, x(1) (4) x(1) (4) x(1) (3) 27 17 10, x(1) (3) x(1) (3) x(1) (2) 17 9 8, x(1) (2) x(1) (2) x(1) (1) 9 6 3, x(1) (1) x(1) (1) x(1) (0) 6 0 6. 归纳上面的式子得到如下结果:一次后减
1 灰色系统的定义和特点 2 灰色系统的模型 3 Sars 疫情 4 销售额预测 5 城市道路交通事故次数的灰色预测 6 城市火灾发生次数的灰色预测 7灾变与异常值预测
多因素时间序列的灰色预测模型
( ( ) ( 一 1 2 … , 表示 影 响事物 发展 的单 因素 时 间序列 . 0 n )i ) , , )
1 1 单 因素 时 间序 列 的 D M ( 。 ) 型 . G 11 模
对 于单 因素 原始 时间序 列 { 0} X( ( ) 一 1 2 … , ) 根据 灰 色系统 理论 建模 方 法 , D ,, P , 得 GM( , ) 1 1 模
Vo . 9 NO 2 13 .
A pr 2 7 . 00
多 因素 时间序列 的灰色预测模 型
苏变 萍 , 曹艳 平 , 王 婷
( 安 建 筑 科 技 大学 理 学 院 , 西 西 安 7 0 5 ) 西 陕 10 5
摘
要 : 于 传 统 的 单 因 素 时 间 序 列 预 测 法 在 实 际 应 用 中 的不 足 之 处 , 出 采 用 灰 色 D 对 提 GM ( , ) 型 和 多 元 11模
维普资讯
20 9
西
安
建
筑
科
技
大
学
学
报( 自然 科学 版 )
第3 9卷
D GM( , ) 型计 算 出 t 11 模 时刻 的预测值 . I Ⅱ 为估 计参 数 ( 一 0 1 2 … , ) i , ,, p .
参 数 a( 一 0 1 2 … , 的确 定 : i , , , ) 在 获得历 史 观测数 据 y t 1 、 ( 一 2 、 ( 一 )y t ) ……y t ( — ) 和 ( 一 1 、 ( 一2 、 … (一 ) ≤ £ ) £ ) … £ (
究 与 比较 后 , 采用 多元 回归 的原理建 立 多 因素时 间序列 的灰 色预 测模 型 :
灰色预测模型
灰色系统模型(Grey Model,GM)一:解决的关键问题 (所谓灰色系统是指部分信息已知而部分信息未知的系统,灰色系统所要考察和研究的是对信息不完备的系统,通过已知信息来研究和预测未知领域从而达到了解整个系统的目的)灰色系统模型作为一种预测方法广泛应用于工程控制,经济管理,社会系统等众多领域。
二:GM(1,1)模型(一):对原始序列累加处理一次累加生产序列②(即1-AGO序列),表示为其中,一次累加序列(1)X 的第k 项由原序列的前k 项和产生,即: 由(1)X 的相邻项平均得到(1)X 的紧邻均值生成序列(1)z ,表示为:根据上述序列,有灰色系统模型GM(1,1)的基本形式:(二)构造GM(1,1)模型方程组的矩阵形式,并求解参数 GM(1,1)模型的微分方程基本形式:(三)求的时间响应序列,累减得到原序列的预测值(四)模型检验残差的均值、方差分别为:21S C S 称为均方差比值,对于给定的00C ,当0C C 时,称模型为均方差比合格模型;1(()0.6745)p p k S 称为小误差概率,对于给定的00P ,当0P P 时,称模型为小误差概率合格模型。
一般均方差比值C 越小越好(因为C 小说明S 小,1S 大,即残差方差小,原始数据方差大,说明残差比较集中,摆动幅度小,原始数据比较分散,摆动幅度大,所以模拟效果好,要求2S 与1S 相比尽可能小),以及小误差概率p 越大越好,给定000,,,C p 的一组取值,就确定了检验模型模拟精度的一个等级,常用的精度等级见表1。
软件DPS 的分析结果也提供了C 、p 的检验结果。
(五)残差修正模型(六)建立新陈代谢GM(1,1)进行动态预测在实际建模过程中,原始数据序列的数据不一定全部用来建模。
我们在原始数据序列中取出一部分数据,就可以建立一个模型。
一般说来,取不同的数据,建立的模型也不一样,即使都建立同类的GM(1,1)模型,选择不同的数据,参数a,b的值也不一样。
灰色预测模型
泰山教育版权所有 淘宝ID:liuxingma123
累加生成简介
累加生成
累加生成,即通过数列间各时刻数据的依个累加以 得到新的数据与数列.累加前的数列称原始数列,累加后 的数列称为生成数列.累加生成是使灰色过程由灰变白 的一种方法,它在灰色系统理论中占有极其重要地位,通 过累加生成可以看出灰量积累过程的发展态势,使离乱 的原始数据中蕴含的积分特性或规律加以显化.累加生 成是对原始数据列中各时刻的数据依次累加,从而生成 新的序列的一种手段.
由于
∆t
涉及到累加列 x(1)
的两个时刻的值,因此,x(1) (i)
取前后两个时刻的平均代替更为合理,即将 x(i) (i) 替换为
1 [x(i) (i) + x(i) (i −1)], (i = 2, 3,..., N ). 2 x(=i) 1 [x(i) (i) + x(i) (i −1)],=(i 2, 3,..., N ).
泰山教育版权所有 淘宝ID:liuxingma123
灰色系统理论简介
灰色系统理论是由华中理工大学邓聚龙教授于 1982年提出并加以发展的。二十几年来,引起了不 少国内外学者的关注,得到了长足的发展。目前, 在我国已经成为社会、经济、科学技术在等诸多领 域进行预测、决策、评估、规划控制、系统分析与 建模的重要方法之一。特别是它对时间序列短、统 计数据少、信息不完全系统的分析与建模,具有独 特的功效,因此得到了广泛的应用.
泰山教育版权所有 淘宝ID:liuxingma123
灰色系统理论简介
灰色系统理论是研究解决灰色系统分析、建模、 预测、决策和控制的理论.灰色预测是对灰色系统 所做的预测.目前常用的一些预测方法(如回归分 析等),需要较大的样本.若样本较小,常造成较 大误差,使预测目标失效.灰色预测模型所需建模 信息少,运算方便,建模精度高,在各种预测领 域都有着广泛的应用,是处理小样本预测问题的 有效工具.
