高中数学—18—轨迹方程

合集下载

高中数学轨迹方程求轨迹方程的的基本方法关点法参数法交轨法向量法新人教版选修

高中数学轨迹方程求轨迹方程的的基本方法关点法参数法交轨法向量法新人教版选修

轨 迹 方 程求轨迹方程的的基本方法:直接法、定义法、相关点法、参数法、交轨法、向量法等。

1.直接法:如果动点运动的条件就是一些几何量的等量关系,这些条件简单明确,不需要特殊的技巧,易于表述成含x,y 的等式,就得到轨迹方程,这种方法称之为直接法;例1、某检验员通常用一个直径为2 cm 和一个直径为1 cm 的标准圆柱,检测一个直径为3 cm 的圆柱,为保证质量,有人建议再插入两个合适的同号标准圆柱,问这两个标准圆柱的直径为多少?【解析】设直径为3,2,1的三圆圆心分别为O 、A 、B ,问题转化为求两等圆P 、Q ,使它们与⊙O 相内切,与⊙A 、⊙B 相外切.建立如图所示的坐标系,并设⊙P 的半径为r ,则 |P A |+|PO |=1+r +1.5-r =2.5 ∴点P 在以A 、O 为焦点,长轴长2.5的椭圆上,其方程为3225)41(1622y x ++=1 ① 同理P 也在以O 、B 为焦点,长轴长为2的椭圆上,其方程为 (x -21)2+34y 2=1 ②由①、②可解得)1412,149(),1412,149(-Q P ,∴r =73)1412()149(2322=+-故所求圆柱的直径为76cm. ◎◎双曲线的两焦点分别是1F 、2F ,其中1F 是抛物线1)1(412++-=x y 的焦点,两点A (-3,2)、B (1,2)都在该双曲线上.(1)求点1F 的坐标; (2)求点2F 的轨迹方程,并指出其轨迹表示的曲线.【解析】(1)由1)1(412++-=x y 得)1(4)1(2--=+y x ,焦点1F (-1,0). (2)因为A 、B 在双曲线上,所以||||||||||||2121BF BF AF AF -=-,|||22||||22|22BF AF -=-.①若||22||2222BF AF -=-,则||||22BF AF =,点2F 的轨迹是线段AB 的垂直平分线,且当y =0时,1F 与2F 重合;当y =4时,A 、B 均在双曲线的虚轴上. 故此时2F 的轨迹方程为x =-1(y ≠0,y ≠4).②若22||||2222-=-BF AF ,则24||||22=+BF AF ,此时,2F 的轨迹是以A 、B 为焦点,22=a ,2=c ,中心为(-1,2)的椭圆,其方程为14)2(8)1(22=-++y x ,(y ≠0,y ≠4) 故2F 的轨迹是直线x =-1或椭圆4)2(8)1(22-++y x 1=,除去两点(-1,0)、(-1,4) 评析:1、用直接法求动点轨迹一般有建系,设点,列式,化简,证明五个步骤,最后的证明可以省略,但要注意“挖”与“补”。

高中数学轨迹与方程教案

高中数学轨迹与方程教案

高中数学轨迹与方程教案
教学目标:通过本节课的学习,学生将能够理解轨迹与方程的概念,掌握二维平面上各种图形的轨迹和相应的方程,并能够应用这些知识解决实际问题。

教学重点:轨迹与方程的概念、各种图形的轨迹及相应的方程。

教学难点:如何确定各种图形的轨迹方程。

教学准备:教科研教材《数学》必修一,多媒体设备,教学PPT。

教学过程:
一、导入
通过展示一些常见的平面图形及其方程,引导学生思考图形与方程之间的关系,并提出本节课的学习目标。

二、讲解
1. 轨迹和方程的概念:通过具体例子引导学生理解轨迹和方程的含义,区分轨迹与方程的关系。

2. 直线的轨迹与方程:讲解直线的一般方程及斜率截距式,并通过实例展示直线在平面上的轨迹及对应的方程。

3. 圆的轨迹与方程:讲解圆的标准方程及参数方程,并通过实例展示圆在平面上的轨迹及对应的方程。

4. 抛物线、椭圆、双曲线等图形的轨迹与方程:介绍其他二次曲线的标准方程,并通过实例展示不同曲线的轨迹及对应的方程。

三、练习
布置一些相关的数学问题,让学生在课堂上或课后完成,巩固所学知识。

四、实践
通过实际案例,引导学生运用所学知识,解决实际问题,培养学生的数学建模能力。

五、总结
对本节课的内容进行总结,并回顾学生掌握的重点知识,强化学生记忆。

六、作业
布置相关的作业,巩固学生所学知识。

教学反思:
本节课主要围绕轨迹与方程展开,通过讲解、练习和实践等环节,帮助学生深入理解各种图形的轨迹和相应的方程。

在教学中,要注意引导学生探究问题、独立思考,激发学生学习兴趣,提高学生的学习效果。

高中数学轨迹方程求解常用方法总结

高中数学轨迹方程求解常用方法总结

高中数学轨迹方程求解常用方法总结导语:轨迹方程就是与几何轨迹对应的代数描绘。

符合一定条件的动点所形成的图形,或者说,符合一定条件的点的全体所组成的集合,叫做满足该条件的点的轨迹。

轨迹,包含两个方面的问题:凡在轨迹上的点都符合给定的条件,这叫做轨迹的纯粹性(也叫做必要性);凡不在轨迹上的点都不符合一、求动点的轨迹方程的基本步骤⒈建立适当的坐标系,设出动点M的坐标;⒉写出点M的集合;⒊列出方程=0;⒋化简方程为最简形式;⒌检验。

二、求动点的轨迹方程的常用方法:求轨迹方程的方法有多种,常用的有直译法、定义法、相关点法、参数法和交轨法等。

⒈直译法:直接将条件翻译成等式,整理化简后即得动点的轨迹方程,这种求轨迹方程的方法通常叫做直译法。

⒉定义法:假设能够确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程,这种求轨迹方程的方法叫做定义法。

⒊相关点法:用动点Q的坐标x,y表示相关点P的坐标x0、y0,然后代入点P的坐标(x0,y0)所满足的曲线方程,整理化简便得到动点Q轨迹方程,这种求轨迹方程的方法叫做相关点法。

⒋参数法:当动点坐标x、y之间的直接关系难以找到时,往往先寻找x、y 与某一变数t的关系,得再消去参变数t,得到方程,即为动点的轨迹方程,这种求轨迹方程的方法叫做参数法。

⒌交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程,这种求轨迹方程的方法叫做交轨法。

直译法:求动点轨迹方程的一般步骤①建系——建立适当的坐标系;②设点——设轨迹上的任一点P(x,y);③列式——列出动点p所满足的关系式;④代换——依条件的特点,选用距离公式、斜率公式等将其转化为关于X,Y的方程式,并化简;⑤证明——证明所求方程即为符合条件的动点轨迹方程。

高中数学必修二《轨迹方程》课件

高中数学必修二《轨迹方程》课件
求“轨迹方程”是求什么? 求点M的横坐标、纵坐标的关 系等式 归纳步骤:
方法一:直接法
如果已知动点满足的等量关系,那么直 接把动点的坐标代入等式,即得动点的 轨迹方程。
注意规范步骤
练习1:设A(-c,0)、B(c,0)(c>0)为两定点,动 点P到A点的距离与到B点的距离的比为定值 a(a>0),求P点的轨迹。Zxx``k
先求方程,再说轨迹。
结论:到两定点的距离之比为定 值的点的轨迹为直线或圆。
问题2:如图,圆O1和圆O2的半径都是1,O1O2=4, 过动点P分别作圆O1和圆O2的切线,切点为M、N, 且使得|PM|=|PN|,问点P的运动轨迹是什么曲线

yP
无系先建系
(x-6)2+y2=33
M
O1 o
P的轨迹是圆
步骤:1、找到动点G与A的坐标关系; 2、把A的坐标用G的坐标表示; 3、把A的坐标代入A的方程; 4、化简后去多补少下结论 。
练习4:已知圆:x2+y2=r2,定点A(a,0),其中a,
r>0.P,B是圆上两点,作矩形PABQ,求点Q的
轨迹。
y
Q
P
GB
oA
x
问题5:已知动点P(x,y)的坐标满足下列关系, 求动点P(x,y)的轨迹方程和轨迹。
高中数学课件
灿若寒星整理制作
问题1:已知动点M与两定点O(0,0)、A(3,0) 的距离之比为,求点M的轨迹方程和轨迹。
动点的横坐标 与纵坐标的关 系等式(曲线 方程)
动点的运动 路线(曲线 )
专题二
《求点的轨迹与轨迹方程 》
F(x,y)=0
问题1:已知动点M与两定点O(0,0)、A(3,0) 的距离之比为,求点M的轨迹方程和轨迹。

高中数学解题方法-----求轨迹方程的常用方法

高中数学解题方法-----求轨迹方程的常用方法

练习
1.一动圆与圆
外切,同时与圆 x2 + y2 − 6x − 91 = 0内切,求动圆圆心
M 的轨迹方程,并说明它是什么样的曲线。
2. 动圆 M 过定点 P(-4,0),且与圆 :C x2+ -y2 8x = 0 相切,求动圆圆心 M 的轨迹方程。 1.在∆ABC 中,B,C 坐标分别为(-3,0),(3,0),且三角形周长为 16,则点 A 的轨迹方 程是_______________________________.
高中数学解题方法
---求轨迹方程的常用方法
(一)求轨迹方程的一般方法: 物1线.)定的义定法义:,如则果可动先点设P出的轨运迹动方规程律,合再乎根我据们已已知知条的件某,种待曲定线方(程如中圆的、常椭数圆,即、可双得曲到线轨、迹抛 方程。 P 满2.足直的译等法量:关如系果易动于点建立P 的,运则动可规以律先是表否示合出乎点我P们所熟满知足的的某几些何曲上线的的等定量义关难系以,判再用断点,但P 点的 坐标(x,y)表示该等量关系式,即可得到轨迹方程。 3. 参数法:如果采用直译法求轨迹方程难以奏效,则可寻求引发动点 P 运动的某个几何 量y=tg,(以t)此,量进作而为通参过变消数参,化分为别轨建迹立的普P 点通坐方标程xF,(yx与,该y)参=数0。t 的函数关系 x=f(t), 4. 代入法(相关点法):如果动点 P 的运动是由另外某一点 P'的运动引发的,而该点的 运出动相规关律点已P'知的,坐(标该,点然坐后标把满P足'的某坐已标知代曲入线已方知程曲),线则方可程以,设即出可得P(到x动,点y),P 的用轨(迹x,方y程)。表示
题目 6:已知点 P 是圆(x +1)2 + y2 =16 上的动点,圆心为 B ,A(1,0) 是圆内的定点;PA 的中垂线交 BP 于点Q .(1)求点Q 的轨迹C 的方程;

高中数学期末备考:解析几何18蒙日圆与应用含解析

高中数学期末备考:解析几何18蒙日圆与应用含解析

18.蒙日圆与应用椭圆22221x y a b的两条互相垂直的切线的交点P 的轨迹是蒙日圆:2222x y a b .例1.已知椭圆 2222:10x y C a b a b的一个焦点为,离心率为53.(1)求椭圆C 的标准方程;(2)若动点 00,P x y 为椭圆外一点,且点P 到椭圆C 的两条切线相互垂直,求点P 的轨迹方程.解析:(1)由题意知33a a ,且有,即 2b ,因此椭圆C 的标准方程为22194x y ;(2)①设从点P 所引的直线的方程为 00y y k x x ,即 00y kx y kx ,当从点P 所引的椭圆C 的两条切线的斜率都存在时,分别设为1k 、2k ,则121k k ,将直线 00y kx y kx 的方程代入椭圆C 的方程并化简得222000094189360k x k y kx x y kx ,2220000184949360k y kx k y kx ,化简得 2200940y kx k ,即22200009240x k kx y y ,则1k 、2k 是关于k 的一元二次方程22200009240x k kx y y 的两根,则201220419y k k x ,化简得220013x y ;②当从点P 所引的两条切线均与坐标轴垂直,则P 的坐标为 3,2 ,此时点P 也在圆2213x y 上.综上所述,点P的轨迹方程为2213x y .例2.给定椭圆C:22221x ya b(a>b>0),称圆心在原点O的圆为椭圆C的“准圆”.若椭圆C的一个焦点为F,0),其短轴上的一个端点到F的距离为(1)求椭圆C的方程和其“准圆”方程;(2)若点P是椭圆C的“准圆”上的动点,过点P作椭圆的切线l1,l2交“准圆”于点M,N.证明:l1⊥l2,且线段MN的长为定值.解析:(1)∵椭圆C的一个焦点为F其短轴上的一个端点到F的距离为.∴c a∴1 b ,∴椭圆方程为221 3x y,∴“准圆”方程为x2+y2=4.(2)证明:①当直线l1,l2中有一条斜率不存在时,不妨设直线l1斜率不存在,则l1:x=,当l1:xl1,-1),此时l2为y=1(或y=-1),显然直线l1,l2垂直;同理可证当l1:x=-时,直线l1,l2垂直.②当l1,l2斜率存在时,设点P(x0,y0),其中22004x y .设经过点P(x0,y0)与椭圆相切的直线为y=t(x-x0)+y0,∴由002213y t x x yx y得(1+3t2)x2+6t(y0-tx0)x+3(y0-tx0)2-3=0.由Δ=0化简整理,得(3-20x )t 2+2x 0y 0t +1-20y =0,∵22004x y ,∴有(3-20x )t 2+2x 0y 0t +(20x -3)=0.设l 1,l 2的斜率分别为t 1,t 2,∵l 1,l 2与椭圆相切,∴t 1,t 2满足上述方程(3-20x )t 2+2x 0y 0t +(20x -3)=0,∴t 1·t 2=-1,即l 1,l 2垂直.综合①②知,l 1⊥l 2.∵l 1,l 2经过点P (x 0,y 0),又分别交其“准圆”于点M ,N ,且l 1,l 2垂直.∴线段MN 为“准圆”x 2+y 2=4的直径,|MN |=4,∴线段MN 的长为定值.。

