九年级数学专题复习特殊的四边形

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

总复习特殊的四边形
【考纲要求】
1. 会识别矩形、菱形、正方形以及梯形;
2.掌握矩形、菱形、正方形的概念、判定和性质,会用矩形、菱形、正方形的性质和判定解决问题.
3.掌握梯形的概念以及了解等腰梯形、直角梯形的性质和判定,会用性质和判定解决实际问题.
【知识网络】
【考点梳理】
考点一、几种特殊四边形性质、判定
四边形
性质判定
边角对角线
矩形对边平行
且相等
四个角是直

相等且互相平分
①有一组邻边相等的平行四边形是菱
形;
②四条边都相等的四边形是菱形;
③对角线互相垂直的平行四边形是菱
形 .

心、
轴对
称图

菱形四条边相

对角相等,
邻角互补
垂直且互相平
分,每一条对角
线平分一组对角
①有一个角是直角的平行四边形是矩
形;
②有三个角是直角的四边形是矩形;
③对角线相等的平行四边形是矩形
中心
对称
图形正方形
四条边相

四个角是直

相等、垂直、平
分,并且每一条
对角线平分一组
对角
1、邻边相等的矩形是正方形
2、对角线垂直的矩形是正方形
3、有一个角是直角的菱形是正方形
4、对角线相等的菱形是正方形

心、
轴对

等腰梯形两底平
行,两腰
相等
同一底上的
两个角相等
相等
1、两腰相等的梯形是等腰梯形;
2、在同一底上的两个角相等的梯形是
等腰梯形;
3、对角线相等的梯形是等腰梯形.
轴对
称图

【要点进阶】矩形、菱形、正方形都是特殊的平行四边形,它们具有平行四边形的一切性质.
考点二、中点四边形相关问题
1.中点四边形的概念:把依次连接任意一个四边形各边中点所得的四边形叫做中点四边形.
2.若中点四边形为矩形,则原四边形满足条件对角线互相垂直;
若中点四边形为菱形,则原四边形满足条件对角线相等;
若中点四边形为正方形,则原四边形满足条件对角线互相垂直且相等.
【要点进阶】中点四边形的形状由原四边形的对角线的位置和数量关系决定.
考点三、重心
1.线段的中点是线段的重心;
三角形三条中线相交于一点,这个交点叫做三角形的重心;三角形的重心与顶点的距离等于它与对边中点的距离的2倍.
平行四边形对角线的交点是平行四边形的重心。