灰色预测模型理论及其应用
灰色预测模型理论及其应用灰色系统理论认为对既含有已知信息又含有未知或非确定信息的系统进行预测,就是对在一定方位内变化的、与时间有关的灰色过程的预测. 尽管过程中所显示的现象是随机的、杂乱无章的,但毕竟是有序的、有界的,因此这一数据集合具备潜在的规律,灰色预测就是利用这种规律建立灰色模型对灰色系统进行预测.灰色预测模型只需要较少的观测数据即可,这和时间序列分析,多元回归分析等需要较多数据的统计模型不一样. 因此,对于只有少量观测数据的项目来说,灰色预测是一种有用的工具.本文主要围绕灰色预测GM(1,1)模型及其应用进行展开。
一、灰色系统及灰色预测的概念1.1灰色系统灰色系统产生于控制理论的研究中。
若一个系统的内部特征是完全已知的,即系统的信息是充足完全的,我们称之为白色系统。
若一个系统的内部信息是一无所知,一团漆黑,只能从它同外部的联系来观测研究,这种系统便是黑色系统。
灰色系统介于二者之间,灰色系统的一部分信息是已知的,一部分是未知的。
区别白色和灰色系统的重要标志是系统各因素间是否有确定的关系。
特点:灰色系统理论以“部分信息已知、部分信息未知”的“小样本”、“贫信息”不确定型系统的研究对象。
1.2灰色预测灰色系统分析方法是通过鉴别系统因素之间发展趋势的相似或相异程度,即进行关联度分析,并通过对原始数据的生成处理来寻求系统变动的规律。
生成数据序列有较强的规律性,可以用它来建立相应的微分方程模型,从而预测事物未来的发展趋势和未来状态。
灰色预测是用灰色模型GM(1,1)来进行定量分析的,通常分为以下几类:(1) 灰色时间序列预测。
用等时距观测到的反映预测对象特征的一系列数量(如产量、销量、人口数量、存款数量、利率等)构造灰色预测模型,预测未来某一时刻的特征量,或者达到某特征量的时间。
(2) 畸变预测(灾变预测)。
通过模型预测异常值出现的时刻,预测异常值什么时候出现在特定时区内。
(3) 波形预测,或称为拓扑预测,它是通过灰色模型预测事物未来变动的轨迹。
灰色模型原理
灰色系统理论是由我国学者邓聚龙教授于1982年创立的一门横断面大、渗透性强、应用面极广的边缘学科。
它以“部分信息已知,部分信息未知”的“小样本”、“贫信息”不确定性系统为研究对象,主要通过对“部分”已知信息的生成、开发,提取有价值的信息,实现对系统运行规律的正确认识和有效控制。
如人口系统涉及因素太多,具有明显的灰色性,适宜采用灰色模型去发掘和认识其原始时间序列综合灰色量所包涵的内在规律。
下面以灰色模型中应用广泛的GM(l ,l)模型为例,介绍灰色建模方法设)0(X = [)0(x (1), )0(x (2), …, )0(x (n)]为系统输出的非负原始数据序列,对序列)0(X 进行一阶累加生成,得生成序列)1(X ,即)()1(k x =)(1)0(i x ki ∑= (k = 1, 2, …, n)GM(1, 1)预测模型是一阶单变量的灰色微分方程动态模型)()0(k x + )()1(k az = b (k = 1, 2, …, n) (1)其中)()1(k z 为)()1(k x 的紧邻均值生成,即)()1(k z = 0.5[)()1(k x +)1()1(-k x ],式(1)白化方程形式为:b ax dtdx =+)1()1( 其中a ,b 为待定系数,分别称之为发展系数和灰色作用量,a 的有效区间是(-2, 2)。
应用最小二乘法可经下式求得:aˆ = T b a ),(= n T T Y B B B ⋅⋅-1)( 其中 B =⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+--+-+-111)),()1((2/1)),3()2((2/1 )),2()1((2/1)1()1()1()1()1()1( n x n x x x x x n Y = [)0(x (2), )0(x (3), …, )0(x (n)] 方程的解即时间响应函数为⎪⎩⎪⎨⎧-+=++⋅-=+-)(ˆ)1(ˆ)1(ˆ))1(()1(ˆ)1()1()0()0()1(k x k x k xa b e a b x k x ak模型检验为确保所建灰色模型有较高的精度应用于预测实践,可用残差进行检验:(1) 求出)()0(k x 与)(ˆ)0(k x之残差)(k e 、相对误差k ∆和平均相对误差∆: )(ˆ)()()0()0(k x k x k e -=, %100)()()0(⨯=∆k x k e k , ∑=∆=∆n k k n 11 (2) 求出原始数据平均值x ,残差平均值e :x = ∑=n k x n 1)0(1(k), e = )(112)0(∑=-n k k e n (3) 求出原始数据方差21s 与残差方差22s 的均方差比值C 和小误差概率P :21s = ∑=-n k x k x n 12)0(])([1, 22)0(22])([11e k e n s n k --=∑= C =2s /1s , p = P{e k e -)()0( < 0.67451s }通常)(k e 、k ∆、C 值越小,p 值越大,则模型精度越好。
灰色模型
灰色预测模型灰色预测是就灰色系统所做的预测. 所谓灰色系统是介于白色系统和黑箱系统之间的过渡系统,其具体的含义是:如果某一系统的全部信息已知为白色系统,全部信息未知为黑箱系统,部分信息已知,部分信息未知,那么这一系统就是灰箱系统. 一般地说,社会系统、经济系统、生态系统都是灰色系统.灰色系统理论认为对既含有已知信息又含有未知或非确定信息的系统进行预测,就是对在一定方位内变化的、与时间有关的灰色过程的预测. 尽管过程中所显示的现象是随机的、杂乱无章的,但毕竟是有序的、有界的,因此这一数据集合具备潜在的规律,灰色预测就是利用这种规律建立灰色模型对灰色系统进行预测.灰色预测模型只需要较少的观测数据即可,这和时间序列分析,多元回归分析等需要较多数据的统计模型不一样. 因此,对于只有少量观测数据的项目来说,灰色预测是一种有用的工具.一、GM(1,1)模型灰色系统理论是邓聚龙教授在1981年提出来的,是一种对含有不确定因素系统进行预测的方法. 通过鉴别系统因素之间发展趋势的相异程度,进行关联分析,并通过对原始数据进行生成处理来寻找系统的变化规律,生成较强规律性数据序列,然后建立相应微分方程模型,从而预测事物未来的发展趋势和未来状态. 目前使用最广泛的灰色预测模型是关于数列预测的一个变量、一阶微分的GM(1,1)模型.GM(1,1)模型是基于灰色系统的理论思想,将离散变量连续化,用微分方程代替差分方程,按时间累加后所形成的新的时间序列呈现的规律可用一阶线性微分方程的解来逼近,用生成数序列代替原始时间序列,弱化原始时间序列的随机性,这样可以对变化过程作较长时间的描述,进而建立微分方程形式的模型. 