高二上数学知识点轨迹方程

高二上数学知识点轨迹方程

高二上数学知识点轨迹方程高二上数学知识点——轨迹方程数学是一门抽象而精确的学科,其中轨迹方程是高中数学中一个非常重要的知识点。

通过学习轨迹方程,我们可以揭示事物运动的规律,并在实际问题中应用数学知识。

本文将详细介绍高二上数学中与轨迹方程相关的知识点,帮助读者全面理解该内容。

1. 直线的轨迹方程在平面几何中,直线是我们最常见的事物之一。

学习直线的轨迹方程,我们可以了解直线的运动规律和性质。

以直线y = kx + b为例,其中k是斜率,b是截距。

通过变化k和b的值,我们可以获得不同斜率和截距下的直线。

这样的轨迹方程可以描述一系列平行或相交的直线的运动轨迹。

2. 圆的轨迹方程圆是数学中一种特殊的曲线,由平面上到一定距离的点构成。

学习圆的轨迹方程,我们可以揭示圆的运动规律和特性。

以圆的标准方程x²+ y²= r²为例,其中r代表圆的半径。

通过改变r的值,我们可以绘制出不同半径的圆的轨迹方程。

同时,通过平移、旋转等变换操作,我们还可以得到其他形状的轨迹方程。

3. 抛物线的轨迹方程抛物线是一种常见的曲线,在物理学、工程领域都有广泛应用。

学习抛物线的轨迹方程,我们可以了解抛物线的形状和特性。

以抛物线的标准方程y = ax² + bx + c为例,其中a、b、c分别代表抛物线的形状参数。

通过改变a、b、c的值,我们可以得到不同形状的抛物线的轨迹方程。

同时,通过平移、缩放等变换操作,我们还可以获得其他变形的轨迹方程。

4. 椭圆的轨迹方程椭圆是一种很特殊的曲线,在天文学、机械制造等领域有广泛应用。

学习椭圆的轨迹方程,我们可以了解椭圆的运动规律和特性。

以椭圆的标准方程x²/a² + y²/b² = 1为例,其中a、b是椭圆的半长轴和半短轴。

通过改变a和b的值,我们可以绘制出不同形状和大小的椭圆的轨迹方程。

同时,通过平移、缩放等变换操作,我们还可以得到其他变形的轨迹方程。

几种高中数学轨迹方程的常用解法分析

几种高中数学轨迹方程的常用解法分析

探索篇•方法展示几种高中数学轨迹方程的常用解法分析张成兵(江苏省宿迁市文昌高级中学,江苏宿迁)在高中数学的教学大纲以及高考的考查范围内,对于平面上动点的轨迹方程求解内容都是十分重要的。

轨迹也就是点的集合,方程则是实数对所构成的集合[1]。

基于某种条件来对某个动点的轨迹方程进行求解,本质上是找到不同变量之间的潜在关系,而这种关系的明确和求得则需要以已知点的特点为基础,即需要充分利用已知的条件。

在解决实际问题的过程中,因为动点所呈现出的规律不同,因此也需要采用不同的方法[2]。

一、采用直接法求解轨迹方程在实际求解过程中,如果题目当中的动点自身是几何量等量关系,这些条件表达起来十分简单明了,这样的情况下可以直接将条件进行转化,将其变为由X 、Y 等字母所形成的等式,这样就可以得到动点的轨迹方程。

如:已知点A (-2,0),B (2,0),点P 满足条件为PA ·PB =12,求p 点轨迹方程。

在看到这个题目时应当遵循求轨迹方程的基本步骤,具体求解步骤如下所示:(1)结合题目实际要求构建平面直角坐标系;(2)将运动轨迹上任何一点的坐标设置为n (X ,Y );(3)找到关系式,需要满足已知点和动点都满足的关系式;(4)将已知点和动点的坐标代入方程当中;(5)对方程进行化简处理;(6)需要对曲线方程是否为轨迹方程进行验证,但是在具体求解时第(3)步和第(5)步通常会被忽略。

根据这个求解思路,对以上问题进行解决,解法如下:设(x ,y ),则PA =-2-x ,-y ),PB =2-x ,-y ),所以PA ·PB =-2-x )(2-x )+(-y )(-y )=(x 2-4+4y 2)=12对以上公式整理可以得到:x 2+y 2=16二、采用定义法求解轨迹方程该方法的应用需要满足动点轨迹符合基本轨迹的相关定义,这样才可以根据已有的定义来直接得到某个动点的轨迹方程。

通常情况下可以满足的定义为抛物线、椭圆、双曲线以及圆等,这些可以直接采用定义法来求得相应的轨迹方程[3]。

高中数学「求轨迹方程」知识点梳理+例题精练,建议收藏~

高中数学「求轨迹方程」知识点梳理+例题精练,建议收藏~

专题51曲线与方程-求轨迹方程【热点聚焦与扩展】纵观近几年的高考试题,高考对曲线与方程的考查,主要有以下两个方面:一是确定的轨迹的形式或特点;二是求动点的轨迹方程,同时考查到求轨迹方程的基本步骤和常用方法.一般地,命题作为解答题一问,小题则常常利用待定系数法求方程或利用方程判断曲线类别.本专题在分析研究近几年高考题及各地模拟题的基础上,重点说明求点的轨迹方程问题的常见解法.1、求点轨迹方程的步骤:(1)建立直角坐标系(2)设点:将所求点坐标设为(),x y ,同时将其他相关点坐标化(未知的暂用参数表示)(3)列式:从已知条件中发掘,x y 的关系,列出方程(4)化简:将方程进行变形化简,并求出,x y 的范围2、求点轨迹方程的方法(1)直接法:从条件中直接寻找到,x y 的关系,列出方程后化简即可(2)代入法:所求点(),P x y 与某已知曲线()00,0F x y =上一点()00,Q x y 存在某种关系,则可根据条件用,x y 表示出00,x y ,然后代入到Q 所在曲线方程中,即可得到关于,x y 的方程(3)定义法:从条件中能够判断出点的轨迹为学过的图形,则可先判定轨迹形状,再通过确定相关曲线的要素,求出曲线方程.常见的曲线特征及要素有:①圆:平面上到定点的距离等于定长的点的轨迹直角→圆:若AB AC ⊥,则A 点在以BC 为直径的圆上确定方程的要素:圆心坐标(),a b ,半径r②椭圆:平面上到两个定点的距离之和为常数(常数大于定点距离)的点的轨迹确定方程的要素:距离和2a ,定点距离2c③双曲线:平面上到两个定点的距离之差的绝对值为常数(小于定点距离)的点的轨迹注:若只是到两定点的距离差为常数(小于定点距离),则为双曲线的一支确定方程的要素:距离差的绝对值2a ,定点距离2c④抛物线:平面上到一定点的距离与到一定直线的距离(定点在定直线外)相等的点的轨迹确定方程的要素:焦准距:p .若曲线位置位于标准位置(即标准方程的曲线),则通过准线方程或焦点坐标也可确定方程(4)参数法:从条件中无法直接找到,x y 的联系,但可通过一辅助变量k ,分别找到,x y 与k 的联系,从而得到,x y 和k 的方程:()()x f k y g k =⎧⎪⎨=⎪⎩,即曲线的参数方程,消去参数k 后即可得到轨迹方程.【经典例题】例1.(2020·四川内江·高三三模)已知点()2,0A -、()3,0B ,动点(),P x y 满足2PA PB x ⋅=,则点P 的轨迹是()A.圆B.椭圆C.双曲线D.抛物线例2.(2020·广东深圳三模·)当点P 在圆221x y +=上变动时,它与定点()3,0Q -的连线PQ 的中点的轨迹方程是()A.()2234x y ++=B.()2231x y -+=C.()222341x y -+=D.()222341x y ++=例3.(2020·江西新余四中高三三模)如图:在正方体1111ABCD A B C D -中,点P 是1B C 的中点,动点M 在其表面上运动,且与平面11A DC 的距离保持不变,运行轨迹为S ,当M 从P 点出发,绕其轨迹运行一周的过程中,运动的路程x 与11l MA MC MD =++之间满足函数关系()l f x =,则此函数图像大致是()A.B.C.D.例4.(2020·上海市嘉定区第一中学高三三模)如图所示,在正方体1111ABCD A B C D -中,点P 是平面11ADD A 上一点,且满足ADP △为正三角形.点M 为平面ABCD 内的一个动点,且满足MP MC =.则点M 在正方形ABCD 内的轨迹为()A.B.C.D.例5.(2020·辽宁高三三模)已知半径为r 的圆M 与x 轴交于,E F 两点,圆心M 到y 轴的距离为d .若d EF =,并规定当圆M 与x 轴相切时0EF =,则圆心M 的轨迹为()A.直线B.圆C.椭圆D.抛物线例6.(2020·安徽庐阳·合肥一中高三三模)已知点A ,B 关于坐标原点O 对称,1AB =,以M 为圆心的圆过A ,B 两点,且与直线210y -=相切,若存在定点P ,使得当A 运动时,MA MP -为定值,则点P 的坐标为()A.104⎛⎫ ⎪⎝⎭,B.102⎛⎫ ⎪⎝⎭,C.14⎛⎫- ⎪⎝⎭0,D.102,⎛⎫- ⎪⎝⎭例7.(2020·东湖·江西师大附中高三三模)设过点(),P x y 的直线分别与x 轴的正半轴和y 轴的正半轴交于,A B 两点,点Q 与点P 关于y 轴对称,O 为坐标原点,若2BP PA = ,且1OQ AB ⋅= ,则点P的轨迹方程是()A.()223310,02x y x y +=>>B.()223310,02x y x y -=>>C.()223310,02x y x y -=>>D.()223310,02x y x y +=>>例8.(2016·山西运城·高三三模)已知为平面内两定点,过该平面内动点作直线的垂线,垂足为.若,其中为常数,则动点的轨迹不可能是()A.圆B.椭圆C.抛物线D.双曲线【精选精练】1.(2020·广东普宁·高三三模)与圆及圆都外切的圆的圆心在()A.一个椭圆上B.双曲线的一支上C.一条抛物线D.一个圆上2.(2020·上海高三三模)在平面直角坐标系内,到点()1,2A 和直线l :30x y +-=距离相等的点的轨迹是()A.直线B.抛物线C.椭圆D.双曲线3.(2020·全国高考真题)在平面内,A ,B 是两个定点,C 是动点,若=1AC BC ⋅,则点C 的轨迹为()A.圆B.椭圆C.抛物线D.直线4.(2020·辽宁沈阳·高三三模)已知椭圆22184x y +=,点A ,B 分别是它的左,右顶点.一条垂直于x 轴的动直线l 与椭圆相交于P ,Q 两点,又当直线l 与椭圆相切于点A 或点B 时,看作P ,Q 两点重合于点A 或点B ,则直线AP 与直线BQ 的交点M 的轨迹方程是()A.22184y x -=B.22184x y -=C.22148y x -=D.22148x y -=5.如图,在平面直角坐标系中,()1,0A 、()1,1B 、()0,1C ,映射将平面上的点(),P x y 对应到另一个平面直角坐标系上的点()222,P xy x y '-,则当点沿着折线运动时,在映射的作用下,动点P '的轨迹是()A.B.C.D.6.(2020·四川成都七中高三三模)正方形1111ABCD A B C D -中,若12CM MC =,P 在底面ABCD 内运动,且满足1DP CPD P MP=,则点P 的轨迹为()A.圆弧B.线段C.椭圆的一部分D.抛物线的一部分7.(2020·天水市第一中学高三三模)动点A 在圆221x y +=上移动时,它与定点()3,0B 连线的中点的轨迹方程是()A.22320x y x +++=B.22320x y x +-+=C.22320x y y +++=D.22320x y y +-+=8.(2020·北京市陈经纶中学高三三模)古希腊数学家阿波罗尼奥斯的著作《圆锥曲线论》中给出了圆的另一种定义:平面内,到两个定点A 、B 距离之比是常数λ(0,1)λλ>≠的点M 的轨迹是圆.若两定点A 、B 的距离为3,动点M 满足||2||MA MB =,则M 点的轨迹围成区域的面积为().A.πB.2πC.3πD.4π9.(2020·内蒙古包头·高三三模)已知定点,A B 都在平面α内,定点,,P PB C αα∉⊥是α内异于,A B 的动点,且PC AC ⊥,那么动点C 在平面α内的轨迹是()A.圆,但要去掉两个点B.椭圆,但要去掉两个点C.双曲线,但要去掉两个点D.抛物线,但要去掉两个点10.如图所示,已知12,F F 是椭圆()2222:10x y a b a b Γ+=>>的左,右焦点,P 是椭圆Γ上任意一点,过2F 作12F PF ∠的外角的角平分线的垂线,垂足为Q ,则点Q 的轨迹为()A.直线B.圆C.椭圆D.双曲线11.(2020·北京房山·高三三模)如图,在正方体1111ABCD A B C D -中,M 为棱AB 的中点,动点P 在平面11BCC B 及其边界上运动,总有1AP D M ⊥,则动点P 的轨迹为()A.两个点B.线段C.圆的一部分D.抛物线的一部分12.(2020·四川内江·高三三模)已知平面内的一个动点P 到直线l :x =433的距离与到定点F0)的距离之比为3,点11,2A ⎛⎫ ⎪⎝⎭,设动点P 的轨迹为曲线C ,过原点O 且斜率为k (k <0)的直线l 与曲线C 交于M 、N 两点,则△MAN 面积的最大值为()C.22D.1。