【典型例题】
类型一、特殊的平行四边形的应用
例1.如图,设四边形ABCD是边长为1的正方形,以对角线AC为边作第二个正方形ACEF、再以对角线AE为边作笫三个正方形AEGH,如此下去….若正方形ABCD的边长记为a1,按上述方法所作的正方形的边长依次为a2,a3,a4,…,a n,则a n=___________.
举一反三:
【变式】长为1,宽为a的矩形纸片(1
2
1
<
<a),如图那样折一下,剪下一个边长等于矩形宽度的正方形(称为第一次操作);再把剩下的矩形如图那样折一下,剪下一个边长等于此时矩形宽度的正方形(称为第二次操作);如此反复操作下去.若在第n此操作后,剩下的矩形为正方形,则操作终止.当n=3时,a的值为________.
.
第一次操作第二次操作
例2.如图,在菱形ABCD中,对角线AC、BD相交于点O,AC=6,BD=8,点P是AC延长线上的一个动点,过点P作PE⊥AD,垂足为E,作CD延长线的垂线,垂足为E,则|PE﹣PF|= .
类型二、梯形的应用
例3.如图,在梯形ABCD中,已知AD∥BC,∠B=90°,AB=7,AD=9,BC=12,在线段BC上任取一点E,连接DE,作EF⊥DE,交直线AB于点F.
(1)若点F与B重合,求CE的长;
(2)若点F在线段AB上,且AF=CE,求CE的长;
(3)设CE=x,BF=y,写出y关于x的函数关系式(直接写出结果可).
举一反三:
【变式】如图为菱形ABCD与正方形EFGH的重迭情形,其中E在CD上,AD与GH相交于I点,且AD∥HE.若∠A=60°,且AB=7,DE=4,HE=5,则梯形HEDI的面积为().
A.63B.83C.10-23D.10+23
类型三、特殊四边形与其他知识结合的综合运用
例4.正方形ABCD边长为2,点E在对角线AC上,连接DE,将线段DE绕点D顺时针旋转90°至DF 的位置,连接AF,EF.
(1)证明:AC⊥AF;
(2)设AD2=AE×AC,求证:四边形AEDF是正方形;
(3)当E点运动到什么位置时,四边形AEDF的周长有最小值,最小值是多少?
例5.如图所示,在菱形ABCD中,AB=4,∠BAD=120°,△AEF为正三角形,点E、F分别在菱形的边BC、CD上滑动,且E、F不与B、C、D重合.
(1)证明不论E、F在BC、CD上如何滑动,总有BE=CF;
(2)当点E、F在BC、CD上滑动时,分别探讨四边形AECF和△CEF的面积是否发生变化?如果不变,求出这个定值;如果变化,求出最大(或最小)值.
例6.如图,正方形ABCD的边AD与矩形EFGH的边FG重合,将正方形ABCD以1cm/s的速度沿FG方向移动,移动开始前点A与点F重合,在移动过程中,边AD始终与边FG重合,连接CG,过点A作CG 的平行线交线段GH于点P,连接PD.已知正方形ABCD的边长为1cm,矩形EFGH的边FG,GH的长分别为4cm,3cm,设正方形移动时间为x(s),线段GP的长为y(cm),其中0≤x≤2.5.
(1)试求出y关于x的函数关系式,并求当y=3时相应x的值;
(2)记△DGP的面积为S1,△CDG的面积为S2.试说明S1-S2是常数;
(3)当线段PD所在直线与正方形ABCD的对角线AC垂直时,求线段PD的长.
举一反三:
【变式】如图,E是矩形ABCD边BC的中点,P是AD边上一动点,PF⊥AE,PH⊥DE,垂足分别为F,H.(1)当矩形ABCD的长与宽满足什么条件时,四边形PHEF是矩形?请予以证明;
(2)在(1)中,动点P运动到什么位置时,矩形PHEF变为正方形?为什么?
【巩固练习】
一、选择题
1. 如图,E是边长为1的正方形ABCD的对角线BD上一点,且BE=BC,P为CE上任意一点,PQ⊥BC于
点Q,PR⊥BE于点R,则PQ+PR的值是( ).A.B.C.D.
2.如图,在梯形ABCD中,AB∥CD,中位线MN= 7,对角线AC⊥BD,∠BDC= 30°,则梯形的高
为().A.B. C.D.
3. 四边形ABCD的对角线AC=BD,且AC⊥BD,分别过A、B、C、D作对角线的平行线,得到四边形EFGH,则它是().A.正方形B.菱形C.矩形 D.任意四边形
4如图,矩形ABCD中,其长为a,宽为b,如果,则的值为().
A. B. C.D.
5.如图,在菱形ABCD中,,的垂直平分线FE交对角线AC于点F,E为垂足,连接DF.则等于().A.B.C. D.
6.如图,在正方形ABCD中,点P是AB上一动点(不与A、B重合),对角线AC、BD相交于点O,过点P 分别作AC、BD的垂线,分别交AC、BD于点E、F,交AD、BC于点M、N.下列结论:①△APE≌△AME;
②PM+PN=AC;③PE2+PF2=PO2;④△POF∽△BNF;
其中正确的结论有()
A.4个B.3个C.2个D.1个
二、填空题
7. 如图,点E、F、G、H分别为正方形ABCD的边AB、BC、CD、DA上的点,且AE=BF=CG=DH=AB,
则图中阴影部分的面积与正方形ABCD的面积之比为___________.
8. 如图,在等腰梯形ABCD中,AD∥BC,AC与BD相交于点O.下面结论正确的是_________.
①AC=BD;②∠DAO=∠DBC;③S△BOC=S梯形ABCD;④△AOB≌△DOC.
9.如图,圆柱形玻璃杯,高为8cm,底面周长为12cm,在杯内离杯底2cm的点C处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿2cm与蜂蜜相对的点A处,求蚂蚁到达蜂蜜的最短距离是.
10.如图,将正△ABC分割成m个边长为1的小正三角形和一个黑色菱形,这个黑色菱形可分割成n个
边长为1的小三角形,若m
n
=
47
25
,则△ABC的边长是_________.
11.如图,在梯形ABCD中,AD∥BC,∠C=90°,BE平分∠ABC且交CD于E,E为CD的中点,EF∥BC交AB于F,EG∥AB交BC于G,当AD=2,BC=12时,四边形BGEF的周长为_________.
12.如图,以菱形ABCD各边的中点为顶点作四边形A1B1C1D1,再以A1B1C1D1各边的中点为顶点作四边形A2B2C2D2,…,如此下去,得到四边形A2011B2011C2011D2011,若ABCD对角线长分别为a和b,请用含a、b的代数式表示四边形A2011B2011C2011D2011的周长_________________.
三、解答题
13.已知,如图,正方形ABCD的边长为6,菱形EFGH的三个顶点E,G,H分别在正方形ABCD边AB,CD,DA上,AH=2,连接CF.
(1)当DG=2时,求△FCG的面积;
(2)设DG=,用含的代数式表示△FCG的面积;
(3)判断△FCG的面积能否等于1,并说明理由.
14.在图1到图3中,点O是正方形ABCD对角线AC的中点,△MPN为直角三角形,∠MPN=90°.正方形ABCD保持不动,△MPN沿射线AC向右平移,平移过程中P点始终在射线AC上,且保持PM垂直于直线AB于点E,PN垂直于直线BC于点F.
(1)如图1,当点P与点O重合时,OE与OF的数量关系为______;
(2)如图2,当P在线段OC上时,猜想OE与OF有怎样的数量关系与位置关系?并对你的猜想结果给予证明;
(3)如图3,当点P在AC的延长线上时,OE与OF的数量关系为_______;位置关系为_________.
15.如图1,P是线段AB上的一点,在AB的同侧作△APC和△BPD,使PC=PA,PD=PB,∠APC=∠BPD,连接CD,点E、F、G、H分别是AC、AB、BD、CD的中点,顺次连接E、F、G、H.
(1)猜想四边形EFGH的形状,直接回答,不必说明理由;
(2)当点P在线段AB的上方时,如图2,在△APB的外部作△APC和△BPD,其他条件不变,(1)中的结论还成立吗?说明理由;
(3)如果(2)中,∠APC=∠BPD=90°,其他条件不变,先补全图3,再判断四边形EFGH的形状,并说明理由.
16.如图,在平面直角坐标系中,点A(10,0),∠OBA=90°,BC∥OA,OB=8,点E从点B出发,以每秒1个单位长度沿BC向点C运动,点F从点O出发,以每秒2个单位长度沿OB向点B运动.现点E、F同时出发,当点F到达点B时,E、F两点同时停止运动.
(1)求梯形OABC的高BG的长;
(2)连接E、F并延长交OA于点D,当E点运动到几秒时,四边形ABED是等腰梯形;
(3)动点E、F是否会同时在某个反比例函数的图象上?如果会,请直接写出这时动点E、F运动的时间t的值;如果不会,请说明理由.。

相关文档
最新文档