其建模的实质是建立微分方程的系数,将时间序列转化为微分方程,通过灰色微分方程可以建立抽象系统的发展模型. 经证明,经一阶线性微分方程的解逼近所揭示的原始时间数列呈指数变化规律时,灰色预测GM(1,1)模型的预测将是非常成功的.1.1 GM(1,1)模型的建立灰色理论认为一切随机量都是在一定范围内、一定时间段上变化的灰色量及灰色过程. 数据处理不去寻找其统计规律和概率分布, 而是对原始数据作一定处理后, 使其成为有规律的时间序列数据, 在此基础上建立数学模型.GM(1,1)模型是指一阶,一个变量的微分方案预测模型,是一阶单序列的线性动态模型,用于时间序列预测的离散形式的微分方程模型.设时间序列()0X 有n 个观察值,()()()()()()(){}00001,2,,X x x x n =,为了使其成为有规律的时间序列数据,对其作一次累加生成运算,即令()()()()101tn xt x n ==∑从而得到新的生成数列()1X ,()()()()()()(){}11111,2,,X x x x n =,新的生成数列()1X 一般近似地服从指数规律. 则生成的离散形式的微分方程具体的形式为dxax u dt+= 即表示变量对于时间的一阶微分方程是连续的. 求解上述微分方程,解为(1)()a t u x t ce a--=+当t =1时,()(1)x t x =,即(1)uc x a=-,则可根据上述公式得到离散形式微分方程的具体形式为()()()11a t u u x t x e a a --⎛⎫=-+ ⎪⎝⎭其中,ax 项中的x 为dxdt的背景值,也称初始值;a ,u 是待识别的灰色参数,a 为发展系数,反映x 的发展趋势;u 为灰色作用量,反映数据间的变化关系.按白化导数定义有0()()limt dx x t t x t dt t→+-= 显然,当时间密化值定义为1时,当1t →时,则上式可记为1lim(()())t dxx t t x t dt→=+- 这表明dxdt是一次累减生成的,因此该式可以改写为 (1)(1)(1)()dxx t x t dt=+- 当t 足够小时,变量x 从()x t 到()x t t +是不会出现突变的,所以取()x t 与()x t t +的平均值作为当t 足够小时的背景值,即(1)(1)(1)1()(1)2x x t x t ⎡⎤=++⎣⎦将其值带入式子,整理得(0)(1)(1)1(1)()(1)2x t a x t x t u ⎡⎤+=-+++⎣⎦ 由其离散形式可得到如下矩阵:(1)(1)(0)(1)(1)(0)(0)(1)(1)1(1)(2)2(2)1(2)(3)(3)2()1(1)()2x x x x x x a u x n x n x n ⎛⎫⎡⎤-+ ⎪⎣⎦⎛⎫ ⎪ ⎪ ⎪⎡⎤-+ ⎪⎣⎦ ⎪=+ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭ ⎪⎡⎤--+ ⎪⎣⎦⎝⎭令 (0)(0)(0)(2),(3),,()TY x x x n ⎡⎤=⎣⎦(1)(1)(1)(1)(1)(1)11(1)(2)211(2)(3)21(1)()12x x x x B x n x n ⎛⎫⎡⎤-+ ⎪⎣⎦ ⎪ ⎪⎡⎤-+⎣⎦ ⎪= ⎪ ⎪ ⎪⎡⎤--+ ⎪⎣⎦⎝⎭()Ta u α=称Y 为数据向量,B 为数据矩阵,α为参数向量. 则上式可简化为线性模型:Y B α=由最小二乘估计方法得()1T T a B B B Y uα-⎛⎫== ⎪⎝⎭上式即为GM(1,1)参数,a u 的矩阵辨识算式,式中()1T T B B B Y -事实上是数据矩阵B 的广义逆矩阵.将求得的a ,u 值代入微分方程的解式,则()1(1)()((1))a t u u x t x e a a--=-+其中,上式是GM(1,1)模型的时间响应函数形式,将它离散化得(1)(0)(1)ˆ()(1)a t u u xt x e a a --⎛⎫=-+ ⎪⎝⎭ 对序列()()1ˆxt 再作累减生成可进行预测. 即 ()(0)(1)(1)(0)(1)ˆˆˆ()()(1)(1)1a a t xt x t x t u x e e a --=--⎛⎫=-- ⎪⎝⎭ 上式便是GM(1,1)模型的预测的具体计算式.或对()at ux t ce a-=+求导还原得(0)(0)(1)ˆ()((1))a t uxt a x e a--=-- 1.2 GM(1,1)模型的检验GM(1,1)模型的检验包括残差检验、关联度检验、后验差检验三种形式. 每种检验对应不同功能:残差检验属于算术检验,对模型值和实际值的误差进行逐点检验;关联度检验属于几何检验范围,通过考察模型曲线与建模序列曲线的几何相似程度进行检验,关联度越大模型越好;后验差检验属于统计检验,对残差分布的统计特性进行检验,衡量灰色模型的精度. ➢ 残差检验残差大小检验,即对模型值和实际值的残差进行逐点检验.设模拟值的残差序列为(0)()e t ,则(0)(0)(0)ˆ()()()e t x t xt =- 令()t ε为残差相对值,即残差百分比为(0)(0)(0)ˆ()()()%()x t xt t x t ε⎡⎤-=⎢⎥⎣⎦令∆为平均残差,11()nt t n ε=∆=∑.设残差的方差为22S ,则[]22211()n t S e t e n ==-∑. 故后验差比例C 为21/C S S =,误差频率P 为{}1()0.6745P P e t e S =-<.对于,C P 检验指标如下表: 检验指标好 合格 勉强 不合格 P >0.95 >0.80 >0.70 <0.70 表 1 灰色预测精确度检验等级标准一般要求()20%t ε<,最好是()10%t ε<,符合要求.➢ 关联度检验关联度是用来定量描述各变化过程之间的差别. 关联系数越大,说明预测值和实际值越接近.设 {}(0)(0)(0)(0)ˆˆˆˆ()(1),(2),,()Xt x x x n =⋯ {}(0)(0)(0)(0)()(1),(2),,()X t x x x n =⋯序列关联系数定义为(){}{}{}(0)(0)(0)(0)(0)(0)(0)(0)ˆˆmin ()()max ()(),0ˆˆ()()max ()()1,0x t x t x t x t t t x t x t x t x t t σξσ⎧-+-⎪≠⎪=⎨-+-⎪=⎪⎩ 式中,(0)(0)ˆ()()x t x t -为第t 个点(0)x 和(0)ˆx 的绝对误差,()t ξ为第t 个数据的关联系数,ρ称为分辨率,即取定的最大差百分比,0ρ<<1,一般取0.5ρ=.(0)()x t 和(0)ˆ()xt 的关联度为 ()11nt r t n ξ==∑精度等级 关联度 均方差比值 小误差概率 好(1级) 0.90≥ 0.35≤ 0.95≥ 合格(2级) 0.80≥ 0.50≤ 0.80≥ 勉强(3级) 0.70≥ 0.65≤ 0.70≥ 不合格(4级) 0.70< 0.65> 0.70<表 2 精度检验等级关联度大于60%便满意了,原始数据与预测数据关联度越大,模型越好.