人教版高中数学选修2-1《轨迹方程的求法》

人教版高中数学选修2-1《轨迹方程的求法》

∵PM、PN 是圆 O1、圆 O2 的切线, ∴△PO1M 和△PO2N 是直角三角形. ∵|PM|= |PN|,∴|PM|2=2|PN|2. ∵由两圆的半径均为 1, ∴|PO1|2-1=2(|PO2|2-1). 设 P(x,y).
关键: 找等量关系
∴(x+2)2+y2-1=2[(x-2)2+y2-1],整理,得(x-6)2+y2=33. 故点 P 的轨迹方程为(x-6)2+y2=33.
代入法
(相关点法)
当所求动点的运动很明显地依赖于一已知曲线上 的动点的运动时,可利用代入法,其关键是找出两 动点的坐标的关系,这要充分利用题中的几何条件. 如果轨迹动点P(x,y)的坐标之间的关系不易找 到,也没有相关点可用时,可先考虑将x、y用一 个或几个参数来表示,消去参数得轨迹方程.参数 法中常选角、斜率等为参数.
易漏掉x≠-2的情 形!

x2 2 y 1 【2017 课标 II, 理】 设 O 为坐标原点, 动点 M 在椭圆 C:2
上,过 M 作 x 轴的垂线,垂足为 N,点 P 满足 NP 2 NM 。 (1) 求点 P 的轨迹方程;

参数法 ——若动点P (x,y)的横、纵坐标之间 的关系不易找到,则可借助中间变量(参数) 来表示x,y,然后消去参数就得到动点P (x,y) 的轨迹方程
参数法
高考要求
求曲线的轨迹方程是解析几何的基本问题 之一 求符合某种条件的动点的轨迹方程,其 实质就是利用题设中的几何条件,用“坐标化” 将其转化为寻求变量间的关系 。 这类问题除 了考查考生对圆锥曲线的定义,性质等基础知 识的掌握,还充分考查了各种数学思想方法及 一定的推理能力和运算能力,因此这类问题成 为高考命题的热点!

一、直接法求轨迹方程(高中数学解题妙法)

一、直接法求轨迹方程(高中数学解题妙法)

一、直接法求轨迹方程本内容主要研究直接法求轨迹方程.根据已知条件及一些基本公式如两点间距离公式,点到直线的距离公式,直线的斜率公式等,直接列出动点满足的等量关系式,将关系式坐标化,从而求得轨迹方程。

例:已知一条曲线C 在y 轴右边,C 上每一点到点F (1,0)的距离减去它到y 轴距离的差都是1.求曲线C 的方程.归纳整理:当所求动点的要满足的条件简单明确时,直接按“建系设点、列出条件、代入坐标、整理化简、限制说明”五个基本步骤求轨迹方程, 称之直接法.再看一个例题,加深印象例:在平面直角坐标系xoy 中,如图,已知椭圆15922=+y x 的左、右顶点为A 、B ,右焦点为F .设过点T (m t ,)的直线TA 、TB 与椭圆分别交于点M ),(11y x 、22N (x ,y ),其中m >0,0,021<>y y .设动点P 满足22PF PB 4-=,求点P 的轨迹.总结:1.用直接法求轨迹方程的步骤:建系,设点,列方程化简,其关键是根据条件建立x ,y 之间的关系F (x ,y )=0.2.求轨迹方程时,最后要注意它的完备性与纯粹性,多余的点要去掉,遗漏的点要补上.练习:1.已知线段6=AB ,直线BM AM ,相交于M ,且它们的斜率之积是49,求点M 的轨迹方程.2.已知点)0,2(-A 、).0,3(B 动点),(y x P 满足2x =⋅,则点P 的轨迹为( ) A .圆 B .椭圆 C .双曲线 D .抛物线3.动点P (x ,y )到两定点A (-3,0)和B (3,0)的距离的比等于2(即|PA |2|PB |=),求动点P 的轨迹方程?4. 已知三点O (0,0),A (-2,1),B (2,1),曲线c 上任意一点M (x ,y )满足 ||()2MA MB OM OA OB +=⋅++ .(Ⅰ)求曲线C 的方程;(Ⅱ)点Q (x 0,y 0)(-2<x 0<2)是曲线C 上的动点,曲线C 在点Q 处的切线为l ,点P 的坐标是(0,-1),l 与P A ,PB 分别交于点D ,E ,求△QAB 与△PDE 的面积之比.5. 在直角坐标系xOy 中,曲线C 1上的点均在圆C 2:(x -5)2+y 2=9外,且对C 1上任意一点M,M 到直线x =-2的距离等于该点与圆C 2上点的距离的最小值.(Ⅰ)求曲线C 1的方程;(Ⅱ)设P (x 0,y 0)(y 0≠±3)为圆C 2外一点,过P 作圆(C 2的两条切线,分别与曲线C 1相交于点A ,B 和C ,D .证明:当P 在直线x =-4上运动时,四点A ,B ,C ,D 的纵坐标之积为定值.答案:(3)3AM y k x x =≠- 由已知有4(3)339y y x x x ∙=≠±+- 化简,整理得点M 的轨迹方程为221(3)94x y x -=≠±此即点P 的轨迹方程,所以P 的轨迹为抛物线,选D.3.解 ∵|PA|= PB |=代入|PA |2|PB |=得222222224)3(4)3(2)3()3(y x y x y x y x +-=++⇒=+-++化简得22(x-5)y 16+=,轨迹是以(5,0)为圆心,4为半径的圆.。