➢ 后验差检验后验差检验,即对残差分布的统计特性进行检验. 检验步骤如下:1、计算原始时间数列(){}0(0)(0)(0)(1),(2),,()X x x x n =的均值和方差()2(0)(0)2(0)11111(),()n n t t xx t S x t x n n ====-∑∑ 2、计算残差数列{}(0)(0)(0)(0)(1),(2),,()e e e e n =的均值e 和方差22s ()2(0)2(0)21111(),()n n t t e e t S e t e n n ====-∑∑其中(0)(0)(0)ˆ()()(),1,2,,e t x t x t t n =-=为残差数列.3、计算后验差比值21C S S =4、计算小误差频率{}(0)1()0.6745P P e t e S =-<令0S =0.67451S ,(0)()|()|t e t e ∆=-,即{}0()P P t S =∆<.若对给定的00C >,当0C C <时,称模型为方差比合格模型;若对给定的00P >,当0P P >时,称模型为小残差概率合格模型.P C 模型精度 >0.95 <0.35 优 >0.80 <0.5 合格 >0.70 <0.65 勉强合格 <0.70 >0.65 不合格表 3 后验差检验判别参照表1.3 残差GM(1,1)模型当原始数据序列(0)X 建立的GM(1,1)模型检验不合格时,可以用GM(1,1)残差模型来修正. 如果原始序列建立的GM(1,1)模型不够精确,也可以用GM(1,1)残差模型来提高精度.若用原始序列(0)X 建立的GM(1,1)模型(1)(0)ˆ(1)[(1)]at u uxt x e a a-+=-+ 可获得生成序列(1)X 的预测值,定义残差序列(0)(1)(1)ˆ()()()e k x k xk =-. 若取k=t , t+1, …, n ,则对应的残差序列为{}(0)(0)(0)(0)()(1),(2),,()e k e e e n =计算其生成序列(1)()e k ,并据此建立相应的GM(1,1)模型(1)(0)ˆ(1)[(1)]e a k e ee eu u et e e a a -+=-+ 得修正模型(1)(0)(0)(1)(1)()()(1)e a k ak e e e u u u x t x e k t a e e a a a δ--⎡⎤⎡⎤+=-++---⎢⎥⎢⎥⎣⎦⎣⎦其中1()0k tk t k tδ≥⎧-=⎨≤⎩为修正参数.应用此模型时要考虑:1、一般不是使用全部残差数据来建立模型,而只是利用了部分残差.2、修正模型所代表的是差分微分方程,其修正作用与()k t δ-中的t 的取值有关.1.4 GM(1,1)模型的适用范围定理:当GM(1,1)发展系数||2a ≥时,GM(1,1)模型没有意义.我们通过原始序列()0i X 与模拟序列()0ˆiX 进行误差分析,随着发展系数的增大,模拟误差迅速增加. 当发展系数0.3a -≤时,模拟精度可以达到98%以上;发展系数0.5a -≤时,模拟精度可以达到95%以上;发展系数1a ->时,模拟精度低于70%;发展系数 1.5a ->时,模拟精度低于50%.进一步对预测误差进行考虑,当发展系数0.3a -<时,1步预测精度在98%以上,2步和5步预测精度都在90%以上,10步预测精度亦高于80%;当发展系数0.8a ->时,1步预测精度已低于70%.通过以上分析,可得下述结论:1、当0.3a -<时,GM(1,1)可用于中长期预测;2、当0.30.5a <-≤时,GM(1,1)可用于短期预测,中长期预测慎用;3、当0.50.8a <-≤时,GM(1,1)作短期预测应十分谨慎;4、当0.81a <-≤时,应采用残差修正GM(1,1)模型;5、当1a ->时,不宜采用GM(1,1)模型.1.5 GM(1,1)模型实例分析()()(0)(0)(0)(0)(0)(1),(2),(3),(4)79,74.825,74.29,76.98X x x x x ==对(0)X 作一次累加后的数列为()()(1)(1)(1)(1)(1)(1),(2),(3),(4)79,153.825,228.115,305.095X x x x x == 对(1)X 做紧邻均值生成. 令(1)(1)(1)()0.5()0.5(1)Z k x k x k =+-,得()()(1)(1)(1)(1)(2),(3),(4)116.4125,151.47,150.1925Z z z z ==则数据矩阵B 及数据向量Y 为(1)(1)(1)(2)1116.41251(3)1151.471(4)1150.19251z B z z ⎡⎤--⎡⎤⎢⎥⎢⎥=-=-⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦,(0)(0)(0)(2)74.825(3)74.29(4)76.98x Y x x ⎡⎤⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦ 对参数列ˆ[,]T aa b =进行最小二乘估计,得 176.61ˆ()[,]0.0144T T T T a B B B Y B Y a u -⎡⎤====⎢⎥-⎣⎦即 0.0144a =-,76.61u = 则GM(1,1)模型为()()110.014476.61dx x dt-= 时间响应式为(1)0.0144ˆ(1)5399.13895320.1389xk e -+=- 当1k =时,我们取(1)(0)(0)ˆˆ(1)(1)(0)79xx x === 还原求出(0)X 的模拟值. 由(0)(1)(1)ˆˆˆ()()(1)Xk x k x k =--,取2,3,4k =,得 ()()(0)(0)(0)(0)(0)ˆˆˆˆˆ(1),(2),(3),(4)79,74.281,74.3584,76.4513xx x x x == 通过预测,得到实际值与预测值如下表:实际值 预测值相对误差()k ε 第一学期79 79 0 第二学期 74.825 74.2810 0.73% 第三学期 74.29 74.3584 0.0921% 第四学期76.9876.45130.7051%表 4 四学期的实际值与预测值的误差表因为()10%k ε<,那就可得学生的预测值,与现实值进行比较得出该模型精度较高,可进行预测和预报.我们对学生未来两个学期(也就是第五、六个学期)的成绩进行预测,分别为77.5602分和78.6851分.例:某大型企业1999年至2004年的产品销售额如下表,试建立GM(1,1)预测模型,并预测2005年的产品销售额。
灰色预测模型介绍.
数学模型与数学实验数课程报告题目:灰色预测模型介绍专业:班级:姓名:学号:二0一一年六月1. 模型功能介绍预测模型为一元线性回归模型,计算公式为Y=a+b。
一元非线性回归模型:Y=a+blx+b2x2+…+bmxm。
式中:y为预测值;x为自变量的取值;a,b1,b2……bm为回归系数。
当自变量x与因变量y之间的关系是直线上升或下降时,可采用一元线性预测模型进行预测。
当自变量x和因变量y之间呈曲线上升或下降时,可采用一元非线性预测模型中的y=a+b1x+b2x2+…+bmxm这个预测模型。
当自变量x和因变量y之间关系呈上升一下降一再上升一再下降这种重复关系时,可采用一元线性预测模型中的Y=a+bx这个模型来预测。
其中我要在这里介绍灰色预测模型。
灰色预测是就灰色系统所做的预测,灰色系统(Grey System)理论[]1是我国著名学者邓聚龙教授20世纪80年代初创立的一种兼备软硬科学特性的新理论[95]96]。
所谓灰色系统是介于白色系统和黑箱系统之间的过渡系统,其具体的含义是:如果某一系统的全部信息已知为白色系统,全部信息未知为黑箱系统,部分信息已知,部分信息未知,那么这一系统就是灰色系统。
一般地说,社会系统、经济系统、生态系统都是灰色系统。
例如物价系统,导致物价上涨的因素很多,但已知的却不多,因此对物价这一灰色系统的预测可以用灰色预测方法。
灰色系统理论认为对既含有已知信息又含有未知或非确定信息的系统进行预测,就是对在一定方位内变化的、与时间有关的灰色过程的预测。
尽管过程中所显示的现象是随机的、杂乱无章的,但毕竟是有序的、有界的,因此这一数据集合具备潜在的规律,灰色预测就是利用这种规律建立灰色模型对灰色系统进行预测。
灰色系统的基本原理公理1:差异信息原理。
“差异”是信息,凡信息必有差异。
公理2:解的非唯一性原理。
信息不完全,不明确地解是非唯一的。
公理3:最少信息原理。
灰色系统理论的特点是充分开发利用已有的“最少信息”。
时间序列与灰色系统组合模型
通过计算K-L信息量来衡量时间序列中 季节性成分的大小,判断其是否显著 。
02
灰色系统理论
灰色系统基础概念
灰色系统是指部分信息已知、部分信息未知的系统,通过已知信息来推导未知信息。
灰色系统理论主要研究少数据、不完全信息、不确定性的问题,通过建立数学模型 来揭示系统的内在规律。
灰色系统理论广泛应用于经济、社会、工程等多个领域,为解决实际问题提供了有 效的方法。
灰色决策分析方法包括灰色规划、灰 色博弈、灰色风险决策等,适用于多 个领域的决策问题,如经济规划、工 程设计等。
03
时间序列与灰色系统的组合模型
组合模型构建
时间序列模型
基于时间序列数据,通过分析时间序列的动态变化规律,建立数学模型来预测未来的发展 趋势。常用的时间序列模型包括ARIMA、指数平滑等。
研究展望
01
未来研究可以进一步拓展时间序列与灰色系统组合模型的应用领域,将其应用 于其他领域的预测问题,如金融市场、气候变化等。
02
针对不同领域的具体问题,可以尝试采用不同的时间序列和灰色系统模型进行 组合,以提高预测精度和稳定性。
03
在模型应用过程中,应注重与其他经济计量模型的比较分析,以客观评估该模 型的优劣和适用范围。同时,加强该模型在实际政策制定中的应用研究,为政 府决策提供更加科学和可靠的依据。
组合模型的应用领域
气象预测
用于预测气温、降 水、风速等气象要 素。
能源预测
用于预测能源需求、 能源价格等能源指 标。
经济预测
用于预测股票价格、 汇率、通货膨胀等 经济指标。
交通预测
用于预测交通流量、 拥堵情况等交通指 标。
农业预测
用于预测农产品价 格、产量等农业指 标。
关于“灰色预测模型”讲解
集成学习可以通过组合多个基模型的预测结果来提高整体 预测性能。可以将灰色预测模型作为基模型之一,与其他 预测方法一起构建集成学习模型。
与模糊逻辑融合
模糊逻辑能够处理不确定性和模糊性问题,可以与灰色预 测模型相结合,提高模型在处理不确定信息时的预测性能 。
THANKS
感谢观看
灰色差分方程
灰色预测模型的核心是建立灰色差分方程,通过对原始数据序列进行累加或累减 生成,构造出具有指数规律的数据序列,进而建立相应的微分方程进行求解。
适用范围及优势
适用范围
小样本建模
适应性强
预测精度高
灰色预测模型适用于数据量较 少、信息不完全、具有不确定 性和动态性的系统。它可以在 数据序列较短、波动较大、趋 势不明显的情况下,进行有效 的预测和分析。
04
灰色预测模型检验与评 估
残差检验法
01
02
03
残差计算
通过比较实际值与预测值 之间的差异,计算残差序 列。
残差分析
对残差序列进行统计分析 ,包括计算均值、方差等 指标,以评估模型的预测 精度。
残差图
绘制实际值与预测值的散 点图,以及残差序列的折 线图,直观展示模型的拟 合效果。
后验差检验法
金融市场分析
灰色预测模型可以用于分析金融市场的波动性和 趋势,帮助投资者做出更明智的投资决策。
3
物价水平预测
利用灰色预测模型可以对物价水平进行短期和长 期预测,为政府制定物价调控政策提供依据。
社会领域应用案例
人口数量预测
通过收集历史人口数据,利用灰色预测模型可以对未来人 口数量进行预测,为政府制定人口政策提供参考。
关于“灰色预测模型 ”讲解
灰色预测模型建模流程
灰色预测模型建模流程灰色预测模型是一种基于时间序列数据的预测方法,可以用于预测未来的趋势和变化。
下面将介绍灰色预测模型的建模流程。
一、数据收集和预处理在建立灰色预测模型之前,首先需要收集相关的时间序列数据。
这些数据可以是销售额、产量、股票指数等,具体根据预测的对象而定。
收集到的数据需要进行预处理,包括去除异常值、平滑数据等操作,以确保数据的稳定性和可靠性。
二、建立灰色模型1. 灰色模型的基本原理灰色模型是根据系统的发展规律,通过对历史数据进行分析和处理,建立数学模型来描述和预测系统的发展趋势。
它基于灰色关联度的概念,将数据分为发展态势和发展水平两部分,通过灰色微分方程建立模型。
2. 灰色模型的建立步骤灰色模型建立的基本步骤包括:(1)确定发展态势和发展水平数据;(2)构造累加生成数列;(3)建立灰色微分方程;(4)求解灰色微分方程的参数;(5)进行模型检验和精度评价。
三、模型检验和精度评价建立灰色模型后,需要对模型进行检验和评价,以确保模型的可靠性和准确性。
模型检验的方法包括残差检验、白噪声检验等,通过对模型的残差进行分析,判断模型是否合理。
精度评价的指标主要包括平均相对误差、平均绝对误差等,通过计算这些指标可以评估模型的预测精度。
四、模型应用和预测在模型检验和评价通过后,可以使用灰色预测模型进行未来的预测。
根据建立的模型,通过输入新的数据,可以得到未来的预测结果。
预测结果可以用于决策支持、规划和调整等方面,帮助人们做出合理的决策。
总结:灰色预测模型是一种基于时间序列数据的预测方法,可以用于预测未来的趋势和变化。
建立灰色预测模型的流程包括数据收集和预处理、建立灰色模型、模型检验和精度评价、模型应用和预测。