高中数学曲线轨迹方程的求法

高中数学曲线轨迹方程的求法

题目高中数学复习专题讲座曲线的轨迹方程的求法 高考要求求曲线的轨迹方程是解析几何的两个基本问题之一 求符合某种条件的动点的轨迹方程,其实质就是利用题设中的几何条件,用“坐标化”将其转化为寻求变量间的关系 这类问题除了考查学生对圆锥曲线的定义,性质等基础知识的掌握,还充分考查了各种数学思想方法及一定的推理能力和运算能力,因此这类问题成为高考命题的热点,也是同学们的一大难点 重难点归纳求曲线的轨迹方程常采用的方法有直接法、定义法、代入法、参数法 (1)直接法 直接法是将动点满足的几何条件或者等量关系,直接坐标化,列出等式化简即得动点轨迹方程(2)定义法 若动点轨迹的条件符合某一基本轨迹的定义(如椭圆、双曲线、抛物线、圆等),可用定义直接探求(3)相关点法 根据相关点所满足的方程,通过转换而求动点的轨迹方程(4)参数法 若动点的坐标(x ,y )中的x ,y 分别随另一变量的变化而变化,我们可以以这个变量为参数,建立轨迹的参数方程求轨迹方程,一定要注意轨迹的纯粹性和完备性 要注意区别“轨迹”与“轨迹方程”是两个不同的概念 典型题例示范讲解例1如图所示,已知P (4,0)是圆x 2+y 2=36内的一点,A 、B 是圆上两动点,且满足∠APB =90°,求矩形APBQ 的顶点Q 的轨迹方程命题意图 本题主要考查利用“相关点代入法”求曲线的轨迹方程知识依托 利用平面几何的基本知识和两点间的距离公式建立线段AB 中点的轨迹方程错解分析 欲求Q 的轨迹方程,应先求R 的轨迹方程,若学生思考不深刻,发现不了问题的实质,很难解决此题技巧与方法 对某些较复杂的探求轨迹方程的问题,可先确定一个较易于求得的点的轨迹方程,再以此点作为主动点,所求的轨迹上的点为相关点,求得轨迹方程解 设AB 的中点为R ,坐标为(x ,y ),则在Rt △ABP 中,|AR |=|PR | 又因为R 是弦AB 的中点,依垂径定理 在Rt △OAR 中,|AR |2=|AO |2-|OR |2=36-(x 2+y 2)又|AR |=|PR |=22)4(y x +-所以有(x -4)2+y 2=36-(x 2+y 2),即x 2+y 2-4x -10=0因此点R 在一个圆上,而当R 在此圆上运动时,Q 点即在所求的轨迹上运动设Q (x ,y ),R (x 1,y 1),因为R 是PQ 的中点,所以x 1=2,241+=+y y x , 代入方程x 2+y 2-4x -10=0,得244)2()24(22+⋅-++x y x -10=0 整理得 x 2+y 2=56,这就是所求的轨迹方程例2设点A 和B 为抛物线 y 2=4px (p >0)上原点以外的两个动点,已知OA ⊥OB ,OM ⊥AB ,求点M 的轨迹方程,并说明它表示什么曲线命题意图 本题主要考查“参数法”求曲线的轨迹方程 知识依托 直线与抛物线的位置关系 错解分析 当设A 、B 两点的坐标分别为(x 1,y 1),(x 2,y 2)时,注意对“x 1=x 2”的讨论技巧与方法 将动点的坐标x 、y 用其他相关的量表示出来,然后再消掉这些量,从而就建立了关于x 、y 的关系解法一 设A (x 1,y 1),B (x 2,y 2),M (x ,y ) (x ≠0) 直线AB 的方程为x =my +a由OM ⊥AB ,得m =-yx由y 2=4px 及x =my +a ,消去x ,得y 2-4p my -4pa =0所以y 1y 2=-4pa , x 1x 2=22122()(4)y y a p = 所以,由OA ⊥OB ,得x 1x 2 =-y 1y 2 所以244a pa a p =⇒= 故x =my +4p ,用m =-yx代入,得x 2+y 2-4px =0(x ≠0) 故动点M 的轨迹方程为x 2+y 2-4px =0(x ≠0),它表示以(2p ,0)为圆心,以2p 为半径的圆,去掉坐标原点解法二 设OA 的方程为y kx =,代入y 2=4px 得222(,)p p A k k则OB 的方程为1y x k =-,代入y 2=4px 得2(2,2)B pk pk - ∴AB 的方程为2(2)1ky x p k=--,过定点(2,0)N p , 由OM ⊥AB ,得M 在以ON 为直径的圆上(O 点除外)故动点M 的轨迹方程为x 2+y 2-4px =0(x ≠0),它表示以(2p ,0)为圆心,以2p 为半径的圆,去掉坐标原点解法三 设M (x ,y ) (x ≠0),OA 的方程为y kx =,代入y 2=4px 得222(,)p p A k k则OB 的方程为1y x k=-,代入y 2=4px 得2(2,2)B pk pk -由OM ⊥AB ,得M 既在以OA 为直径的圆 222220p p x y x y k k+--=……①上, 又在以OB 为直径的圆 222220x y pk x pky +-+=……②上(O 点除外),①2k ⨯+②得 x 2+y 2-4px =0(x ≠0)故动点M 的轨迹方程为x 2+y 2-4px =0(x ≠0),它表示以(2p ,0)为圆心,以2p 为半径的圆,去掉坐标原点例3某检验员通常用一个直径为2 cm 和一个直径为1 cm 的标准圆柱,检测一个直径为3 cm 的圆柱,为保证质量,有人建议再插入两个合适的同号标准圆柱,问这两个标准圆柱的直径为多少?命题意图 本题考查“定义法”求曲线的轨迹方程,及将实际问题转化为数学问题的能力知识依托 圆锥曲线的定义,求两曲线的交点错解分析 正确理解题意及正确地将此实际问题转化为数学问题是顺利解答此题的关键技巧与方法 研究所给圆柱的截面,建立恰当的坐标系,找到动圆圆心的轨迹方程解 设直径为3,2,1的三圆圆心分别为O 、A 、B ,问题转化为求两等圆P 、Q ,使它们与⊙O 相内切,与⊙A 、⊙B 相外切建立如图所示的坐标系,并设⊙P 的半径为r ,则|P A |+|PO |=(1+r)+(1 5-r)=2 5∴点P 在以A 、O 为焦点,长轴长2 5的椭圆上,其方程为 3225)41(1622y x ++=1 ① 同理P 也在以O 、B 为焦点,长轴长为2的椭圆上,其方程为(x -21)2+34y 2=1 ② 由①、②可解得)1412,149(),1412,149(-Q P ,∴r =73)1412()149(2322=+- 故所求圆柱的直径为76cm 例4已知A 、B 为两定点,动点M 到A 与到B 的距离比为常数λ,求点M 的轨迹方程,并注明轨迹是什么曲线解 建立坐标系如图所示, 设|AB |=2a ,则A (-a ,0),B (a ,0) 设M (x ,y )是轨迹上任意一点则由题设,得||||MB MA =λ,坐标代入,得2222)()(ya x y a x +-++=λ,化简得(1-λ2)x 2+(1-λ2)y 2+2a (1+λ2)x +(1-λ2)a 2=0(1)当λ=1时,即|M A|=|M B|时,点M 的轨迹方程是x =0,点M 的轨迹是直线(y 轴)(2)当λ≠1时,点M 的轨迹方程是x 2+y 2+221)1(2λ-λ+a x +a 2=0 点M 的轨迹是以(-221)1(λ-λ+a ,0)为圆心,|1|22λ-λa 为半径的圆学生巩固练习1 已知椭圆的焦点是F 1、F 2,P 是椭圆上的一个动点,如果延长F 1P 到Q ,使得|PQ |=|PF 2|,那么动点Q 的轨迹是( )A 圆B 椭圆C 双曲线的一支D 抛物线2 设A 1、A 2是椭圆4922y x +=1的长轴两个端点,P 1、P 2是垂直于A 1A 2的弦的端点,则直线A 1P 1与A 2P 2交点的轨迹方程为( )A 14922=+y xB 14922=+x yC 14922=-y xD 14922=-x y3 △ABC 中,A 为动点,B 、C 为定点,B (-2a ,0),C (2a,0),且满足条件sin C -sin B =21sin A ,则动点A 的轨迹方程为_________4 高为5 m 和3 m 的两根旗杆竖在水平地面上,且相距10 m ,如果把两旗杆底部的坐标分别确定为A (-5,0)、B (5,0),则地面观测两旗杆顶端仰角相等的点的轨迹方程是_________ 5 已知A 、B 、C 是直线l 上的三点,且|AB |=|BC |=6,⊙O ′切直线l 于点A ,又过B 、C 作⊙O ′异于l 的两切线,设这两切线交于点P ,求点P 的轨迹方程6 双曲线2222by a x -=1的实轴为A 1A 2,点P 是双曲线上的一个动点,引A 1Q ⊥A 1P ,A 2Q ⊥A 2P ,A 1Q 与A 2Q 的交点为Q ,求Q 点的轨迹方程7 已知双曲线2222ny m x -=1(m >0,n >0)的顶点为A 1、A 2,与y 轴平行的直线l 交双曲线于点P 、Q(1)求直线A 1P 与A 2Q 交点M 的轨迹方程; (2)当m ≠n 时,求所得圆锥曲线的焦点坐标、准线方程和离心率8 已知椭圆2222by a x +=1(a >b >0),点P 为其上一点,F 1、F 2为椭圆的焦点,∠F 1PF 2的外角平分线为l ,点F 2关于l 的对称点为Q ,F 2Q 交l 于点R(1)当P 点在椭圆上运动时,求R 形成的轨迹方程;(2)设点R 形成的曲线为C ,直线l y =k (x +2a )与曲线C 相交于A 、B 两点,当△AOB 的面积取得最大值时,求k 的值 参考答案1 解析 ∵|PF 1|+|PF 2|=2a ,|PQ |=|PF 2|, ∴|PF 1|+|PF 2|=|PF 1|+|PQ |=2a ,即|F 1Q |=2a ,∴动点Q 到定点F 1的距离等于定长2a ,故动点Q 的轨迹是圆 答案 A2 解析 设交点P (x ,y ),A 1(-3,0),A 2(3,0),P 1(x 0,y 0),P 2(x 0,-y 0)∵A 1、P 1、P 共线,∴300+=--x yx x y y ∵A 2、P 2、P 共线,∴300-=-+x yx x y y 解得x 0=149,149,3,92220200=-=-=y x y x x y y x 即代入得答案 C3 解析 由sin C -sin B =21sin A ,得c -b =21a ,∴应为双曲线一支,且实轴长为2a,故方程为)4(1316162222a x a y a x >=-答案 )4(1316162222ax a y a x >=-4 解析 设P (x ,y ),依题意有2222)5(3)5(5yx yx +-=++,化简得P点轨迹方程为4x 2+4y 2-85x +100=0 答案 4x 2+4y 2-85x +100=05 解 设过B 、C 异于l 的两切线分别切⊙O ′于D 、E 两点,两切线交于点P 由切线的性质知 |BA |=|BD |,|PD |=|PE |,|CA |=|CE |,故|PB |+|PC |=|BD |+|PD |+|PC |=|BA |+|PE |+|PC |=|BA |+|CE |=|AB |+|CA |=6+12=18>6=|BC |,故由椭圆定义知,点P 的轨迹是以B 、C 为两焦点的椭圆,以l 所在的直线为x 轴,以BC 的中点为原点,建立坐标系,可求得动点P 的轨迹方程为728122y x +=1(y ≠0) 6 解 设P (x 0,y 0)(x ≠±a ),Q (x ,y ) ∵A 1(-a ,0),A 2(a ,0)由条件⎪⎩⎪⎨⎧-=±≠-=⎪⎪⎩⎪⎪⎨⎧-=-⋅--=+⋅+y a x y a x x x ax y a x y a x y a x y 220000000)( 11得 而点P (x 0,y 0)在双曲线上,∴b 2x 02-a 2y 02=a 2b 2即b 2(-x 2)-a 2(ya x 22-)2=a 2b 2化简得Q 点的轨迹方程为 a 2x 2-b 2y 2=a 4(x ≠±a )7 解 (1)设P 点的坐标为(x 1,y 1),则Q 点坐标为(x 1,-y 1),又有A 1(-m ,0),A 2(m ,0),则A 1P 的方程为 y =)(11m x mx y ++ ①A 2Q 的方程为 y =-)(11m x mx y --②①×②得 y 2=-)(2222121m x mx y --③又因点P 在双曲线上,故).(,12212221221221m x m n y n y m x -==-即代入③并整理得2222ny m x +=1 此即为M 的轨迹方程(2)当m ≠n 时,M 的轨迹方程是椭圆(ⅰ)当m >n 时,焦点坐标为(±22n m -,0),准线方程为x =±222nm m -,离心率e =mn m 22-;(ⅱ)当m <n 时,焦点坐标为(0,±22n m -),准线方程为y =±222mn n -,离心率e8 解 (1)∵点F 2关于l 的对称点为Q ,连接PQ , ∴∠F 2PR =∠QPR ,|F 2R |=|QR |,|PQ |=|PF 2|又因为l 为∠F 1PF 2外角的平分线,故点F 1、P 、Q 在同一直线上,设存在R (x 0,y 0),Q (x 1,y 1),F 1(-c ,0),F 2(c ,0)|F 1Q |=|F 2P |+|PQ |=|F 1P |+|PF 2|=2a ,则(x 1+c )2+y 12=(2a )2又⎪⎪⎩⎪⎪⎨⎧=+=221010y y c x x 得x 1=2x 0-c ,y 1=2y 0∴(2x 0)2+(2y 0)2=(2a )2,∴x 02+y 02=a 2 故R 的轨迹方程为 x 2+y 2=a 2(y ≠0)(2)如右图,∵S △AOB =21|OA |·|OB |·sin AOB =22a sin AOB当∠AOB =90°时,S △AOB 最大值为21a 2此时弦心距|OC在Rt △AOC 中,∠AOC =45°,.33,2245cos 1|2|||||2±=∴=︒=+=∴k k a ak OA OC。

高中数学轨迹方程解法

高中数学轨迹方程解法

高中数学轨迹方程解法作者:代红英来源:《中国校外教育(下旬)》2016年第09期摘要:求轨迹方程是每年高考的必考内容,分值高,难度大,能否正确掌握对高考的成绩至关重要。

结合例题介绍五种常用的方法,以期帮助读者掌握求轨迹方程的方法和技巧。

关键词:高中数学轨迹方程参数法求平面上动点的轨迹方程不仅是教学大纲要求掌握的主要内容之一,也是高考考查的重点内容之一。

轨迹即点的集合,而方程为实数对的集合。

求某种条件的动点轨迹的方程,其实质就是利用已知的点的坐标间的特性去寻求变量之间关系。

因此,求轨迹方程的基本指导思想,就是充分利用题设中的几何条件,通过“解析化”将其转化为代数式。

由于动点运动规律给出的条件千差万别,因此求动点轨迹方程的方法也多种多样,这里介绍几种常用的方法。

一、直接法如果动点满足的几何条件本身就是一些几何量的等量关系,或这些几何条件简单明了且易于表达,我们只需把这种关系“翻译”成含X,Y的等式就得到曲线的轨迹方程。

这种方法称为直接法。

当o当p=1时,所求轨迹是抛物线在y轴右侧部分;当p1时,所求轨迹是椭圆在y轴右侧部分;注:求轨迹的步骤:1)建立适当坐标系,设点的坐标;2)根据条件列出关系;3)转化为方程F(x,y)=0;4)整理化简得轨迹方程;5)必要时进行讨论。

二、定义法若动点的轨迹的条件满足某一基本轨迹的定义(如圆、椭圆、双曲线、抛物线),则可以根据定义直接求轨迹方程。

三、参数法有时求动点应满足的几何条件不易的出,也无明显的相关点,但却较易发现这个动点的运动常常受到另一个变量(角度、斜率、比值、截距或时间)的制约,即动点的坐标(x,y)中的x,y分别随另一变量的变化而变化,我们可以这个变量为参数,建立根据的参数方程。

这种方法叫参数法。

如果需要普通方程,只要消去参数即可。

在求轨迹方程中,参数法的应用较为广泛,若参数选择得当,常可使问题获得较为简捷的解法。

注:参数法求动点轨迹方程的步骤:(1)建立坐标系,设动点P(x,y);(2)根据轨迹的条件,选取适当的参数;(3)确定动点坐标中的x,y与参数的关系式,即建立参数方程;(4)消去参数得到普通方程;(5)讨论;其中确定参数是关键。

高中数学求轨迹方程的六种常用技法

高中数学求轨迹方程的六种常用技法

求轨迹方程的六种常用技法轨迹方程的探求是解析几何中的基本问题之一,也是近几年来高考中的常见题型之一。

学生解这类问题时,不善于揭示问题的内部规律及知识之间的相互联系,动辄就是罗列一大堆的坐标关系,进行无目的大运动量运算,致使不少学生丧失信心,半途而废,因此,在平时教学中,总结和归纳探求轨迹方程的常用技法,对提高学生的解题能力、优化学生的解题思路很有帮助。

本文通过典型例子阐述探求轨迹方程的常用技法。

1.直接法根据已知条件及一些基本公式如两点间距离公式,点到直线的距离公式,直线的斜率公式等,直接列出动点满足的等量关系式,从而求得轨迹方程。

例1.已知线段6=AB ,直线BM AM ,相交于M ,且它们的斜率之积是49,求点M 的轨迹方程。

解:以AB 所在直线为x 轴,AB 垂直平分线为y 轴建立坐标系,则(3,0),(3,0)A B -,设点M 的坐标为(,)x y ,则直线AM 的斜率(3)3AM y k x x =≠-+,直线BM 的斜率(3)3AM y k x x =≠- 由已知有4(3)339y y x x x ∙=≠±+- 化简,整理得点M 的轨迹方程为221(3)94x y x -=≠± 练习:1.平面内动点P 到点(10,0)F 的距离与到直线4x =的距离之比为2,则点P 的轨迹方程是 。