通过这个流程,可以得到准确可靠的预测结果,为决策提供参考和支持。
灰色预测模型具有简单、高效、灵活等特点,已经在各个领域得到广泛应用。
灰色预测模型的优化及其应用
偏残差灰色预测模型的优化
1 2 3
偏残差灰色预测模型的基本原理
通过对原始数据序列的偏残差进行修正,提高灰 色预测模型的精度。
优化方法一
考虑非等间距序列:在偏残差灰色预测模型中考 虑非等间距序列的影响,可以更准确地反映原始 数据的变化规律。
优化方法二
引入非线性函数:在偏残差灰色预测模型中引入 非线性函数,可以更准确地描述原始数据序列的 变化规律。
05
结论
研究成果总结
灰色预测模型在处理具有不完整、不确定信息的问题上具有优势,能够克服数据量 小、信息不完全等限制。
通过引入优化方法,灰色预测模型在预测精度、稳定性和泛化性能等方面都得到了 显著提升。
灰色预测模型在多个领域具有广泛的应用价值,如经济、环境、医学等,为相关领 域的科学研究提供了新的思路和方法。
灰色神经网络预测模型的优化
01
灰色神经网络预测模型的基本原理
利用神经网络的自学习能力,对灰色预测模型进行优化。
02
优化方法一
选择合适的网络结构:根据历史数据选择合适的网络结构,可以提高灰
色神经网络预测模型的泛化能力。
03
优化方法二
采用集成学习算法:将多个灰色神经网络模型的预测结果进行集成,可
以提高预测精度。
灰色预测模型与其他模型的组合研究
01
02
03
集成学习
将灰色预测模型与其他预 测模型进行集成,通过集 结多个模型的优点,提高 预测精度。
混合模型
将灰色预测模型与其他模 型进行混合,以充分利用 各种模型的优势,提高预 测性能。
多模型融合
将多个灰色预测模型进行 融合,通过综合多个模型 的预测结果,提高预测精 度。
基于大数据和人工智能的灰色预测模型研究
灰色关联度的原理及应用
灰色关联度的原理及应用灰色关联分析是一种多因素系统的分析方法,它的原理是根据灰色系统理论,通过对于多个因素之间的关联进行计算和分析,得到各个因素之间的关联度,从而找出主要影响因素,并依据关联系数来进行排序。
灰色关联分析主要应用于多因素多层次评价、趋势预测、关联度排序等领域。
灰色关联度的原理主要包括灰色关联度模型建立和关联度计算两部分。
首先,根据因素之间的关联性,建立灰色关联度模型。
其次,通过计算因素之间的关联度,进行排序和评估。
在灰色关联度模型建立中,需要进行数据的预处理和指标的选取。
数据预处理包括数据归一化处理和序列生成两个步骤。
数据归一化处理是将原始数据进行标准化处理,以避免指标之间尺度大小的影响。
序列生成是将归一化后的数据序列进行形成序列。
指标的选取是根据所研究问题的要求,选择与问题相关的指标作为模型的建立基础。
在关联度计算中,常用的方法包括灰色关联度加权平均法、灰色关联度加权积累法和灰色关联度矩阵法。
其中,灰色关联度加权平均法是常用的计算方法,它通过计算各因素与参考序列之间的关联度来得到各因素之间的关联度。
具体步骤是:先计算各因素与参考序列之间的差值序列,然后将差值序列进行正向化,并进行加权平均计算,最后得到各因素的关联度。
灰色关联度模型的应用十分广泛,以下是几个典型的应用场景:1. 多因素多层次评价:在某些问题中,需要对多个指标进行综合考虑和分析,如企业绩效评价。
通过灰色关联度分析,可以对各个指标之间的关联程度进行计算,从而综合评估各个指标对于绩效的贡献度,提供决策依据。
2. 趋势预测:在时间序列数据的分析中,可以利用灰色关联度分析方法对历史数据进行分析,预测未来的趋势。
通过计算历史数据与未来数据的关联度,可以得到未来发展的趋势,为决策提供依据。
3. 关联度排序:在多因素综合评估和决策中,灰色关联度分析可以帮助对各个因素进行排序和比较。
通过计算各个因素与参考序列的关联度,可以得到各个因素对于参考序列的贡献度,从而进行排序和比较。
灰色预测法(GM(1-1)模型)
商业
X 4 6.7,6.8,5.4,4.7
参考序列分别为 X1, X 2 ,被比较序列为 X 3, X 4,
试求关联度。
回总目录 回本章目录
. #;
解答:
以 X1 为参考序列求关联度。
第一步:初始化,即将该序列所有数据分别 除以第一个数据。得到:
X1 1,0.9475,0.9235,0.9138
回总目录 回本章目录
. #;
10.2 GM(1,1)模型
一、GM(1,1)模型的建立
设时间序列 X 0 X 01, X 02,..., X 0n 有n个观
察值,通过累加生成新序列 X 1 X 11, X 12,..., X 1n
则GM(1,1)模型相应的微分方程为:
dX 1 aX 1
. #;
10.1 灰色预测理论 10.2 GM(1,1)模型 10.3 GM(1,1)残差模型及GM (n, h)模型
回总目录
. #;
10.1 灰 色 预 测 理 论
一、灰色预测的概念 (1)灰色系统、白色系统和黑色系统 • 白色系统是指一个系统的内部特征是完全
已知的,即系统的信息是完全充分的。
回总目录 回本章目录
. #;
累加的规则: 将原始序列的第一个数据作为生成 列的第一个数据,将原始序列的第二个 数据加到原始序列的第一个数据上,其 和作为生成列的第二个数据,将原始序 列的第三个数据加到生成列的第二个数 据上,其和作为生成列的第三个数据, 按此规则进行下去,便可得到生成列。
回总目录 回本章目录
. #;
回总目录 回本章目录
. #;
(2)关联度
X 0k 和 Xˆ 0k 的关联度为:
灰色预测模型
dx
(t)
(1)
ax
(t)b,
dt
解为
b
a
(
t
1
) b
x(
t)
(
x(
1
))
e
.
a
a
(
1
)
(
0
)
(3)
于是得到预测值
b
b
(
1
)
(
0
)
ak
ˆ
x(
k
1
)
(
x(
1
)
)
e
,
k
1
,
2
,
,
n
1
,
a
a
从而相应地得到预测值:
(
0
)
(
1
)
(
1
)
ˆ
ˆ
ˆ
x
(
k
1
)
x
(
k
1
)
x
(
k
lim
dt
t
t 0
而 ( 1)( x ( k )) x ( k ) x ( k 1 ), 相当于
t 1
(3)加权邻值生成
(
0
)
(
0
)
(
0
)
(
0
)
x
(
x
(
1
),
x
(
2
),
,
x
(
n
))
设原始数列为
多因素时间序列的灰色预测模型
多因素时间序列的灰色预测模型
苏变萍;曹艳平;王婷
【期刊名称】《西安建筑科技大学学报(自然科学版)》
【年(卷),期】2007(039)002
【摘要】对于传统的单因素时间序列预测法在实际应用中的不足之处,提出采用灰色DGM(1,1)模型和多元线性回归原理相结合的方法,综合各种因素建立多因素时间序列的灰色预测模型.它首先利用DGM(1,1)模型对影响事物发展趋势的各项因素进行预测;然后利用多元线性回归法将各种因素综合起来,以预测事物的发展趋势.最后将该模型应用于预测分析陕西省的就业状况,取得了较好的预测效果,同时也验证了此模型的可行性.