2.设动直线l 垂直于x 轴,且与椭圆2224x y +=交于A 、B 两点,P 是l 上满足1PA PB ⋅=的点,求点P 的轨迹方程。

3. 到两互相垂直的异面直线的距离相等的点,在过其中一条直线且平行于另一条直线的平面内的轨迹是A .直线B .椭圆C .抛物线D .双曲线 2.定义法通过图形的几何性质判断动点的轨迹是何种图形,再求其轨迹方程,这种方法叫做定义法,运用定义法,求其轨迹,一要熟练掌握常用轨迹的定义,如线段的垂直平分线,圆、椭圆、双曲线、抛物线等,二是熟练掌握平面几何的一些性质定理。

高中数学动点轨迹方程求解方法

高中数学动点轨迹方程求解方法

高中数学动点轨迹方程求解方法轨迹,包含两个方面的问题:凡在轨迹上的点都符合给定的条件,这叫做轨迹的纯粹性(也叫做必要性);凡不在轨迹上的点都不符合给定的条件,也就是符合给定条件的点必在轨迹上,这叫做轨迹的完备性(也叫做充分性)。

轨迹方程就是与几何轨迹对应的代数描述。

轨迹方程就是与几何轨迹对应的代数描述。

符合一定条件的动点所形成的图形,或者说,符合一定条件的点的全体所组成的集合,叫做满足该条件的点的轨迹。

重点要掌握常用求轨迹方法,难点是轨迹的定型及其纯粹性和完备性的讨论。

一、动点轨迹方程解题步骤1.建系——建立适当的坐标系,设出动点M的坐标;2.设点——设轨迹上的任一点P(x,y),写出点P的集合;3.列式——列出动点p所满足的关系式;4.代换——依条件的特点,选用距离公式、斜率公式等将其转化为关于X,Y的方程式,化简方程为最简形式;5.证明——证明所求方程即为符合条件的动点轨迹方程。

二、动点轨迹方程求解常见的6种方法动点轨迹方程的求解方法有多种,常用的有直译法、定义法、相关点法、参数法和交轨法等。

1.直译求解法:直接将条件翻译成等式,整理化简后即得动点的轨迹方程,这种求轨迹方程的方法通常叫做直译法。

如果动点P的运动规律是否合乎我们熟知的某些曲线的定义难以判断,但点P满足的等量关系易于建立,则可以先表示出点P所满足的几何上的等量关系,再用点P的坐标(x,y)表示该等量关系式,即可得到轨迹方程。

根据已知条件及一些基本公式如两点间距离公式,点到直线的距离公式,直线的斜率公式等,直接列出动点满足的等量关系式,从而求得轨迹方程。

2.定义求解法:如果能够确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程,这种求轨迹方程的方法叫做定义法。

待定系数法:如果动点P的运动规律合乎我们已知的某种曲线(如圆、椭圆、双曲线、抛物线)的定义,则可先设出轨迹方程,再根据已知条件,待定方程中的常数,即可得到轨迹方程,也有人将此方法称为定义法。

高中数学考前归纳总结求轨迹方程的常用方法

高中数学考前归纳总结求轨迹方程的常用方法

求轨迹方程的常用方法一、求轨迹方程的一般方法:1,待定系数法:如果动点P的运动规律符合我们的某种曲线〔如圆、椭圆、双曲线、抛物线〕的定义,那么可先设出轨迹方程,再根据条件, 待定方程中的常数,即可得到轨迹方程,也有人将此方法称为定义法.2,直译法:如果动点P的运动规律是否符合我们熟知的某些曲线的定义难以判断, 但点P满足的等量关系易于建立,那么可以先表示出点P所满足的几何上的等量关系, 再用点P的坐标〔x, y〕表示该等量关系式,即可得到轨迹方程.3 .参数法:如果采用直译法求轨迹方程难以奏效,那么可寻求引发动点P运动的某个几何量t ,以此量作为参变数,分别建立P点坐标x, y与该参数t 的函数关系x = f〔t〕, y = g 〔t〕,进而通过消参化为轨迹的普通方程 F 〔x, y〕 =0.4 .代入法〔相关点法〕:如果动点P的运动是由另外某一点P'的运动引发的, 而该点的运动规律,〔该点坐标满足某曲线方程〕,那么可以设出P 〔x, y〕,用〔x, y〕表示出相关点P'的坐标,然后把P'的坐标代入曲线方程,即可得到动点P的轨迹方程.5 .几何法:假设所求的轨迹满足某些几何性质〔如线段的垂直平分线,角平分线的性质等〕,可以用几何法,列出几何式,再代入点的坐标较简单.6:交轨法:在求动点轨迹时,有时会出现要求两动曲线交点的轨迹问题,这类问题通常通过解方程组得出交点〔含参数〕的坐标,再消去参数求得所求的轨迹方程〔假设能直接消去两方程的参数,也可直接消去参数得到轨迹方程〕,该法经常与参数法并用.二、求轨迹方程的考前须知:1 . 求轨迹方程的关键是在纷繁复杂的运动变化中,发现动点P的运动规律, 即P 点满足的等量关系,因此要学会动中求静,变中求不变.2 .轨迹方程既可用普通方程F〔x,y〕 0表示,又可用参数方程x f〔t〕〔t为参数〕y g〔t〕来表示,假设要判断轨迹方程表示何种曲线,那么往往需将参数方程化为普通程的某些解为坐标的点不在轨迹上〕,又要检验是否丢解.〔即轨迹上方程.3.求出轨迹方程后,应注意检验其是否符合题意,既要检验是否增解, 〔即以该方的某些点未能用所求的方程表示),出现增解那么要舍去,出现丢解,那么需补充.检验方法:研究运动中的特殊情形或极端情形.4 .求轨迹方程还有整体法等其他方法.在此不一一缀述.三、典例分析1,用定义法求曲线轨迹求曲线轨迹方程是解析几何的两个根本问题之一,求符合某种条件的动点轨迹方程,其实质就是利用题设中的几何条件,通过坐标互化将其转化为寻求变量之间的关系,在求与圆锥曲线有关的轨迹问题时,要特别注意圆锥曲线的定义在求轨迹中的作用,只要动点满足已知曲线定义时,通过待定系数法就可以直接得出方程.例1:ABC的顶点A, B的坐标分别为(-4 , 0) , (4, 0) , C为动点,且满足一一一5 .sin B sin A —sinC,求点C的轨迹.45 . . 5【解析】由sin B sin A -sinC,可知b a -c 10,即|AC| | BC | 10 ,满足椭4 42 2圆的定义.令椭圆方程为J 2 1,那么a' 5,c' 4 b' 3,2 2a b2 2那么轨迹方程为土2―1 (x 5),图形为椭圆(不含左,右顶点) .25 9【点评】熟悉一些根本曲线的定义是用定义法求曲线方程的关键.(1) 圆:到定点的距离等于定长(2) 椭圆:到两定点的距离之和为常数(大于两定点的距离)(3) 双曲线:到两定点距离之差的绝对值为常数(小于两定点的距离)(4) 到定点与定直线距离相等.【变式1]:1:圆尸=有的圆心为M,圆住一4尸4了, .的圆心为M, 一动圆与这两个圆外切,求动圆圆心P的轨迹方程.解:设动圆的半径为R,由两圆外切的条件可得:|P%l=R + 5 , |P叫l=R + l.,-.|PM1P5HPMJ-b|PM1|-|PM a|=4•••动圆圆心P的轨迹是以M、M2为焦点的双曲线的右支, c=4, a=2, b2=12.故所求轨迹方程为4 12M 的轨迹是:A:抛物线B:圆C:椭圆D:双曲线一支2.用直译法求曲线轨迹方程 此类问题重在寻找数量关系.例2: 一条线段AB 的长等于2a ,两个端点A 和B 分别在x 轴和y 轴上滑动,求 AB 中点P 的轨迹方程?解 设M 点的坐标为〔x, y 〕由平几的中线定理:在直角三角形 一— 1 一 1 八 AO 升,OM=AB - 2a a,2 2―22-222x y a,x y aM 点的轨迹是以O 为圆心,a 为半径的圆周.1【点评】此题中找到了 OM=1AB 这一等量关系是此题成功的关键所在.一般直译法有以下几2种情况:1〕代入题设中的等量关系:假设动点的规律由题设中的等量关系明显给出,那么采用直 接将数量关系代数化的方法求其轨迹.2〕列出符合题设条件的等式:有时题中无坐标系,需选定适当位置的坐标系,再根据题设条 件列出等式,得出其轨迹方程.3〕运用有关公式:有时要运用符合题设的有关公式,使其公式中含有动点坐标,并作相应的 恒等变换即得其轨迹方程.4〕借助平几中的有关定理和性质:有时动点规律的数量关系不明显,这时可借助平面几何中 的有关定理、性质、勾股定理、垂径定理、中线定理、连心线的性质等等,从而分析出其数 量的关系,这种借助几何定理的方法是求动点轨迹的重要方法^| PAI 一【变式2】:动点P(x,y)到两定点A(—3,0)和B(3,0)的距离的比等于2(即 2),|PB|求动点P 的轨迹方程?[解答]. . | PA = J(x 3)2__y 7/ PB | J(x 3)2父| PA | (x 3)2 y 2 2 2 22代入 ——1 2得 ——2 (x 3)2y 2 4(x 3)2 4y 22: 一动圆与圆O: x 2 y 21外切,而与圆C : x 22y 6x 8 0内切,那么动圆的圆心【解答】令动圆半径为R, 皿士 |MO| R那么有। ।| MC | R1c,那么 |MO|-|MC|=2 ,1满足双曲线定义.应选Do|PB| ..(x 3)2 y2化简彳导(x-5) 2+y2=16,轨迹是以(5, 0)为圆心,4为半径的圆.3.用参数法求曲线轨迹方程此类方法主要在于设置适宜的参数,求出参数方程,最后消参,化为普通方程.注意参数的取值范围.例3.过点P (2,4)作两条互相垂直的直线l i, 12,假设l i交x轴于A点,l 2交y轴于B点,求线段AB的中点M的轨迹方程.【解析】分析1:从运动的角度观察发现,点M的运动是由直线l i引发的,可设出l i的斜率k作为参数,建立动点M坐标(x, y)满足的参数方程.解法1:设M (x, y),设直线l i的方程为y-4= k (x-2), ( k w 0 )1 _由l i l2,那么直线l2的万程为y 4 —(x 2)k4l1与x轴交点A的坐标为(2 4,0),kl2与y轴交点B的坐标为(0,4 2), k・•.M为AB的中点,2k(k为参数)消去k,得x+ 2y—5=0.另外,当k = 0时,AB中点为M (1, 2),满足上述轨迹方程;当k不存在时,AB中点为M (1, 2),也满足上述轨迹方程.综上所述,M的轨迹方程为x+2y—5=0.分析2:解法1中在利用k1k2=- 1时,需注意匕、k2是否存在,故而分情形讨论,能否避开讨论呢?只需利用^ PAB为直角三角形的几何特性:1 . .|MP| 21ABi解法2:设M (x, y),连结MP 那么 A (2x, 0), B (0, 2y),•••l」l 2, PAB为直角三角形1 .由直角二角形的性质,|MP| 31ABi--------------- 2 2-1 -----------2 2..(x 2)2 (y 4)22;,(2x)2 (2y)2化简,得x + 2y-5 = 0,此即M 的轨迹方程.分析3::设M (x, y),由l i _L l 2,联想到两直线垂直的充要条件: k i k 2=—1,即可 列出轨迹方程,关键是如何用 M 点坐标表示 A 、B 两点坐标.事实上,由 M 为AB 的中点,易 找出它们的坐标之间的联系.解法3:设M (x, y), •「M 为AB 中点, 又l 1, l 2过点P (2, 4),且l/l 2••• PAX PB,从而 k PA • k PB= — 1, 中点M (1, 2),经检验,它也满足方程 x+2y-5=0 综上可知,点 M 的轨迹方程为x+2y-5=0o【点评】 解法1用了参数法,消参时应注意取值范围.解法 2, 3为直译法,运 1 ,k PA • k PB= - 1, | MP | - | AB|这些等量关系.用参数法求解时,一 般参数可选用具有某种物理或几何意义的量,如时间,速度,距离,角度, 有向线段的数量,直线的斜率,点的横,纵坐标等.也可以没有具体的意 义,选定参变量还要特别注意它的取值范围对动点坐标取值范围的影响【变式3】过圆O: x 2+y 2= 4外一点A(4,0),作圆的割线,求割线被圆截得的弦 BC 的中点M 的轨迹. 解法一:“几何法〞设点M 的坐标为(x,y ),由于点M 是弦BC 的中点,所以 OML BC, 所以 |OM | 2 + | MA | 2 =| OA | 2 ,即(x 2+y 2)+(x -4)2 +y 2=16化简得:(x —2) 2+ y 2=4 .................................. ①由方程 ① 与方程x 2+y 2= 4得两圆的交点的横坐标为 1,所以点M 的轨迹方程为 (x —2) 2+ y 2=4 (0<x<1)o 所以M 的轨迹是以(2, 0)为圆心,2为半径的圆在圆 O 内的局部. 解法二:“参数法〞设点M 的坐标为(x,y ), B (x 1,y0 ,C (x 2,y 2)直线AB 的方程为y=k(x -4), 由直线与圆的方程得(1+k 2) x 2—8k 2x +16k 2—4=0 .................... (*),由点M 为BC 的中点,所以x=x —x 2 」4k ) ................................ (1),2 1 k又 OMLBC,所以 k=Y (2)由方程(1) (2)消去k 得(x — 2) 2+ y 2=4,又由方程(* )的^> 0得k 2< 1,所以x< 1.3••• A (2x, 0),B (0, 2y).而k pA4 0 2 2x' 4 2y2 2x 2注意到l i^x 轴时,1,化简,得x 2y 5 0l 2±y 轴,此时 A (2, 0), B (0,4)用了2+ y 2=4 ( 0<x< 1)为圆心,2为半径的圆在圆 O 内的局部.【点评】代入法的关键在于找到动点和其相关点坐标间的等量关系【变式4】如下图, R4 , 0)是圆x 2+y 2=36内的一点,A 、B 是圆上两动点,且满足ZAPE =90 ,求矩形APBQ 勺顶点Q 的轨迹方程【解析】: 设AB 的中点为R,坐标为(x , y ),那么在Rt^ABP 中,|AR =| PR 又由于R 是弦 AB 的中点,依垂径定理在 Rt △ OAF^, | AR 2=| A .2—|OR 2=36—(x 2+y 2)又|AR =| P 帘(x 4)2 y 2所以有(x-4) 2+y 2=36- (x 2+y 2),即 x 2+y 2—4x —10=0因此点R 在一个圆上,而当 R 在此圆上运动时,Q 点即在所求 的轨迹上运动 设Qx ,y) , R (x 1, y 1),由于R 是PQ 的中点,所以 y o ,222x +y -4x- 10=0,得(_y )2 4 x 4 _10=022所以点M 的轨迹方程为(x-2)所以M 的轨迹是以(2, 0) 4,用代入法等其它方法求轨迹方程x 2例4.点B 是椭圆-2 a2与1上的动点,A(2a,0)为定点,求线段AB 的中点M 的 b 2轨迹方程.分析:题中涉及了三个点 A 、B 、M,其中A 为定点,而B 、M 为动点,且点 B 的运动是有 规律的,显然 M 的运动是由B 的运动而引发的,可见 M B 为相关点,故采用相关点法求动点 M 的轨迹方程.【解析】设动点 那么由M 为线段 M 的坐标为(x, y),而设B 点坐标为(xo, yo)AB 中点,可得x 0 2a 2 V . 0 2 x 0 2x 2aV . 2y即点 B 坐标可表为(2x - 2a, 2y)x 2点B(x°, y°)在椭圆-y a 2—1上b 22x 0 -2- a2〞1 b 2(2x 从而有——2a)2 2a叱1b 2整理,得动点M 的轨迹方程为4J a22a) 4y 1 b 2x 4 x1=—,y 1代入方程(7)22QR整理得 x 2+y 2=56,这就是所求的轨迹方程四、常见错误:【例题5】 ABC 中,B, C 坐标分别为(-3, 0), (3, 0),且三角形周长为16,求点A 的轨 迹方程.22【常见错误】由题意可知,|AB|+|AC|=10 ,满足椭圆的定义.令椭圆方程为 : 4 1 ,那么a b22由定义可知a 5,c 3,那么b 4,得轨迹方程为—匕 1516【错因剖析】ABC 为三角形,故A, B, C 不能三点共线.【正确解答】ABC 为三角形,故 A, B, C 不能三点共线.轨迹方程里应除去点(5,0).( 5,0),22即轨迹方程为二匕 1(x5)25 16提示:1 :在求轨迹方程中易出错的是对轨迹纯粹性及完备性的忽略,除;另一方面,又要注意有无“漏网之鱼〞仍逍遥法外,2:求轨迹时方法选择尤为重要,首先应注意定义法,几何法,直接法等方 法的选择.3:求出轨迹后,一般画出所求轨迹,这样更易于检查是否有不合题意的部 分或漏掉的局部. 针对性练习:5 ___ 5、 一 一 22 一1:两点M(1,—), N( 4,一)给出以下曲线方程:① 4x 2y 1 0;②x y 3;③4 422— y 21y 21,在曲线上存在点 P 满足|MP | | NP |的所有曲线方程是(22A ①③B ②④C ①②③D ②③④【答案】:D【解答】:要使得曲线上存在点 P 满足|MP| |NP|,即要使得曲线与 MN 的中垂线y 有交点.把直线方程分别与四个曲线方程联立求解,只有①无解,那么选D2.两条直线x my 1 0与mx y 1 0的交点的轨迹方程是 : 【解答】:直接消去参数 m 即得(交轨法):x 2 y 2 x y 03:圆的方程为(x-1) 2+y 2=1,过原点O 作圆的弦0A,那么弦的中点M 的轨迹方程是 ^因此, 在求出曲线方程的方程之后,应仔细检查有无“不法分子〞掺杂其中, 将其剔要将其“捉拿归案〞.2x 3【解答】:令 M 点的坐标为(x, y),那么A 的坐标为(2 x,2y),代入圆的方程里面便可得到动点的轨迹方程.【解答】:抛物线方程可化为它的顶点坐标为消去参数m 得:(4, 0)的距离与它到直线 x 4的距离相等.那么点 M 的 4为准线的抛物线.故所求轨迹方程为 y 2 16x .6:求与两定点OO 1, 0、A3, 0距离的比为1: 2的点的轨迹方程为八, …, ,□… POl1一、… 一— 一〜…,一八【分析】:设动点为巳由题意- -,那么依照点P 在运动中所遵循的条件,可列出等量关| PA| 2系式.【解答】:设P x, y 是所求轨迹上一点,依题意得L1 O 得:(x 1)22y 2 :(x 0)4随意变化时,那么抛物线y x 2 2m 1 xm 2 1的顶点的轨迹方程为把所求轨迹上的动点坐标x, y 分别用已有的参数 m 来表示,然后消去参数 m故所求动点的轨迹方程为4x 4y 305:点M 到点F (4, 0) 的距离比它到直线50的距离小1 ,那么点M 的轨迹方程为【分析】:点M 到点F (4, 0)的距离比它到直线 50 的距离小1,意味着点M 到点F(4, 0)的距离与它到直线 x 40的距离相等. 由抛物线标准方程可写出点 M 的轨迹方程.【解答】:依题意,点M 到点F轨迹是以F (4, 0)为焦点、x由两点间距离公式得:x 2 y 21PO 1 PA 2化简彳导:x 2 y 2 2x 3027抛物线y 4x 的通径〔过焦点且垂直于对称轴的弦〕与抛物线交于 A 、B 两点,动点C 在抛物线上,求^ ABC 重心P 的轨迹方程.【分析】:抛物线y 4x 的焦点为F 1,0 .设^ ABC 重心P 的坐标为〔x, y 〕,点C 的坐 标为〔x 1, y 1〕.其中x 1 1【解答】:因点P x, y 是重心,那么由分点坐标公式得:x 另一2, y 也33即 x 1 3x 2, y 1 3y由点C x 1,y 1在抛物线y 2 4x 上,得:y 12 4x 124 2将x i3x 2, y i3y 代入并化简,得:y — x —( x 1) 338 .双曲线中央在原点且一个焦点为F 〔乔,0〕,直线y=x —1与其相交于 M N 两点,MNUI中点的横坐标为 5 ,求此双曲线方程.22【解答】:设双曲线方程为 2T 当 a b (b 2-a a)x a+ 2a ax- a 3- a ab a=0,此双曲线的方程为9 .动点P 到定点F 〔1, 0〕和直线x=3的距离之和等于【解答】:设点P 的坐标为〔x, y 〕,那么由题意可得1.将y=x — 1代入方程整理得由韦达定理得x 1 x 2解得 a 2 2,b 25.22aX I x 2~2~2 --a b 22 ,2a b2.又有+ 联立方程组,34,求点P 的轨迹方程.J (犬 _ + y* + | x — 31= 4(1)当xw3 时,方程变为J(x 1)2—y2 3 x 4,J(x 1)2―y2 x 1,化简得2y 4x(0 x 3).(2)当x>3 时,方程变为J(x 1)2—y7 x 3 4,J(x 1)2—y7 7 x,化简得y a = -12(x-4)(3<x<4)o毋足十的人口的-■铲曰必=4式.弓工43)一,= T2(x —4)0仃44)故所求的点P的轨迹方程是‘ 工 ,或, 八■10 .过原点作直线l和抛物线y x24x 6交于A、B两点,求线段AB的中点M的轨迹方程.【解答】:由题意分析知直线l的斜率一定存在,设直线l的方程y=kx.把它代入抛物线方程了=/一4天4®,得又‘一04•的白=口.由于直线和抛物线相交,所以△>0,解得x ( , 4 2而)(4 2^/6,).设A (叼打),B (叼力),M (x, y),由韦达定理得句中句=4*k.盯盯=6.产1 4k由户工一厂消去k得y=2x〞-必.又2黑f % =4 +上,所以x ( , V6)(后).,点M的轨迹方程为y 2x24x, x ( , <6) (<16, ) o。