【总页数】4页(P289-292)
【作者】苏变萍;曹艳平;王婷
【作者单位】西安建筑科技大学理学院,陕西,西安,710055;西安建筑科技大学理学院,陕西,西安,710055;西安建筑科技大学理学院,陕西,西安,710055
【正文语种】中文
【中图分类】TB114
【相关文献】
1.道路交通事故多因素时间序列宏观预测模型 [J], 季彦婕;王炜;邓卫
2.基于多因素灰色预测模型的生活污水量预测研究 [J], 赵菊;李新;叶红
3.天津市义务教育学龄人口规模预测与分析——基于多因素灰色预测模型和人口推
算法 [J], 周志;田楠;赵宇红
4.基于灰色RBF神经网络的多因素财政收入预测模型 [J], 赵海华
5.多因素时间序列资料GM(1,N)预测模型及其应用 [J], 樊爱军;王开发
因版权原因,仅展示原文概要,查看原文内容请购买。
灰色预测模型
西南民族大学管理学院 汪虹
本讲介绍
灰色预测模型
灰色预测的基本思想 GM(1,1)模型的建立 GM(1,1)模型用于预测 冲击扰动与缓冲算子 灾变预测
系统工程理论
灰色预测模型
灰色预测的基本思想
当一时间序列无明显趋势时,采用累加方法可生 成趋势明显的时间序列。
比如 X 0 32,38,36,35, 40, 42
n
x1 n x0 t t 1
系统工程理论
灰色数据序列的生成
可得到原始数据序列的一次累加生成数列(1-AGO):
其中,
X 1 x1 1, x1 2,, x1 n
x1 t x0 1
x1
t
t
x0 i
i 1
t 2,3,, n
系统工程理论
灰色数据序列的生成
类似可得原始数据序列的 r 次累加生成数列(r-AGO):
系统工程理论
GM(1,1)模型例题
1-AGO生成数据序列:
X 1 383.3775, 776.4179, 1175.7811, 1581.7882
X 1 的紧邻均值生成序列:
Z1 579.8977, 976.0995, 1378.7847
最小二乘参数估计:
a bT 0.016232, 383.591412T
系统工程理论
灰色预测的类型
按应用对象的不同,灰色预测可分为:
数列预测 —— 对表征系统行为的指标值的发展变化进行预 测
灾变预测 —— 对表征系统行为的指标值超过阈值的异常值 将于何时再现进行预测
……
系统工程理论
灰色模型机理
一般建模是利用数据序列建立差分方程,灰色建 模是将原始数据进行生成处理后建立微分方程。
基于多周期时间序列的灰色预测模型及其应用
中 ,Z(1)(k)
=
1 2
(x(1)(k)
+
x(1)(k
-
1)) k
=
2 3 ⋯ n
。 称式(1)
为非齐次灰色预测模型的基本形式,简记为NGM(11k) 。
x(0)(k) + az(1)(k) = bk + c
果,但是对波动序列预测能力较差。为了能够很好地拟合
时间序列中的周期特性,本文引入傅里叶级数,利用傅里
叶级数能够拟合任意多周期的特性,构建一个结合傅里叶
级数和灰色 NGM (11k) 的多周期预测模型(multi-peri-
od NGM (11k) model,简称 MPNGM (11k) 模型)。
定义 1:设 X =[x1x2⋯xn] 为一时间序列,若其可以 表示为趋势项 Xt 和周期项 Xp 的组合形式:
作者简介:张国政(1983—),男,河南林州人,博士研究生,研究方向:灰色系统理论与决策分析。 (通讯作者)申君歌(1983—),女,河南禹州人,博士,研究方向:经济预测与决策方法。
Super Partial-closed Input-output Model and Its Application
X = Xt + Xp
(5)
趋势项原始序列: Xt(0) = (x(t0)(1) x(t0)(2) x(t0)(n)) 周期项原始序列:
å Xp = m Xl ,Xl(0) = (x(l0)(1)x(l0) (2)x(l0)(n)) l=0
则称序列 X 为含趋势与多周期项的时间序列。
定义 2:对于非负时间序列 X ,若有:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
表中的回归系数得如下多因素预测模型 :
2
^
^
^
^
y= 1333. 8 + 0. 7804 ×x 1 (t) + 0. 1491 ×x2 (t) + 0. 1845 ×x3 (t)
(6 )
^ () ^ () ^ ()
()
最后 ,将表 1 中 2003 ———2005 年的预测值 x1 t 、x2 t 、x3 t 分别代入上述模型 6 ,即可得到
参数 ai (i = 0 ,1 ,2 , …, p) 的确定:
( )( )
(
)
( )( )
( )(
在获得历史观测数据 y t - 1 、y t - 2 、……y t - m 和 xi t - 1 、xi t - 2 、……xi t - m m ≤
n,i = 1 ,2 , …,p) 后,将 y(t -
(
)
29 2
西 安 建 筑 科 技 大 学 学 报 自然科学版
第 39 卷
者的优点 ,既克服了时间序列的随机因素影响 ,又综合考虑了影响事物发展的多种因素 ,从而达到提高 预测精度和增加预测结果可靠性的效果. 同时也为研究多因素时间序列提供了一种新的方法.
参考文献 References
[1] 徐国祥 . 统计预测和决策[ M]. 上海 :上海财经大学出版社 ,1998.