高中数学-教师-轨迹方程的求法

高中数学-教师-轨迹方程的求法
解:(1)设双曲线 的渐近线方程为 。因为 与圆 相切,所以圆心 到直线 的距离等于1,即 ,所以双曲线的渐近线方程为 。
设双曲线 的方程为 因为双曲线 经过 ,所以
(2)因为点 在双曲线的上支,所以可设 。根据点 到直线 的距离等于 ,得 ,因此所求点 的坐标是 。
3.已知抛物线 的顶点在原点,它的准线 经过双曲线 的焦点,且准线 与双曲线 交于 和 两点,求抛物线 和双曲线 的方程。
由 =30,得: ,
又 ,
代入上式得; ,化简得:
例5以抛物线y= x2的弦AB为直径的圆经过原点O,过点O作OM⊥AB,M为垂足,求点M的轨迹方程
解:设直线OA方程为 ,代入y= x2,得A点坐标为 ,
,
同理可得B( ),
直线AB方程为 ,
即: ①
直线OM方程为 ②
① ②,得: ,

解析:本题关键利用圆的几何条件来求轨迹方程。
解:取过 点且与 平行的直线为 轴,过 且垂直于 的直线为 轴,建立直角坐标系,设动圆圆心为 与 的公共弦为 与 切于点 ,则 为 的直径, 垂直平分 于 由勾股定理得 而 。
4.动圆P与定圆 相内切且过点 求动圆圆心 的轨迹方程。
解:设动圆 的半径为 ,圆 的方程可化为 。动圆 与圆 相内切,则 ,又动圆 过点 因此 点 的轨迹是以 为焦点的椭圆。可知:
热身练习
1.已知 两点分别在 轴, 轴上移动,求 中点 的轨迹方程。
解:设点 ,则点
2.若 的两个顶点为 点 在曲线 上运动。求 的重心轨迹方程。
解析:本题重在熟悉求轨迹方程中很重要的方法—转移代换
解:设重心坐标为 ,则点 。 点 在已知曲线上, 点 坐标满足曲线方程,
3.已知 的半径为3,直线 与 相切,一动圆与 相切,并与 相交的公共弦恰为 的直径,求动圆圆心的轨迹方程。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.已知AB 是圆2522=+y x 的动弦,若6=AB ,则线段AB 的中点的轨迹方程为 .2.已知5=PQ ,P 到平面内一直线l 的距离为2且Q 到直线l 的距离为4,则满足条件的直线l 有 条.3.ABC ∆的三边长分别为||,||,||BC a BA c A C b ===,且a b c >>成等差数列,(1,0),(1,0)A C -,则顶点B 的轨迹方程为 .4.已知圆O 的方程是0222=-+y x ,圆O '的方程是010822=+-+x y x ,由动点P 向圆O 和圆O '所引的切线长相等,则动点P 的轨迹方程为 .5.()24,P 是圆C :036282422=---+y x y x 内的一个定点,圆上的动点A 、B 满足ο90=∠APB ,则弦AB 的中点Q 的轨迹方程为 .轨迹方程热身练习知识梳理求轨迹是解析几何一个很重要的题型,方法较多,难度较大。

在此两讲中,我们将学习最为常见的几种求轨迹的方法(直接法、转移代入法、几何定义法、综合法、点差法、消参法、交轨法等).1、直接法直接法,又称“直译法”,是求轨迹最基本的方法,圆锥曲线的标准方程都是通过直接法得到的.解题步骤就是“建设现代化镇”(1)建系,目前大部分题目都已经建好坐标系了,一般可以省略;x y;(2)设点,直接设动点坐标为(,)(3)写式,运用一定平面几何知识,写出题目中动点满足的几何关系式;(4)代入,将动点坐标、已知数据全部代入关系式;(5)化简,化简式子,注意等价性;(6)证明,证明轨迹的完备性和纯粹性,由于前几步的等价性,所以现已省略此步.2、转移代入法转移代入法,也称“相关点法”.当动点是随着相关的点有规律的运动而运动时,可用此法.解题步骤:第一,需找到动点和相关点之间的坐标关系,进行表示和反表示,就是坐标转移;第二,需找到相关点在运动时满足的那个关键式,代入关键式;第三,化简即可,注意范围。

目前一般常见的题型有两种:一静一动类,双动类.3、几何定义法几何定义法,根据动点满足的几何关系式,发现动点正好满足某个我们已经学过的曲线的定义,那么就可以直接用结论,节省了时间,是对曲线的定义,特别是圆锥曲线的定义的重要考查形式.我们来复习一下几个常见定义:(1)到定点的距离等于定值的点的轨迹--------圆;(2)到定直线的距离等于定值的点的轨迹------两条平行线;(3)到两定点的距离之和为定值的点的轨迹(该和大于两定点间的距离)------椭圆;(4)到两定点的距离之和为定值的点的轨迹(该和等于两定点间的距离)------线段;(5)到两定点的距离之差的绝对值为定值的点的轨迹(差的绝对值小于两定点间的距离)------双曲线;(6)到两定点的距离之差的为定值的点的轨迹(差的绝对值小于两定点间的距离)------双曲线的一支;(7)到两定点的距离之差的绝对值为定值的点的轨迹(差的绝对值等于两定点间的距离)-----两条射线;(8)到两定点的距离之差的为定值的点的轨迹(差的绝对值等于两定点间的距离)----------一条射线;(9)到定点与到定直线距离相等的点的轨迹(该定点不在定直线上)------抛物线;(10)到定点与到定直线距离相等的点的轨迹(该定点在定直线上)-------直线;注意:1..理论上,所有的几何定义法的题目都可以用直接法解决,但往往计算量大,容易出错;2.而在用几何定义法做题时,也不是万能的,一定要注意定义的细节以及等价原则;3.曲线的定义与方程无关,并不是说所有题一定都是标准方程.4、点差法只要是“直曲交、中点弦”问题,理论上就可以使用点差法.点差点差,设出两交点,代入方程,然后做差,就可以得到弦中点的坐标与弦斜率的关系式,从而解决问题.计算量较之综合法会小很多.但是,点差法是一种技巧,缺乏几何意义,只能解决几种特定题型,而且点差法是不保证有两个交点的,所以往往需要最后回代检验,也有些麻烦.5、综合法(消参法)综合法,就是直线与圆锥曲线曲线相交问题中的轨迹问题,其精髓是,联立消元,设而不求,利用韦达定理和消参法来解决问题.从条件中无法直接找到,x y的联系,可通过一辅助变量k,分别找到,x y与k的联系,从而得到,x y和k的方程:()()x f ky g k=⎧⎪⎨=⎪⎩,即曲线的参数方程,消去参数k后即可得到轨迹方程.在选择参数时,选用的参变量可以具有某种物理或几何意义,如时间、速度、距离、角度、有向线段的数量、直线的斜率、点的横(纵)坐标等,也可以没有具体的意义,选定参变量还要特别注意它的取值范围对动点坐标取值范围的影响.6、交轨法在求动点轨迹时,有时会出现求两动曲线交点的轨迹问题,这类问题常常通过解方程组得出交点(含参数)的坐标,再消去参数求出所求轨迹的方程,该法经常与参数法并用.注意:区分“求轨迹”与“求轨迹方程”的不同一般来说,若遇“求轨迹方程”,求出方程就可以了;若是“求轨迹”,求出方程还不够,还应指出方程所表示的曲线的类型,有时候,问题仅要求指出轨迹的形状,如果应用“定义法”求解,可不求轨迹方程.一、直接法求轨迹方程直接法求轨迹方程的一般步骤 (1)建立恰当的直角坐标系;(2)设出所求曲线上点的坐标,把几何条件或等量关系用坐标表示为代数方程; (3)化简整理这个方程,检验并说明所求的方程就是曲线的方程.直接法求曲线方程时最关键的就是把几何条件或等量关系翻译为代数方程,要注意翻译的等价性.通常将步骤简记为:“建系、设点、列式、化简”.【例1】若0|3|)1()3(22=+---++y x y x ,则点),(y x M 的轨迹是 ( )A .圆B .椭圆C .双曲线D .抛物线【例2】已知ABC ∆中,||||2,||AB BC m AC ==,求点A 的轨迹方程,并说明轨迹是什么图形.【例3】在平面直角坐标系xOy 中,点P (a ,b )为动点,F 1,F 2分别为椭圆12222=+by a x (a >b >0)的左,右焦点.已知△F 1PF 2为等腰三角形.设直线PF 2与椭圆相交于A ,B 两点,M 是直线PF 2上的点,满足AM →·BM →=-2,求点M 的轨迹方程.例题解析【例4】已知两点(1,0),(1,0)M N -,且点P 时,,MP MN PM PN NM NP ⋅⋅⋅u u u r u u u u r u u u u r u u u r u u u u r u u u r成公差小于零的等差数列.(1)点P 的轨迹是什么曲线?(2)若点P 的坐标为00(,)x y ,记θ为PM u u u u r 与PN u u ur 的夹角,求tan θ(用点P 的坐标数值表示).【例5】已知椭圆C :12222=+by a x (a >b >0)的一个焦点为(5,0),长轴长为6.(1)求椭圆C 的标准方程;(2)若动点P (x 0,y 0)为椭圆C 外一点,且点P 到椭圆C 的两条切线相互垂直,求点P 的轨迹方程.【思维升华】直接法求轨迹方程的常见类型及解题策略: (1)题目给出等量关系,求轨迹方程.直接代入即可得出方程.(2)题中未明确给出等量关系,求轨迹方程.可利用已知条件寻找等量关系,得出方程.【巩固训练】1.已知点)0,2(-A 、)0,3(B ,动点2),(x y x P =⋅满足,则点P 的轨迹是( ) A .圆 B .椭圆 C .双曲线 D .抛物线2.已知△O 方程为x 2+y 2=4,过M (4,0)的直线与△O 交于A ,B 两点,则弦AB 中点P 的轨迹方程为____________________.3.已知圆: ,由动点向圆引两条切线、,切点分别为、,并且,求点的轨迹。