(西安建筑科 技大学理学院 ,陕西 西安 710055)
摘 要 :对于传统的单因素时间序列预测法在实际应 用中的不足之处 ,提出采 用灰色 DGM(1 ,1) 模型和 多元 线性回归原理相结合的方法 ,综合各种因素 建立多因素时间序列的灰色预测模型 。它首先利用 DGM(1 ,1) 模 型对影响事物发展趋势的各项因素进行预测 ;然后利用多元线性回 归法将各 种因素综合 起来 ,以预测事 物的 发展趋势 。最后将该模型应用于预测分析陕西省的就业状 况 ,取得 了较好的 预测效果 ,同时也 验证了此模 型 的可行性 。
Primary industry GDP/ 100million yuan
314. 97 328. 23 342. 06 1. 04211 255. 129 0. 003872 0. 944851 0. 125724
1
Secondary industry GDP/ 100million yuan
1043. 52 1177. 24 1328. 09 1. 12814
本文将以陕西省的就业状况预测分析为例 ,对上述所建立的多因素时间序列的灰色预测模型进行 可行性与实用性验证 ,在此以就业人数 (Y) 作为因变量 ,以 X1 、X2 、X3 分别表示第一、二、三产业 GDP , 作为多因素变量,特收集了 1988 ~ 2002 年这四个变量的数据 (见[9] ) 通过建模进行预测分析.
关键词 : 时间序列 ;单因素 ;多因素 ;预测模型
3
中图分类号 :TB114
文献标识 码 :A
文章编号 :100627930 2007 0220289204 ( )
.
多年以来 ,对时间序列的预测研究 ,大多是停留在对单因素时间序列上 ,对其预测通常采用的是趋 势外推法[122] ,而且该方法适合于原始时间序列规律性较好的情况 ,若时间序列中包含了随机因素的影 响 ,再采用这种方法得出的预测结果可能会失真. 同时 ,客观世界又是复杂多变的 ,事物的发展通常不 是由某个单个因素决定 ,往往是许多错综复杂的因素综合作用的结果 ,为了对某项事物的发展做出更加 符合实际的预测 ,这就需要来探讨多因素时间序列的预测问题 ,正是基于这些 ,本文在应用灰色 DGM (1 ,1)模型对单因素时间序列预测的基础上 ,结合多元回归原理 ,提出建立多因素时间序列的灰色预测 模型 ,这样就充分发挥了二者的优点 ,既克服了时间序列的随机因素影响 ,又综合考虑了影响事物发展 的多种因素 ,从而达到提高预测精度和增加预测结果可靠性的效果.
第 39 卷 第 2 期 2007 年 4 月
西 安 建 筑 科 技 大 学 学 报 (自然科学版)
(
)
J1Xi’an Univ. of Arch. & Tech. Natural Science Edition
Vol.39 No.2 Apr. 2007
多因素时间序列的灰色预测模型
苏变萍 ,曹艳平 ,王 婷
表 2 多元线性回 归模型概述 Tab.2 Summary on multi2element linear regression model
a0 1333. 8
Regression coefficient
a1
a2
0. 7804
0. 1491
a3 0. 1845
R 0. 9091
Verifiable value
R
F
0. 8263
21. 47
Sig 0. 000
表 2 中的相关系数 R=0.9091 ,可决系数 R 2 =0.8263 都比较接近于 1 ,且 F= 21.47 ,显著性概率
Sig =0.000 <0.05 ,这些表明因变量 Y与多因素变量 X1 , X 2 , X 3 之间存在高度显著的线性关系. 根据
2003 1911 1903 0. 004
year 2004 1884. 1 1953. 1 0. 037
2005 1882. 9 1986. 3 0. 055
Mean relative error
——— ——— 0. 032
() 从表 3 中看到 2003 - 2005 年的陕西省就业人数预测值分别为 1903、1953.1 、1986.3 万人 ,相对 于实际值的误差分别为 0.004 、0.037、0.055 ,并且对这三年预测的平均相对误差为 0.032,可见这一结 果是比较理想 ,同时也说明所建立的多因素时间序列灰色预测模型是可行的.
1 模型的建立
设 Y = (y(1) , y (2) , …, y(n)) 表示事物发展的特征因素时间序列, Xi
()
xi
(n)) (i = 1 ,2 ,…,p) 表示影响事物发展的单因素时间序列.
(0)
( 0)
(0)
= (xi (1) , xi (2) , …,
1.1 单因素时间序列的 DGM(1,1) 模型
Accuracy test p:
表 1 第一 、二 、三产业 GDP 的预测值及检验 Tab. 1 Prediction and check on the value of Ⅰ, Ⅱ, Ⅲ
Item
2003 ( Year ) 2004 ( Year ) 2005 ( Year)
a b α: ε: C: 1
()
对于单因素原始时间序列{ Xi } (i = 1 ,2 , …,p) ,根据灰色系统理论建模方法 型[4] :
,得 DGM (1 ,1) 模
^x (t) = x (1) = x (0()1)
(1 )
()
xi (1)a (1 - a) + a b,t > 1
1.2 多因素时间序列的预测模型
为了能将影响事物发展的众多因素结合起来进行综合预测和相关因素的预测分析 ,在经过多次研
2003 年 ———2005 年陕西省就业人数的预测值 ,并且与该时期的实际值进行比较见表 3.
表 3 陕西省就业人数预测比较
Tab. 3 Prediction and comparison on employment of Shaanxi province
Item
Actual value Predicted value Predicted relative error
DGM (1 ,1) 模型进行修正 [3] .
对于所建立的多因素预测模型主要有以下两种检验方法 :
()
2
m
2
( ∑( (
)
) )2
m
∑ 1 ( (
)(
h=1
m
)
∑( (
)
(
)) 2(
h=1
Hale Waihona Puke h=12 F 检验 : F =
H/ p
m
∑ ; 其中 H =
y ^t - h - Y 回归离差
S/ m - p - 1
h=1
在模型检验中 ,可决系数 R2 越接近于 1 越好,而对于 F检验, F服从 F(p ,m -
)
p - 1) 分布 ,给定显
著水平 α,如果 F ≥F(p,m - p - 1) 则表明该线性回归模型显著;如果 F < F(p,m - p - 1) 则表明该
线性回归模型不显著 ,不能用于预测.
3 模型的应用
571. 51 0. 003174 0. 999665 0. 023773
1
Tertia ry industry GDP/100million yuan
909. 52 1016. 63 1136. 36 1. 11777 520. 189 0. 007208 0. 996845 0. 067809
() 通过表 1 的几项检验 ,我们发现对 X1 、X2 、X3 所建立的 DGM 1 ,1 预测模型是合格的 ,因此可用 它们的预测值对 Y(就业人数)进行预测. 其次 ,对于 1.2 中所建的多因素预测模型 (2 ) ,借助于统计软件 SPSS11.5 进行多元线性回归分析 得如下主要结果 ,见表 2.
2 模型的检验
对于单因素 DGM (1,1) 模型的检验也可借助于平均相对误差 α、关联度 ε、均方差比值 C及小误差
概率 p 四种检验方法[3] . 一个好的预测要求 α、C 越小越好 ,而 ε、p 越大越好 ,按照 α、C、、p 的大小可将其 ε
精度检验分为四个等级见[3,8] , 如果经检验不合格 , 可在此基础上建立残差 GM(1 ,1) 模型或残差