4.已知A ,B 为平面内两定点,过该平面内动点M 作直线AB 的垂线,垂足为N .若MN →2=λAN →·NB →,其中λ为常数,则动点M 的轨迹不可能是( ) A .圆 B .椭圆 C .抛物线 D .双曲线5.如图所示,A (m ,3m )和B (n ,-3n )两点分别在射线OS ,OT (点S 、T 分别在第一、四象限)上移动,且OA →·OB →=-12,O 为坐标原点,动点P 满足OP →=OA→+OB →. △求mn 的值;△求动点P 的轨迹方程,并说明它表示什么曲线?二、几何定义法求轨迹方程定义法求轨迹方程的步骤(1)判断动点的运动轨迹满足某种曲线的定义; (2)设标准方程,求方程中的基本量; (3)求轨迹方程.C 22(1)(1)4x y ++-=P C PA PB A B 60APB ︒∠=P【例6】设F 为圆锥曲线的焦点,P 是圆锥曲线上任意一点,则定义PF 为圆锥曲线的焦半径,下列几个命题:△.平面内与两个定点F 1,F 2的距离之和为常数的点的轨迹是椭圆△.平面内与两个定点F 1,F 2的距离之差的绝对值为常数的点的轨迹是双曲线. △.平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹是抛物线 △.以椭圆的焦半径为直径的圆和以长轴为直径的圆相切 △.以抛物线的焦半径为直径的圆和y 轴相切△.以双曲线的焦半径为直径的圆和以实轴为直径的圆相切 其中正确命题的序号是 .【例7】点M 与点(4,0)F 的距离比它到直线:50l x +=的距离小1,则点M 的轨迹方程是_______.【例8】设定点F 1(0,-3),F 2(0,3),动点P 满足条件|PF 1|+|PF 2|=a +9a (a >0),则点P 的轨迹是_______.【例9】已知圆M :(x +1)2+y 2=1,圆N :(x -1)2+y 2=9,动圆P 与圆M 外切并且与圆N 内切,圆心P 的轨迹为曲线C .求C 的方程.【例10】设圆O 1和圆O 2是两个相离的定圆,动圆P 与这两个定圆都相切,则圆P 的圆心轨迹可能是△两条双曲线;△一条双曲线和一条直线;△一条双曲线和一个椭圆.以上命题正确的是( )A .△△B .△△C .△△D .△△△【巩固训练】1.与圆2240x y x +-=外切,又与y 轴相切的圆的圆心的轨迹方程是( ) A.28y x = B.28(0)y x x =>和0y =C.28y x =(0)x >D.28(0)y x x =>和0(0)y x =<2.已知椭圆13422=+y x 的两个焦点分别是F 1,F 2,P 是这个椭圆上的一个动点,延长F 1P 到Q ,使得|PQ |=|F 2P |,求Q 的轨迹方程是是 .3.△ABC 中,A 为动点,B 、C 为定点,B (-,0),C (,0),且满足条件sin C -sin B =sin A ,则动点A 的轨迹方程为_________.4.在△ABC 中,A (x ,y ),B (﹣2,0),C (2,0),给出△ABC 满足的条件,就能得到动点A 的轨迹方程,如表给出了一些条件及方程:条件方程△△ABC 周长为10; △△ABC 面积为10; △△ABC 中,△A =90°E 1:y 2=25; E 2:x 2+y 2=4(y≠0);E 3:)0(15922≠=+y y x则满足条件△、△、△的轨迹方程分别用代号表示为( ) A .E 3,E 1,E 2 B .E 1,E 2,E 3 C .E 3,E 2,E 1 D .E 1,E 3,E 25.已知两个定圆O 1和O 2,它们的半径分别是1和2,且|O 1O 2|=4.动圆M 与圆O 1内切,又与圆O 2外切,建立适当的坐标系,求动圆圆心M 的轨迹方程,并说明轨迹是何种曲线.6.设双曲线12222=-by a x (a >0,b >0)两焦点为F 1,F 2,点Q 为双曲线上除顶点外的任一点,过焦点F 1作△F 1QF 2的平分线的垂线,垂足为P ,则P 点的轨迹是( ) A.椭圆的一部分B.双曲线的一部分C.抛物线的一部分D.圆的一部分2a 2a 217.已知A 、B 、C 是直线l 上的三点,且|AB |=|BC |=6,△O ′切直线l 于点A ,又过B 、C 作△O ′异于l 的两切线,设这两切线交于点F ,求点F 的轨迹方程.8.在直角坐标平面中,ABC ∆的两个顶点A 、B 的坐标分别为A (-1,0),B (1,0),平面内两点G 、M 同时满足下列条件:(1)GA GB GC O ++=u u u r u u u r u u u r u r ,(2)||||||MA MB MC ==u u u r u u u r u u u u r ,(3)//GM AB u u u u r u u u r ,则ABC ∆的顶点C 的轨迹方程为( )A. 2213x y += (0)y ≠B. 2213x y -= (0)y ≠C. 2213y x += (0)y ≠ D. 2213y x -= (0)y ≠三、“代入法”或“相关点”求轨迹方程“代入法”或“相关点法”的基本步骤:(1)设点:设被动点坐标为(x ,y ),主动点坐标为(x 1,y 1);(2)求关系式:求出两个动点坐标之间的关系式⎩⎪⎨⎪⎧x 1=f (x ,y ),y 1=g (x ,y );(3)代换:将上述关系式代入已知曲线方程,便可得到所求动点的轨迹方程. 【例11】已知点(,)P x y 在以原点为圆心的单位圆上运动,则点(,)Q x y xy +的轨迹是( ) A.圆B.抛物线C.椭圆D.双曲线【例12】双曲线22143x y -=关于直线20x y -+=对称的曲线方程是 .【例13】双曲线2222by a x -=1的实轴为A 1A 2,点P 是双曲线上的一个动点,引A 1Q △A 1P ,A 2Q △A 2P ,A 1Q与A 2Q 的交点为Q ,则Q 点的轨迹方程为( )A. 22224()a x b y a x a +=≠± B. 22224()a x b y a x a -=≠± C. 22224()b y a x b y b -=≠± D. 22224()b x a y b y b +=≠±【例14】设直线x -y =4a 与抛物线y 2=4ax 交于两点A ,B (a 为定值),C 为抛物线上任意一点,求△ABC 的重心的轨迹方程.【例15】已知椭圆1222=+y x , (1)求过点⎪⎭⎫⎝⎛2121,P 且被P 平分的弦所在直线的方程;(2)求斜率为2的平行弦的中点轨迹方程;(3)过()12,A 引椭圆的割线,求截得的弦的中点的轨迹方程; (4)椭圆上有两点P 、Q ,O 为原点,且有直线OP 、OQ 斜率满足21-=⋅OQ OP k k ,求线段PQ 中点M 的轨迹方程.【巩固训练】1.自椭圆221204x y +=上的任意一点P 向x 轴引垂线,垂足为Q ,则线段PQ 的中点M 的轨迹方程为2.已知P (4,0)是圆x 2+y 2=36内的一点,A 、B 是圆上两动点,且满足△APB =90°,则矩形APBQ 的顶点Q 的轨迹方程是( )A. 2256x y += B.22139x y += C. 22139x y -= D. 2272x y +=3.设F (1,0),M 点在x 轴上,P 点在y 轴上,且MN →=2MP →,PM →△PF →,当点P 在y 轴上运动时,求点N 的轨迹方程.y xQ RPOBA4.已知椭圆2214x y +=的焦点为1F 、2F ,点P 为椭圆上任意一点,过2F 作12F PF ∠的外角平分线的垂线,垂足为点Q ,过Q 点作y 轴的垂线,垂足为N ,线段QN 的中点为M ,则点Q 的轨迹方程为 ,点M 的轨迹方程为 .5.曲线(),0f x y =关于直线30x y --=对称的曲线方程为 .6.已知抛物线和点,为抛物线上一点,点在线段上且,当点在该抛物线上移动时,求点的轨迹方程.7.如图,已知椭圆)0(12222>>=+b a bx a y 的短轴长为4,焦距为2,过点)0,4(P 的直线l 与椭圆交于,A B两点.(1)求椭圆的方程;(2)求线段,A B 中点Q 的轨迹方程.四、参数法求轨迹方程参数法求轨迹方程的步骤(1)选取参数k ,用k 表示动点M 的坐标;(2)得动点M 的轨迹的参数方程⎩⎪⎨⎪⎧x =f (k ),y =g (k );(3)消参数k ,得M 的轨迹方程;(4)由k 的范围确定x ,y 的范围,确保完备性与纯粹性.21y x =+(31)A ,B P AB :1:2BP PA =BP【例16】设椭圆方程为1422=+y x ,过点M (0,1)的直线l 交椭圆于点A 、B ,O 是坐标原点,点P 满足1()2OP OA OB =+u u u r u u u r u u u r ,点N 的坐标为)21,21(,当l 绕点M 旋转时,求动点P 的轨迹方程.【例17】设点A 和B 为抛物线 y 2=4px (p >0)上原点以外的两个动点,已知OA △OB ,OM △AB ,求点M 的轨迹方程,并说明它表示什么曲线.【例18】过抛物线)0(22>=p px y 的顶点O 作互相垂直的直线OA 与OB , (1)求AB 中点P 的轨迹方程;(2)求顶点O 在AB 上的射影M 的轨迹方程;【例19】如图,在正方形OABC 中,O 为坐标原点,点A 的坐标为(10,0),点C 的坐标为(0,10),分别将线段OA 和AB 十等分,分点分别记为A 1,A 2,…,A 9和B 1,B 2,…,B 9,连接OB i ,过A i 作x 轴的垂线与OB i 交于点P i (i △N *,1≤i ≤9).求证:点P i (i △N *,1≤i ≤9)都在同一条抛物线上,并求该抛物线E 的方程;【例20】已知椭圆2222:1(0)x y C a b a b+=>>的右焦点为()1,0F ,且点3(1,)2P 在椭圆C 上.(1)求椭圆C 的标准方程;(2)过椭圆22122:153+=-x y C a b 上异于其顶点的任意一点Q 作圆224:3+=O x y 的两条切线,切点分别为,(,M N M N 不在坐标轴上),若直线MN 在x 轴,y 轴上的截距分别为,,m n 证明:22113+m n 为定值;【巩固训练】1.方程|cos sin |,22(02)1(1sin )2x y θθθπθ⎧=+⎪⎪<<⎨⎪=+⎪⎩表示( )A .双曲线的一支, 这支过点(1,21) B .抛物线的一部分, 这部分过(1,21) C .双曲线的一支, 这支过点(–1,21)D .抛物线的一部分, 这部分过(–1,21)2.过不在坐标轴上的定点(),M a b 的动直线交两坐标轴于点,A B ,过,A B 作坐标轴的垂线交于点P ,求交点P 的轨迹方程.3.已知MN 是椭圆12222=+by a x 上垂直于长轴的动直线,A 、B 是长轴的两个顶点,求直线MA 与NB的交点P 的轨迹方程.4.已知MN 是双曲线上垂直于实轴的动直线,A 、B 是实轴的两个顶点,求直线MA 与NB 的交点P 的轨迹方程.5.在学习数学的过程中,我们通常运用类比猜想的方法研究问题.(1)已知动点P 为圆O :222x y r +=外一点,过P 引圆O 的两条切线P A 、PB ,A 、B 为切点,若0PA PB ⋅=u u u r u u u r,求动点P 的轨迹方程;(2)若动点Q 为椭圆M :22194x y +=外一点,过Q 引椭圆M 的两条切线QC 、QD ,C 、D 为切点,若0QC QD ⋅=u u u r u u u r,求出动点Q 的轨迹方程;(3)在(2)问中若椭圆方程为22221(0)x y a b a b+=>>,其余条件都不变,那么动点Q 的轨迹方程是什么(直接写出答案即可,无需过程).五、方程综合问题【例21】设曲线:,则曲线所围封闭图形的面积为_______.【例22】若圆222(0)x y R R +=>和曲线||||134x y +=恰有六个公共点,则R 的值是 .【例23】曲线21y x =+的部分图像是( )A B C D【例24】方程(2x -y )(x +y -3)=0与(x -y -1)(2x -y -3)=0所表示的两曲线的公共点个数是 ( ) (A) 1个 (B) 2个 (C) 3个 (D) 多于3个【例25】若直线x +y +m =0与曲线(y x 2)(x 2+y 2-1)=0有唯一公共点,则m 的取值范围是____________.【例26】若直线1y kx =+与曲线220x y x ky ++-=的的个交点的横坐标之和为零,则k = .【例27】(1)画出方程1x -=(2)曲线122)y x =-≤≤与直线(2)4y k x =-+有两个交点时,试求出实数k 的取值范围.C )(32222y x y x +=++C【例28】对于曲线:(,)0C f x y =,若存在非负实数M 和m ,使得曲线C 上任意一点(,)P x y ,||m OP M ≤≤恒成立(其中O 为坐标原点),则称曲线C 为有界曲线,且称M 的最小值0M 为曲线C 的外确界,m 的最大值0m 为曲线C 的内确界.(1)写出曲线1(04)x y x +=<<的外确界0M 与内确界0m ;(2)曲线24y x =与曲线22(1)4x y -+=是否为有界曲线?若是,求出其外确界与内确界;若不是,请说明理由;(3)已知曲线C 上任意一点(,)P x y 到定点12(1,0),(1,0)F F -的距离之积为常数(0)a a >,求曲线C 的外确界与内确界.【巩固训练】1.曲线x 2-y 2=a 2与(x -1)2+y 2=1恰有三个不同的交点,则a 的值为( ) (A) a ≠0 (B) a =0 (C) a ≠1 (D) a =12.关于曲线1:34=-y x C ,给出下列四个结论: △ 曲线C 是双曲线; △ 关于y 轴对称;△ 关于坐标原点中心对称; △ 与x 轴所围成封闭图形面积小于2. 则其中正确结论的序号是 .(注:把你认为正确结论的序号都填上)3.若曲线222x y k +=与曲线xy k =无交点,则k = .4.定义:曲线C 上的点到直线l 的距离的最小值称为曲线C 到直线l 的距离.已知曲线21C :y x a =+到直线:l y x =的距离等于222:(4)2C x y ++=到直线:l y x =的距离,则实数a = .5.动点P 到两定点(,0),(,0)(0)A a B a a ->距离之比为:2:1,PA PB =(1) 求点P 的轨迹方程;(2) 点P 在什么位置时,ABC ∆的面积最大?6.(1)若两条曲线的方程是1200(,)0(,)0,(,)F x y F x y P x y ==和交点为,证明:方程12(,)(,)0F x y F x y λ+=的曲线也经过0(P λ为任意实数);(2)求经过曲线222230330x y x y x y y ++-=++=和的交点的直线方程.7.曲线C 是平面内到直线1:1l x =-和直线2:1l y =的距离之积等于常数2(0)k k >的点的轨迹,设曲线C 的轨迹方程(,)0f x y =.(1)求曲线C 的方程(,)0f x y =;(2)定义:若存在圆M 使得曲线(,)0f x y =上的每一点都落在圆M 外或圆M 上,则称圆M 为 曲线(,)0f x y =的收敛圆.判断曲线(,)0f x y =是否存在收敛圆?若存在,求出收敛圆方程; 若不存在,请说明理由.1.已知动点),(y x P 满足5|1243|)2()1(22++=-+-y x y x ,则点P 的轨迹是 ( )A .两条相交直线B .抛物线C .双曲线D .椭圆2.若曲线C 上存在点M ,使M 到平面内两点A (-5,0),B (5,0)距离之差的绝对值为8,则称曲线C 为“好曲线”.以下曲线不是“好曲线”的是( ) A .x +y =5 B .x 2+y 2=9C.x 225+y 29=1 D .x 2=16y3.已知点A (1,0),直线l :y =2x -4,点R 是直线l 上的一点,若RA →=AP →,则点P 的轨迹方程为( ) A .y =-2xB .y =2xC .y =2x -8D .y =2x +4课后练习4.已知△ABC 的顶点A (-5,0),B (5,0),△ABC 的内切圆圆心在直线x =3上,则顶点C 的轨迹方程是( ) A.x 29-y 216=1 B.x 216-y 29=1 C.x 29-y 216=1 (x >3) D.x 216-y 29=1 (x >4) 5.平面直角坐标系中,已知两点A (3,1),B (-1,3),若点C 满足OC →=λ1OA →+λ2OB →(O 为原点),其中λ1,λ2△R ,且λ1+λ2=1,则点C 的轨迹是( ) A .直线 B .椭圆 C .圆 D .双曲线6.设曲线F 1(x ,y )=0和F 2(x ,y )=0的交点为P ,那么曲线F 1(x ,y )+λF 2(x ,y )=0(λ△R )必定( ) A.经过P 点 B.经过原点C.不一定经过P 点D.经过P 点和原点7.动点P 在直线x =1上运动,O 为坐标原点,以OP 为直角边,点O 为直角顶点作等腰直角三角形OPQ ,则动点Q 的轨迹是( ) A .圆 B .两条平行直线 C .抛物线 D .双曲线8.在平面直角坐标系中,方程|x +y |2a +|x -y |2b =1 (a ,b 是不相等的两个正数)所代表的曲线是( )A .三角形B .正方形C .非正方形的长方形D .非正方形的菱形9.已知两定点A (-2,0),B (1,0),如果动点P 满足|P A |=2|PB |,则点P 的轨迹所包围的图形的面积为________.10.曲线C 是平面内与两个定点F 1(-1,0)和F 2(1,0)的距离的积等于常数a 2(a >1)的点的轨迹.给出下列三个结论:①曲线C 过坐标原点;②曲线C 关于坐标原点对称;③若点P 在曲线C 上,则△F 1PF 2的面积不大于12a 2.其中,所有正确结论的序号是________.11.如图,P 是椭圆x 2a 2+y 2b 2=1上的任意一点,F 1,F 2是它的两个焦点,O 为坐标原点,且OQ →=PF 1→+PF 2→,则动点Q 的轨迹方程是______________.12.在△ABC 中,|BC →|=4,△ABC 的内切圆切BC 于D 点,且|BD →|-|CD →|=22,求顶点A 的轨迹方程13.如图所示,抛物线C 1:x 2=4y ,C 2:x 2=-2py (p >0).点M (x 0,y 0)在抛物线C 2上,过M 作C 1的切线,切点为A ,B (M 为原点O 时,A ,B 重合于O ).当x 0=1-2时,切线MA 的斜率为-12.(1)求p 的值;(2)当M 在C 2上运动时,求线段AB 中点N 的轨迹方程(A ,B 重合于O 时,中点为O ).14.如图,动圆C 1:x 2+y 2=t 2,1<t <3,与椭圆C 2:x 29+y 2=1相交于A ,B ,C ,D 四点.点A 1,A 2分别为C 2的左,右顶点.求直线AA 1与直线A 2B 交点M 的轨迹方程.15.如图,DP △x 轴,点M 在DP 的延长线上,且|DM |=2|DP |.当点P 在圆x 2+y 2=1上运动时.专业引领共成长(1)求点M的轨迹C的方程;(2)过点T(0,t)作圆x2+y2=1的切线l交曲线C于A、B两点,求△AOB面积S的最大值和相应的点T的坐标.。

相关文档
最新文档